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Abstract

In this report, we devéloP a method, called HMM composition to cope with
the problem of speech recognition in a noisy environment avoiding the te-
dious training of noisy HMMs. We then consider its application to a speech
recognition system based on LPC cepstrum parameters. The method was
tested against a variety of noises, stationary and non-stationary with signal
to noise ratios ranging from 0dB to 20dB and provides an error reduction
over 75% comparing with the clean-speech HMM. It is believed that this
technique, by its efficiency, its flexibility and its adaptability to new noises
and SNRs could constitute the heart of a real-time speech recognizer robust

to noise.
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Chapter 1

Introduction

1.1 Foreword

The research project covered the period going from September, 1 1992 to
October, 2. Five weeks is a short time so it was proposed that the goal of
the training would be to pursue the investigation of the capacities of HMM
composition (HMM = Hidden Markov Model), a technique developed at
the Research Center for Advanced Science and Technology (RCAST) and

at NTT Human Interface Research Laboratories [1].

1.2 What is HMM composition ?

HMM composition belongs to a new category of methods in the area of
speech recognition for coping with noise in the background. As a matter of

fact, recognition in a noisy environment is a very serious problem because:
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e The performance of current speech recognizers is much affected by the

presence of noise
¢ Noise is difficult to model

o Noise characteristics can evaluate rapidly...etc

Roughly, speech-recognition methods against noise can be classified in

four groups

o Cancellation of noise at the beginning of the speech processing: use of
good microphones, application of low-pass filtering... These methods
were the first to be applied, they represent a good start but they are

insufficient.

o Estimation from the noisy speech (e.g the speech contaminated by
noise) of robust models for speech: adaptive filtering, spectral subtrac-
tion, Maximum A Posteriori estimation with hidden Markov modeling
etc. Such methods can lead to high recognition scores. Neverthe-
less, they are usually based on an iterative process (optimization of
a Wiener-filter coefﬁcien.ts for instance) costful from the viewpoint of
computation and of course they are noise dependent. Therefore, they
are difficult to apply to a realistic task where the SNR (signal to noise

ratio) and the characteristics of the noise change.

e Compensation at the recognition level by modeling the noisy speech

using existing knowledge:

U

AL
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— HMM decomposition first proposed by Varga and Moore ([2] and
[3])-
— HMM composition described in this report and very close to

HMM decomposition.

e Noise-robust parameter estimation, noise-robust distortion measures

[7]

1.3 Principle

HMM composition assumes that the NOVO HMM (NOVO stands for voice
mixed with noise) obtained by combining two or more ”source HMMs” will
adequately model the complex phenomena (e.g the noisy speech) resulting
from the interaction of these sources. The source HMMs may model the
clean speech recorded in noise-free conditions or the various noise sources
such as stationary or unstationary noises, background voices..etc. The
tremendous advantage of HMM composition is that it avoids the HMM
training on noisy speech each time speech is corrupted by a "new” noise.
By "new”, we mean that the characteristics of the background noises have
changed so much that a new model is necessary. For example, consider the
case of a person with a portable telephone who walks in the street, enters
different. shops, passes a construction site and so on. In general, we already
have a speaker-dependent or independent model for the clean speech. To

deal with the problem, we only need either to train a new noise model on
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the noise data extracted for instance during the silence periods or recognize
the noise characteristics (stationary, SNR...) and extract the most appro-
priate noise model from our library of source HMMs. Remark that the noisy
model is usuaily made up of a few states (2 or 3) so that the training is fast
and does not require a lot of training data. The composition pracess itself
is almost instantaneous with current.computers. The gain is considerable
even with the increase in decoding time when comparing the HMM compo-

sition solution with the training of 2000 to 3000 triphone models on noisy

speech.

1.4 Objectives

The evaluation of the possibilities and the optimization of HMM composi-
tion will constitute the framework of my master thesis. Before the training
at ATR, HMM composition had essentially been tested against a stationary
noise modeled by a one-state ergodic HMM. This noise is called “keisanki”
because it was recorded in a computer room. The objective during the
short training at ATR was to test if we could apply HMM composition to
different noise sources, especially non-stationary noises, and could increase
the recognition score by using more complex noise-HMMs, 2 and if possible
3-states ergodic HMMs. Extra experiments were carried out to investigate

other HMM—composifion characteristics:

e Evaluation of the robustness of the NOVO model for the noise “keisanki”

when the SNRs of the NOVO model and of the test data differ.

a
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e Use of a Gaussian mixture for the noise model

e Use of the female speaker FSU from the ATR database (5240 Japanese

words) as a background noise.

After explaining the theoretical background of HMM composition, we
_will analyze the results of the experiments carried out at ATR to finally

conclude on the achievements of the training.



Chapter 2

Theoretical Framework

The speech recognition system we used is based on LPC (Linear Predictive
Coding) cepstrum coeflicients. The only task considered was the recogni-
tion of 23 Japanese phonemes (5 vowels and 17 consonants). This simple
task was suitable for starting our investigation on HMM composition. We
used continﬁous HMMs which output probabilities are modeled by one or
a mixture of Gaussian distributions. Finally, we used the 5240 words ATR
database. For training, we used two.extra sets of data: one is phoneme-
balanced Japanese 216 words and another is 101 Japanese syllables.

The theory framework will be developed in two steps:

e We will define the process of HMM composition.

e We will describe the application of HMM composition to

LPC cepstrum parameters.

%)

ay
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2.1 Notations

The complex phenomenon we are considering here results from the interac-
tion of a clean-speech source (symbol S) and one noise source (symbol N).
The noisy speech will be represented by the symbol R.

The subscripts ¢p, Ig and In will represent the LPC cepstrum, the loga-
rithm and the linear spectfum domains.

A Gaussian distribution will be represented by N(u,X) where u repre-
sents the mean vector and ¥ = {0y,|0 < u < p,0 < v < p} represents the
covariance matrix.

In this section, we have to deal with many random variables. We need
a convention to denominate them. X, will represent the source X in the
b domain where b € {cp,lg,in}. For instance, if we consider the random
variable associated to the noisy speech in the linear spectrum, we will write
Rin. If this random variable is a multivariate Gaussian, we will write Ry, =

N(#Rm, ERln).

2.2 HMM Composition

LPC cepstrum is at this time one of the best set of parameters for repre-
senting clean speech (cf remark 2.3.2) and therefore we can hope to obtain
a very good source HMM for the clean speech . Nevertheless, they perform
very poorly when noise exists in the background. That is why we decided

to apply HMM composition to the case the speech recognizer is based on
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LPC cepstrum coefficients. But it could be applied to other sets of coeffi-
cients like FFT cepstrum in a similar way Young et al.[4] did it with HMM

decomposition.

2.2.1 Parameters of an Hidden Markov Model

Our method is called HMM composition because we combine an HMM for
the clean speech and an HMM for the noise into one HMM, the NOVO HMM
modeling the noisy speech. We need then to determine all the parameters
of the NOVO HMM from the source HMMs. We can do it simply for all
parameters except for the HMM output probabilities which case is discussed

in the next subsection.

