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雑音 HMMと音素 HMMとの合成モデルを用いた雑音下での音声認識方式について述べる。近年、本方式

に関連した研究が注目され、各種の試みが行なわれてきている。本報告では、ガウス型出力確率分布で表さ

れる雑音及び音素 HMMの合成分布をガウス分布で近似する手法について述べ、その合成 HMMによる雑

音下での音声認識方式を定式化し、日本語音素認識実験による有効性の評価結果について述ぺる。

◎ ATR Interpreting Telephony Research Labs. 
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Abstract 

＾ 

＾ 

In this report, we develop a method, called HMNI composition to cope with 

the problem of speech recognition in a noisy environment avoiding the te-

dious training of noisy HlVINis. We then consider its application to a speech 

recognition system based on LPC cepstrum parameters. The method was 

tested against a variety of noises, stationary and non-stationary with signal 

to noise ratios ranging from OdB to 20dB and provides an error reduction 

over 75% comparing with the clean-speech HlVIM. It is believed that this 

technique, by its efficiency, its flexibility and its adaptability to new noises 

and SNRs could constitute the heart of a real-time speech recognizer robust 

to noise. 

“‘
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Chapter 1 

， 
Introduction 

1.1 Foreword 

~' 

The research project covered the period going from September, 1 1992 to 

October, 2. Five weeks is a short time so it was proposed that the goal of 

the training would be to pursue the investigation of the capacities of HM:NI 

composition (HNINI = Hidden Markov Model), a technique developed at 

the Research Center for Advanced Science and Technology (RCAST) and 

at NTT Human Interface Research Laboratories [l]. 

1.2 
嚢
‘

What is HMM  composition ? 

HlVINI composition belongs to a new category of methods in the area of 

speech recognition for coping with noise in the background. As a matter of 

fact, recognition in a noisy environment is a very serious problem because: 

ー
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• The perf orma~ce of current speech recognizers is much affected by the 

presence of noise 

• Noise is difficult to model 

• Noise characteristics can evaluate rapidly…etc 

Roughly, speech-recognition methods against noise can be classified in 

four groups 

-”
 

~ 

• Cancellation of noise at the beginning of the speech processing: use of 

good microphones, application of low-pass filtering…These methods 

were the first to be applied, they represent a good start but they are 

insufficient. 

• Estimation from the noisy speech (e.g the speech contaminated by 

noise} of robust models for speech: adaptive filtering, spectral subtrac-

tion, Maximum A Posteriori estimation with hidden Markov modeling 

etc. Such methods can lead to high recognition scores. Neverthe-

less, they are usually b戸sedon an iterative process (optimization of 

a vViener-filter coefficients for instance) costful from the viewpoint of 

computation and of course they are noise dependent. Therefore, they 

are difficult to apply to a realistic task where the SNR (signal to noise 

ratio) and the characteristics of the noise change. 

’ 

^
9
 

• Compensation at the recognition level by modeling the noisy speech 

using existing knowledge: 
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e
- -HlVIM decomposition first proposed by Varga and Moore ([2] and 

"-
[3]). 

-HlVIM composition described in this report and very close to 

HMlVI decomposition. 

• Noise-robust parameter estimation, noise-robust distortion measures 

[7] 
~ 

1.3 Principle 

(",., 

0

、

HMM composition assumes that the NOVO HMlVI (NOVO stands for YQice 

mixed with胆ise)obtained by combining two or more "source HMMs" will 

adequately model the complex phenomena (e.g the noisy speech) resulting 

from the interaction of these sources. The source HMMs may model the 

clean speech recorded in noise-free conditions or the various noise sources 

such as stationary or unstationary noises, background voices .. etc. The 

tremendous advantage of HMM composition is that it avoids the HMM 

training on noisy speech each time speech is corrupted by a "new" noise. 

By "new", we mean that the characteristics of the background noises have 

changed so much that a new model is necessary. For example, consider the 

case of a person with a portable telephone who walks in the street, enters 

different. shops, passes a construction site and so on. In general, we already 

have a speaker-dependent or independent model for the clean speech. To 

deal with the problem, we only need either to train a new noise model on 
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the noise data extracted for instance during the silence periods or recognize 

the noise characteristics (stationary, SNR…) and extract the m9st appro-

priate noise model from our library of source H:NIMs. Remark that the noisy 

model is usually made up _of a few states (2 or 3) so that the training is fast 

and does not require a lot of training data. The composition process itself 

is almost instantaneous with current .computers. The gain is coμsiderable 

even with the increase in decoding time when comparing the HMM compo-

sition solution with the training of 2000 to 3000 triphone modelf? on noisy 

speech. 

(”
 

＾ 
1.4 Objectives 

The evaluation of the possibilities and the optimization of HMM composi-

tion will constitute the framework of my master thesis. Before the training 

at ATR, HMM composition had essentially been tested against a stationary 

noise modeled by a one—state ergodic H:NIM. This noise is called "keisanki" 

because it was recorded in a computer room. The objective during the 

short training at ATR was to・test if we could apply HM:NI composition to 

different noise sources, especially non-stationary noises, and could increase 

the recognition score by using more complex noise-Hl¥1Ms, 2 and if possible 

3-states ergodic HMMs. Extra experiments were carried out to investigate 

other HMM-composition characteristics: 

， 

t̂言

• Evaluation of the robustness of the NOVO model for the noise "keisanki" 

when the SNRs of the NOVO model and of the test data differ. 
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e] • Use of a Gaussian mixture for the noise model 

》
一

• Use of the female speaker FSU from the ATR <;1.atabase (5240 Japanese 

words) as a background noise. 

＾ 

After explaining the theoretical background of HMlvI composition, we 

will analyze the results of the experiments carried out at ATR to finally 

conclude on the achiev~ments of the training. 

＾ 
a} 
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Chapter 2 

Theoretical Framework 

The speech recognition system we used is based on LPC (Linear Predictive 

Coding) cepstrum coefficients. The only task considered was the recogni-

tion of 23 Japanese phonemes (5 vowels and 17 consonants). This simple 

task was suitable for starting our investigation on HMM composition. ¥Ve 

used continuous HMMs which output probabilities are modeled by one or 

a mixture of Gaussian distributions. Finally, we used the 5240 words ATR 

database. For training, we used two. extra sets of data: one is phoneme-

balanced Japanese 216 words and another is 101 Japanese syllables. 

The theory fra1nework will be developed in two steps: 

• We will define the process of HMM composition. 

• We will describe the application of HMM composition to 

LPC cepstrum paran1eters. 

＾ 

’ 
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2.1 Notations 

Page 7 

”~ 

， 

The complex phenomenon we are considering here results from the interac-

tion of a clean-speech source (symbol S) and one noise source (symbol N). 

The noisy speech will be represented by the symbol R. 

The subscripts cp, lg and Zn will represent the LPC cepstrum, the loga-

rithm and the linear spectrum domains. 

A Gaussian distribution will be represented by N(μ ぶ） whereμrepre-

sents the mean vector and E = { O'uvlO~u~p, 0~v~p} represents the 

covariance matrix. 

In this section, we have to deal with many random variables. We need 

a convention to denominate them. ふ willrepresent the source X in the 

b domain where b E { cp, lg, In}. For instance, if we consider the random 

variable associated to the noisy speech in the linear spectrum, we will write 

Rzn-If this random variable is a multivariate Gaussian, we will write Rzn = 

＾ 
JV(μ 叫炉ln).

2.2 HMM  Composition 

、。
LP C cepstrum is at this time one of the best set of parameters for repre-

senting clean speech (cf remark 2.3.2) and therefore we can hope to obtain 

a very good source HlVIl¥lI for the clean speech . Nevertheless, they perform 

very poorly when noise exists in the background. That is why we decided 

to apply HMM composition to the case the speech recognizer is based on 
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LPC cepstrum coefficients. But it could be applied to other sets of coeffi-

cients like FfT cepstrum in a similar way Young et al.[4] did it with HlVIlVl 

decomposition. 

2.2.1 Parameters of an Hidden Markov Model 

Our method is called HMM composition because we combine an HMM for 

the clean speech and an HMM for the noise into one HMM, the NOVO HMM 

modeling the noisy speech. We need then to determine all the parameters 

of the NOVO HMM from the source HMMs. vVe can do it simply for all 

parameters except for the HMM output probabilities which case is discussed 

in the next subsection. 

