
Internal Use Only (非公開）

TR-1-0058 

Fast Back-Propagation Learning Methods 
for Neural Networks in Speech 

音声ニューラルネットワークのための

バックプロパゲーションアルゴリズムの高速化

P. Haffner, A. Waibel, H. Sawai and K. Shikano 

パトリックハフナー、アレックスワイベル、

沢井秀文、鹿野消宏

1988. 11 

Abstract 

Several improvements to the Back-Propagation learning algorithm 
are proposed to achieve fast optimization of speech tasks in Time Delay Neural 
Networks. A steep error surface is used, weights are updated more frequently 
and both the step size and the momentum are scaled to the largest values that do 
not result in overshooting. Training for the speaker-dependent recognition of the 
phonemes !bl, Id/ and lgl takes less than 1 minute on an Alliant parallel computer. 
The same algorithm needs one hour and 5000 training tokens to recognize all the 
Japanese consonants with 96.7% correct on test data. Moreover, these fast 
methods make it possible to study generalization performance on large Neural 
Network tasks. 

ATR Interpreting Telephony Research Laboratories 
ATR自動翻訳電話研究所



CONTENTS 

1 Introduction 

2 Learning with Back-Propagation ...................... . 
2.lNeural Networks ................................. . 
2.2The Back-Propagation learning procedure ........... . 
2.3Learning in one unit .............................. . 
2.4 Possible improvements 

3 Our experimental tasks 

5

5

5

6

6

 

4 Methodology ....................................... . 
4.1 Introduction .................................... . 
4.2 When to stop learning 
4.3 Reporting learning time ......................... . 
4.4 The importance of initial conditions 
4.5 A multi-staged Benchmark ....................... . 
4.6 Our simulation program 

5 Modeling the error surface ........................... . 
5 .1 The Sigmoid function 
5.2ANewError .................................... . 
5.3 The input activations 

6L earning Strategy .................................. . 
6.1 The weight updating frequency 
6.2 Skipping samples 

7 Con troling learning 
7 .1 The step size ... : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
7 .2 The momentum 
7.3 Weight decay 

8 Consonant recognition 
8.1 The database ................................... . 
8.20 ur learmng procedure .......................... . 
8.3 Experiments on non-modular TDNNs 
8.4 A TDNN modular design ......................... . 

9 Conclusion ......................................... . 
9.1 Contributions ................................... . 
9.2 The quest for generalization 
9.3 Future prospects 

7 

10 
10 
10 
11 
11 
13 
14 

15 
15 
17 
18 

20 
20 
22 

23 
23 
23 
24 

32 
32 
32 

33 
36 

39 
39 
39 
40 

ー



List of figures 

Figure 1: 1 unit in a Neural Network. 

Figure 2 : Learning the training set. 

Figure 3: A TDNN. with 3 classes. 

Figure 4: The sigmoid function: f(x) = 1/(1 + e-x) 

Figure 5: The sigmoid derivative. f(x) = f(x) (1-f(x)) 

Figure 6 :Modular Construction of an All Consonant T.D .N .N. 

Figure 7a: Non-modular All Consonant T.D.N.N. with 18 physical hidden units. 

Figure 7b: Non-modular All Consonant T.D.N.N. with 27 physical hidden units. 

Figure 7c: Non-modular All Consonant T.D.N.N. with 36 physical hidden units. 

Figure 7d: Non-modular All Consonant T.D.N.N. with 45 physical hidden units. 

Figure 8: Error Vs. Learning Epochs for All Consonants TDNNs with 18, 27, 36, 
45, 54 and 72 hidden units. 

Figure 9 : Root Mean Square Weight Vs. Learning Epochs for All Consonants 
TDNNs with 18, 27, 36, 45, 54 and 72 hidden units. 

Figure 10: Optimal Step Size Vs. Sigmoid Slope (XOR task) 

Figure 11: Optimal Step Size Vs. Momentum (838 task) 

Figure 12: Optimal Step Size vs. Number of Training Samples (BDG task) 

Figure 13: Number of converging Epochs vs. Step Size updating factor (838 task) 

／

＼

 
,．
 

／ ＼ 

2
 



1) Introduction 

The back-propagation learning algorithm has proven its ability to make a 
layered neural network compute any kind of complex decision surface [1]. 
Recently, very high performance was obtained for phoneme recognition with Time 
Delay Neural Networks [2, 3], which are trained using Back-Propagation. 

However, these high results were attained at the expense of training speed, which 
could be a major obstacle for learning a large knowledge base. We show here that 
it is possible to increase this speed by several orders of magnitude, while 
preserving the same recognition performance. Moreover, our learning algorithm 
enables us to tackle very large tasks and increases the limit size of phonetic tasks 
which neural networks can learn in computational comfort. 

This report includes seven parts. After a quick overview of the Back-
Propagation learning procedure, we propose some possible improvements. 
Sections 3 and 4 then describe the learning tasks we examined and give the 
criterion we used to rate performance for these tasks. The following sections detail 
each improvement we propose. In section 5, the choice of the sigmoid function and 
the output error measure are discussed with a view towards obtaining a steeper 
error surface. Section 6 shows how to optimize the learning strategy. Section 7 
proposes scaling algorithms for the step size, the momentum and weight decay. 
Finally, we show how all these improvements enable Time Delay Neural 
Networks to yield, within a short learning time (1 hour), very good performance 
on large speech tasks such as recognizing all Japanese consonants. 

3
 



yl
□

土
↓

□

丁
I YN-1 I 

Unit j: 
Xj=~WijYi 
Yj = f(Xj) 

↓ 
Fは1:f面迅已玉―neural函!tw面Ji

Desired output I I I I 二 I I 

Actual output ~"" 

' uwpedigahte ts 
update 
weights 

Forward 
Pass 

Input Ladyaetr a 口口口口口C 口口口(speech) 

~ ,. 
1 training sample = 1 learning iterartion 

Subset of samples presented before updating weights 

Training set = 1 learning epoch. This is used to rate performance 

Figure 2 : Learning the training set. 

4
 



2. Learning with Back-Propagation. 

This section presents an overview oflearning in Neural Networks, and concludes 
with a discussion of the improvements we attempted. 

2.1. Neural Networks 

The basic unit in our network computes a weighted sum of the activations of its 
incoming uni ts, and then applies a sigmoid function f to this sum to compute its 
own activation. Our networks are not recursive: a unit never feeds back on itself, 
even through another unit. 

2.2. The Back-Propagation learning procedure 

We present here the Back-Propagation learning procedure, also known as the 
generalized Delta Rule. This learning procedure involves the presentation of a set 
of training samples, which are pairs of input and output patterns. The input 
pattern is propagated through the network and produces the actual output vector, 
which is then compared with the target or desired output vector. The connection 
weights are changed to reduce the difference between these actual and desired 
output patterns. We define the error function to be the mean square difference 
between actual and desired output. 

For a training sample p, this error function may be written as: 

恥＝均 (Ypj-dpj) 2 

The overall measure of the error is then E =~P Ep. 
The Back-Propagation learning procedure implements a gradient descent on E, 
and weights are updated according to the relation: 

揺 k= -e~ 虞 p/aWk

嗚/aWk is computed for each weight by back-propagating the error signal from 
the ouput units to the input units. Details may be found in [1]. We describe the 
algorithm at the unit level in the next section. 

We see here that weights are updated after presentation of the whole training 
set, but it is also possible toupdate them after presentation of a smaller set of 
samples. We introduce the following definitions: 

-Iteration: presentation of one sample. 
-Epoch: presentation of the whole training set. 
-Updating period: number of iterations between 2 weight updatings. 

Fig 2 shows the network learning over one epoch. 

5
 



2.3. Learning in one unit 

The Back-Propagation learning procedure is local: the modifying parameters for 

the weight Wij depend only on unitj and on input activation Yi 

aE/aWij (t) = 1:samples aE/axj Yi+ 8j Wij(t) 

△ Wij (t) = Uj△ Wij (t-1)心 jaE/aWij (t) 

Wij (t) = Wij (t-1) +△ Wij (t) 

aE/axj is the back-propagated signal: 

aE/axj = f (xj) (玩WjkaE/叩） k ranges over the output units. 

Cj is the gradient step size. 

Gj is the momentum (used to avoid oscillations during the learning phase). 

釘isthe weight decay. 

We here consider these parameters as local to each unit. This is different from 

standard Backprop, where they are shared by all the units; this is also different 

from making these parameters local to each connection, as adopted by a few 

researchers. This intermediate solution, of considering the parameters local to 

each unit, formalizes well. If we write Wj the vector (W1j , W2j , ……. WNj), 
learning is the trajectory ofWj in the weight space, determined by unitj. 

2.4. Possible improvements 

The goal is to reduce the error measure to zero within the smallest learning 

time. As a function of the connection weights, this error function defines a 

complex surface and learning may be seen as a trajectory on this surface, moving 

down along the steepest slope, preferably toward a global minimum. There are 

several ways to accelerate convergence: 

a) Model a steeper error surface without flat spots, which may be done by an 

appropriate choice of the sigmoid function or the output error measure. 

6
 



b) Define an appropriate learning strategy: in which order to present the patterns, 
when to update the connection weights. 

c) Carefully choose the parameters presented in section 2.3. 
Uj, E'-j and釘willbe scaled to: 

Make the weight trajectory as straight as possible. 

Minimize oscillations. 

Have a fast but controlled learning speed. 

Attain good generalization on test data 

3. Our experimental tasks 

We present here our benchmark tasks, in order of increasing size. Due to 
scaling problems, it is generally very difficult to generalize from a small task to a 
larger one. The only assumption we make is that something that does not work for 
a small task is not likely to work for a larger one. 