HMM for Phenomenon X
Initial State Final State

Figure 2.1: Left-to-right Hidden Markov Model

An HMM is defined by the following parameters where X reads S, N or
R depending whether we are considering the clean-speech, the noise or the

noisy HMM.

e O={04,0,,...,0r} is the observation. T is the length of the input

sequence (speech utterance). The observation O, at time ? is a random

a)

.
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vector. In our case, it will have 17 coordinates which are random

variables corresponding to the 17 LPC cepstrum coefficients.

n¥ is the number of states

= (¢f,q5,...,¢") is the set of the states of the model. Q¥
contains two subsets I¥ and FX one containing the ¥ initial states

of the Hidden Markov automaton, the other the fX final states.

AX = (a;—?) is the transition matrix. a;; is the probability of doing the

transition from state g to state ¢.

= {t%} is the set of the HMM transitions. ¢% represents the arc
transition going from state g¥ to state qJX with a non-zero transition

probability (a # 0). We call such arcs non-zero arcs.
Let ¢* be the number of such non-zero arcs.

BX = (b:; ) is the output probability matrix. b;-’;T is the probability of
outputting an observation O, when doing the transition ¢} from state
¢ to state qX In our case, BY will always be modeled by a mixture
of m® Gaussian distributions. In that case, each mixture is weighted

by a coefficient AJj, such as :

H0) = Z/\.JL (0

where of course:

Z /\1_1]\. =
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so that

| tw)dw =1

—C0

for all couples (2, 7).

e II* = {x£} is the initial probability vector. 7 is the probability of

being in the initial state ¢& (¢ € I).

o We will call Mfg the set of mixtures associated to the transition t;’g

Mfg contains m;-? mixture components.

2.2.2 Parameters of the NOVO HMM

We know deduce the parameters of the NOVO HMM. The Figure 2.2 rep-

resents a typical example of the kind of combination that can be done.

R_ S N

n

Number of states: n n

R _ iSiN

Number of initial states: 1

Number of final states: fR = f5fN

Number of mizture components of the output probabilities if we are

using a mizture of Gaussian distributions: m® = mSm/

Number of non-zero arcs: ¢% = ¢SV

To describe the states of the NOVO HMM and their relation to the
source HMMs, we introduce some mapping functions such as A which maps

the two source-HMM states onto the NOVO HMM states:

L O
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) ( )
Speech Left-to-right HMM Ergodic Noise HMM

(E— =) (=
»

*, \)

2 N
N\ ’, \)

W % ©

Gl

v

" . Initial and Final States
9 Initial State Final State ) 9 J

HMM Composition

"6
Final States
Initial States U U
\_

J

Figure 2.2: Example of HMM combination

N QN ° QS —_ QR
(¢, q5) — g
0<iy <NV 0<ig<NS

0 <igp < NE, N(in,is) = igp = inn™ +is (2.1)

“K_n

The operator “e” represents the space product operator. The subscripts
N, ts,tR serve to count the objects (states, mixture components etc.) of
the noise, speech and noisy HMMs. In addition, a state is determined by its

number so we can make the association between the state and its number
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that is q,‘\;, «—— in. That is why we used the couple (iy,1s) instead of
(q?;,, q'ss) as argument to A/. We can thus simplify our notations.
Consult the Appendix B for details about the following other mapping

functions:

T for arc transitions

T for the initial states.

F for the final states

M for the mixture components

Then,

¢ Theinitial probability of an initial state defined by the couple (in,is) €

IN o IS or defined by Z(in,is) = ig is

e The transition probability of the arc transition 7 (iy,ts,in,Js) =
(¢r,JR) is:

R N S

Gipip = Qinin%isis

where

S R R
N eQV, ¢l €@ et e, ¢ e@% g} eQ
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e And for the corresponding non-zero arc, the weight of the mixture

component M(ky, ks) = kg will be:
Airirkr = Ainjnkn Nisisks

o The observation probability will take the general form [2]:

i = [ POV, 08 injr) (22)
The observation OF is represented by the couple (OF,0f) above.
The integration is over all couples and therefore is very difficult to
compute in practise. So some approximation is necessary. The form of
the approximation depends on the parameterization used, in this case,

LPC cepstrum coefficients. This is the purpose of the next subsection.

2.3 Application of HMM composition to LPC

cepstrum parameters

2.3.1 Anchor of the method

We need to find a domain where the relation between the sources can be
stated explicitly and as simply as possible in order to deal easily with the
distributions of the corresponding random variables. In our case, we chose
the linear spectrum where the clean-speech and the noise samples are addi-

tive, that is:
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af(t) = 25(:) + K(SNR) 2™ (t;), 1 <i < L (2.3)

where SNR is the clean speech to noise ratio, L the length of the sample
sequence and t; the time. zX(¢;) represents the sample sequence of the
variable X. k(SNR) is a weighting factor that determines the SNR of the
sample sequence (z7(¢;)). It is defined by equation 3.5.

From equation 2.3, we can represent the noisy si)eech from the noise
and clean-speech sources but to do so, we need to infer the distributions
of clean speech S, and noise IV;, in the linear spectrum from the available
distributions we have in the cepstrum domain that is, S, and N,. For
that purpose, we will apply a series of transformations that are based on
the fact that data in the cepstrum domain are obtained after applying a
Fourier transform on the logarithm of the linear cepstrum. The Figure 2.3
represents the path we follow to obtain the output probabilities matrices
of the NOVO HMM from the ones of the source HMMs. The relations
between the random variables are indicated. The method for calculating
the parameters of the distributions at each step is described in the next

sections.

2.3.2 Definition of the cosine transform matrix

We have a finite set (refer to equations 3.8) of 2p + 1 even LPC cepstrum
coefficients (c_p, ..., ¢o, ..., ¢p) on which we apply a finite Fourier transform,

we obtain a set of 2p + 1 coefficients (k_p, ..., Ko, ..., &p) Which are related
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Logarithm Linear
Cepstrum Spectrum Spectrum
Scp Cosine Slg= T Scp Exponential | Sln = eSlg Combination
> > |
N1
Ncp |Transform |Nlg = I' Ncp| Transform | Nln =e g
Linear Spectrum
Rln = SIn + k(SNR) Niln
Inverse L i
Cosine ogarit
=r-! - Rlg = log (RIn :
Rep =T Rg |~ form g = log (Rln) Transform
- Cepstrum Logarithm Spectrum
Figure 2.3: NOVO transform
by:
—-p<Vu,v<p,
227ruv
Ky = u;pcv xp( % +1) (2.4)
—12TuY 12T UY

Since LPC cepstrum coefficients are even (see 3.9 for details), by the next

change of variables, we can reduce the number of parameters and define

a symmetric form for the cosine transform matrix which will simplify our

calculations for the next steps. We set

And obtain:

Ky

r_ Co
, —
Cv = Cy,

v=0

P 2w uv
= 20
32, cos( ),

1<y, v<p

(2.8)
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The previous equation defines a symmetric cosine transform matrix I' =
(Yuv)o<u,v<p given by:

Ty = 2008(700), 0 S ww < p (2.9)

Remarks:

1. Because of the division by 2 in equation 2.7, we have to do the follow-

ing modifications on the (Gaussian) distributions of the ¢’ coefficients:

€, +— ¢y (2.10)
'Ncp — ”(I)VCP 2 11)
”0 - 2 ( *
'Scp — #gcp 2 12)
Mo = 9 (2.
'‘Nep  _ Oos” 2.13
000 - 4 (-" )
So 008 2.14
Oo0 = 4 (2.14)
' NCP
0 = T 1<Vu<p (2.15)
A i 1< Vu< 2.16
Two = 2 ) SVuzxp ( ‘ )

And then after finishing the series of transformation, we reverse the

modification:

€ +— C, (2.17)

Re 'Re E
ot = 2u0 7 (2.18)
ol = dgge (2.19)

..
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All the transforms described hereafter apply to the coefficients marked
with a prime ’ but in order to avoid an excessive use of superscripts,
we will drop from now the prime knowing what we are talking

about.