HMM for Phenomenon X 

25 

＾ 

， 
Final State 

Figure 2.1: Left-to-right Hidden lvlarkov Model 

An HMM is defined by the following parameters where X reads S, Nor 

R depending whether we are considering the clean-speech, the noise or the 

noisy HMM. 

• 0 = { 01, 02, ... , 0サisthe observation. T is the length of the input 

sequence (speech utterance). The observation Ot at time tis a random 
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a- vector. In our case, it vヽillhave 17 coordinates which are random 

~
一

variables corresponding to the 17 LPC cepstrum coefficients. 

• nx is the number of states 

• QX = (q{'qふ...'qぷ） is the set of the states of the model. QX 

contains two subsets JX and F又onecontaining the在 initialstates 

of the Hidden Markov automaton, the other the fx final states. 
~ 

• Ax = (ai;) is the transition matrix. aii is the probability of doing the 

. . ,}( 
trans1いonfrom state qi to state q. . X 

J 

• TX= {硲}is the set of the HlVIM transitions. tf3 represents the arc 

transition going from state ql to state qf with a non-zero transition 

probability (af} I 0). We call such arcs non-zero arcs. 

• Let松 bethe number of such non-zero arcs. 

＾ 
9
『

•Bx= (硲） is the output probability matrix. btJ is the probability of 

outputting an observation Ot when doing the transition tJ from state 

qf to state qf. In our case, Bx will always be modeled by a mixture 

of mx Gaussian distributions. In that case, each mixture is weighted 

by a coefficient入臥 suchas : 

響＇

m X 

硲(Ot)= L硲拉贔(Ot)
k=l 

where of course: 

m・ 
l(' 

こ心 =l
k=l 
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so that ー`

Joo硲(w)dw= l 
-co 2

 

for all couples (豆）．

• rrx = {が}is the initial probability vector. 吋fis the probability of 

being in the initial state qf (i E J x). 

• We will call Mぎtheset 
” 

of mixtures associated to the trans北iont-• X ,,. 
MX y 

” 
• • contains m:. mixture components. 
” 

~ 

2.2.2 Parameters of the NOVO HMM  

vVe know deduce the parameters of the NOVO HMM. The Figure 2.2 rep-

resents a typical example of the kind of combination that can be done. 

• Number of states: 研＝冦nN

• iVumber of initial states: i = i i ・R・S・N 

/'8"., 

• Number of final states: 戸＝戸IN

• Number of m紐tu1・ecomponents of the o・utput probabilities if we are 

iising a m紐tureof Gaussian distributions: 語＝耐研

• Number of non-zero arcs: 研=<J>S砂

.2”
 

To describe the states of the NOVO HMNI and their relation to the 

source HNiiVIs, we introduce some mapping functions such邸 Nwhich maps 

the two source-HiviiVI states onto the NOVO H1;IM states: 
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Speech Left-to-right HMM Ergodic Noise瞑 M

Initial State Final State Initial and Final States 

＾ 
NOVOHMM: 

Final States 

Figure 2.2: Example of HMl¥11 combination 

＾ iV: QN• QS 一QR
(N  S qiN'qis) R ―→ qin 

〇 ~iN~JV N, 0~is~JV 5 

aマ 0~in~N互 JV(iN, is)= iR = iN詑+is (2.1) 

The operator "•" represents the space product operator. The subscripts 

印，is,iR serve to count the objects (states, mixture components etc.) of 

the noise, speech and noisy HMNls. In addition, a state is determined by its 

number so we can make the association between the state and its number 
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that is q心←→もrv. That is why we used the couple (i N, is) instead of 

(q応姑） as argument to N. We can thus simplify our notations. 

Consult the Appendix B for details about the following other mapping 

ぅ`

functions: 

• T for arc transitions 

• I for the initial states. 

＾ • :F for the final states 

• M for the mixture components 

Then, 

• The initial probability of an initial state defined by the couple {釘1J,is)E 

伊•1s。rdefined by I(i N心）= iR is 

R N S 7r・ 
'R 
= 7r・7r・iN is 

’ 

• The transition probability of the arc transition T(iN,is,iN,js) -

(iR, jR) is: 

R N S a• . = a-• a-• 
'R]R lNJN 1S3S 

where 
J
 

硲EQ凡砧 EQ汽盈 EQ凡磁 EQ凡姶 EQ汽qtE QR 
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，
 0
-

• And for the corresponding non-zero arc, the weight of the mixture 

component M (kN, ks) =転 willbe: 

入iR丘kR=入iN紐kN入isisks

• The observation probability will take the general form [2]: 

＾ 
心=j P((Of', Of)I i叫） (2.2) 

The observation Of is represented by the couple (Of, Of) above. 

The integration is over all couples and there£ore is very difficult to 

compute in practise. So some approximation is necessary. The form of 

the approximation depends on the parameterization used, in this case, 

LPC cepstrum coefficients. This is the purpose of the next subsection. 

~ 
2.3 Application of HMM  composition to LPC 

cepstrum parameters 

2.3.1 Anchor of the method 

We need to find a domain where the relation between the sources can be 

stated explicitly and as simply as possible in order to deal easily with the 

distributions of the corresponding random variables. In our case, we chose 

the linear spectrum where the clean-speech and the noise samples are aclcli-

tive, that is: 
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呼(ti)=ェ汽む）+ k(SJVR) 翌（む）， l~i:5L (2.3) 
a-̀ 

where SNR is the clean speech to noise ratio, L the length of the sample 

sequence and ti the time. が（む） represents the sample sequence of the 

variable X. k(SN R) is a weighting factor that determines the SNR of the 

sample sequence (企(ti)).It is defined by equation 3.5. 

From equation 2.3, we can represent the noisy s~eech from the noise 

and clean-speech sources but to do so, we need to infer the distributions 

of clean speech Sin and noise Nin in the linear spectrum from the available 

distributions we have in the cepstrum domain that is, Sep and iVcp. For 

that purpose, we will apply a series of transformations that are based on 

the fact that data in the cepstrum domain are obtained after applying a 

Fourier transform on the logarithm of the linear cepstrum. The Figure 2.3 

represents the path we follow to obtain the output probabilities matrices 

of the NOVO HMM from the ones of the source HMMs. The relations 

between the random variables are indicated. The method for calculating 

the parameters of the distributions at each step is described in the next 

sections. 

＾ 

~ 

2.3.2 Definition of the cosine transform matrix 
‘・”) 

We have a finite set (refer to equations 3.8) of 2p + 1 even LPC cepstrum 

coefficients (c_p, ... , Co, ... , cp) on which we apply a finite Fourier transfonn, 

we obtain a set of 2p + 1 coefficients ("'-p, ... , ん0,... , 1"p) which are related 
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-It 

Logarithm Linear 
Cepstrum Spectrum Spectru!!l 

~ 

Sep I Cosine I Slg = r Sep I Exponential I Sln = e Slg I Combination 
竺虫'ransformINlg = r N叩ITrans_如rm

Linear S 

Inverse 
~ 

Rep = r -l Rlg 

Cepstrum 

Cosine 
Rlg = log (Rln) 

Transform・ 

Logarithm 

Trans. 如rm

Logarithm Spectrum 

Figure 2.3: NOVO transform 

by: 

-p :5 Vu, V :5 P, 

P i21ruv 
Ku = L euexp(-) 

v=-p 2p+ 1 

K.u = Co十 V合[c-vexp(声芋）+ c.exp(芦り](2.5)

(2.4) 

＾ Since LPC cepstrum coefficients are even (see 3.9 for details), by the next change of variables, we can reduce the number of parameters and define 

a symmetric form for the cosine transform matrix which will simplify our 

calculations for the next steps. We set 

Co 
c~= 一
2 

c~= Cv, 1~v~p 

、
ー

J
‘
`
'ノ

6

7

 

．

．

 

2

2

 

、,＼

f
l、

And obtain: 

p 21iUV 

"-u = I: 試 cos(―
v=O 

2p+ 1 
), 1~u,v~p (2.8) 
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The previous equation defines a symmetric cosine transform matrix r = 1
0
 

（叫）。~u,v~p given by: 
.9 

（ 
21ruv 

7-uv = 2cos —) 0~u,v~p 
2p+ 1 
， (2.9) 

Remarks: 

1. Because of the division by 2 in equation 2.7, we have to do the follow-

ing modifications on the (Gaussian) distributions of the c'coefficients: 

＾ 
,u 
c
 

（）  ら

μ。
'Ncp 

μ。
'S叩

'Ncp 
Uoo 

'Sep 
Uoo 
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'S叩
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μ。
Sep 

2 
Nep 
aoo 

4 
Sep 
aoo 
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2 

, 1~Vu~p 
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And then after finishing the series of transformation, we reverse the 

modification: 

Cu 

μ。
Rep 

R叩
<Joo 

1 <Vu< N - -P, auo 

（）  
ー

Uc
 

.”-

＝ 
ゥ 'Rep..,μ。

＝ 
＇凡 p
4aoo 

2a。1 Rep 

、
_
‘
_
l
~

、

_
,
'
‘
,
l

7

8

9

0

 

1

1

1

2

l

 

．
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．
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(: 

-

0
-

All the transforms described hereafter apply to the coefficients marked 

with a prime'but in order to avoid an excessive use of superscripts, 

we will drop from now the prin1e knowing what we are talking 

about. 