The small tasks we study here are: 

XOR: learning exclusive or in a neural network. 

838: the network has to learn to encode 8 inputs with just 3 
hidden units. 

The large tasks we study here deal with phoneme recognition in Time Delay 
Neural Networks (T.D.N.N.). The data used and the network architecture are the 
same as those discussed in [2] and [3]. We used a large vocabulary database of 
5240 common japanese words [8]. These words are uttered in isolation by one 
Japanese native male speaker. All utterances were digitized at a 12 kHz sampling 
rate. The database was then split into a training and a testing set, from which the 
actual phonetic tokens were extracted. 

The training tokens were randomized within each phoneme class. The 
training set was then built by alternating each class to be learnt. After training, 
the network is evaluated on the testing set. 

We have mostly focused on the TDNN shown in fig.3, whose architecture is 
discussed in [2]. Two different pairs of training-testing data have been tried: 

BDG: Learning the three stop consonants /bl, Id/ and lgl. The 
total numbers of training samples and testing samples are 
nearly the same: around 780 (260 of each class). 

PTK: Learning the three stop consonants lpl, ltl and lkl. 

Table 1 gives the important properties of this network. Many different units 
may stand for the same physical unit, but at different times. The two important 
numbers in this table are the number of connections, which determines the 

7
 



computation time for one iteration, and the number of physical connections, which 
corresponds to the number of free parameters we have in our system. 

Input Layer 1 Layer 2 Output Total 

Units 241 104 27 3 375 

Physical units 16 8 3 3 

Fan-in 

゜
49 41 10 

Connections 

゜
5096 1107 30 6233 

Physical 

゜
392 123 6 521 

connections 
~.. .. ~--

＾ 
-~· 

｀ 

All the tasks we study here are classification tasks. For one sample with N 
output activations, the desired output is always one for one unit and zero for all 
other units. We say that a pattern is recognized when the output unit with the 
maximum actual activation corresponds to the unit with the desired activation 
equal to 1. The recognition rate is defined as the percentage of samples correctly 
classified. The error rate is therefore the complement of the recognition rate with 
respect to 100. 

/＇,¥ 

8
 



B
 

D
 

G
 

Output Layer 

integration 

s11un£ 

Hidden Layer 2 

s1 ,
u
n
 8
 

Hidden Layer 1 

(Hz) 

早幽髯/j鵬i軋暉言且且巨r,i;;; • , ■ • • • • 5437 

悪筐闘璽l闘闘臣臣圧匠 庄庄 血血 細 4547

郡罪血開i闘闘匹・・・・ ・ ・ ・ . 3797 

＂固犀罪血囲 rn • ■ • ■ ■ ■ ■ • 3187 

・罪臣匝匝匝• ■ ••••••• 2672 
に回匪繭璽霞 P.e• • • • ■ • • • 2250 

ぉ郡匝歯闘闘臣• • • ■ ■ • ■ ■ 1922 
罪 l~ii』l1 璽園闘 s, • • ■ ■ ■ ■ • ■ 1641 
匹国匪耳．睦囮g"'■■ ■ •• ■ ■ ■ 1406 
匪匡匪繭胆匹• ■ ••••••• 1219 

臨茜罷甘ii団茜臣"'■■ ■ ■ ■ ■ ■ ■ 1031 

耳国臣臨：！臣臣 ll!l ■・-・・・・璽 844' 
• m 昂そ宕， ill: !l!!i., ■ •• ■ ■ ■ ■ ■ 656 

■ • • • a I! • ■ ■ • ■ ■ ■ ■ • 462 

■ •• • ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ • 281 

• •'· • "'• ■ • ■ • • • • 141 

s= 1ap
!
J
J
a
O
J
 >jUeqJalf!J a
(
g
 Sf a
 Lu 9
 L
 

Input Layer 

15 f「ames
1 D msec frame rate 

Figure 3: T.D.N.N. with 3 classes. 

，
 



4. Methodology 

4.1. Introduction 

This section introduces the methodology for our experiments. In most studies 
and comparisons of the speed of various connectionist algorithms [12, 13, 14 ,15, 
16, 19] the criterion used is the speed of convergence of the algorithm on a set of 
training data. With problems like XOR or the encoder-decoder, this method is 
appropriate because we know the existence of an optimal solution and there is no 
open data. However in most real size problems, we do not know about the 
existence of this optimal solution. It is not guaranteed that we reach an error of 
zero. Moreover, the best solution for training data does not necessarily yield 
optimal results on open or test data. With small problems, it is also easy to obtain 
good statistics on the learning speed by performing a lot of learning runs 
(hereafter trials) with different initial conditions. This is much more difficult with 
larger problems where a trial may take up to several days. vVe first discuss these 
problems in a more detailed way with some examples, and then present our multi-
staged benchmark. 

4.2. When to stop learning 

With training algorithms for pattern classification problems, it is always very 
difficult to know when to stop the training program, before it begins to 
overspecialize the system into recognizing the training samples, with a loss of 
performance for test data[l 7]. In phoneme recognition with Back-propagation, we 
have indeed found that zero error for a set of training samples is not desirable. 
Learning has to be stopped before this point is reached. A good way to determine 
completion time is to split the set of samples in two, and only use the first half to 
train the network, keeping the second one to track the generalization capacity. 

We have also found as a rule of thumb that learning is often complete when the 
error rate on training data reaches a plateau. For instance, we see in力ゞable2 that 
with the BDG task, learning should be stopped when the recognition rate on 
training data has been stable during 10 epochs. 

ヽ

9

9

 

／
 

4.3. Reporting learning time 

Several ways of measuring learning time are possible: 

An epoch corresponds to the presentation of each of the patterns in the training 
set. As the size of our training set is fixed and as the algorithms we present do 

10 



Epochs 10 20 30 40 50 

Training data 1.41 0.90 0.64 0.64 0.64 

Test data 2.24 1.45 1.19 1.19 1.32 

remarks plateau stop here overshooting 

Table 2 :BDG task with 780 training samples: 

Error rates 
not substantially modify the computing time per epoch, we have used epochs to 
rate performance. 

- The number of iterations (pattern presentations) may give more accurate 
results, especially when the numbers of patterns are not the same for each 
epoch. This is for instance the case with our sample skipping procedure, and we 
will probably use this method for future experiments. 

- The number of connections that have been passed through to learn the task is 
also very significant. It gives an idea of the required time when the the 
simulation program performance is known in terms of Millions of Connections 
Per Second. It allows comparisons with neural networks of different 
architectures. 

- Floating point multiplications: generally a pass through a connection requires 
3 floating point multiplications. This would be a good measure for comparisons 
of training time with other speech recognition methods such as Hidden 
Markov Models or Learning Vector Quantization. 

- Computation time. Fundamental to satisfy our curiosity, but we do not favor it 
as a standard, as it is too hardware dependent. 

4.4 . The Importance of Initial Conditions 

Initial weights have a strong influence on final performance, both in terms of 
learning time and recognition rate. We have found that it is possible to improve 
learning speed by choosing weights which are adapted to the problem. For 
instance, in a TDNN, a physical unit is connected to another physical unit 
through several connections, each having a different delay. Even though their 
weights are different, learning is faster if these weights are initially set equal, as 
shown in table 3. 

11 



Epochs 10 20 30 40 50 

Adapted weights 2.5 / 50 1.9/70 1.7 /100 1.7 /100 1.6 /100 

Random weights 2.8 /20 2.5 / 90 2.0 /100 1.9 /100 2.0 / 100 

Table 3: BDG task with 780 training samples. 

Error rate / % of converging trials 

(10 trials, Error averaged on converging trials) 

However, the gain is very small, and we do not have any general theory, such 
as with Learning Vector Quantization [9, 10] which in large part owes its high 
learning speed to good initial conditions. We would like to adapt these ideas to 
multi-layered neural networks. Up to now, we have only been using a few 
practical results. 

Initial weights are random numbers with a gaussian distribution. The average 
is zero and the standard deviation is carefully chosen so that initial 
activations range over the steep part of the sigmoid function. A bad choice on 
this standard deviation may lead to configurations likely to never converge. A 
way to compute it may be found in [21]. 

With a given learning task, it is possible to keep the same initial weights for 
most experiments. When initial weights give good performance for a certain 
learning method, performance is still good with slightly different learning 
methods, and we see in Table 4 that trials number 2 and O (among 10 trials 
starting from different initial weights) give very good performance for 3 
different learning methods. Moreover, good initial weights with small 
training sets generally yield better than average performance with larger 
training sets. 

Sigmoid overshooting 
Learning method Standard derivative control 10 

+ 0.01 instead of 1 

Number of the 3 trials (ranging from 2,0,3 2,0,8 0,3,2 
0 to 9) yielding the best recognition 

performance on test data. 

Table 4: BDG task with 780 training samples 

,

＼

 ＼
 

12 



4.5. A multi-staged benchmark. 

To avoid tackling all these difficulties at the same time, our benchmark must 
include several stages. 

The first stage deals with small problems, such as XOR and 838, or large ones 
with a very small number of training samples (always less than 100). Learning is 
completed when the error goes below some small fixed value. This is a kind of 
preselection for our different learning improvements. Methods leading to a 
catastrophic behavior are rejected. 

The second stage deals with medium-sized problems, such as BDG and PTK. If 
learning takes one hour, it is possible to run ten trials with different initial 
conditions within one night. For each trial, we keep track over time of the 
recognition rates on training and test data. The problem is now: how to rate 
performance using all these results? Ideally, performance should be rated with 
two numbers: the best recognition rate and the number of epochs required to 
reach it. It is indeed very tempting to look over all the trials and take the trial, 
and the epoch for that trial, yielding the best recognition rate. Using this method, 
we can claim that our network is able, with some very favorable initial conditions, 
to yield a recognition rate of 99.5% for the BDG task rather than 98.6%. W e 
reject this method as we want to achieve a good result reliably, within just one 
trial on average. Learning is only restarted when caught in a local minimum, 
which we have seldom observed with our algorithm. 

