TR-I-0058 :1988. 11

P. Haffner, A. Waibel, H. Sawai and K. Shikano

Fast Back-Propagation Learning Methods for Neural Networks in Speech

Abstract:Several improvements to the Back-Propagation learning algorithm are proposed to achieve fast optimization of speech tasks in Time Delay Neural Networks. A steep error surface is used, weights are updated more frequently and both the step size and the momentum are scaled to the largest values that do not result in overshooting. Training for the speaker-dependent recognition of the phonemes/b/,/d/and/g/ takes less than 1 minute on an Alliant parallel computer. The same algorithm needs one hour and 5000 training tokens to recognize all the Japanese consonants with 96.7% correct on test data. Moreover, these fast methods make it possible to study generalization performance on large Neural Network tasks.