. Rigorously, the sum should be over an infinite number of samples.

Here, we are assuming that the coefficients which index is over p are
null. It is a common way to solve the problem. It results in an error

in accuracy that we did not have time to examine.

. One of authors (Masahide SUGIYAMA) suggested that we could use

a rectangular cosine matrix (,,) where 0 < u < p’,0 < s < p with
p' > p to obtain a better precision. I studied this point trying to
use various forms of cosine matrices. A major difficulty raises when
we need to apply the inverse cosine transform. I did not succeed in
obtaining a rectangular matrix which would verify CTC = I, where
I, is the square unit matrix with dimension p. All my attempts gave
instead of I, a matrix I, which off-diagonal terms were very small
but non-null and therefore would introduce round-off errors. It also
increases the number of calculations. Therefore, the gain in using such

a rectangular matrix is not obvious. The extended discussion will be

described.
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2.3.3» Cosine transform

We now describe how to infer the distributions S, and Ny, for speech and
noise in the logarithm spectrum from S, and N, The process is repre-

sented in the Figure 2.4.

Logarithm
Cepstrum Spectrum

SCp Cosine Slg = r Scp

Ncp | Transform | Nig= I Nep

Figure 2.4: Cosine Transform

Hypothestis:

We suppose that S, and N, have a multivariate Gaussian distri-

bution.

We will apply the next theorem to solve our problems.
Theorem 1 Let Xi,...,X, be p normal random variables such as:
E[Xi]) = wi, var[X;] = oy, covar(X;, X;]=0i;(0<4,5 <p)

The linear combination Y = Y r_; a;X; whether the X; are dependent or

independent is itself normally distributed and:

P P P
Y= IV(Z a; i, Z Z a;a,-a,-j) (2.21)

i=1 i=1 j=1

According to equation 2.8, we have:

N, =TN,, (2.22)
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Therefore, according to the above theorem, we have:

0<Vuy,v<p

N —
/"ulg -

N _—
auvg -

I

519
u

St —
qug -

P

> Tuitts (2.24)
j=1

P P
Z z 'Yui'ijagcp (225)
i=1 j=1

2 S
E Yuib T (2.26)
j=1

P P s
Z Z 7ui7vjaijcp (227)
=1 j=1

Remark: You should now be accustomed to our notations. If we write

the above equations in a more compact way, we obtain:

¢ For the noise,

phis

M =

T e plVer (2.28)

['eZNer o7 (2.29)

where Ng, = N(p™er, BVr) and Nyy = N(uMs, EN6).

o Similarly, for the clean speech,

Sig —

U

% =

T e pSer (2.30)

[eXSrelT (2.31)

where S, = N(p5, £5¢) and ), = N ()

2.3.4 Exponential transform

We are considering the following process represented in Fig. 2.5.eq.
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Logarithm Linear
Spectrum Spectrum

Slg

Slg Exponential SIn= e
— :

Transform Nin = Nig

Nlg

Figure 2.5: Exponential Transform

We have to infer the distributions Sj, and Ny, from S), and N;,. This
problem is a classic exercise in probability theory. It consists in determining
the distribution of ¥ = exp® when X is a normal random vector. Details
of the calculation of the mean vector and the covariance matrix of Y are
given in Appendix A. They are obtained by directly integrating and using
the fact that X is normal. S, and N;, have a “lognormal” distribution.

For the noise source, we obtain,

0<Vu,v <p,
s
phin = exp 5 (2.32)
gin = ppnplle [e\p Moy —1]. (2.33)
Similarly for the clean speech source, we obtain,
0 <Vu,v <p,
Sig
pom = exp [;Lu U;u } (2.34)

oS = S Stn [e\p Sy —1]. (2.35)

ws

e
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2.3.5 Linear-spectrum addition

We now combine the source elements. This process is represented in Fig. 2.6.

Sin Combination | jnear Spectrum

Rin = Sln + k(SNR) Nln

Nln k

Figure 2.6: Combination of the speech and noise sources

From Eq.(2.3), we deduce the following relation between the random

variables:

Ry, =Sm + K(SNR) ¢ Ni, (2.36)
We assume that S, and N, are independent. Then,

phin = pStn L E(SNR) pn (2.37)

shin = 50 4 L2(SNR) SN, (2.38)

where k(SN R) is a function of the signal-to-noise ratio [Eq.(3.5)] chosen in
such a way that the global SIVR of the noisy speech database has the value

we want it to have.

2.3.6 Logarithm transform

This process is displayed in Fig. 2.7.

Approzimation:

Ry, is “lognormal” distributed or, equivalently, Ry, is normal.
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Logarithm Spectrum Linear
Logarithm
<4 Rlg=log (Rln) |gu Rin
Transform
Spectrum

Figure 2.7: Logarithm Transform

This approximation is reasonable when the variances of R;, are small
compared with 1. Then, the parameters of Rj, are obtained by inversing

Eq.(2.33) for the exponential transform and apply it to the noisy speech.

We obtain,

0<Vu,v <p,

1 O-Rlﬂ
/,;R‘s? = log [pf"‘] - Elog [ﬁtﬁ: + 1] (2.39)

Rin
ofls = log —R”-'iﬁ—+1 (2.40)
ﬂulnl-lvln

Notice that Ry, is a positive random variable because Ny, and S,,, are pos-

itive and k(SN R) is always positive.

2.3.7 Inverse cosine transform

This step is represented by Figure 2.8.
Therefore, we can apply the theorem 1. The linear combination is given

by the inverse of the cosine transform matrix. We obtain:

pfee = 171,00 (2.41)

(3

&
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Cepstrum Inverse Logarithm
Cosine
Rep = 'l Rig | <t Rig
Transform
Spectrum

Figure 2.8: Inverse Cosine Transform

She = T-igRe(p-HT (2.42)

Remembering that the cosine matrix is symmetric, we then obtain for the

covariances:

he = T-1gRe(P-1) (2.43)

2.3.8 About the variance of the power

When we first applied this transformation to the noise “keisanki” (com-
puter room) in the case it is modeled by one Gaussian and the LPC power
normalized residual is not used (see next section for details), we obtained a
very low recognition score below the one of the clean speech model. In addi-
tion, the values of the parameters of the output distributions of the NOVO
HMDMs where almost identical to those of the corresponding clean-speech

HMMs.

We observed we could have a satisfying recognition score by setting the

variance of the power to 0 for both source, namely:
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S¢;p ng

oo = 0go =0 (2.44)
Except if mentioned, the experiments described in this report use this
experimental initialization. Since this choice affects the coefficients related

to the power, we decided not to use the power LPC cepstrum during the

recognition phase, that is to only use 16 coefficients.
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Table 2.1: Main Notations

Ngp, Ny, Nin, | Random variables corresponding to the noise
in the cesptrum, the logarithm spectrum and
the linear spectrum

Seps Sig, Sin | Random variables corresponding to the clean
speech in the cesptrum, the logarithm spec-
trum and the linear spectrum

R, Ry, Ri, | Random variables corresponding to the noisy
speech in the cepstrum, the logarithm spec-
trum and the linear spectrum

pX = (u¥) | Mean vector of the Gaussian variable X

X = (6X) | Covariance matrix of the Gaussian variable
X

I'=(Yw) Cosine transform matrix

B = (b;;) | bijx Output probability of the k*

mixture of the transition going from state 7

to state 7.