We see in table 5 that for error rates on training data which are less than 2%, it 
is impossible to interpolate performance on test data from performance on 
training data, probably because our database is not large enough. However, with 
our speech recognition tasks, we have found that when the error rate on sample 
data is over 2%, performance on test data is significantly worse. For a given 
epoch, we call "converging trial" a trial which yields an error rate ofless than 2% 
on sample data. We rate our recognition performance with two numbers: the 
percentage of converging trials and the error rate on test data averaged over the 
converging trials. 

13 



Trial 

゜
1 2 3 4 5 6 7 8 ， 

Training data 0.64 0.64 0.51 0.38 0.38 0.38 0.64 0.77 0.51 0.38 

Test data 1.32 2.50 1.05 1.32 1.71 1.45 1.71 1.98 1.84 1.19 
~, -~、ヘ '1 ,. 日',.....,.....' g sampl 

Average Error rate after 50 epochs 

4.6. Our simulation program. 

During this research we have used several Back-Propagation simulation 
programs. Programmed in the C language on a UNIX system, they have been 
optimized to run in parallel on an Alliant supercomputer. Three versions are used 
here (we quote their respective speed in MCPS, Millions of Connections Per 
Second). 

The first results reported by Waibel[2, 3] (learning the BDG task with a 98.6% 
recognition rate within 4 days) were obtained with an optimized program 
running on an Alliant with 4 processors. 

Most of the results we report here were obtained with the same program, but 
on an Alliant with 8 processors, yielding 0.8 MCPS. 

The most recent version runs at more than 2 MCPS on an Alliant with 8 
processors. 

＼
 

9
,
.
 

／ 

14 



5. Modeling the error surface 

5.1. The sigmoid function 

The presentation of a pattern modifies the weight connecting units i to j 
through f(xi) f(xj) aE/ayj . The Back-Propagation learning rate is then 

proportional to the values of the sigmoid function f and its derivative r. But 
these functions flatten out at infinity, as seen in figures 4 and 5. There are several 
ways to make the functions non-zero at infinity. 

First, we can create a symmetric sigmoid whose value is never zero at 
infinity, by substracting 0.5 from the sigmoid. This generally gives a slightly 
better learning speed as shown in [15]. However, at the beginning of the 
learning phase, when the weights are small and the activations close to zero, 
learning may be very slow to initiate and break the symmetry. 

We may add a linear function to the sigmoid function: f1(x) = f(x) + l.x .The 
derivative becomes f1'(x) = f'(x) + 1. This amounts to adding a small positive 

constant 1 to the sigmoid derivative, which therefore cannot be zero (1 is 
generally between 0.01 and 0.1). Even when it improves performance, this 

method has to be used with the utmost care. We have found that with difficult 
tasks, the network may work with very large activations, in the domain off 

far from 0. As a consequence, a small change in some weights may change the 
behaviour of the network considerably. The latter may lose most of its 

robustness and fault-tolerance. 

It is also possible to only add a small constant 1 to the sigmoid derivative 
without changing the sigmoid function. Therefore, during the backward phase, 
we multiply dE/dy by a factor which is no longer the real sigmoid derivative 
(this model is mathematically inconsistent but gives good results as shown in 
[12]) . 

15 



1 

y = f(x) 

0.8 

6
 

＊
 

nu 

-＿- -＿
 

――
 

／
 ．．

 ーノ

-．
 

／， 

ー
9
,

＇ 
f
 ,＇ 

i
 ,' 

＇ 

II 

ー
ー

ー

＋ー＇

-10 o
x
 -

J
-
ー、’

ー

7
ー
／
’4

/
2
 

*i,

• 

0

0

/

 

5
 

5
 

10 ／

＼

 

，＇ 

Figure 4: The sigmoid function: f(x) = 1/(1 + e-x) 

0.5 
y = f'(x) 

0.4 

(l~ 
'• -

( 

-10 

f r ~、
/''¥ 

o.; ¥ 
// ¥ 
/0.1 ¥¥ 

// ¥ / -•• 、
, - ・ - ・

✓-·- 一ヽ、

—----—-—--- . ----
’ー'

-5 0 5 

X 

10 

Figure 5: The sigmoid derivative. f(x) = f(x) (1-f(x)) 

16 



These three methods, especially those dealing with a change in the sigmoid 
derivative, generally lead to an increase in speed, and guarantee convergence to a 
zero error global minimum. The results we found are consistent with [12]. 
However, this forced convergence is most often unwanted, for it leads to network 
configurations which have overlearnt the training set, yielding slightly worse 
generalization on test data. We see in table 6 that for the BDG task, the three 
models allow for fast convergence in all IO trials, but the final average error rate 
on test data is higher than with the standard sigmoid. 

Epochs 10 20 30 40 50 

Standard Sigmoid 2.5 /50 1.9/70 1.7 /100 1.7 /100 1.6 /100 

Sigmoid 1 2.4 /50 2.1 /90 2.l /90 2.1 /100 1.8 /100 

Sigrnoid2 l=0.01 2.4 /90 1.9 /100 1.9 /100 1.9 /100 1.9 /100 

Sigmoid 3 1 = 0.01 2.1 /100 2.0 /100 1.8 /100 2.0 /100 2.0 /100 

Table 6: BDG task with 780 training samples. 

Error rate /%converging trials 

(10 trials, Error averaged on converging trials) 

5.2. A New Error. 

Because of the multiplication by the si四 oidderivative, output units whose 
activations are close to zero or one have delta values which are close to zero, 
regardless of the size of the actual output error for these units. Then, in the case of 
a unit whose difference between the real and the desired output is close to one, the 
weight change on the input weights will be near zero. To cope with this problem, 

instead of the standard Mean Square Error (MSE) E = -~samples 均 (Yj -dj)2 , a 
New Error measure has been proposed by McClelland: 

E = -I:samples均ln(l-(Yj -dj)2) 

切isthe actual output and dj is the desired output). 

The derivative of this new error is: 

17 



aE 1 1 
-=—+ 
切・ 1 -(d. -y .) 1 + (d. ―y .) 

J J J J 

After multiplication by the sigmoid derivative yj(l -y_;), we find: 

aE (1 -y J .) 2 

when d.=1 
切・ yJ .-2 J 

2 
aE yJ . 

and - = when d.=O 
axj yJ .+1 J 

We see that now dE / dyj is maximal when Yj -dj = 1. This new error ensures 
that the system will always learn and has roughly the same effect as adding a 
small constant to the sigmoid derivative, as we see in table 7: ＇ ＼ 

Epochs 10 20 30 40 50 

Standard Error 2.5 /50 1.9 .''":O 1.7 /100 1.7 /100 1.6 /100 

New Error 2.4 /90 2.4 /100 2.1 /100 2.1 /100 2.1/100 

Table 7 :BDG task with 780 training samples. 

Error rate /%converging trials 

(10 trials, Error averaged on converging trials) 

We have found this new error to be particularly helpful with very large tasks 
with a lot of different classes, such as learning all the consonants, as described in 
section 8. Here, over 18 consecutive samples, the desired activation of any output 
unit is 1 one during 1 iteration and O during the 17 others. Outputting a zero 
activation for the 18 samples is an easy approximation for the network to learn. 
The sample whose output is 1 is not correctly learned, but no correction happens, 
as the sigmoid derivative is equal to zero. The new error prevents this problem 
and increases learning speed by several orders of magnitude. It is here very useful 
when the desired activation is 1.0. 

To confirm this, we introduce a hybrid error, which corresponds to the new 
error when the desired output d= 1 and to the MSE error when d= 0. This hybrid 
error is then written: 

aE (l -y .) 
- = when d .= l (same as new error) 
axj y .-2 

/
,
．
¥
 

18 



and - = (l -y .) y .2when d. = 0 (same as M.S .E) 
axj J J 

aE 

Performance is the same as with the new error. As the BDG task does not have 
enough classes to show the efficiency of the new error, we have made the 
comparisons on a network which learns all the 23 phonemes (18 consonants + 5 
vowels). Results are shown in table 8. 

Method 
Number of epochs to reach a 98% 
recognition rate on training data 

M.S,E, Standard Sigmoid Much larger than 200 

M.S.E, Sigmoid + 0.01 x 120 

New Error, Standard Sigmoid 20 

Hybrid Error, Standard Sigmoid 20 

Table 8: Performance oftne 23 Phonemes network 
with different Error functions. 

5.3. The input activations 

In staged learning, we take as input data for the second learning phase 
activations that were obtained after a first learning phase. With the standard 
sigmoid, these activationas range from Oto 1. We have found experimentally that 
an important gain in speed was obtained when the input activations were 
ranging from -1 to + 1 rather than from Oto 1. This may be done by scaling the 
input data. 

19 



6. Learning strategy 

We use the word strategy to describe the parts of our learning algorithm that 
deal with the way the training samples are presented to the network. The 
underlying ideas are very simple and primitive (nothing to do with real 
pedagogy), but they may be very efficient. 

6.1 The Weight updating frequency 

In this section, we discuss the problem of when to update weights. There seems 
to be two trends the Back-Propagation procedure: the Standard B.P., which 
updates the weights at each epoch and the stochastic B.P. , which updates the 
weights at each iteration. We have found that the optimal solution sh叫 dbe in-
between the two procedures. 