， 

2. Rigorously, the sum should be over an infinite number of samples. 

Here, we are assuming that the coefficients which index is over pare 

null. It is a common way to solve the problem. It results in an error 

in accuracy that we did not have time to examine. 

~ 

3. One of authors (l¥tlasahide SUGIYAlVIA) suggested that we could use 

a rectangular cosine matrix (7uv) where O ::; u ::; p', 0 ::; s ::; p with 

p'> p to obtain a better precision. I studied this point trying to 

use various forms of cosine matrices. A major difficulty raises when 

we need to apply the inverse cosine transform. I did not succeed in 

obtaining a rectangular matrix which would verify CT C = Ip where 

Ip is the square unit matrix with dimension p. All my attempts gave 

instead of Ip a matrix 1; which off-diagonal terms were very small 

but non-null and therefore would introduce round-off errors. It also 

increases the number of calculations. Therefore, the gain in using such 

a rectangular matrix is not obvious. The extended discussion will be 

described. 
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2.3.3 Cosine transform 

vVe now describe how to infer the distributions Sr9 and Nr9 for speech and 

noise in the logarithm spectrum from S叩 andJV, 研

sented in the Figure 2.4. 

Cepstrum 
Logarithm 
Spectrum 

Cosine 

Transform 

The process is repre-

Slg = r Sep. 

Nlg= r Ncp 

Figure 2.4: Cosine Transform 

Hypothesis: 

We suppose that Sep and~ 叩 have a multivariate Gaussian distn-

bution. 

We will apply the next theorem to solve our problems. 

Theorem 1 Let X 1, ... , X,, be p normal random v面 ablessuch as: 

．．
 ） 

~ 

＾ E[X」=μi,var[Xi} = O"ii, covar[Xi, ふ]=勾 (0~i,j・ ~p)

The linear combination Y = I:f=1釘ふ whetherthe Xi are dependent or 

independent is itself no1mally distributed and: 

p p p 

Y = 1V(I: llitL心翌五llj叩）
i=l i=l j=l 

(2.21) 

According to equation 2.8, we have: 

1V19 = r1vcp 

S19 = f Scv 

(2.22) 

(2.23) 
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0
- Therefore, according to the above theorem, we have: 

〇
マ

〇 ~Vu,v~p

μu N19 

硲!g

μ'U 
Slg 

， 
咄lg

p 

I:, 叫勺Ncp ． 
3=1 

p p 

LLiuiivj硲cp
i=l j=l 

(2.24) 

(2.25) 

p 

I: rujμfcp 
j=l 

p p 

I:I:,u高 j<Y含
i=l j=l 

(2.26) 

(2.27) 

Remark: You should now be accustomed to our notations. If we write 

the above equations in a more compact way, we obtain: 

• For the noise, 

9

9

 

••. 
z
 

.‘
 z
 
μ

E

 

f•µ 知

r. ENcp. 戸

(2.28) 

(2.29) 

＾ 
where iVcp = N(μ 竺炉ep)and iVtg = 1V(1tNlg, 砂）．

• Similarly, for the clean speech, 

9

9

 

.‘
 s
 

.‘
 s
 
μ

穴

I'•µ ふp

f•~Sep• 戸

(2.30) 

(2.31) 

ヽ
where Sep = JV(μ ふP,~Sep) and S1g = N (JL519) 

2.3.4 Exponential transform 

¥'1/e are considering the following process represented in Fig. 2.5.eq. 



CHAPTER 2. TIIEORETICAL FRA1v!EvVORI( Page 20 

Logarithm Linear 
Spectrum Spectrum 

I ETxrpao匹nefonrtimal• 
Sin= e 
函

Slg 

Nlg Nlg 
Nln= e 

Figure 2.5: Exponential Transform 

We have to infer the distributions Stn and j湘 fromSt9 and 1Vt9. This 

problem is a classic exercise in probability theory. It consists in determining 

the distribution of Y = ex研 whenX is a normal random vector. Details 

of the calculation of the mean vector and the covariance matrix of Y are 

given in Appendix A. They are obtained by directly integrating and using 

the fact that X is normal. Sin and Nin have a "lognormal" distribution. 

For the noise source, we obtain, 

〇 ~\/u,v~p,

ぐ=exp [心＋字］
心＝心心 [exp(心）ー1]. 

Similarly for the clean speech source, we obtain, 

〇 ~Vu,v~p,

μu Sin = exp 
び'US'U,9 

JlS1g +-
u 2 

心=μざnIや [exp(心）ー1]. 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

4. 

-． 

~ 

， 

. 

~ 



，
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2.3.5 Linear-spectrum addition 
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0
- ¥Ve now combine the source elements. This process is represented in Fig. 2.6. 

Sln 

Nln 

Combination Linear Spectrum 

Rln = Sln + k(SNR) Nln 

r--., 

Figure 2.6: Combination of the speech and noise sources 

From Eq.(2.3), we deduce the following relation between the random 

variables: 

Rtn = Sin + k(SJV R)• JV1n (2.36) 

We assume that S1n and N1n are independent. Then, 

＾ 
た＝応+k(S1VR)μ 知

炉 n= EStn十炉(S1VR) E竺

、
ー
、
、
冒
~

7

8

 

3

3

 

．

．

 

9

1

9

1

 

f
,

＇
’
ヽ
＇
ー
、

where k(SN R) is a function of the signal-to-noise ratio [Eq.(3.5)] chosen in 

such a way that the global SiV R of the noisy speech database has the value 

we want it to have. 

―̀ 2.3.6 Logarithm transform 

This process is displayed in Fig. 2.7. 

Approximation: 

R1n is "lognormal" distributed or, equivalently, R,9 is normal. 
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Logarithm Spectrum Linear 

Rig = log (Rln) 
Logarithm 

Tra匹form

、
0
¥

Spectrum 

Figure 2. 7: Logarithm Transform 

This approximation is reasonable when the variances of R1n are small 

compared with 1. Then, the parameters of R19 are obtained by inversing 

Eq.(2.33) for the exponential transform and apply it to the noisy speech. 

We obtain, 

Notice that R,n is a positive random variable because JV,n and S,n are pos-

itive and k(SJV R) is always positive. 

2.3. 7 Inverse cosine transform 

This step is represented by Figure 2.8. 

