TR-I-0283 :1992

Franck Martin,杉山雅英,嵯峨山茂樹

Composition of Noise and Clean-Speech HMMs for Recognition of Noisy Speech

Abstract:雑音HMMと音素HMMとの合成モデルを用いた雑音下での音声認識方式について述べる。近年、本方式に 関連した研究が注目され、各種の試みが行なわれてきている。本報告では、ガウス型出力確率分布で表される 雑音及び音素HMMの合成分布をガウス分布で近似する手法について述べ、その合成HMMによる雑音下 での音声認識方式を定式化し、日本語音素認識実験による有効性の評価結果について述べる。

In this report, we develop a method, called HMM composition to cope with the problem of speech recognition in a noisy environment avoiding the tedious training of noisy HMMs. We then consider its application to a speech recognition system based on LPC cepstrum parameters. The method was tested against a variety of noises, stationary and non-stationary with signal to noise ratios ranging from 0dB to 20dB and provides an error reduction over 75% comparing with the clean-speech HMM. It is believed that this technique, by its efficiency, its flexibility and its adaptability to new noises and SNRs could constitute the heart of a real-time speech recognizer robust to noise.