Splitting a large and often highly redundant training set into smaller subsets 
for the purpose of weight updating may be very advantageous. At the beginning of 
the learning phase, one subset is enough data for a network which is only acting 
as a rough classifier. As a consequence, updating weights over any subset may be 
as effective as updating weights over the whole training set, at the beginning of 
training. This remark leads to two different learning procedures. The first one is 
staged learning: the network first completely learns a single small subset of 
samples, which is progressively expanded to include the whole training set. The 
problem is that the network tends to become overspecialized for the first small 
subset. The second idea is to update weights often at the beginning and then 
progressively increase the weight updating period. This method has proved to be 
extremely efficient. Ifwe keep the weight updating period well under the number 
of iterations for one epoch, we find two other advantages. 

At the end of the learning phase, fine-grained learning and a large training set 
are needed. However, the difference between two consecutive learning subsets 
may be considered as noise which prevents local minima. 

The other advantage of updating weights more often is more difficult to 
explain: it is not only faster, it also yields better generalization performance. A 
possible reason is that, as we add fewer sample errors for each update, 
learning steps are smaller and better controlled. 

How do we change our learning procedure? We have an M samples training set 
and update weights after presentation of N patterns. In our BDG task, which 
uses three phoneme classes, we have found that using as the updating period any 
multiple of 3, ranging from 3 to 48, gives fair results. More generally, in problems 

20 

＼ 



with C classes where C is much smaller than the number of input samples, N 
should be a multiple of C. Furthermore the momentum should become larger for 
smaller N's. Suppose a is the optimal momentum with an updating period of M 
samples, it would be logical to change it to aN/M with an updating period of N 
samples. Practically, this relation is not well verified and we will propose a 
momentum scaling algorithm that will adjust the momentum to an optimal value. 

When updating weights often, we have to take some basic precautions. The 
most important is to carefully mix the training samples. In our phoneme 
database, the consonants are not listed at random, but according to their following 
vowel. For instance, first come the BAs, then the Bls, BEs, BU s and BOs. To keep 
this order when updating weights very often may lead to oscillations which are 
periodic and very harmful to performance, as seen in table 8. We have also found 
that the weight updating period should not be changed too suddenly over time. 

We propose now a procedure incrementing the weight updating period over the 
number of epochs. For the BDG task, it is: 

Trainin~sample: randomly mixed, to avoid overspecialised training subsets. 

First learnin区epoch,weights are updated every 3 iterations. 

Each epoch, the size of the training subset is incremented by 3, until it reaches 

its maximum value of 48. 

This is very easy to generalize to any kind of problem with a fixed number of 
classes. The initial value is generally the number of classes, and the increment 
should stay small. With the BDG task, as seen in table 8, the learning speed is 
multiplied by a factor of 5 to 10, the converging probability is increased and the 
recognition rate on test data is improved! The only problem is theoretical: our 
algorithm is now only an approximation of the gradient descent algorithm and 
some improving procedures derived from this algorithm are no longer possible. 

Epochs 20 50 100 200 300 

Epoch updating 0 /0 0 /0 2.0 /10 2.3 /100 2.0 /90 

[P] Non mixed set 2.0 /10 2.1/70 1.5/70 

[P] Mixed set 2.5 /50 1.6 /100 

Table 8: BDG task with 780 training samples. 

Error rate /%converging trials 

(10 trials, Error averaged on converging trials) 

21 



6.2. Skipping samples 

When learning a large sample database, the learning program tends to spend 
most of its time trying to learn a small minority of unclassified samples, while 
most of the other samples already yield an output error close to zero. It is then a 
loss of time to perform both the forward and the backward pass on these learned 
samples. To prevent this, one has only to set a minimum error: if a sample output 

error is below this minimum, no backward pass is performed. This algorithm may 
be improved for samples whose error is much below this minimum: we consider 

that it will take a number of epochs proportional to the difference between the 
minimum error and the output error for this sample to be worth learning again. 

With this method, we commonly skip 75 % of the training samples at the end 
of the learning phase, and save the same percentage of CPU time per Epoch. Let 
us take an example with a minimum error of 0.001. The old Error is incremented 
of0.0002 at each epoch until it reaches back 0.001. 

Epoch 
increment Forward Compute Backward 
Old Error pass Error pass 

20 no yes 0.0011 yes 

21 no yes 0.00046 no 

22 0.00046 no no no 

23 0.00066 no no no 

24 0.00086 no no no 

25 0.00106 yes 0.0014 yes 

22 



7. Controling learning 
In this section, we propose algorithms for scaling the step size, the rnornenturn 

and review Rurnelhart's algorithm for weight decay. 

7.1. The step size 

Setting the step size is one of the most diffi叫 tproblems with Back-
Propagation. The literature [12, 13, 14, 16, 19] proposes many different 
algorithms to scale the step size and we have tried several of these. They seem 
however difficult to tune and, as they generally try to scale the step size to its 
maximum value, they lead to large jumps in the weight space which are difficult 
to control. Our work in this五eldis detailed in Appendix A, which discusses a 
dynamic step size algorithm we have widely used during our work. The problems 
of parameter tuning and the efficiency of our momentum scaling algorithm limit 
its utility. 

We have kept one very simple and efficient feature of this algorithm: the 
overshooting control proce~ure. During learning, very brutal changes in learning 
strategy may appear spontaneously. As a consequence, the norm of the gradient 
vector grad (E) = (aE/aw1 , . …, aE/awk, …） may be multiplied by a factor of ten 
within an updating epoch. We have therefore added a control that, at each 

updating iteration, limits the norm of the vector e..grad(E) to a fixed value w. An 
elegant way to perform this is to resize the step size according to: 

e
 

1十ここ（三 2
W 

iEC 
aw .. 

!J 
w = 1.0 works with a large class of problems and prevents most oscillations. 

e'= 

7.2. The momentum 

When the weights are updated at each epoch, it has been found that a 
momentum of 0.9 substantially increases learning speed compared to Back-
Propagation with no momentum. Several explanations may explain this fact. In 
narrow steep regions of the weight space, the effect of the momentum is to focus 
the movement in a downhill direction by averaging out the components of the 
gradient that alternate in sign. Momentum also enables the network to jump over 
many local minima. 

In our experiments we have indeed found that using this value is a good 
general method of increasing learning speed, but it is not optimal especially 
when we are updating the weights more often than once for each epoch.When the 

23 



momentum is too small (0.9), we have oscillations, which means that the average 
is made over too short a time.When it is too large, we have uncontrolled 
overshooting, as the network inertia is so large that it cannot change its direction 
in the weight space in time. 

We propose now an algorithm to scale the momentum to an optimized value. 

First consider the ideal case of a= 1: this means that there is no loss in momentum 
for the weight variation△ W, which is then a perfect average over all the samples. 

This is interesting over one epoch, as it smoothes the differences between the 
samples. However, it is very dangerous over long periods of time, as the change 

computed long ago may not be desirable with a network which has changed a lot. 
To remedy this problem, the momentum should be reduced as the network 

changes. It has been found experimentally that one of the most characteristic 
symptoms of too large a momentum is the divergence of均(Wij(t))2over time. 

For a given unitj, the quantity we want to control is: 

Qj = :Bi (Wij(t))2 -:Bi (Wij(t-1))2 = 2 :Bi剛 (t-1)AWij(t) +迂(AW嗅））2

The weight variation is 

△ Wij(t) = Gj△ Wij(t-1)-£j d.E/dWij 

As our£scaling algorithm limits the£j term, it is possible to limit the value of 
Qj by scaling Gj with the relation: 

Gj = 1 / (1 + d l:B墨 ij△Wijl) 

d = 1.0 gives good performance. 

It has been found experimentally that a maximum value ranging from 0.99 to 
0.999 is still needed to avoid overshooting. Setting a minimum value of 0.5 

sometimes improves convergence. If we consider the weight vector as an object 
moving in high dimensional weight space, this scaling algorithm, stated in 
physical terms, makes it more difficult to move away the further the weights are 
from the origin. 

Our experimental results in Table 9 are very encouraging. When weights are 
updated often, our momentum scaling algorithm makes a higher percentage of 

trials converge, as the network jumps over local minima. Moreover, 
generalization performance is better。

7.3.Weight Decay 

With Neural Networks, it is very difficult to predict performance on test data 

from the results we get with sample data. In our experiments, we have only found 
one property that is correlated in some way with the generalization performance: 
the Root Mean Square average of the weights. For instance, when using a 
heightened sigmoid, the average weight size and the error rate on test data are 

both increasing functions of sigmoid heightening factor. The same pattern is 

24 

／ 

／ 



Epochs 10 20 30 40 50 

a=0.9 3.3 /20 2.6 /50 2.7 /60 2.5 /60 2.4 /60 

a==0.95 2.8 /10 1.8/20 1.7 / 30 1.8 I 40 2.0 /50 

a: dynamic 2.5 / 50 1.9 /70 1.7/100 1.7/100 1.6/100 

Table 9: BDG task with 780 training samples. 

Error rate / % converging trials 

(10 trials, Error averaged on converging trials) 

(10 trials) 
found when we increase the minim.um. m.om.entum. or step size. The idea to try to 
find a solution with minim.al weights is as old as Neural Netwoks them.selves. The 
simplest way to do it is to add a constant weight decay 8, so that each tim.e the 
weights are updated, we have: 

Wk= (1-o)W戸△Wk 

A good value for 8 is very difficult to find: too small, it is unefficient and too large, 
it makes learning very slow. 

Recently, Rum.elhart [18] has proposed a new formalism. that allows a better 
understanding of weight decay. The idea is that the simplest, m.ost robust network 
which accounts for a data set will, on average, lead to the best generalization to 
the population from. which the training set has been drawn. The method is to 
define a cost function which is m.inim.ized for this ideal network and derive a 
version of Back-Propagation which m.inim.izes this cost function. But the big 
problem. remains: how to define complexity? Rum.elhart tries his method for two 
different complexity definitions: the number of units and the number of weights. 