(cu)

LPC cepstrum coefficients

Page 25
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Chapter 3

Experimental Procedure

3.1 Procedure

We followed the following procedure to carry out our experiments. Details

about each step can be found in the next subsections. The Figure 3.1 gives

an overview of the experimental procedure we describe in this chapter.
Note: The process of making a database involves the constitution of two

databases, one is used for training and the other for recognition.

1. Fabrication of the clean-speech PCM databases

2. Fabrication of the corresponding clean-speech LPC databases (17 LPC

cepstra)

3. Training of the clean-speech HMMs (in our case, there are 23 Japanese

phonemes).

4. For each new noise
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(a) Extraction of the noise

(b) Fabrication of the noise and of the noisy PCM databases at a

given SNR
(c) Fabrication of the corresponding LPC cepstrum databases
(d) Training of the noise HMM (17 LPC cepstra)

(e) Combine this noise HMM with each speech HMM to obtain the

NOVO HMMs modeling the noisy speech.

(f) Recognition test on the noisy data using the NOVO HMM (16

LPC cepstra)
(g) To compare the NOVO HMM with other HMMs

i. HMM training on the noisy data to obtain noisy HMMs

il. Recognition test on the noisy data using the noisy HMMs

and the clean speech HMMs.
5. Repeat the process for another SNR, another noise

In our case, our task was phoneme recognition so the HMMs are phoneme

HMMs.

3.2 Practical Aspects

3.2.1 Fabrication of the noise and noisy databases

In our case, we already had some noise databases available from the ASJ.

The task we considered is somewhat artificial because we simply added the
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noise database to the clean speech database, thus avoiding some distortions
like the Lombard effect. On the other hand, such an approach enables to
quickly make noisy databases at any wanted SNR. This is maybe why many
researchers used it so far.

A more realistic task should use a noisy database where the speech is
recorded with noise in the background. We would then need a system to
evaluate the SNR of the database and to extract some "pure” noise data
during silences for instance in order to train the noise HMMs which are
small and therefore do not require a lot of training data. I believe the
interaction of such a SNR detection system with the HMM composition
method is important because the results given in the next chapter tend to
show that the NOVO HMM is sensitive to the SNR.

Remark: The power of the clean-speech and noise sample sequences are
computed over all the samples of the database that is:

1 Mw

Nppw = — > (2N(t:))? 3.1

P M .'=1(T (t:)) (3.1)
1 s S 2

Spow = Mgi=l($ (t:) (3.2)

where My and Ms are the number of samples in the noise and speech
databases. Therefore,

SNR = 1010g(h) (3.3)
Nopow

Thus, we have the following relation between the noise, speech and noisy

sample sequences:

2V (t;) = 25(t:) + h(SNR)e™ (1), 1 <1 < L (3.4)

-



‘a

CHAPTER 3. EXPERIMENTAL PROCEDURE Page 29

where:

KSNR) = %’ﬂlo% (3.5)
pow

Finally, the noise database is usually much smaller than the speech
database. So we may run short of noise data in the middle of the con-
stitution of a “noisy” word. In that case, we go back to the beginning of
the noise database. So the result would be the same as if we had duplicated
the noise recording it on a tape many times and we were reéording a speaker
with the tape recorder playing the noise tape in the background. We are
sure that way that noise and clean speech overlap quite randomly as it hap-
pens in the real world. This remark corresponds to the word “duplication”

on Figure 3.1.

3.2.2 Preprocessing

Preprocessing was done as follows:

Windowing: The window length was 32 ms with a frame shift of S ms.

Computation of 17 autocorrelation coefficients: The length of the sam-

ple sequence was 32 (ms) * 12 (kHz) = 384 (samples).

¢ Preemphasis: The function 1 — f2~! where # = 0.97

LPC analysis: Computation of the linear prediction coefficients that
we shall call o, (0 <« < p(p=16)), 16 per sample sequence. p is

called the order of the LPC analysis.
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3.2.3 LPC analysis

Computation of the linear predictive coefficients o

They are computed in two steps:

o Computation of the autocorrelation coefficients from the signal sam-

ples.

e Computation of the linear predictive coefficients o, (0 < u < p'(=
16)) from the autocorrelation coefficients using the PARCOR recursive
algorithm. Simultaneous computation of the linear-prediction residual

power p which is used to compute the power LPC cepstrum coefficient.

LPC cepstrum analysis

Please refer to the literature for a precise description like Furui [5] . The

formulae we used were the following:

G = — (3.6)
Cu = —Qy ——»ti(l - %)amcu_m (1<u<p) (3.7)
c = Ei: (1- Z‘:‘)amcu—m (p < u) (3.8)

where p is the order of the LPC cepstrum analysis. u is called the truncation
order of the LPC analysis. Remember that LPC cepstrum coefficients are
even that is:

Yu>0,c, =c_y (3.9)
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The computation of the LPC cepstrum corresponding to the power is par-
ticular [6] and given by:

co = log(po) (3.10)
where p represents the normalized residual of the linear prediction analysis

and o the power of the sampling sequence. Here we can add two remarks:

1. The value of p is usually large for noise or when noise is added.

2. Theresidual term introduced in the computation of the LPC cepstrum
enables to obtain a speech envelope closer to the real speech envelope

for the LPC cepstrum than for the FFT cepstrum. See [5], p6S.

3.2.4 HMM training

We used 16 LPC cepstrum coefficients and the power LPC cepstrum. Except

if mentioned, the variance of the power was set to 0.

We took about 3 to 4 minutes of noise data to train the noise models
using the same algorithm as for the clean speech. Since the noise models
are quite small, (the maximum reached sized was for 3 ergodic states and
1 Gaussian and for 1 state and 4 Gaussian components), there was enough

data for training.

We used the speaker MHT of the ATR database. 23 J apanese phonemes
are trained. The data is hand-labelled. We use the odd numbered words

for the training.
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3.2.5 HMM composition

Refer to Chapter 2 for details. Except if mentioned, the variance of the
power cepstrum is set to 0. The distributions are normal, the covariance

matrices, diagonal.
Algorithm

1. Read noise model.

2. Modify it according to equations 2.10 and 2.44.
3. “Bring” it to the linear domain

4. Loop over clean speech models

(a) Read the current speech model
(b) Modify it according to equations 2.10 and 2.44
(c) “Bring” it to the linear domain

(d) For each state, mixture component of the two source HMMs,
combine the corresponding distributions to obtain the NOVO
distribution using the mapping functions described in the Ap-
pendix B.

(e) “Bring” the NOVO HMM of the linear spectrum to the cepstrum

domain.

(f) Cancel modifications according to equations 2.17.

(g) Write the NOVO cepstrum HMM

5. Repeat the process for another clean speech model



(a

CHAPTER 3. EXPERIMENTAL PROCEDURE Page 33

3.2.6 Recognition

Using the NOVO HMMs built during the previous step, we carried out the

recognition without using the power LPC cepstrum coefficient.