Therefore, we can apply the theorem 1. The linear combination is given 

by the inverse of the cosine transform matrix. vVe obtain: 

~ 

〇 ~Vu,v~p,

μ凡，=log [た］一 ~log [ u;;~• + 1] (2.39) 
u 2 μRurn μRu 1n 

心 =log[:~↓ :, + 1] (2.40) 
μu In /lv n ， 

.`‘-

μRep = r-1 JL凡， (2.41) 
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鬱
一

Cepstrum Inverse Logarithm 

Cosine 
Rep=炉 Rlg Rlg 

Transform 

Spectrum 

Figure 2.8: Inverse Cosine Transform 

’ 
ザ ep = r-1研 9(r..:.1)T (2.42) 

Remembering that the cosine matrix is symmetric, we then obtain for the 

covariances: 

炉 cp= r-1炉 g(r-1) (2.43) 

2.3.8 About the variance of the power 

~ 

When we first applied this transformation to the noise "keisanki" (com-

puter room) in the case it is modeled by one Gaussian and the LPC power 

normalized residual is not used (see next section for details), we obtained a 

very low recognition score below the one of the clean speech model. In addi-

tion, the values of the parameters of the output distributions of the NOVO 

HMNls where almost identical to those of the corresponding cle皿 speech

HMMs. 

vVe observed we could have a satisfying recognition score by setting the 

variance of the power to O for both source, namely: 
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-
O
 

Sep Ncp 
O'oo = O'oo = 0 (2.44) 

）ヽ

Except if mentioned, the experiments described in this report use this 

experimental initialization. Since this choice affects the coefficients related 

to the power, we decided not to use the power LPC cepstrum during the 

recognition phase, that is to only use 16 coefficients. 

＾ 

~ 

(— 

．ヽ▼-
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^
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.• 

•) 

Table 2.1: Main Notations 

＾ 

~ 

こ

•) 

N中'1漏， Nin Random variables corresponding to the noise 

in the cesptrum, the logarithm spectrum and 

the linear spectrum 

Sep, S19, Sin Random variables corresponding to the clean 

speech in the cesptrum, the logarithm spec-

trum and the linear spectrum 

R叩， R19,R1n Random variables corresponding to the noisy 

speech in the cepstrum, the logarithm spec-

trum and the linear spectrum 

μX = (吟） Mean vector of the Gaussian variable X 

豆＝（咄，） Covariance matrix of the Gaussian variable 

X 

f=(加） Cosine trans£orm matrix 

B = (bijk) 知 Outputprobability of the kth 

mixture of the transition going from state i 

to state j. 

(cu) LPC cepstrum coefficients 



＂）
 

Chapter 3 

Experimental Procedure 

3.1 Procedure 

We followed the following procedure to carry out our experiments. Details 

about each step can be found in the next subsections. The Figure 3.1 gives 

an overview of the experimental procedure we describe in this chapter. 

Note: The process of making a database involves the constitution of two 

databases, one is used for training and the other for recognition. 

1. Fabrication of the clean-speech PCl.¥tI databases 

2. Fabrication of the corresponding clean-speech LPC databases (17 LPC 

cepstra) 

~ 

＾ 

、-3. Training of the clean-speech HlVIlVIs (in our case, there are 23 Japanese 

phonen1es). 

4. For each new noise 

26 
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CHAPTER 3. EXPERINIENTAL PROCEDURE 

(a) Extraction of the noise 

(b) Fabrication of the noise and of the noisy PCM databases at a 

~ 

given SNR 

(c) Fab1-ication of the corresponding LPC cepstrum databases 

(d) Training of the noise HMM (17 LP C cepstra) 

(e) Combine this noise HMJVI with each speech HMM to obtain the 

NOVO HMMs modeling the noisy speech. 

(f) Recognition test on the noisy data using the NOVO HMJVI (16 

LP C cepstra) 

(g) To compare the NOVO HJVIJVI with other HJVIMs 

i. HMl¥11 training on the noisy data to obtain noisy Hl¥lli¥tls 

ii. Recognition test on the noisy data using the noisy HMl¥lls 

and the clean speech HMMs. 

~ 
5. Repeat the process for another SNR, another noise 

In our case, our task was phoneme recognition so the HMMs are phoneme 

HMJ¥tis. 

こ

3.2 Practical Aspects 

・l 
3.2.1 Fabrication of the noise and noisy databases 

In our case, we already had son1e noise databases available from the AS.J. 

The task we considered is somewhat artificial because we simply added the 
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noise database to the clean speech database, thus avoiding some distortions 

like the Lombard effect. On the other hand, such an approach enables to 

quickly make noisy databases at any wanted SNR. This is maybe why many 

researchers used it so far. 

A more realistic task should use a noisy database where the speech is 

recorded with noise in the background. We would then need a system to 

evaluate the SNR of the database and to extract some "pure" noise data 

during silences for instance in order to train the noise HMMs which are 

ー・

と。

~ 

small and therefore do not require a lot of training data. I believe the 

interaction of such a SNR detection system with the HMM composition 

method is important because the results given in the next chapter tend to 

show that the NOVO HMlVI is sensitive to the SNR. 

Remark: The power of the clean-speech and noise sample sequences are 

computed over all the samples of the database that is: 

N pow 

Spow 

1 MN 

JVJN 
I:(翌（む））2
i=l 

1 Nfs 
＇ 

iv.ls 
I:(袋（む））2
i=l 

(3.1) 

＾ (3.2) 

where ivlN and J¥11s are the number of samples in the noise and speech 

databases. Therefore, 

S1VR = lOlog(~) 
JV pow 

(3.:3) 
―ヽ

Thus, we have the following relation between the noise, speech and noisy 

sample sequences: 

砂rs仏）= xs(も）+ k(S1V R)翌(ti),1~i~L (3.4) 
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C
- where: 

k(S1V R) = (3.5) 

~ 

Finally, the noise database is usually much smaller than the speech 

database. So we may run short of noise data in the middle of the con-

stitution of a "noisy" word. In that case, we go back to the beginning of 

the noise database. So the result would be the same as if we had duplicated 

the noise recording it on a tape many times and we were re~。rding a speaker 

with the tape recorder playing the noise tape in the background. We are 

sure that way that noise and clean speech overlap quite randomly as it hap-

pens in the real world. This remark corresponds to the word "duplication" 

on Figure 3.1. 

3.2.2 Preprocessing 

Preprocessing was done as follows: 

＾ • Windowing: The window length was 32 ms with a frame shift of 8 ms. 

• Computation of 17 autocorrelation coefficients: The length of the sam-

ple sequence was 32 (ms)* 12 (kHz)= 384 (samples). 

• Preemphasis: The function 1 -(3z―1 where (3 = 0.97 

•— 
• LPC analysis: Computation of the linear prediction coefficients that 

we shall call Ou (0~u~p (p = 16)), 16 per sample sequence. p 1s 

called the order of the LPC analysis. 
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3.2.3 LPC analysis 

Computation of the linear predictive coefficients a 

They are computed in two steps: 

• Computation of the autocorrelation coefficients from the signal sam-

ples. 

• Computation of the line~、r predictive coefficients au(O 5 u 5 p(= 

16)) from the autocorrelation coefficients using the PARC OR recursive 

algorithm. Simultaneous computation of the linear-prediction residual 

power p which is used to compute the power LPC cepstrum coefficient. 

LPC cepstrum analysis 

Please refer to the literature for a precise description like Furui [5] . The 

formulae we used were the following: 

C1 = -a1 (3.6) 

u-1 m 
Cu = -Ouー I:(1-―)OmCu-m (1~U~p) (3.7) 

m=l u 
p m 

Cu = L (1 --)知Cu-m(p < u) (3.8) 
m=l u 

where pis the o叫derof the LPC cepstrum analysis. u is called the truncation 

order of the LPC a~alysis. Remember that LPC cepstrum coefficients are 

even that is: 

＾ 

＾ 

、4

Vu > 0, Cu = C_u (3.9) 
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0
-

The computation of the LPC cepstrum corresponding to the power is par-

ticular [6] and given by: 

Co= log(pu) (3.10) 

where p represents the normalized res~dual of the linear prediction analysis 

and a the power of the sampling sequence. Here we can add two remarks: 

1. The value of p is usually large for noise or when noise is added. 

＾ 2. The residual term introduced in the computation of the LP C cepstrum enables to obtain a speech envelope closer to the real speech envelope 

for the LPC cepstrum than for the FFT cepstrum. See [5], p68. 

3.2.4 HMM training 

We used 16 LPC cepstrum coefficients and the power LPC cepstrum. Except 

if mentioned, the variance of the power w邸 setto 0. 

~ 

――
 

We took about 3 to 4 minutes of noise data to train the noise models 

using the same algorithm as for the clean speech. Since the noise models 

are quite small, (the maximum reached sized was for 3 ergodic states and 

1 Gaussian and for 1 state and 4 Gaussian components), there was enough 

data for training. 

g
-

vVe used the speaker l¥lIHT of the ATR database. 23 .Japanese phone1nes 

are trained. The data is hand-labelled. vVe use the odd numbered words 

for the training. 
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3.2.5 HMM  composition 

Page 32 

... 