To minimize the number of weights, the proposed cost function for weight ij is 
written. 

and the decay 

2WiJiJ-

>
LJ

＝
 

t
 

h
 

g
 

.,しe
 

w
 

c
 

K. 
8 .. = 
!J 2 2 

(1 + w ..) 
り

K is a constant. 

Using TDNN, we have found that this method constrains many weights to zero. 
However we have found a huge loss in learning speed while the increase in 
generalization capacity was hardly noticeable. With our large tasks, finding a 
good constant value of K is already a difficult problem, and we have not tried to 
make it vary with time. 

25 



To mini_mize the number of units, the proposed cost function for unit j is 
written 

and the decay 

こ w~
C 

J 

叫 t いこ記
j u 

8.= K 
L (l+こ叫）2

With TDNN, this algorithm achieves its goal quite readily and inhibits many 
units. The question is: is this really desirable? We have found no improvements in 
generalization capacity and we will see in the section on consonant recognition 
that the number of hidden units should not be minimized in TDNNs. 

／
 

＼
 

/
，
.
¥
 

26 



Output Layer 

Hidden Layer 2 

G f . • •· I . 
D 嵐璽瓢冨璽量・・・
B 暉瓢●●璽•，瓢..j 

I 

I 
＼ 

I ＼ 

I 
＼ 

I 
＼ 

I 
＼ 

＼ 

Fixed 1 
＼ 

(F「ee)1 
＼ 

IJ D G P T K M N sN S Sh H Z Ch Ts R w Y 

. . . 

Ki董菖瓢翼● ● 董瓢翼！

;~ 
I I 

I ¥ 

I 
I 

I 
＼ 

I 

I ¥ 

Fixed 1 1 

(Free) 
I 

＼ 

＼ 

z H I．．．鑢嵐璽塵■＇瓢

薗瓢瓢菖瓢.瓢..
Sh嵐賣●瓢直●置口瓢

s I I I I 

I' 
I ¥ 

＼ 
I 

I ¥ 

Fixed I ¥ 

(Free) I 1 

"・・湮垂『喜
~I ;・、 I._}-BDG 

Fixed (F「ee),
嵐 t—-- _. __ 

： 
瓢謳瓢 璽璽●瓢鵬と••.. 瓢...嵐●瓢瓢置璽重

I ¥ 

Hidden Layer 1 1 1 

・・・・ ［：：璽！罪

：！言m罰：：翌ロニ竺：
--C. -~ ~ ｀、ヽ

、 I
-:..・--::: --.--、.Fixed_ (Fr.~e)',-':: , —--,- .: ---- ,. --ヽ・-・-'・・.-. ご--—-・-_-...,--

I 

I 
＼ 

I ¥ 
I ¥ 

"出"'m"'s"'m"cc'血.,... ;;;,;;m;;l•; , 且Llii!: m 11 .. .. .. .. . 
毎且 ii且且ggg gg 罪圧距 且且百且芸i琵且且号且も且且
r. ,: 且且且坦iii且罪la:: m m 訳： m m m :;: m 

Input Layer 
ニ群！罪匡；日"rn ;: • ... 
. :: .. . . ．．翼■ •••••• 
一...田i!!!! "'' 

......... 
• :: Ei! 5?. I!:: '" -・ -.. . . . .. . 
出出'iliiliilii月"'''. .. . . . . 真•
罪罪嘩 m;,m：出王 ••••••• 
.. 罪里；即'"w •• ••••••• 
缶 m;""却細 '" -・・・・・・・ 瓢::: !!:; :::: ~i !: む• 属瓢......
... .. ．．． 量鳳．．．．．
• I'. • • ••• .. I ....... 饂璽．．．....... 翼•

Figure 6 :Modular Construction of an All Consonant T.D.N.N. 

27 



Output Layer 
1 frame 

Hidden Layer 2 
9 frames 

← 18 classes 

...  ...  ー瓢 ••••—• 

●●● ●●● -・ . . . .  一.
●● ••••••••••—• 

●● ●一朧······•-•­麗●●●..  璽.....— •-
...........  —•• .... ······••·•• ．．．．．．．．．．．．．． 

•—• ·••. ····•···· 

← 18 hidden units . ) t  
_
¥
 

Hidden Layer 1 
13 frames 

Input Layer 

• • • ． • • • ． • • ． • • ■ • ．． ■ ••• • • ．． ■ •• • ． • • • • • • ■ ・II . ·•. . .. . ・・
・●璽• •••••• ■ •• ••• ••• ●● 

• • 
一• • • • 

・ ・

那緬薗iii釦ii梱ill!IRm・・ • • • • • • • 
!I!!! 軋U!!Hi!!IIH!ll!!Hlll!IH'"m m m ., " " m m 

開I阻： r.i! I店 m~1m:t, •••••••• 
開1 月m1~m 回 II問11mr. ■■■■■■■■ 
m1開罰即Iii月!l!ii••••••••• 

開！無消町i罪匪llil!t• ■■■■■■•■
冊甘 li且1月ill韮!lI! 臣!!lilt• • • • • • • • -
匪月 li!!l!晋！！晋甘！！！！甘Ill!弓111 .. , .. m ,; ;, m m m 

,ml! 荏iHm Hr.H Iii~! HliH t!i! m Ii! m~! !~I!! !ii II!! 

m m ;11 問！！匪百!P.月~ .. r. •• 

.. m~rr lU! !!U I彗I•.... 

!!! m; ¥. 月!Hifi¥!ii! !!! 

" " "ば m·• ■ ■ ■ ■ ■ ■ ■ • 

~ ー

••••••••••••••• ........ 薗......・・・・-鬱.........
15 frames 

lOmsec frame rate 

Figure 7a: Non-modular All Consonant T.D.N.N. with 18 physical hidden units. 

28 



Output Layer 
1 frame 

Hidden Layer 2 
9 frames 

Hidden Layer 1 
13 frames 

Input Layer 

厘

1← 18 classes 

·••····••·••···••· ·••······ ·····••­·••······ ·····••­·••····· •• • •••••• 
■ ·••············· ·• .•.......•...•. 
. ·••·••····••·•• ．．．．．．．．．．．．．．．．． 
·••••·•·••··••· ■ 

--c:, , " 27 hidden units 

． ． ． •• ... ． 
• ． .< ． •• ... ■ ． . ． ． ． ... ． ． ． • . ■■ .. . ． ． ． • ．． .. . • ． • -■ ．． . ·• ． ． ••· ■■ ・■ ． ．．．． ・■ • • ■ ● ・■● ． . •· ． ． ■ ． 

• ． ． 
■ ． ． ． ． ． 

叫疇lilii馳麒 m •.• • • • • • • 
llll!FJll!IH!l! 圃l圃IIIIIH●'"'"'"'.,~" "'"' 

開！開！罷煕罪1開t·••······
開ii廻mmn町i!賑!1mr• ■■■■■■■■
m 1111 F.ii r.inli世!r.m• •• • ■ • • • • 
開;11! 謹町器！！！睦nm攣●●璽．．．．．
彗！！！！！彗ll至m11m1 匡t月 1彗it••····•··
匪甘 l!!H!月開麒月匪ill!罪"' •· "' m •• " m m m 
！！！！甘備帷i!!! 開廿！器廿l!ijUl! I!! 庄 m "' " m m m• 
m m~!! l'l! 君i巨！亘!!a.. " .. 

•. m "''甜！里i里：．．．．
"'"" li!! !Hi :;, "" "'.  - • - - • """""'--·•······ I■■■■■■■■■■■■■■■ 

, .............. . ......... •·• ... . 
15 frames 

1 Omsec frame rate 

Figure 7b: Non-modular All Consonant T.D.N.N. with 27 physical hidden units. 

29 



Output Layer 厘
1 frame 

--t: 18 classes)lo 

Hidden Layer 2 
9 frames 

五iddenLayer 1 
13 frames 

Input Layer 

••••••••••• ·•• ••••• ■●● ·••·••······ ···•······· ...  ●●●●●●● 
■ •••••••• 

..... ●●●●● 

. ·••·· ■ ·••· ●●●●● .... 

.

.

.

.
 
―
 

．．．．．．．．． 

瓢

●

麟

璽

．．．．． 

•••••••• 

36 hidden units 

／＼ •9 

II • • • •· ． ·•· ． 鬱 • ． • • • •- • ·•• .. ． ． 
． ● 璽● •· • ·•• 璽 • ． ．．．  •· • ・■ ・ 瓢 ． 
■! • • • • ・ • ·• 瓢

． ． • ． 
． 璽 . ． • ・ • ·•• ． ． . 
． 璽 ．． ・ ·• .. ■ .. 
• • •· ． ． ・■ •··· ●●● ■ • ． • • • • • ■l 

·•• ．．． • . . . 
·•• ． ·•• • .. 鶴.. ． ・■● • .. —.. ． 編l ·•• 瓢 ... 

m!IRH!ilHTI「l瓢 HIIR., ・・ • • • • •、. . 
ll!!IH! 軋!HillHr.II ff!Hi ll!IH "'"',., "'算''箕""'r., 

月n1m 翻 1~1 m:1n問·••······開峠Ill!闘1臣!I眼国・ ■••••••• 
!!! 煕店i釦1世嘩i•• 璽瓢.....
開！餌梱訂町!f]f,Hi• ■■■■■■■■
梢ui開 1月ilO~!! 罪且mm■ • • ■ • • • • -
罰!!!冊！開！！『淵晋伺昔罪・' . r., m ., '' ,r. m r,; 

，m 罷i匪i目且！！！器!nli(m1 m m m " " '" rn "" 
m m翻臣Hm且昔華.. " .. 
.. m踪期 1mm, •... 
F.i "" F.!! IF.! Ii月""m• • • • • • 

" r'- " r., •• ■ 冨......
慶瓢璽● ●●璽璽●●●●.. 
．．．．．．．璽．．．．．．

........ 霞．．．．饂麟

15 frames 
lOmsec frame rate 

Figure 7c: Non-modular All Consonant T.D.N.N. with 36 physical hidden units. 