In order to evaluate the performance of the NOVO HMM, we compared

its recognition score with those obtained by the clean-speech HMM and the

noisy HMM.

For each SNR we wanted to test, after making the noisy speech database
at the corresponding SNR, we trained the noisy HMM (16 coeflicients, no
LPC cepstrum power) and the noise HMM (17 coefficients). We then used

the latter to built the NOVO HMM.

The output probability matrices corresponding to the transitions outgo-

ing from a state are tied.



CHAPTER 3. EXPERIMENTAL PROCEDURE Page 34

A A

( HMM Training j ( HMM Training )
(LPCAnalysis (16+powcr)) (LPC Analysis (16+powcr))
- NN
o For training
For training .
PCM Database of

Noise 1
PCM Clean-Speech

Daiabase / )
: For resting

S N Duplication

3

For testing

‘I_I-I-I-I-l_l-I-I-I_l_l-l_l-l-l-l-l-l

= SNR 3
allﬂlllllllllIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIE
2 HMM
= COMPOSITION
PCMDNOI.‘;?;SPEEC}! \JHIlIIlI“IIIF!IIIIIIIIIIIIIll.v’
atabases & = .
» v L I
= e e i
o) (s =z i,
0dB 6dB 12dB
NOVO HMMs
+ e
[ LPC Analysis (16) ) T 7
-t /
\\\\“ '—_' '“'I.r " 4‘ ’ ’
A ‘“\\\ l.m;" 1 A

NOYO HMM NOYO H'MM NOVO HMM

Recognition WITHOUT training

Figure 3.1: Overview of the Experimental Procedure
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Results

4.1 Reminder

We had some results before starting the training at ATR all obtained with

the noise “keisanki” modeled by an HMM with one "ergodic” state.

e The HMM combination gave results interesting enough if we were

setting the variance of the power cepstrum to zero (consult Chapter 2).

e Using one Gaussian both for clean speech and noise, the recognition
score was only one or 2 percents higher for full covariance matrices
than for diagonal ones. Refer to [1]. In addition, the computation
load becomes more important when using full covariance matrices,
Also, to be coherent, if we were using full covariance matrices for the
recognition, we should train the source models with full covariance
matrices. We also tried this (training full covariance matrices only for

the clean speech). The results hardly changed. So, we decided to

35
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use diagonal covariance matrices for the rest of our study.

These results are presented in the table below.

Table 4.1: Input possibilities for the source HMM

Noise HMM | Speech HMM | Output HMM | Diagonal Approximation
Diagonal Diagonal Full Valid
Dia.gopal Full Full Va.lid

Full Diagonal Full Not tried
Full Full Full Not tried

e The HMM combination gives better results when increasing the num-

ber of mixture components.
o The use of the LPC residual (cf equation 3.10) improves the results.

o There are several combinations for making the NOVO HMM. After
training the clean-speech HMM with 17 LPC cepstrum coefficients
(if power included) or 16 (power not included), we obtain two sets
of 16 (power not included) slightly different coefficients because the
likelihood is not maximized in the same way whether we have 16 or
17 coefficients. We call set(1) the one obtained with training with 17.

We call set(2) the other one. Consequently, we can make two NOVO

HMMs:

1. Using for the speech source HMM all the coeflicients of set(1),

we will obtain NOVO(1).
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2. Using for the speech source HMM, the power coefficient of set(1)

and the coefficients of set(2). We will obtain NOVO(2).

The same problem raises when doing the recognition with the clean
speech model. We can use the first or the second set. Of course, we
will use the first set if we want to study NOVO(1) and the second set
for NOVO(2). For the noisy model, the problem also raises but we
did not study the impact because we always trained the noisy HMM
with 16 coefficients. After investigation, we have the following results

for the noise “keisanki” without using the LPC residual:

Table 4.2: Comparison between set(1) and set(2) for “Keisanki” at 10dB

Model type set(1) set(1) | Set(2)

16 + power | only 16 | all 16

Trained 75.8 76.9 76.9

Novo (1slm) | Impossible | 61.2 62.4

Clean 52.7 48.2 47.5

The numbers correspond to phoneme recognition rates. There are 23

phoneme HMMs. We can deduce that:

— The use of set(1) is favorable to the clean speech and noisy HMMs

but unfavorable to the NOVO HMM.

— The difference is small.
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So we know that the choice of the parameter set can raise a small
difference in the recognition score. We preferred to use the set(1)
rather than the set(2) because that way, we did not need to train the

clean speech model on set(2).

The objectives were clearly stated in the introduction, so after the next
section where we explain how to read the tables and charts, we will give the

results.

4.1.1 How to read the tables and charts

You might want have a rapid glance at the next pages to see how the tables
and charts look like before reading through this section. To evaluate the
NOVO HMM, we compared the recognition score of the NOVO HMM with
the one of the clean HMM (column “Clean”) and the noisy HMM (column
“Noisy”). The clean HMM corresponds to the clean-speech source HMM.
The noisy HMM is the one we obtain after training on each noisy-speech
database. Therefore, the noisy HMM depends on the SN R of that database.

A code is written under HMM. It characterizes the type of models that
was used. For instance, “4mlf” under “Clean” means that the clean HMM
is modeled by a mixture (m=4) of 4 Gaussian distributions using one set
of features (f=1), the LPC cepstrum. In the future, we plan to do sensor
fusion and use the delta LPC and delta power cepstrum. That is why we
introduced the notation “f” for the number of features. The NOVO HMM

is the combination of the clean HMM and the noise HMM. Since the clean
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HMM is already defined, only the code describing the noise HMM is given.
For instance, “2es3m” means that the noise model has two ergodic states
(s=2) and the output probability is modeled by a mixture of 3 Gaussian

“s” means state.

distributions. “es” means ergodic state.
“Error” corresponds to the error reduction between the code of the

NOVO HMM located under “Error” and the clean and the noisy HMMs.
The error reduction is computed as followed:
NOVO -CLEAN

error reduction = NOISY —CLEAN (4.1)

NOVO, NOISY and CLEAN correspond to the recognition scores obtained
by the corresponding HMMs. It measures the importance of the improve-
ment respectively to the Clean HMM.

“Test SNR” corresponds to the SNR of the test database. Because
we used the coefficient k(SN R) (equation 3.5) computed for making the
training database to make the recognition or “test” database, there is a
mismatch between the SNR of the NOVO HMM (0, 6 and 20dB) and the
one of the database it is tested against. This choice corresponds to the fact
that we supposed we could not accurately compute the SNR of the incoming

data during a real experiment but we only had a rough estimation.
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4.1.2 Noise “Keisanki” (Computer Room)

Characteristics

Noise recorded in a computer room. Its main component comes from the

ventilation. This noise is stationary and has a very large band going from

0 to 10 kHz. It thus covers almost all the speech characteristics of a human

voice (usually situated between 0 and 4 kHz).

Influence of the number of states

Table 4.3: “Keisanki”: Influence of the number of states

Clean | Novo | Novo | Novo | Novo | Noisy HMM | Error
Test SNR (dB) | 4mlf | 1slm | 2eslm | 2es2m | 3eslm 4mif /2es2m
- 0.6dB 11.8 | 89.5 | 59.5 59.8 59.5 73.1 78
5.4dB 286 | 735 | 735 736 | 73.5 83.0 83
19.4dB 76.5 | 90.3 | 90.3 90.3 90.3 93.2 83
Comments:

1. We see that the gain is null when the number of states increases. The

only gain is obtained when increasing the mixture and this result will be

commented in the next subsection.