Refer to Chapter 2 for details. Except if mentioned, the variance of the 

power cepstrum is set to 0. The distributions are normal, the covariance 

matrices, diagonal. 

一

Algorithm 

1. Read noise model. ， 
2. Modify it according to equations 2.10 and 2.44. 

3. "Bring" it to the linear domain 

4. Loop over clean speech models 

(a) Read the current speech model 

(b) lVIodify it according to equations 2.10 and 2.44 

(c) "Bring" it to the linear domain 

(d) For each state, mixture component of the two source HMNls, 

combine the corresponding distributions to obtain the NOVO 

distribution using the mapping functions described in the Ap-

pendix B. 

(e) "Bring" the NOVO HMM of the linear spectrum to the cepstrum 

domain. 

~ 

“ 
(f) Cancel modifications according to equations 2.17. 

(g) vVrite the NOVO cepstrum HlVIl¥tI 

5. Repeat the process for another clean speech model 
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3.2.6 Recognition 

Page 33 

Using the NOVO HMNis built during the previous step, we carried out the 

recognition without using the power LPC cepstrum coefficient. 

＾ 

In order to evaluate the performance of the NOVO HMM, we compared 

its recognition score with those obtained by the clean-speech HMM and the 

noisy HMM. 

For each SNR we wanted to test, after making the noisy speech database 

at the corresponding SNR, we trained the noisy HMM (16 coefficients, no 

LPC cepstrum power) and the noise HMM (17 coefficients). We then used 

the latter to built the NOVO HMwI. 

＾ 
The output probability matrices corresponding to the transitions outgo-

ing from a state are tied. 

：： 

"-
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Figure 3.1: Overview of the Experimental Procedure 



こ

Chapter 4 

~ 
Results 

4.1 Reminder 

vVe had some results before starting the training at ATR all obtained with 

the noise "keisanki" modeled by an HiVIivl with one "ergodic" state. 

~ 

• The HlVIl¥tl combination gave results interesting enough if we were 

setting the variance of the power cepstrum to zero (consult Chapter 2). 

こ

J
)
 

• Using one Gaussian both for clean speech and noise, the recognition 

score was only one or 2 percents higher for full covariance matrices 

than for diagonal ones. Refer to (1 ]. In addition, the computation 

load becomes more important when using full covariance matrices, 

Also, to be coherent, if we were using full covariance matrices for the 

recognition, we should train the source models with full covariance 

matrices. vVe also tried this (training full covariance n1atrices only for 

the clean speech). The results hardly changed. So, we decided to 

35 
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use diagonal covariance matrices for the rest of our study. 

These results are presented in the table below. 

Table 4.1: Input possibilities for the source HlVIM 

Noise HMM Speech Hlv1M Output HMM Diagonal Approximation 

Diagonal Diagonal Full Valid 

Diagonal Full Full Va.lid 

Full Diagonal Full Not tried 

Full Full Full Not tried 

• The HMM combination gives better results when increasing the num-

ber of mixture components. 

• The use of the LPC residual (cf equation 3.10) improves the results. 

• There are several combinations for making the NOVO HMNL After 

training the clean-speech HMM with 17 LPC cepstrum coefficients 

(if power included) or 16 (power not included), we obtain two sets 

of 16 (power not included) slightly different coefficients because the 

likelihood is not maximized in the same way whether we have 16 or 

17 coefficients. vVe call set(l) the one obtained with training with 17. 

We call set(2) the other one. Consequently, we can n1ake two NOVO 

HMMs: 

”
 

~ 

~ 

~ 

1. Using for the speech source HMiVI all the coefficients of set(l), 

we will obtain NOVO(l). 
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一）

2. Using for the speech source HMM, the power coefficient of set(l) 

and the coefficients of set(2). We will obtain NOV0(2). 

， 

The same problem raises when doing the recognition with the clean 

speech model. vVe can use the first or the second set. Of course, we 

will use the first set if we want to study NOVO(l) and the second set 

for NOV0(2). Fo~the noisy model, the problem also raises but we 

did not study the impact because we always trained the noisy HMM 

with 16 coefficients. After investigation, we have the following results 

for the noise "keisanki" without using the LPC residual: 

Table 4.2: Comparison between set(l) and set(2) for "Keisanki" at lOdB 

＾ 

ivlodel type set(l) set(l) Set(2) 

16 + power only 16 all 16 

Trained 75.8 76.9 76.9 

Novo (lslm) Impossible 61.2 62.4 

Clean 52.7 48.2 47.5 

こ

The numbers correspond to phoneme recognition rates. There are 23 

phoneme HiVHvfs. We can deduce that: 

、） -The use of set(l) is favorable to the clean speech and noisy HiVIlVIs 

but unfavorable to the NOVO HMiVI. 

-The difference is small. 
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So we know that the choice of the parameter set can raise a small 

difference in the recognition score. We preferred to use the set(l) 

rather than the set(2) because that way, we did not need to train the 

clean speech mo clel on set (2). 

ン

”f 

The objectives were clearly stated in the introduction, so after the next 

section where we explain how to read the tables and charts, we will give the 

results. 
~ 

4.1.1 How to read the tables and charts 

You might want have a rapid glance at the next pages to see how the tables 

and charts look like before reading through this section. To evaluate the 

NOVO HMlVI, we compared the recognition score of the NOVO HlVIiVI with 

the one of the clean HMM (column "Clean") and the noisy HMiVI (column 

"Noisy"). The clean HMM corresponds to the clean-speech source HiVIiVI. 

The noisy HMM is the one we obtain after training on each noisy-speech 

database. Therefore, the noisy HMM depends on the S JV R of that database. 

A code is written under HMM. It characterizes the type of models that 

was used. For instance, "4mlf" under "Clean" means that the clean HiVIM 

is modeled by a mixture (m=4) of 4 Gaussian distributions using one set 

of features (f=l), the LPC cepstrum. In the future, we plan to do sensor 

fusion and use the delta LPC and delta power cepstrum. That is why we 

introduced the notation "f" for the number of features. The NOVO HlYilVI 

is the combination of the clean HMiVI and the noise HiVIM. Since the clean 

＾ 

し
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P) 

HMM is already defined, only the code describing the noise HNll¥11 is given. 

For instance, "2es3m" means that the noise model has two ergodic states 

(s=2) and the output probability is modeled by a mixture of 3 Gaussian 

distributions. "es" means ergodic state. "s" means state. 

~ 

"Error" corresponds to the error reduction between the code of the 

NOVO HMM located under "Error" and the clean and the noisy HMMs. 

The error reduction is computed as followed: 

NOVO-CLEAN 
error reduction = _ (4.1) 

NOVO, NOISY and CLEAN correspond to the recognition scores obtained 

by the corresponding HMMs. It measures the importance of the improve-

ment respectively to the Clean HMM. 

"Test SNR" corresponds to the SNR of the test database. Because 

we used the coefficient k(SiV R) (equation 3.5) computed for making the 

~ 
training database to make the recognition or "test" database, there is a 

mismatch between the SNR of the NOVO HMM (0, 6 and 20dB) and the 

one of the database it is tested against. This choice corresponds to the fact 

that we supposed we could not accurately compute the SNR of the incoming 

data during a real experiment but we only had a rough estimation. 

、）
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4.1.2 Noise "Keisanki" (Computer Room) 
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Characteristics 

Noise recorded in a computer room. Its main component comes from the 

ventilation. This noise is stationary and has a very large band going from 

0 to 10 kHz. It thus covers almost all the speech characteristics of a human 

voice (usually situated between O and 4 kHz). 

Influence of the nu1nber of states 

Table 4.3: "Keisanki": Influence of the number of states 

Clean Novo Novo Novo Novo Noisy HMM Error 

Test SNR (dB) 4mlf lslm 2eslm 2es2m 3eslm 4mlf /2es2m 

-0.6dB 11.8 59.5 59.5 59.8 59.5 73.1 78 

5.4dB 28.6 73.5 73.5 73.6 73.5 83.0 83 

19.4dB 76.5 90.3 90.3 90.3 90.3 93.2 83 

Comments: 

1. We see that the gain is null when the number of states increases. The 

only gain is obtained when increasing the mixture and this result will be 

commented in the next subsection. 