30 



Output Layer 
1 frame 厘

Hidden Layer 2 
9 frames 

c,ff-一18classes .. 
..... -.... ·····••· 珈........·····••· 
·••····••· ●●●●●●● ■ ······••·•······· ·• ...  ・■■．．．．．．．．．
● ●●● ·••········· ..... ······••·• ．．．．．．．．．．．．．．． 
■●●●● . ····••·•• 

45 hidden units 

Hidden Layer 1 
13 frames 

Input Layer 

． ． . . 
瓢 ． . -． ． ．． ． ■ .. ． ■ ■ • ■ ． . ． .. ． ． ． ·• ． 

•• ． ． •• .. 
•• ． 
■■ ． 
■■ • 

mn~iiiiliiillllll 歯且麒i 缶 ．． ． ． ． ． ． ． ． 
暉IRIii! 冊ii!開l圃且罷，""' "' "' ●' ,. ' "' "' 

r,n開！用11閉開百開n• •••••••• 
椰問1111.!lll罪！嗣郡．．．．．．．．．＂罷熙罰！繭罪，．．．．．．．．．
開!fl酎匪開II罷匪．．．．．．．．．
開Ill備ii問1回揺牌..・・・・・・・
囲月nm!罪阻！！詞匪;rn .... , m ., "'m m 庄

1m ll備且雑罪麒匪 m,mmm.i1'mmnu

m m罪槌！詞匿" " -" - .... 一ご

.. "'. ., 煕 n1i郡ー"

m 11!! Ell r.,; 臣田！出 ・・・・・・・" ,. " "出．．．．．．．．．．：．．．．．．．．．．．．．．． ．．．．．．．．．．．．．．． 
••••••••••••••• 

15 frames 
lOmsec frame rate 

·• ． 
・■ ． 
·• ·• ・■． 
.. ． ． ．． -• ● • ● 

·• ● ・■． ••• ． ． ． 

． ． ． •· ·• ． ． ． •- ・■ ． ． ． ． ． ． ． ． ． ・■ ． ． ■ ． ・■
■ ． ． ． • ・■． ． ·• ． ． ■■ ·• ． ． • ■ -.. .. ． •·•••· ． ． ．．．． ． ■ ••• • ． ． •••• 

Figure 7d: Non-modular All Consonant T.D.N.N. with 45 physical hidden units. 

31 



8. Consonant recognition 
This section is the last stage of our study. We show how our improved Back-

Propagation algorithm enables to learn all Japanese consonants within 1 hour. 

8.1 The Database. 

Original Large Small Original Large Small 
Training set Training set Training set Testing set Testing set testing set 

b 219 219 200 227 227 200 

d 203 203 200 179 179 179 

g 260 260 200 252 252 200 

p 33 22 33 15 15 15 

t 425 425 200 440 440 200 

k 1154 500 200 1163 500 200 

m 471 471 200 481 481 200 

n 260 260 200 265 265 200 

N 503 500 200 488 488 200 

s 475 475 200 538 500 200 

sh 310 310 200 316 316 200 

h 214 214 200 207 207 200 

z 116 116 116 115 115 115 

ch 134 134 134 123 123 123 

ts 212 212 200 177 177 177 

r 753 500 200 722 500 200 

w 72 72 72 78 78 78 

y 159 159 159 174 174 174 

total 5973 5063 3114 5960 5037 3061 

Set 9000 3600 9000 3600 
Size 

. - -~ 

/

＼

 
,．, 

／ ＼ 

perp 

32 



We use here the whole database available for one speaker, split equally into 

training and testing sets. Table 10 gives the number of tokens used for each 
phoneme. We see that the total number of different tokens for each set differs from 

the set size, as rare tokens such as /p/ are repeatedly presented. 

8.2. Our Learning Procedure 

Among all the possible improvements :presented in the previous sections, we 

have selected those giving the largest increase in performance, both in term of 
learning speed and generalization capacity. 

- The standard sigmoid is used. 

- The input activations are normalized to range from -1 to + 1. 

- As our tasks have a large number of classes, McClelland's New Error is used 
(section 5). 

- The weights are updated according to the weight updating procedure 
presented in section 6. The initial updating period is 9, and is incremented by 3 

at each epoch, until it reaches 72. 

- Training samples are skipped when their output Error, which may range from 

0 to 1 , is below 0.001. The maximum number of epochs during which they can be 

~kipped is 5. 

- The step size is limited by the overshooting control procedure (section 7). When 
it is not limited, the step size is 0.01. 

- The momentum is scaled by the procedure presented in section 7, with a 
minimum value of0.5 and a maximum value of0.99. 

We have found that learning could be much faster when boundary effects in the summation of 
the last layer are taken into account. In TDNNs, the output is obtained by integrating the 
evidence of each unit in hidden layer 2 over time. This means that all the connections coming to 

an output unit must share the same weights. We have found that this configuration was not 
optimal, and that the boundary weights coming to the output units should be freed, as shown in 

the next figure. 

With our TDNN networks, boundary weights tend to take a sign which is opposite to that of the 
central weights. We have not yet systematically explored this boundary effect in TDNNs (for 
instance in the other layers). 

33 



2 equal Boundary weights 
(independent from central weights) 

Output layer: 
1 output unit 

4
 ‘, ー

ー
ー

,' 
I
 ー

I
 ー

I
 ー

I
 ー `

J
 

＼
 

＼
 

＼
 

ー

＼
 

＼
 

＼
 

＼
 

＼
 

＼
 

＼
 ヽ

Hidden Layer 2: 
1 unit over 9 
moments 

J
 

；

＼

 ．．
 

2 outo oi'the―9 weights are rree 

8.3. Experiments on non-modular TDNNs. 

Our first experiments with all-consonant recognition used an architecture 
derived from the 3-class architecture, but with 18 classes, as shown in 
Fig.7a,b,c,d. First we had to find the right number of units in the first hidden 
layer. The 3-class TDNN network has 8 physical units in this layer (as these are 
represented over 13 periods of time, there are a total of 13 * 8 = 104 TDNN units). 
This gives approximately 3 physical units per class. We have tried six different 
architectures, with different numbers of hidden units per class, as seen in table 
11. (With all these architectures, the boundary weights of the last layer are free. When this is not 
the case, the network with 54 physical hidden units takes more than 6 hours to reach a 96% 

recognition rate on the training samples, which is more than ten times slower than with the 
network with free boundary weights). 

／

＼

 
,．
 

Our recognition results after 20 and 30 iterations are shown in tables 12 and 
13. We used the large training set for learning, and the small testing set for 
recognition. Further learning generally brings the recognition rate of the training 
data to 100%, with a slight loss in recognition performance on test data. These 
results bring very unexpected conclusions: 

While all the configurations yield a recognition rate of at least 99.5 % on 
training data, generalization capacity on test data seems to worsen while the 
number of hidden units decreases. This goes against the intuitive idea that the 
simplest network able to perform a given task should yield the best recognition 

34 



Number of Physical Number of physical Total number of 
Hidden units per class Hidden units connections 

1 18 26388 

1.5 27 39411 

2 36 52434 

2.5 45 65457 

3 54 78480 

し 4 72 104526 
-- ヽ

p 

Number of 
Physical uni ts 18 27 36 45 54 72 

in hidden layer 1 

Elapsed CPU time 1500 2000 2500 3000 3700 4800 
(sec) with 6 CEs 

Recognition(%) on 98.3 98.9 99.5 99.7 99.4 99.7 
Large training set 

Recognition(%) on 94.3 95.3 95.8 96.0 95.9 95.9 

small test set 
n -- ~. 

＾^ gn p
 

rate. This result is consistent with what we found in Section 7 (for TDNNs, 
the decay on units proposed by Rumelhart reduces the number of active units 
without improving the generalization capacity). This may be explained by the 
fact that each weight contains much more information in the small network, 
and we see in figure 9 that the Root Mean Square over all the weights in the 
network is much larger for small networks. A consequence of larger weights 
may found when one looks at the activations of the Hidden units in Fig.7a,b: as 
their weighted sums are larger, units in small networks tend to have extremal 
activations of O or 1, as opposed to continuous values for larger networks (for 
instance the modular network in Fig.6). Fine tuning with these "boolean" 
activations is no longer possible. 

- Moreover, it has been widely reported that it takes longer to learn when the 
number of hidden unit is smaller. This is not true for TDNN, and we see in 

35 



Number of 
Physical units 18 27 36 45 54 72 

in hidden layer 1 

Elapsed CPU time 2000 2500 3100 3600 4500 5600 
(sec) with 6 CEs 

Recognition(%) on 98.7 99.5 99.7 99.8 99.7 99.9 
large training set 

Recognition(%) on 94.4 94.9 96.3 95.4 96.2 95.6 
small test set 

『` ~~ ・・ 『• ~ -~ 

g
 

p
 

figure 8 that the evolution of the output error with the number of epochs is 
very similar for most of our architectures. As the CPU time per epoch is much 
shorter when there are less hidden units, learning is faster. 