2. The error reduction is about 80% and increases with the SNR of the test

0% database.
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Influence of the number of mixture components

Table 4.4: “Keisanki”:

Influence of the number of mixture components

Clean | Novo | Novo | Novo | Noisy HMM
Test SNR (dB) 4m1f 1slm | 1s2m | 1s4m 4mif
- 0.6dB 11.8 | 59.5 | 59.8 | 59.9 73.1
5.4dB 286 | 73.5 | 73.5 | 73.6 83
19.4dB 76.5 | 90.3 | 90.3 | 904 93.2
Comments:

1. Increasing the number of mixture components (2es2m) results in a slight in-

crease of the recognition score. The improvement was null when increasing

the number of states.

2. The configuration { 1 state, 2 Gaussians} is better than { 2 ergodic states,

1 Gaussian } and equal to { 2 ergodic states, 2 Gaussians}.

Robustness of the NOVO HMM against SNR variations

Remark: The curve traced for 3dB and 10dB were obtained using set(2)

and the three others with set(1). Though, they are not strictly comparable, we

kept them because the curves for 3dB and 10dB using set(1) would have been

probably very close to the traced ones. At least, the tendency they reflect is the

same. Comments:

1. Looking simultaneously at the figure, we can see that the NOVO HMMs

are in general optimum at the SNR they were made and their performance
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Table 4.5: “Keisanki”: Robustness of the NOVO HMM against SNR vari-

atlions

Test DB SNR NOVO-HMM SNR

0dB | 3dB | 6dB | 10dB | 20dB

- 0.6dB 59.5 | 60.2 | 54.2 | 42.2 | 21.7

5.4dB 56.7 | 68.2 | 73.5 | 71.5 | 583.5

194dB | 284 [ 414 | 543 | 70.6 | 90.3

is significantly lower (by a few percents) when the SNR fluctuates by more

than 2dB.

2. The 10dB HMM is robust for SNRs above 10dB but it does not improve

its recognition score when the SNR increases.

Discussion

We must first think about the physical meaning of a state in a HMM and the
meaning of using a mixture of Gaussian distribution for modeling the HMM
output probabilities.

The states of a phoneme HMM correspond to the stationary parts of the
phoneme. From the experiments, we know that 3 states is a good compromise.
The first state models the coarticulation or the transition (silence...) with what
is before or after the phoneme. The middle state characterizes more the phoneme
-itself. So a state generally models a stationary part of the speech phenomenon.

If we increase the number of Gaussian components of the output probabil-

ity distribution of a given state, we can model the distribution of the speech
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phenomenon modeled by that state more accurately.

The above results correspond quite well to what one would expect from the
theory. “Keisanki” is a stationary noise so if we add states to the noise model,
they will reproduce the characteristics of the first state so the recognition score
should not vary. We obtain a slight improvement when ﬁsing the number of
mixture components because “keisanki” is not the “Gaussian” noise often used
as model in the literature. On the other hand, it might be not too far to that
model because the improvement between 4 components and 2 is low.

The data we collected for studying the robustness are scarce so we can only
say that the NOVO HMMs tend to be optimum at the SNR at which they were
made and that they are not very robust. So a good evaluation of the SNR of the

recognition data will be necessary when using HMM combination for a real task.

4.1.3 Noise “Kousyuu” (Car passing by)

Characteristics

Recorded outside by holding a microphone in the air while a car turns around. It
contains a weak stationary background noise (other cars passing by but far away
from the microphone) with some peaks when the car passes by and its motor

roams.
Influence of the number of states
Comments:

1. Increasing the number of states results in an increase in the recognition

score.
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Table 4.6: “Kousyuu”: Influence of the number of states
| Test SNR | Clean | Novo | Novo | Novo | Noisy HMM | Error Red.
(dB) 4sdm | 1slm | 2eslm | 3eslm 4s4m 3es4m
265 | 66.3 | 80.8 | 84.1 | 824 86.6 79.0
6.65 79.6 | 87.1 | 88.8 88.2 91.1 75.0 |
20.65 92.3 | 925 | 92.6 92.7 93.6 31.0

2. The recognition score for 2 ergodic states is higher than for 3 ergodic states

at low SNRs. This is one of the rare irregularities we met in all our exper-

iments.

3. There is an important mismatch between the SNR, of the test database and

the SNR for which the NOVO HMMs were made.

4. The error reduction decreases while the SNR increases. Nevertheless, at

20dB, the recognition scores are very close to each other.

5. The error reduction is about 80% at low SNRs.

6. The gain at low SNRs is relatively important (in respect to the other noises)

between one state and 2 states.

Influence of the number of mixture components

Comments:

1. We do not have the irregularity we had for the states in the progression.

2. The improvement is roughly the same whether we increase the number of

Gaussians or states.
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Table 4.7: “Kousyuu”: Influence of the number of mixture components

Test SNR | Clean | Novo | Novo | Novo | Noisy HMM | Error Red.
(dB) 4sdm | 1slm | 1s2m | 1s4m 4s4m 1s4m
2.65 66.3 | 80.8 | 84.2 | 84.2 86.6 88.0
6.65 79.6 | 87.1 | 884 | 885 91.1 77.0
20.65 92.3 | 925 | 92.6 | 92.7 93.6 31.0

3. The error reduction is quite high at 0dB but very low at 0dB. Nevertheless,

at 0dB, all three models have similar recognition scores.

Discussion

The noise “Kousyuu” is not very rich. When listening, it has essentially two

components:

¢ An important stationary background noise “A” made up of cars passing
by with a lot of unstationary noises but which level is not very high and

which are therefore probably masked by “A”.

e A “talkative” component “B” that is the roaming of the engine when the

car passes by or accelerates.

This might explain why the configurations 2eslm performs quite well, one
state modelling the “A” part, the other the “B” part.

It is important to note that the test database has a SNR quite far from the one
it was expected to have. Considering the previous study regarding the robustness
of the “keisanki” NOVO HMM, this might have lowered the performance of the

models. Notice that a recognition score above 80% is usually considered as a
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minimum for a phoneme model in a real task. We see here that HMM composition

succeeded in satisfying this condition at a SNR of 2.65dB.

4.1.4 “Elevator”

Characteristics

Recorded in a hall. The main component is made of footsteps from different
persons and therefore having different "rythms”. We can hear some voices in the

background: a baby shouting, men laughing, calling each other... Unstationary.

Influence of the number of states

Table 4.8: “Elevator”: Influence of the number of states

Test SNR | Clean | Novo | Novo | Novo | Noisy HMM | Error Red
(dB) 4s4m | 1slm | 2eslm | 3eslm 4s4m 3esdm
0.3 76.1 | 86.9 [ 8.9 | 87.1 89.4 83.0
6.3 85.3 | 90.6 | 90.4 90.5 92.1 76.0
20.3 93.3 | 92.8 | 929 92.9 93.7 -100.0
Comments:

1. The recognition score is slightly affected when increasing the number of

states, positively at 0dB, negatively at 6dB.

2. At 20dB, the 3 HMMSs have very close recognition score. It is the only time
in all our experiments that the clean speech model performed better than

its NOVO counterpart.