.. 

a
 

＾ 

＾ 
"!" 

’≫ 

2. The error reduction is about 80% and incre邸eswith the SNR of the test 

0% database. 
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Influence of the number of n1ixture con1ponents 

―- Table 4.4: "Keisanki": Influence of the number of mixture components 

＾ 

Clean Novo Novo Novo Noisy Hl¥111¥iI 

Test SNR (dB) 4mlf lslm 1s2m 1s4m 4mlf 

-0.6dB 11.8 59.5 59.8 59.9 73.1 

5.4dB 28.6 73.5 73.5 73.6 83 

19.4dB 76.5 90.3 90.3 90.4 93.2 

Co1nments: 

1. Increasing the number of mixture components (2es2m) results in a slight in-

crease of the recognition score. The improvement was null when increasing 

the number of states. 

＾ 

2. The configuration { 1 state, 2 Gaussians} is better than { 2 ergodic states, 

1 Gaussian } and equal to { 2 ergodic states, 2 Gaussians}. 

Robustness of the NOVO HMM  against SNR variations 

、-

Remark: The curve traced for 3dB and lOdB were obtained using set(2) 

and the three others with set(l). Though, they are not strictly con1parable, we 

kept then1 because the curves for 3dB and lOdB using set(l) would have been 

probably very close to the traced ones. At least, the tendency they reflect is the 

same. Comments: 

1. Looking shnultaneously at the figure, we can see that the NOVO I-Ii¥11N1s 

are in general optimum at the SNR they were made and their perforn1ance 
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ヽ
Table 4.5: "Keisanki": Robustness of the NOVO HNIJ¥11 against SNR vari-

ations 

●i 

Test DB SNR NOVO-HMM SNR 

OdB 3dB 6dB lOdB 20dB 

-0.6dB 59.5 60.2 54.2 42.2 21.7 

5.4dB 55.7 68.2 73.5 71.5 53.5 

19.4dB 28.4 41.4 54.3 70.6 90.3 
~ 

is significantly lower (by a few percents) when the SNR fluctuates by more 

than 2dB. 

2. The lOdB HMM is robust for SNRs above lOdB but it does not improve 

its recognition score when the SNR increases. 

Discussion 

We must first think about the physical meaning of a state in a HMM and the 

meaning of using a mixture of Gaussian distribution for modeling the HivIIvI 

output probabilities. 

The states of a phoneme HMM correspond to the stationary parts of the 

phoneme. From the experiments, we know that 3 states is a good compromise. 

The first state models the coarticulation or the transition (silence…) with what 

is before or after the phoneme. The middle state characterizes more the phoneme 

itself. So a state generally models a stationary part of the speecl1 phenomenon. 

If we increase the number of Gaussian components of the output probabil-

ity distribution of a given state, we can model the distribution of the speech 

＾ 
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＾ 

phenomenon modeled by that state more accurately. 

The above results correspond quite well to what one would expect from the 

theory. "Keisanki" is a stationary noise so if we add states to the noise model, 

they will reproduce the characteristics of the first state so the recognition score 

should not vary. vVe obtain a slight improvement when~sing the number of 

mixture components because "keisanki" is not the "Gaussian" noise often used 

as model in the literature. On the other hand, it might be not too far to that 

model because the improvement between 4 components and 2 is low. 

The data we collected for studying the robustness are scarce so we can only 

say that the NOVO HMMs tend to be optimum at the SNR at which they were 

made and that they are not very robust. So a good evaluation of the SNR of the 

recognition data will be necessary when using HMM combination for a real task. 

4.1.3 Noise "Kousyuu" (Car passing by) 

Characteristics 

~ 

Recorded outside by holding a microphone in the air while a car turns around. It 

contains a weak stationary background noise (other cars passing by but far away 

fron1 the microphone) with some peaks when the car passes by and its motor 

roams. 

Influence of the nun1ber of states 

Comments: 

1. Increasing the number of states results in an increase in the recognition 

score. 
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Table 4.6: "Kousyuu": Influence of the number of states 

Test SNR Clean Novo Novo Novo Noisy HMM Error Red. 

(dB) 4s4m lslm 2eslm 3eslm 4s4m 3es4m 

2.65 66.3 80.8 84.1 82.4 86.6 79.0 

6.65 79.6 87.1 88.8 88.2 91.1 75.0 

20.65 92.3 92.5 92.6 92.7 93.6 31.0 

2. The recognition score for 2 ergodic states is higher than for 3 ergodic states 

at low SNRs. This is one of the rare irregularities we met in all our exper-

． 
1ments. 

3. There is an important mismatch between the SNR of the test database and 

the SNR for which the NOVO HMMs were made. 

4. The error reduction decre邸eswhile the SNR incre邸es.Nevertheless, at 

20dB, the recognition scores are very close to each other. 

5. The error reduction is about 80% at low SNRs. 

6. The gain at low SNRs is relatively important (in respect to the other noises) 

between one state and 2 states. 

Influence of the nu111ber of 111ixture con1ponents 

Com1nents: 

1. ,¥e do not have the irregularity we had for the states in the progression. 

2. The improvement is roughly the same whether we increase the number of 

Gaussians or states. 

.),. 

~ 

＾ 

， 
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Table 4.7: "Kousyuu": Influence of the numper of mixture components 

~` Test SNR Clean Novo Novo Novo Noisy HMM Error Red. 

(dB) 4s4m lslm ls2m 1s4m 4s4m 1s4m 

2.65 66.3 80.8 84.2 84.2 86.6 88.0 

6.65 79.6 87.1 88.4 88.5 91.1 77.0 

20.65 92.3 92.5 92.6 92.7 93.6 31.0 

~ 

3. The error reduction is quite high at OdB but very low at OdB. Nevertheless, 

at OdB, all three models have similar recognition scores. 

Discussion 

The noise''Kousyuu" is not very rich. ¥tVhen listening, it h邸 essentiallytwo 

components: 

＾ 

• An important stationary background noise "A" made up of cars passing 

by with a lot of unstationary noises but which level is not very high and 

which are therefore probably masked by "A". 

• A "talkative" component "B" that is the roaming of the engine when the 

carp邸sesby or accelerates. 

,i 
This might explain why the configurations 2eslm performs quite well, one 

state modelling the "A" part, the other the "B" part. 

It is important to note that the test database h邸 aSNR quite far from the one 

it was expected to have. Considering the previous study regarding the robustness 

of the "keis皿 ki"NOVO Hi¥tii¥tI, this might have lowered the performance of the 

models. Notice that a recognition score above 80% is usually considered邸 a
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minimum for a phoneme model in a real task. vVe see here that H:tvIJ¥tI composition 

succeeded in satisfying this condition at a SNR of 2.65dB. 

4.1.4 "Elevator" 

Characteristics 

Recorded in a hall. The main component is made of footsteps from different 

persons and therefore having different "rythms". vVe can hear some voices in the 

background: a baby shouting, men laughing, calling each other…U nstationary. 

Influence of the number of states 

Table 4_.8: "Eleva_t__Qr": InfluenJ:e of the numbe_r of st_ates 

Test SNR Clean Novo Novo Novo Noisy HMM Error Red 

(dB) 4s4m lslm 2eslm 3eslm 4s4m 3es4m 

0.3 76.1 86.9 86.9 87.1 89.4 83.0 

6.3 85.3 90.6 90.4 90.5 92.1 76.0 

20.3 93.3 92.8 92.9 92.9 93.7 -100.0 

Comments: 

1. The recognition score is slightly affected when increasing the number of 

states, positively at OdB, negatively at 6dB. 

2. At 20dB, the 3 Hl¥til¥tis have very close recognition score. It is the only time 

in all our experiments that the clean speech n1odel performed better than 

its NOVO counterpart. 

， 

●

-

＾ 

＾ 

｀
 

3. Once more the error reduction in the low SNRs is about 80%. 
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Influence of the number of mixture con1ponents 

Table 4.9: "Elevator": Influence of the number of mixture CO!l).ponents 

＾ 

Test SNR Clean Novo Novo Novo Noisy H1'1M Error Red. 