8.3 A T.D.N.N. modular design 

In the previous architecture, we do not include any knowledge about phonetics. 
An adapted architecture would reduce the complexity of the high dimensional 
weight space and constrain learning for phonetically coherent solutions. As in [ 4], 
the following knowledge is included in the network architecture: the 18 
consonants are sorted into 6 classes: 

(lb!, Id/, lg!), (Ip/, !ti, !kl), (1ml, In/, /NI), (Isl, /sh/, /h/, /z/), (/ch/, /ts/) and (Ir/, /w/, /y/) 

Many experiments on modularity in Neural Networks are proposed in [4], to 
achieve consonant recognition with the large TDNNs. shown in fig.6 and whose 
characteristics are given in table 14. In [ 4], learning was performed in two main 
stages. During the first stage, each subnetwork was trained to recognize one 
consonant class, using all the training data available for this class. Then, the 
subnetworks were joined together and the weights were tuned for discrimination 
between the different consonant classes, using only the small training set 
described in table 10. The final recognition rate is 98.8% on training data and 
95.9% on test data. 

The same architecture has been tried without any staged learning, Le.learning 
the training set from initial random weights is done in one single run. As shown 
in table 15, our algorithm only needs 1 hour to achieve a 96.7 % recognition rate 

36 



Input Layer 1 Layer 2 Output Total 

Units 241 884 216 18 1359 

Physical units 16 68 24 18 126 

Average fanin 

゜
49 19 

Connections 

゜
43316 12099 342 55757 

Physical conns 

゜
3332 1350 48 4730 

Table 14: Network numbers for the modular all-consonant netwo-rk 

on test data. Modular architecture seems to perform better than the non-modular 
architecture whose best performance is 96.3% (Table 13). 

To check the influence of the training set size, the network has also been 
trained with the small set. Performance on test data is 95.3% as opposed to 96.7% 
on the large set. It is interesting to notice that the results obtained with staged 
learning (95.9%) lie between these two values, as both the large and the small 
training sets have been used: the former to train the subnetworks and the latter 
to tune the large all-consonant network. 

Recogition rate 
Recogition rate 

Training set 
on train samples 

on test samples CPU time 
(small set) 

Small 99.4 95.3 1 hour 

Large 99.2 96.7 1 hour 
-~ '~ gn 

37 



0.02 
Error 

0.015 

。.01 

0.005 

。。

I 8 

5
 

10 誌

Learning Epochs 

20 5
 

(
¥
I
 。

I4 ＼
 

／
 ー

し

＼

Figure 8: Error Vs. Learning Epochs for All Consonants TDNNs with 18, 27, 36, 
45, 54 and 72 hidden units. 

2 

Weights R.M.S. 

1 [=j 
＋・

ー

18 

27 

'3{ 

4-5 
5午

92 ／ 

。。 ー

•
5 1 (,t 15 

Learning Epochs 

m2 
-3」 5

 

[
J
J
 

‘,' 
.f
し

I

ょ
J
-

Figure 9 : Rootぶ1eanSquare "¥Veight Vs. Learning Epochs for All Consonants 
TDNNs with 18> 27) 36) 45) 54 and 72 hidden units. 

38 



9. CONCLUSION 

9.1. Contributions 

We have shown in this report that learning speed for the Back-Propagation 
procedure could be reduced to a large extent, thanks to improvements on the 
modelling of the Error surface, learning strategy and control of the weight 
modifications. Even though we have tried this methods mostly on TDNN, we have 
selected algorithm with sufficient robustness to work for a large variety of tasks. 

This increased speed and the use of parallel computers have enabled us to 
obtain systematic results on large tasks and study problems which are not in the 
range of toy problems, such as the classification performance on open data. 

Modular design has been recommended for TDNN s to handle large speech 
tasks. The improvements proposed here allow an increase by a factor of 10 of the 
task size (number of training samples, connections and classes) of the basic 
modules proposed in [ 4]. 

9.2. The quest for generalization 

We have found that an increase in learning speed very often comes with a loss 
in generalization capacity. With most of our algorithms, to tune parameters was 
to trade off speed for better generalization and we have found that generalization 
capacity becomes worse for large average weight values. A more precise 
definition of generalization is needed to control it. 

With discrete tasks such as the 838 encoder-decoder, the problem is to train 
the network with only 7 of the 8 samples, and attain a configuration able to 
classify correctly the last one. This is achieved by using a minimal number(3) of 
hidden units, which guarantees an optimal internal representation. The number 
of hidden units may be automatically optimized through weight decay[18]. 

We have seen that this method does not seem to work well for classification of 
continuous patterns such as speech data in TDNNs. Bad generalization on open 
data is not necessarily due to a bad internal representation. Connection weights 
may still need some fine tuning, to optimize the boundaries between classes in the 
high dimensional input pattern space. From this viewpoint, the increase of 
generalization capacity from LVQ to LVQ2[9, 10], thanks to a fine tuning of the 
class boundaries, is very instructive. Similar methods would be useful for Back-
Propagation. 

These two remarks are consistent with the assumption that the connection 
weights should be small. With the former, many weights have to be equal to zero, 
and with the latter, weights have to be small to allow a fine tuning in the linear 
part (around 0) of the sigmoid function. 

39 



9.3. Future Prospects 

In this work, some questions have remained partially unanswered. Among 
them how to choose the architecture and the initial conditions, when to stop 
learning and how to find an optimal step size for each unit. To solve these 
problems, we are thinking about two general categories of solutions. 

The first one would insist on the theoretical aspect of learning in Neural 
Networks. Many mathematical models have already been proposed to set the 
parameters, but they are generally based on assumptions about linearity that are 
never verified and owe their success to their empirical performances. However, 
the fact that, in spite of their poor consistency, they sometimes dramatically 
improve performance, give us hopes that they are very rough approximations of 
models that are still to come. 

The second and more pragmatic solution is to consider learning as a process too 
complex to formalize in great detail_s. However, very general rules about the 
behavior of the network have been observed. The idea would be to integrate them 
in an Expert System. The latter would be able to restart the system if it finds 
something has gone wrong, to stop learning when some significative signs appear 
(for instance, the error reaches a plateau or overshoots), to give a complete 
diagnostic of what has happened during a learning run, or to modify the 
architecture of the network, even while learning. 

，

＼

 
＇＇ヽ 

／
 

,． 

40 



APPENDIX A: Scaling the step size 

Gradient descent methods theoretically requires an infinitely small step size, 
which is not realistic. Most methods which have been proposed to find an optimal 
step size generally deal with line search or Newton algorithms[13]. 

I) Line search. 

Global line search requires a very time consuming heuristic, as several step 
sizes have to be tried for each iteration. However, this method may lead to 
subsantial gains in learning time by reducing the number of epochs[?]. 

2) Error zero-points Search 

Many Error zero-points search algorithms have been proposed recently, 
yielding faster learning speed while reducing the number of parameters to tune, 
for one does not have to choose a step size or a momentum. 

2.1) Global Error zero-points Search. 

This finds the zero points of the Error considered as a linear function of the 
weights. Schmidhuber[19] found a substantial gain in speed for the N etTalk 
learning task. This method needs some alterations to work on TDNN s. 

2.2) Zero point search local to units. 

The problem becomes linear and a value for epsilon can be derived which 
minimizes a local energy. The computation is complicated and the result is far 
from the optimal step size we practically find, all the more soif we introduce a 
momentum. ぶforeover,using such a method, we have found that each unit tends 
to try to learn the solution at any price and forgets that the network is able to 
generate an alternative representation if the first one seems impossible to learn. 

2.3) Zero point search local to connections. 

The Quickprop procedure proposed by Fahlman[12] is local to each connection. 
With control parameters to avaoid divergence, it reportedly improves learning 
speed with the encoder problem by one order of magnitude, compared with 
standard Backprop. However this algorithm seems to require the computation of 
dEd/w over one epoch, as it uses in a critical way the difference between two 
consecutive values of dEd/w. This does not seem suited to our tasks where two 
consecutive dEd/w is represent very diffrent data and therefore be meaningless. 

41 



1 
step size (log) 

u,―
 ．

 

）＇ .l 

0 

•. 
-(I r::; 

ヽ• 令・-

-1 

-1.5 

.-.. 
ー と

ヽ
f. 

』
．ヽ

~
 

ヽ
＼
 

}
・ヽ

ヽ
ヽ

)
．
 

、‘ヽ
ヽ｀
 
｀`
 ヽ

ヽ‘ヽ
 

＼
 

f
 

•
一

―-｝
 f

-

l
 

――
 

1)1 
0. 5・・・,, .. , .... ,、 1 1.5 

sign1直~slope (log) .,,_ ____ _ 

ウ」

Figure 10: Optimal Step Size Vs. Sigmoid Slope (XOR task) 

5
 step size 

4
 

で
1

c.”J 

ー

ロ.. . • 〇.... , ,, 
'.  ,, r 

.. 
0 ロ

＼
 

•BB ロ
o
a
a

a-

00 
2
 

＊
 

.n〉 0.4 0,6 0.8 ー

momemtum 

Figure 11: Optimal Step Size Vs. J¥fomentum (838 task) 

42 



3) Some observations 

However, some observations may be very useful: 

-If we call the momentum a, we should haver, = est (1 -a). This relation only 
works well when a> 0.9 (Fig 11). However, r, is always a decreasing function of a. 

-For a given problem, ifM is the number of samples, then 8=cst/M. This relation 
verifies very well on Fig 12. This is useful to find the step size for large training 
sets: we determine the optimal step size for a smaller set and then resize it to 
learn the larger set. 

-r, depends on the sigmoid function according to the relation: 

K 
e= 

(f)2 (f')2 
max max 

We call the sigmoid slopes such that f(x) = s /(1 + e-x), we must then have: 

log(r,) = -4log(s) + constant 

This is well illustrated in Fig.10. 