3. Once more the error reduction in the low SNRs is about $0%.
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Influence of the number of mixture components

Table 4.9: “Elevator”: Influence of the number of mixture components

Test SNR. | Clean | Novo | Novo | Novo | Noisy HMM | Error Red.
(dB) 4s4m | 1slm | 1s2m | 1s4m 4sdm 1s4m
0.3 76.1 | 86.9 | 86.9 | 87.0 89.4 82.0
6.3 85.3 | 90.6 | 90.3 | 90.3 92.1 74.0
20.3 933 | 92.8 | 92.8 | 92.8 93.7 negative
Comments:

1. Increasing the number of GD (Gaussian distributions) does not give satis-

fying results. At 0dB, the effect is positive and at 6dB, negative.

Discussion

“Elevator” is a very rich noise. It contains a lot of different impulse noises (foot-

steps) and voices. So the number of states or GD we used was probably not

enough to model all these components. So the HMM could only model the av-

erage stationary parts of all these models. And for that, the configuration 1slm

was enough. Results are difficult to interpret. The main conclusion we can make

is that HMM composition works with the same error reduction level (about 80

%) at low SNRs as for the previous noises.
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4.1.5 Noise “Hitogomi” (Crowd)
Characteristics

Could have been recorded in a restaurant with a ventilator. This noise contains

many voices, laughs... Unstationary.

Influence of the number of states

Table 4.10: “Hitogomi”:Influence of the number of states

Test SNR | Clean | Novo | Novo | Novo | Noisy | Error Red.

(dB) 4s4m | 1slm | 2eslm | 3eslm | 4s4m 3es4m

0.5 36.9 | 668 | 674 679 | 75.8 80.0

6.5 58.1 | 785 | 78.9 79.2 | 85.8 76.0

20.5 88.8 | 914 | 914 91.5 | 929 66.0

Comments:

1. Increasing the number of states results in an increase in the recognition

score.

2. The gain between 2 and 3 ergodic states is smaller than the one between 1

and 2 states.

3. The error reduction decreases while the SNR increases. Nevertheless, at

20dB, the recognition scores are very close to each other.

4. The error reduction is about 80%.

Influence of the number of mixture components
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Table 4.11: “Hitogomi”: Influence of the number of mixture components

Clean | Novo | Novo | Novo | Noisy | error red.

Test SNR (dB) | 4s4m | 1slm | 1s2m | 1s4m | 4s4m 1s4m

0.5 36.9 | 668 | 672 | 68.7 | 75.8 82.0

6.5 58.1 | 785 | 78.8 | 80.0 | 85.8 79.0

20.5 88.8 | 914 | 915 | 91.5 | 92.9 66.0
Comments:

1. The increase in the recognition score with the number of GD is small but

steady.

2. The gain obtained by increasing the number of GD increases with less

importance while the SNR increases. This tendency is neat.

Discussion

“Hitogomi” contains a lot of voices. So the performance of all models (CLEAN,
NOVO, NOISY) go down when the SNR decreases. The decrease is more impor-
tant than for the previous unstationary noises.

There is no clear tendency whether increasing the number of states or GD
gives the best result. Both factors play favorably. In addition, the progression
indicates that the recognition score gets higher the more states or GD we use. So
it is legitimate to hope to be able to obtain even higher recognition scores but at

the expense of an increase in computations.
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4.1.6 Noise “Speaker”

Characteristics

The noise speaker is the female FSU who has a similar database as the speaker

MHT we used for the clean-speech source. We made two types of experiment:

Semi-open We had the time to do it at ATR in the end of the training. The experiment
is semi-open because we used the same noise data for training and for
making the test database. We call that noise “FSU-216" because we used

the set of the 216 balanced words of FSU as a noise database.

Open This experiment was carried out at NTT. We extract every 20th word from
the ATR database of 5240 words in order to avoid the succession of too
similar words. The set of words thus extracted was used to make the test
database. We call that noise “FSU-5240". The noise model was trained

using “FSU-216".

Then, according to what we said about the variance of the power, we are
precisely in the case where the noise has similar power characteristics as the
noise source and where at least the masking can work properly using the theory

developed in the second Chapter . This was tried after returning to NTT.

Influence of the number of states

Comment: Since leaving the variance of the power unchanged does not bring

any improvement, we set the variance of the power to 0 for the open experiment.



CHAPTER 4. RESULTS Page 51
Table 4.12: FSU-216: Variance of the power is set to 0
Test SNR | Clean Novo' Novo | Novo | Noisy HMM | Error Red.

(dB) 4s4m | 1s2m | 2es2m | 3es2m 4s4m /3es
0 674 | 693 | T1.1 71.8 71.0 122.0
6 73.0 | 75.5 71.7 75.9 78.5 52.0
12 788 | 80.5 | 82.0 83.8 84.1 94.0
20 854 | 86.2 | 87.3 88.1 88.2 96.0

Table 4.13: FSU-216: Variance of the power is left unchanged

Test SNR | Clean | Novo | Novo | Novo | Noisy HMM | Error Red.
(dB) 4s4m | 1s2m | 2es2m | 3es2m 4s4m /3es
F—:
0 674 | 69.0 [ 69.8 71.4 71.0 122.0
6 73.0 | 75.1 77.1 76.1 78.5 52.0
12 788 | 80.3 | 81.7 82.9 84.1 94.0
20 854 | 858 | 87.1 87.5 88.2 96.0
Table 4.14: FSU-5240: Variance of the power set to 0
Test SNR. | Clean | Novo | Novo | Novo | Noisy HMM | Error Red.
(dB) 4s4m | 1s2m | 2es2m | 3es2m 4s4m /3es
0 69.4 | 704 | 718 | 726 72.7 97.0
6 74.6 | 76.0 77.8 76.4 78.2 50.0
12 79.5 | 80.8 | 81.8 83.2 83.7 88.0
20 85.6 | 86.1 87.2 87.6 89.1 57.0
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Comments

1. We notice that the approximation “variance of power set to 0” works

slightly better than the theoretical case “variance left unchanged”.

2. At 0dB, the NOVO HMMs in both experiments give better results than

the noisy HMM.

3. At 6dB, the error recognition has an abrupt change that we do not know

how to explain.
4. The error reduction otherwise is very high.

5. The results are better (in absolute) for the open experiment that for the
semi-open one. This might be accounted to the fact that the choice we

made of the words for making “FSU-5240" is not very balanced.

Surprisingly, the clean speech model performs quite well with the noise speaker.

This might be due to the fact that the unstationarity is homogeneous, monolithic,
“pure” because FSU’s voice was recorded in very low noise conditions. So the
experiment is even more artificial. If a stationary noise component were added in
the background, the task would be more realistic the scores significantly lowered.

The fact that the NOVO HMM can perform better than the noisy HMM
at low SNR is very encouraging and confirms the particular ability of HMM

composition to deal with unstationary noises.

s



Chapter 5

Conclusion

The purpose of the training was to study the capacities of HMM composition

when applied to the LPC cepstrum feature set.

In Chapter 1, we extensively explained the theoretical background for building
the NOVO HMM using LPC cepstrum coeflicients, emphasizing the hypotheses
we were using when transforming the covariance matrices of the Gaussian distri-

butions.

In Chapter 2, we described the conditions in which we carried out our exper-

iments.

In Chapter 3, we commented the results we obtained and tried to explain

them.