(dB) 4s4m lslm 1s2m 1s4m 4s4m 1s4m 

0.3 76.1 86.9 86.9 87.0 89.4 82.0 

6.3 85.3 90.6 90.3 90.3 92.1 74.0 

20.3 93.3 92.8 92.8 92.8 93.7 negative 

Comments: 

1. Increasing the number of GD (Gaussian distributions) does not give satis-

fying results. At OdB, the effect is positive and at 6dB, negative. 

Discussion 

＾ 
"Elevator" is a very rich noise. It contains a lot of different impulse noises (foot-

steps) and voices. So the number of states or GD we used was probably not 

enough to model all these components. So the HMivI could only model the av-

erage stationary parts of all these models. And for that, the configuration lslm 

was enough. Results are difficult to interpret. The main conclusion we can make 

is that HMM composition works with the same error reduction level (about 80 

%) at low SNRs as for the previous noises. 

し



CHAPTER 4. RESULTS 

4.1.5 Noise "Hitogomi" (Crowd) 

Page 48 

’ 

Characteristics 

Could have been recorded in a restaurant with a ventilator. This noise contains 

many voices, laughs…U nstationary. 

Influence of the number of states 

Table 4.10: "Hito距mi":Influence of the number of states 

Test SNR Clean Novo Novo Novo Noisy Error Red. 

(dB) 4s4m lslm 2eslm 3eslm 4s4m 3es4m 

0.5 36.9 66.8 67.4 67.9 75.8 80.0 

6.5 58.1 78.5 78.9 79.2 85.8 76.0 

20.5 88.8 91.4 91.4 91.5 92.9 66.0 

Comments: 

1. Increasing the number of states results in an increase in the recognition 

score. 

2. The gain between 2 and 3 ergodic states is smaller than the one between 1 

and 2 states. 

3. The error reduction decreases while the SNR increases. Nevertheless, at 

20dB, the recognition scores釦revery close to each other. 

＾ 

＾ 
＇ 

•• 
J
 

4. The error reduction is about 80%. 

Influence of the number of n1ixture co1nponents 
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Table 4.11: "Hit .,, ・Infl of the number of mixt ents 
--

Clean Novo Novo Novo Noisy error red. 

Test SNR (dB) 4s4m lslm 1s2m 1s4m 4s4m 1s4m 

0.5 36.9 66.8 67.2 68.7 75.8 82.0 

6.5 58.1 78.5 78.8 80.0 85.8 79.0 

20.5 88.8 91.4 91.5 91.5 92.9 66.0 

,....., 

Comments: 

1. The increase in the recognition score with the number of GD is small but 

steady. 

2. The gain obtained by incre邸 ingthe number of GD increases with less 

importance while the SNR increases. This tendency is neat. 

Discussion 

＾ 
"Hitogomi" contains a lot of voices. So the performance of all models (CLEAN, 

NOVO, NOISY) go down when the SNR decreases. The decrease is more impor-

ヽ

tant than for the previous unstationary noises. 

There is no clear tendency whether increasing the number of states or GD 

gives the best result. Both factors play favorably. In addition, the progression 

indicates that the recognition score gets higher the more states or GD we use. So 

it is legitimate to hope to be able to obtain even higher recognition scores but at 

the expense of an increase in computations. 
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4.1.6 Noise "Speaker" 
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ヽ

Characteristics ●
l
 

The noise speaker is the female FSU who has a similar database as the speaker 

MHT we. used fo1・the clean-speech source. vVe made two types of experiment: 

Semi-open We had the time to do it at ATR in the end of the training. The experiment 

is semi-open because we used the same noise data _for training and for 

making the test database. We call that noise "FSU-216" because we used 

the set of the 216 balanced words of FSU as a noise database. 

Open This e入q>erimentwas carried out at NTT. vVe e>..1;ract every 20th word from 

the ATR database of 5240 words in order to avoid the succession of too 

similar words. The set of words thus extracted was used to make the test 

database. We call that noise "FSU-5240". The noise model was trained 

using "FSU-216". 

Then, according to what we said about the variance of the power, we are 

precisely in the case where the noise has similar power characteristics as the 

noise source and where at least the masking can work properly using the theory 

developed in the second Chapter . This was tried after returning to NTT. 

Influence of the number of states 

Comment: Since leaving the variance of the power unchanged does not bring 

any -improvement, we set the variance of the poヽverto O for the open experiment. 

~ 

＾ 
尾＇

‘̀. 
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Table 4.12: FSU-216: Variance of the :eower is set to 0 -

Test SNR Clean Novo Novo Novo Noisy HMNI Error Red. 

(dB) 4s4m 1s2m 2es2m 3es2m 4s4m /3es 

゜
67.4 69.3 71.1 71.8 71.0 122.0 

6 73.0 75.5 77.7 75.9 78.5 52.0 

12 78.8 80.5 82.0 83.8 84.1 94.0 

~ 20 85.4 86.2 87.3 88.1 88.2 96.0 

Table 4.13: FSU-216: Variance of the power is left unchanged 

Test SNR Clean Novo Novo Novo Noisy HMM Error Red. 

(dB) 4s4m 1s2m 2es2m 3es2m 4s4m /3es 

゜
67.4 69.0 69.8 71.4 71.0 122.0 

6 73.0 75.1 77.1 76.1 78.5 52.0 

12 78.8 80.3 81.7 82.9 84.1 94.0 

＾ 
20 85.4 85.8 87.1 87.5 88.2 96.0 

Table 4.14: FSU-5240: Variance of the power set to 0 

Test SNR Clean Novo Novo Novo Noisy HMM Error Red. 

• 
(dB) 4s4m 1s2m 2es2m 3es2m 4s4m /3es 

゜
69.4 70.4 71.8 72.6 72.7 97.0 

,．o 

6 74.6 76.0 77.8 76.4 78.2 50.0 

12 79.5 80.8 81.8 83.2 8:3.7 88.0 

20 85.6 86.1 87.2 87.6 89.1 57.0 
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Comments 

1. We notice that the approximation "variance of power set to O" works 

slightly better than the theoretical case "variance left unchanged". 

2. At OdB, the NOVO HMivls in. both e:x.1>eriments give better results than 

the noisy HMM. 

3. At 6dB, the error recognition has an abrupt change that we do not know 

how to explain. 

＾ 4. The error reduction otherwise is very high. 

5. The results are better {in absolute) for the open e平 erimentthat for the 

semi-open one. This might be accounted to the fact that the choice we 

made of the words for making "FSU-5240" is not very balanced. 

Surprisingly, the clean speech model performs quite well with the noise speaker. 

This might be due to the fact that the unstationarity is homogeneous, monolithic, 

"pure" because FSU's voice was recorded in very low noise conditions. So the 

experiment is even more artificial. If a stationary noise component were added in 

the background, the task would be more realistic the scores significantly lowered. 

The fact that the NOVO HMM can perform better than the noisy HM1'1 

at low SNR is very encouraging and confirms the particular ability of HN1N1 

＾ 
·• 

composition to deal with unstationary noises. 

＼
、
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Chapter 5 

Conclusion 

The purpose of the training was to study the capacities of HMM composition 

when applied to the LPC cepstrum feature set. 

In Chapter 1, we extensively explained the theoretical background for building 

the NOVO HM1YI using LPC cepstrum coefficients, emphasizing the hypotheses 

we were using when transforming the covariance matrices of the Gaussian distri-

butions. 

In Chapter 2, we described the conditions in which. we carried out our exper-

iments. 

In Chapter 3, we commented the results we obtained and tried to explain 

them. 

In this Chapter, we would like to conclude on the characteristics of H1'1I:WI 

53 
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that we can retain from our study: s
 

• HivIIvI composition provides an error reduction above 75% at SNRs of 0 

and 6dB. 

• HM:N! composition can be applied to all kinds of noise: stationary ("keisanki") 

and unstationary noises ("elevator", "kousyuu") including voices ("hito-

gomi" and noise "speaker" (FSU)). 

• HMM composition provides real-time adaptation to new SNRs. Having 

one HMM of the background noise at a given SNR is enough to make a 

NOVO HMM at any SNR. 

• HMM composition can be applied for real time adaptation to new incom-

ing noises provided the clean-speech models are available which is more 

than often the reality. 