4) Dynamical Scaling of the step size 

It has been shown that the optimal value of the step size may vary widely with 
time) which is self consistent with the large variations of slope and curvature on 
the energy surface. As a gauge of these variations) Franzini[16] has proposed the 
cosine of the angle between the error derivative at epoch t and that at epoch t-1. 

こdO.dl. 

cos (8) = 
iE C i 

v((こdO)(こdO))
iE C iE C 

aE aE 
where dO.=一(t-l) and dl. =ー(t)

i aw. i aw. 
C is the set of connections of the network. The algorithm works in a very 

simple way, adapting the step size to the shape of the energy surface: 

-Plateau: the learning trajectory is straight and cos(8) > 0, we can accelerate the 
learning rate. 

43 



step size 
::: 

(1 /x) 

，
 

―
―
-i
 

4
 

c.L 

. . . . . . ロ・ロ

．
 

．
 

．．． ．．． ．．． ．．．． 
．．．． 
．．．．． 

••••• 
•••• •••• ••••.• 

．．． ．．．． 

o
 
.

.

.

.

 

．．．．．．． 
．．．．． ••• 

•••• 
e
 .
.
.
.
.
 

．．．． .. 。・．．．． 
●

a
 .
.
 ．．．．． ．．．．．． 

••••••• 
... 8
 

.... i
 

●● 
,, 「
,
,
「

-

●――――――――― 

nつニ――――
一●―――――ロ

Uー

．
 ．
 

k.n) ゜ 200 ,:J()() 600 t:00 

samples /’¥ 

Figure 12: Optimal Step Size vs. Number of Training Samples (BDG task) 

1000 

Converging iteraRons 
I 
I_ 

800 

E,00 

400 

200 

,
_
1
 

ー

ー

1

,
'
,
ー

ー

|
 

ー

ー

1

1

1ー

,＇i, /’
 

',． 

/
 

／
 

9
 

.

.
 

／
 

／
 

＇ 
'
/
 

/
 

•• r
 

.. 

.

/

 
/
 

一--
― :＿

 

一一
i
 

～
 

i
 

一
）
 

l
 

＼
 

． ／ 

ny 。 。+1 0.2 

updating factor 

3
 

ー
・
・‘,'▲ 

・
ー
~ バ

r中nぃ・

9ヽ

Figure 13: Number of converging Epochs vs. Step Size updating factor (838 task) 



-Ravine: learning may give way to unwanted oscillations, in the worst case, we 
may miss the minimum we are looking for. Therefore, when cos(8) < 0, we have to 
slow down the learning rate. 

Following these ideas, we have tried several epsilon updating rules and kept to 
the simplest: 

r, (t) = eu.cos(8) e(t-1). 

The choice of u is a trade-off between fast adaptation and few oscillations: 

u = 0.1 seems optimal, as shown in Fig.13. 

I¥foreover, it is useful to set extrema for e. When learning with a momentum, 
we may set dOi =-△ Wi and 8 = Angle(△ w(t-1),-VE(t)) . Epsilon adaptation may 
be slower, but many oscillations are prevented. 

We have seen before that the optimal step size generally depends on a given unit. 
If we take C = Cu the set of input connections to unit u, the algorithm becomes 
local to this unit, updating the local step size eu. In our task where units may have 
very different roles, we have found a large increase in learning speed using this 
method. e may vary by a factor of 100 from one unit to another, depending mostly 
on the layer. This is probably due to the fact that learning dynamics vary widely 
from one layer to another. 

44 



Acknowledgements 

This work constitutes the internship report of one of the authors, Patrick 
Haffner, who would like to express his gratitude to all the people in the ATR 
Interpreting Telephony Research Laboratories who have helped him during this 
internship. 

I would like to thank Dr. Akira Kurematsu, president of the ATR Interpreting 
Telephony Research Laboratories , for his enthusiastic support for research on 
Neural Networks. 

I am also very grateful to Dr. Kiyohiro Shikano, Head of the Speech Processing 
Department, who gave me friendly scientific advice and opportunities to meet 
members of the Japanese scientific community. This internship would have been 
impossible without the dynamism of Dr. Hisao Kuwahara, Supervisor of the 
Speech Processing Department, who has done a lot for international scientific 
cooperation. 

It has been for me a wonderful experience to work with Dr. Alex Waibel, who 
made scientific endeavor always fun, and with Dr. Hidefumi Sawai, who fed my 
TDNN simulation program with difficult but stimulating speech problems. The 
very dynamic "Neural N etwort team" of ATR has many other members I wish to 
thank for their constant help and kindness. 

I am also indebted to many in the Speech Processing Departement at ATR, for 
their help in the various stages of this research. 

Special thanks to Erik McDermott, for checking this report. Moreover, this 
work owes a lot to a friendly scientific competition with him and to many fruitful 
d' 1scuss10ns. 

＼
 

I
¥
 

／
 

45 



(, 

0 

し）

References 

[1] D.E. Rumelhart and J.L. McClelland. Parallel distributed Processing; Explorations in the 

Microstructures of Cognition. Volume I and II, MIT press, Cambridge, MA, 1986. 

[2] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. Lang. Phoneme Recognition Using 

Time-Delay Neural Networks. Technical Report TR-1-0006, ATR Interpreting Telephony 

Research Laboratories, October 1987. 

[3) A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. Lang. Phoneme Recognition Using 

Time-Delay Neural Networks. IEEE transactions on Acoustics, Speech and signal processing, 

1988. 

[4] A. Waibel, H. Sawai, K. Shikano. Modularity and Scaling in Large Phonemic Neural 

Networks.Technical Report TRふ 0034,ATR Interpreting Telephony Research Laboratories, 

August 1988. 

[5] H.Sawai, A.Waibel, K.Shikano. Spotting Japanese CV-Syllables by Time-Delay Neural 

Networks. Proc. fromICASSP 89, Glasgow, May 1989 (to be published) 

[6] P.Haffner, A.Waibel and K.Shikano. Fast Back-Propagation Methods for Neural Networks in 

Speech. In Proc. from the Fall Meeting of the Acoustical Society of Japan, October 1988. 

[7] N.Nakamura, K.Shikano. A study of Eng・lish Word Category Prediction Based on Neural 

Networks.Technical Report TR-1-0052, ATR Interpreting Telephony Research Laboratories, 

November 1988.Also in Proceedings of the Second Joint Meeting of ASA and ASJ, Hawaii, 

November 1988. 

[8] Y. Sagisaka, K.Takeda, S.Katagiri, H.Kuwabara. Japanese Speech Database with Fine 

Acoustic-Phonetic Transcriptions. Technical Report TR-1-0006, ATR Interpreting Telephony 

Research Laboratories, May 1987. 

(9] E. McDermott, S. Katagiri. Shift-Tolerant, Multi-phoneme Recognition Using Learning Vector 

Quantization. In Technical Report SP-88-80 of the Institute of Electronics, Information and 

Communications Engineers, Tohyo, October 1988. Also in Proceedings of the Second Joint Meeting 

of ASA andASJ, Hawaii, November 1988. 

46 



[10] T.Kohonen, G.Barna, R.Chrisley. Statistical Pattern Recognition in Neural Networks: 

Benchmarking Studies. IEEE, Proc o(ICNN, VolI,pp 61-68, July 1988. 

[11] W.H Huang, RP.Lippmann. Neural Net and Traditional Classifiers. In Proc of the Conference 

onNeurallnformationProcessing Systems, Denver, Colorado. 

[12] S.E. Fahlman. An Empirical Study of Learning Speed in Back-Propagation Networks. 

Technical report CMU-CS-88-162, Carnegie Mellon University, June 1988. 

[13] R.L. Watrous. Learning Algorithms for Connectionist Networks: Applied Gradient Methods 

for Non-Linear Optimization. In Proceed切gsof the IEEE International Conference on Neural 

Networks, pages 619-627. San Diego, CA, 1987. 

[14] J.P. Cater. Successfully Using Peak Learning Rates of 10 (and greater) in Back-Propagation 

Networks with the Heuristic Learning Algorithm. In Proceedings of the IEEE International 

Conference on Neural Networks, pages 645-651. San Diego, CA, 1987. 

[15] W.S. Stometta and B.A. Huberman. An Improved Three-Layer Back-Propagation Algorithm. 

In Proceedings of the IEEE International Conference on New;al Networks, pages 637-644. San 

Diego, CA, 1987. 

[16] M.A. Franzini. Speech recognition with Back Propagation. In Proceedings, Ninth Annual 

Conference of IEEE Engineering in Medecine and Biology Society. 1987. 

[17] C. Kamm, T. Landauer, S. Singhal. Training an adaptative Network to Spot Demisyllables in 

Continuous Speech. In proceedings of the ATR Workshop on Neural Networhs and PDP, July 1988, 

Osaka. 

[18] D.E.Rumelhart, Learning and Generalization: The Role of Minimal Networks. In proceed切gs

oftheATR Workshop on Neural Networks and PDP, July 1988, Osaka. 

[19] J. Schmidhuber: Accelerated Learning in Back-Propagation Nets. Technical Note, Institut fur 

Informatih Technische Universitat Munchen, May 1988. 

[20] J. Pabon, D.Gossard: A Methodology to select appropriate Learning Rate Parameters in Feed-

Forward Networks. In Proc. of the 3rd Annual Aerospace Applications of Artificial Intelligence 

Conference, Dayton, Ohio, October 1987. 

[21] L.Y.Bottou. Reconnaissance de la Parole par Reseaux multi-couches. In Neuro-Nimes, Nimes, 

France, November 1988. 

47 