In this Chapter, we would like to conclude on the characteristics of HMM
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that we can retain from our study:

HMM composition provides an error reduction above 75% at SNRs of 0

and 6dB.

HMM composition can be applied to all kinds of noise: stationary (“keisanki”)

and unstationary noises (“elevator”, “kousyuu”) including voices (“hito-

gomi” and noise “speaker” (FSU)).

HMM composition provides real-time adaptation to new SNRs. Having
one HMM of the background noise at a given SNR is enough to make a

NOVO HMM at any SNR.

HMM composition can be applied for real time adaptation to new incom-
ing noises provided the clean-speech models are available which is more

than often the reality.

The results given for the noise speaker FSU indicate that the NOVO HMM

can perform better in certain conditions than the noisy HMM.

HMM composition has a very high modularity. One way of benefiting
from this modularity would be to make a library of standard noises or in
the context of a given application for a factory for instance, of “factory”
noises. It is even possible to combine the simple noise models to make
complex ones that will be then composed with the one of the clean-speech

source.

Though it was not showed, it is possible to recognize the sources through
the decoding HMM algorithm. For instance, it means that for the exper-

iment with the noise speaker FSU at 0dB, we could have recognized not

@
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only MHT as we did but also FSU by just studying the state sequence of
the NOVO HMM. This aspect confers to HMM composition a solid base

for approaching such problems as the famous “cocktail party” effect.

¢ Especially, because HMM composition enables to avoid the training on
the noisy speech, this method can be applied to large speech recognition
systems which are using thousands of HMMs and for which it is not realistic

to train the models for each new noise.

In conclusion to all these points, we can say that HMM composition is a very
rich method that can be applied to a wide range of problems (including the
cocktail party effect) with a fair success. Of course, a speech recognizer robust to
noise will include a lot of different methods for coping with noise but we believe

that HMM composition could be the central method of such a system.
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Appendix A

Threory of Normal Variables

Let X = (21,...,2,)7 be a multivariate Gaussian (dimension n) then its proba-

bility density function (pdf) is given by:

1 _(X=)T(e=y(X—p)

f(X) = We dX (Al)
/ﬁ (X)X =1 (A.2)

where R™ is the region of all possible values of z. ¥ and p are respectively
the covariance matrix and the mean vector associated to X. We will add the

superscript X to x4 and o when there is a risk for ambiguity.

p= (g, pa)T
L ={ow]|l < u,v<n}

Let us now consider the random variable:

Y=eX=(y=€,...,yp = )T (A.3)

We will now determine the first and second moments of the distribution Y.
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Computation of the mean of Y

We directly calculate the mean of the #** variable from the definition:

w = E[e”]

C_(x=w T X )

1 z
e X Ad
wn TSl ’ (&.4)

The operator E is the expectation operator. Let us change variables: Z = X — i

or 0 £ Vi < n, z; = z; — p; We define ¢; = [0,0,...,0,1,0,...,0] where the 1is
in the i** position.
We have z; = ef Z. Therefore,

T p—1
=i+#€e——u—'—( Z)y (B )2

2 P

Y

1
M7 e VR
Remarking that ¥ is symmetric and therefore that STX-! is the identity
matrix I,, let us focus on :
K=2z+mw)- 272
Since:
(Z - £e;))T2"YZ - Ze;) =
= ZT271Z — (2e))T271Z + (Ze))T 27 (Bei) - ZT 271 (Ze;)
= Z2T571Z el Z + el Se; — Z7¢;
= ZT2 1 -2z 40y

K can be rewritten as:

K = —(Z2-%&)T8"YZ - Se;) + 22 — 22z 4 0 + 2 (A.5)
= —(Z-2e)T27YZ - Ze;) + 0ii + 2 (A.6)
Therefore,
#3, = e Hitui 1 g—Z)T(z—‘)zd

w e

& — =)



APPENDIX A. THREORY OF NORMAL VARIABLES Page 59

The integral is equal to 1 by the definition of the pdf. The mean of Y will

therefore be given by:

g = e 0<i<n (A7)

Computation of the covariance matrix

By definition, we have:
oij = Ele*ei] — E[e*]E[e"]0<i,j<n (A.8)

The second term is easily obtained from our previous calculation. To compute

the first term, we apply the definition:

_X=m T X —w)

1 itz
—_— T dX
wn SO ’
1 it (=2T(E"HZ
/ — —__ eritmitzjtuj, 2 dX (A.9)
n /(21 i"IEI

In a similar way as for the mean, we see that:

E[e*ie%i]

(Z - Z(ei + €))7 5712 ~ S(ei + ¢5))
=2zTg-1z - (e; + ej)TZ + (e; + e_,-)TZ(e; +e;) - ZT(e; + ¢;)
=72T8"1Z2 - 2z; + o4 — 2z5 + 045 + 2045
Hence,
Ele®ie™] = et g ot 0 67 01

The one corresponds to the integration of the pdf in respect to Z (same trick

as for the mean). We can write in a more compact way:

. . , X
Ele%e®] = p) Y o %
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Combining this result with the definition A.8, we obtain the expression of the

second moment of ¥':

X ..
nguyﬂ;f.(eaij_l)70-<—zijsn

(A.10)

%3

i =



Appendix B

Mapping Functions

We define here some mapping functions helpful to describe the NOVO HMM

resulting from the composition. The operator e is the product space operator.

We use the notations defined in Chapter 2. ' maps the HMM states:

N QVeQ? — Q"
(., d5) — ¢

0<in<NVO0<ig< NS
0<ip < NE, N(in,is) = ip = inn® +is

Z maps the HMM initial states:

7: INeIS — IR
R
(qlN’qls) d'qia

0<in<IVN,0<is< IS
0<ip < IR, I(in,is) = ip = ini" +is
F maps the HMM final states:
F: FN o FS — IR
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(e, d5) — i

0<in<FN0<ig< FS

0<ip < FE, Flin,is) = ir=infN +is

T maps arc transitions:

T: QN eQ%e QN e QS
(Nl a5)
0 <in,jv < NV,0 < is,js < NS

0 < iR’jR < lvRv

T(in,is,in,Js) = (ir,jr) = (inn + is, jnn + js)

M maps the mixture components of one transition:

M: MN o MS — MR
(kn, ks) — kg
0<ky<mN,0< ks <,m°
0 <kp<mh,

M(kn,ks) = kp = kym" + kg

(B.3)

——>QR.QR

i)

(B.4)

(B.5)

& — - X



Appendix C

Notations
Table C.1: Translation of the Noise Names
Japanese English
“Keisanki” | Computer room
“Kousyuu” | Car passing by
“Elevator” Elevator
“Hitogomi” Crowd
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Table C.2: Main Notations

Nep, Nig, Ni, | Random variables corresponding to the noise in
the cesptrum, the logarithm spectrum and the

linear spectrum

Sep, Sigy Sin | Random variables corresponding to the clean
speech in the cesptrum, the logarithm spectrum

and the linear spectrum

Rep, Rig, Rin | Random variables corresponding to the noisy
speech in the cepstrum, the logarithm spectrum

and the linear spectrum

pX = (uX) | Mean vector of the Gaussian variable X

X = (6X) | Covariance matrix of the Gaussian variable X

T'= (Yu) Cosine transform matrix

B = (bijx) | bije Output probability of the &kt

mixture of the transition going from state i to

state j.

(cu) LPC cepstrum coefficients
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