• The results given for the noise speaker FSU indicate that the NOVO HMM 

can perform better in certain conditions than the noisy HMNL 

• HNINI composition has a very high modularity. One way of benefiting 

from this modularity would be to make a library of standard noises or in 

the context of a given application for a factory for instance, of "factory" 

noises. It is even possible to combine the simple noise models to make 

complex ones thatヽvillbe then composedヽviththe one of the clean-speech 

•` 

＾ 

~ 

會
l

source. 
9
'
0
 

• Though it was not showed, it is possible to recognize the sources through 

the decoding HlviivI algorithm. For instance, it means that for the exper-

iment with the noise speaker FSU at OdB, we could have recognized not 
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• 

only IvIHT as we did but also FSU by just studying the state sequence of 

the NOVO HMM. This aspect confers to HMM composition a solid base 

for approaching such problems邸 thefamous "cocktail party" effect. 

＾ 

• Especially, because HNIM composition enables to avoid the training on 

the noisy speech, this method can be applied to large speech recognition 

systems which are using thousands of HMMs and for which it is not realistic 

to train the models for each new noise. 

In conclusion to all these points, we can say that HMM composition is a very 

rich method that can be applied to a wide range of problems (including the 

cocktail party effect) with a fair success. Of course, a speech recognizer robust to 

noise will include a lot of different methods for coping with noise but we believe 

that HM:tvI composition could be the central method of such a system. 

＾ 
，
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Appendix A 

， 
Threory of Normal Variables 

Let X = (x1, ... , Xn)T be a multivariate Gaussian (dimension n) then its proba— 

bility density function (pdf) is given by: 

J(.X) = 
1 (X-μ)T(I:-1)(X-μ) 

J伽）嘔
e― 2 dX 

j f(JY)d.X = 1 
況n

＾ 
where~n is the region of all possible values of x. 

/L = (μ1, ・ ・ ・,/Ln)T 

｀
 

ク
・
・

1
,
．9

~= { Uuv j 1 :5 u, V :$ n} 

゜ Let us now consider the random variable: 

‘,＇’.、,＇/

1

2

 

．

．

 

A

A

 

＇
ー
、
、
．
＼

E andμare respectively 

the covariance matrix and the mean vector associated to .X. 

superscript X toμand u when there is a risk for ambiguity. 

Y=砂=(Y1 = e工t,...'Yn = eエn)T

We will add the 

(A.3) 

We will now determine the first and second moments of the distribution Y. 

57 
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Computation of the mean of Y 

We directly calculate the mean of the ith variable from the definition: 

Y
.
`
 
μ
 

E[e可

＝ j 1 e'"'e―-写五
釦 ✓(211)叶 El

dX 

The operator E is the expectation operator. Let us change variables: Z =~Y -μ 

or O~'r/i~n, Zi = Xi -μi We define ei = [O, 0, ... , 0, 1, 0, ... , O] where the 1 is 

in the丹 position.

We have Zi = er z. Therefore, 

μ,f = J 1 匹叫三戸
釦 ✓(2ri)叶El

djY 

Remarking that E is symmetric and therefore that ETE-1 is the identity 

matrix In, let us focus on : 

I(= 2(Zi +μi) -Z町EーI)z

Since: 

＝ 

(Z -Eei)乃—1(Z -Eei) = 

zTE-1z -(臨）和—lZ + (Eei)TE-1(Eei) -zTE-1(Eei) 

＝ 

＝ 

z和ー1Z-e『Z+ e[Eei -Z互

＝ zTE-1 -2zi + Clii 

K can be rewritten邸：

k
 
＝ 

＝ 

-(Z -Eei)和—1(Z-Eei)+2zi-2召＋咋+ 2μi 

-(Z -Eei)TE-1(Z -Eei) +咋+2μi 

4
"
 

r. 

(A.4) 

＾ 

＾ 

(A.5) 

(A.6) 

?
I
,
J
(
＼
＇

a
 

Therefore, 

,,r = e乎+,.;I I 写
沢n ✓(211)嘔 I

e djY 
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＇ ． 
名

The integral is equal to 1 by the definition of the pdf. The mean of Y will 

therefore be given by: 

μr = e乎+l,li , 0~i~n 

□

]

 

Computation of the covariance matrix 

By definition, we have: ， 
吟=E[eエie:c;]-E[e可E[e:r:i]0~i,j~n 

The second term is easily obtained from our previous calculation. To compute 

the first term, we apply the definition: 

(A.8) 

E(e叫可 ＝ / 1 eエi十z:;e 
如 v(21r)嘔 I

/ 1 •; 十,.;十•;+,.;e三戸
況n ✓(21r)叶El

e dX 

(X-µ)伍—1)(X-µ)
2 dX 

＝ (A.9) 

In a similar way邸 forthe mean, we see that: 

＾ 
(Z -E(ei + ei))TE-1(Z -E(ei + e;)) 

=Z乃—1Z -(ei + ei)Tz + (ei + ei)TE(ei + ei)ーが(ei+ ei) 

= zT~-l Z -2Zi + CJii -2Zj + CJjj + 2CJij 

Hence, 

ヘ
ヽ
！
＇
＆

E[eエ炉]=e手+µ.i• e~+µ.i• バ.1 

iP The one corresponds to the integration of the pdf in respect to Z (same trick 

as for the mean). We can write in a more compact way: 

E[e工iexi) =叶μf• e(Tn 
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Combining this result with the definition A.8, we obtain the expression of the 

second moment of Y: 

さ

一‘‘’ 
, 

ヽ

哨＝叶μf.(パ— 1), 0 5 i,j 5 n (A.10) 

＾ 

， 
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Appendix B
 

， 
Mapping Functions 

We define here some mapping functions helpful to describe the NOVO HMM 

resulting from the composition. The operator• is the product space operator. 

vVe use the notations defined in Chapter 2 . .N maps the HMM states: 

N: QN•QS 一QR
(N  S qiN'qis) R 一qiR

＾ 
0 5 iN 5 1呼，o5 is 5 1V5 

0 5 iR 51呼，

I maps the HMNI initial states: 

I: JN• 戸

.‘~.1,`-

-;; 

(q応，q各）

0~iN~JN, 0~is~JS 

0~-iR~I氏

N(iN, is)= iR = iN詑+is 

ーJR

一叫

I(iN, is)= in= iNiN + is 

(B.1) 

(B.2) 

:F maps the HM11l final states: 

:F: pN•FS 一JR
61 
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(N  S qiN'qis) 一叫 山

0 5 iN 5 FN, 0 5 is 5 F5 -
9
 

〇 ~iR~F互 :F(りi¥/,is)=in= iN戸+is 

T maps arc transitions: 

T: QN• が• QN• QS 

(N  S N S qiN,qis,q印 'qj5) ー（
R R 
qiR'qiR) 

0~ 岱，iN~N凡 0~is,is~N5

0~iR,iR~lV瓦

T(知，isふv,is)= (iR証） = (iN詑+is,jN砂+is) 

M maps the mixture components of one transition: 

Jv1 : MN• lvls 

ー→吋 •QR

-----;, MR 

（枷，ks) 一kR
0 5 kN 5 mN,o~ks~,1n5 

0 5 kR 5 m凡

M(kN,ks) =知＝枷mN+ ks 

(B.3) 

~ 

(B.4) 

＾ 
(B.5) 

●
す
ー
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Appendix C 

， 
Notations 

Table C.l: Translation of the Noise Names 

LJapan~glish I 

， 

"Keisanki" Computer room 

"Kousyuu" Car passing by 

"Elevator" Elevator 

"Hitogomi" Crowd 

.t~ 

に
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Table C.2: Main Notations 

Ncp, N19, Nin Random variables corresponding to the noise in 

the cesptrum, the logarithm spectrum and the 

linear spectrum 

品， S19,Sin Random variables corresponding to the clean 

speech in the cesptrum, the logarithm spectrum 

and the linear spectrum 

Rep, R19, R1n Random variables corresponding to the noisy 

speech in the cepstrum, the logarithm spectrum 

and the line紅 spectrum

μX = (μ ざ） Mean vector of the Gaussian variable X 

研=(uぷ） Covariance matrix of the Gaussian variable X 

r = (,uv) Cosine transform matrix 

B = (bijk) bijk Output probability of the kth 

mixture of the transition going from state i to 

state j. 

(cu) LPC cepstrum coefficients 

~ 

＾ 
r
`
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