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Abstract

The electronically steerable parasitic array radiator (ESPAR) antenna is
a low complexity adaptive antenna, which accomplishes the beamforming in
the analog domain. The sequential SAGE algorithm aims at the maximum-
likelihood estimate for the unknown parameter set, though convergence is
not guaranteed. In this paper we investigate a direction-of-arrival (DoA)
and delay estimation technique for an ESPAR antenna, employing the space-
alternating generalized expectation-maximization (SAGE) algorithm. The
results from computer simulations reveal that the DoAs of two sinusoidal
signals can be resolved with a high accuracy, whereas the DoAs and delays
of a large number of signals can be found if the signal waveforms exhibit
pseudo-noise sequence characteristics.

Key words: ESPAR antenna, DoA and delay estimation, SAGE algorithm,
maximum likelihood estimation.
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Glossary and Notations

CDMA: €Code Division Multiple Access

DoA: Direction of Arrival

EM: Expectation Maximization

ESPAR: Electronically Steerable Parasitic Array Radiator

ESPRIT: Estimation of Signal Parameters via Rotational Invariance Techniques
IEEE: Institute of Electrical and Electronics Engineers

IEICE: Institute of Electronics, Information and Communication Engineers
ML: Maximum Likelthood

MUSIC: MUltiple SIgnal Classification

PN-sequences: Pseudo Noise sequences

SAGE: Space-Alternating Generalized Expectation-maximization

SNR: Signal to Noise Ratio

WGN: White Gaussian Noise

To characterize all the mathematical variable in this report, we used
some notations, as shown below,

- A scalar or complex value is noted: z

A vector is noted: x

A matrix is noted: X

- And a constant is noted: D
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Introduction

Due to evolution of the communication system and all the new ser-
vices, it will be necessary to find other technical solutions to give to
the clients a good quality of service. But updating the present network
architecture is more and more complex. In the last few years a new net-
work concept, called Wireless Ad-hoc Community Network (WACNet),
was introduce by the Advanced Telecommunications Research (ATR)
institute. The WACNet concept aims to form an ad-hoc community
which are formed with an unspecified number of terminals temporally
connected with a common purpose.

New concept imply new technics therefore a specific antenna is pro-
posed, Electronically Steerable Parasitic Array Radiator (ESPAR) an-
tenna. An ESPAR anenna is a reactively controlled directive array that
enables full azimuth directivity. The main difference with a conven-
tional antenna is the number of output port, as the ESPAR antenna
is a single output port. This antenna has low cost, low power con-
sumption and high power level. The department 3 of the Adaptative
Communication Research (ACR) labs of ATR is in charge of studying
and improving this antenna by applying different type of adaptative
algorithm.

The determination of the parameters of multiple wave-fronts imping-
ing on an array antenna is a significant issue in digital array processing.
In this report, the purpose is to applied Space-Alternating Generalized
Expectation-maximization (SAGE) algorithm for the ESPAR antenna.
This algorithm aims to find the parameters of multiple signals arriving
on the ESPAR antenna. The results from computer simulations reveal
that the parameters signals can be resolved with a high accuracy.

After presenting ATR and ACR labs, the ESPAR antenna will be
introduced. Next, the purpose and background of the project will be
presented. Then, we study the efficiency of the SAGE algorithm with
the Cramer-Rao bound.






Chapter 1

ATR - Advance

Telecommunication Research

1.1 Introduction to ATR

ATR is an independent corporation which conducts Research and
Development (R&D), both basic and advanced, in the field of telecom-
munications. Research is commissioned by public and private sectors,
or carried out with funds obtained through open competition. We are
also actively engaged in applying our research results to industrial and
commercial use.

In the information society of the 21 century, great volumes of di-
verse information will be disseminated through various media. This
vast, varied information exchange will require advanced systems for
accurate and eflicient processing of information. Such systems must be
easy to handle or operate . They must also be freely accessible and
readily integrated into our day-to-day lives. These are vital aspects of
this important research:
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- New multi-media communication systems

|

Cross-language global communication systems

Ideal human-machine interfaces

1

Developing fundamental technologies for highly adaptive commu-
nication systems

The ATR Group was established in March 1986 with support
from various sections of industry, academia and government to serve as
a major center of basic and creative telecommunications R&D. Its basic
policy is to promote research collaboration among researchers both at
home and abroad. The ATR Group comprises nine corporations: R&D
corporations, four corporations designed to manage research fruits, and
an umbrella corporation, ATR International. While the former four are
now conducting research, the latter four have completed their R&D
programs and are now managing the fruits of their research to promote
their propagation and wider application. The four R&D corporations’
activities are funded by the Japan Key Technology Center (70%) and
136 private companies (30%).

CAPITAL: ATR International : 22.0325 billion YEN (Invested by
136 Companies)

1.2 ACR Laboratories

1.2.1 Research domains

Focusing on wireless technologies, we are conducting research on fun-
damental technologies for user-friendly communications systems where
users need not concern themselves with the complexities of how net-
works work. Currently, we are emphasizing key technologies for wire-
less ad hoc networks, consisting of mobile nodes which do not need the
assistance of centralized infrastrucutre such as base stations.

18
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1.2.2 ACR Department 3

Research is being carried out on smart antennas, promising key
components for future wireless ad-hoc networks. The department 3
is developing an ESPAR (Electronically steerable parasitic array ra-
diator) antenna as the smart antenna. Since the ESPAR antenna
steers autonomously its antenna beam toward the arrival direction ra-
dio waves and steers the nulls of the beam toward the undesired interfer-
ing waves, power-savings and frequency reusability in ad-hoc networks
can be greatly improved. Moreover, lots of experiments are made in
the compact radio anechoic box. Conventionally, a large and expensive
room-size radio anechoic chamber has been required for the measure-
ment evaluation and calibration of antennas because electromagnetic
fields have to be measured at a distance from an antenna. Utilizing
advanced microwave photonics-based sensors, we are aiming at devel-
oping a compact radio anechoic box that can pick up electromagnetic
fields in close proximity to an antenna without external disturbance.
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1.2.3 Main purpose project
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Chapter 2

Introduction to the ESPAR
Antenna

In this section, we briefly describe the basic configuration and give
the formulation of the ESPAR antenna.

2.1 Configuration of the ESPAR Antenna

X,

Adjustahle reactors

G0 S

Figure 2.1: Diagram of an adaptive ESPAR antenna.

An M-element ESPAR antenna has one active and M —1 passive
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antenna elements. Typically, M =7 and the six passive elements sur-
round the active element with a radius of a quarter of the wavelength.
It is a A/4-monopole where A denote the wavelength and is excited
from the bottom in a coaxial fashion. The pattern of this antenna is
controlled by adjusting the values #,, (m = 1,..., M — 1) of the reac-
tances connected to the parasitic radiators as shown in Fig. 2.1. In
practical applications, the reactance z,, may be constrained in certain

ranges, e.g., from —3008} to 30042.

2.2 ESPAR antenna Formulation

Consider the M +1-element ESPAR antenna [1] as shown in Fig. 2.2.
The m-th element is placed at an angle ¢,, = Z(m — 1), (m =
1,2,--- , M) relative to an arbitrary axis. When an incoming wavefront
is impinging on the antenna from a Direction-of-Arrival (DoA) of ¢
relative to the same reference axis, there is a spatial delay of Rcos(# —
¢m) between the signals received at the pair of the m-th element and
the 0-th element. Where R is the radius of the antenna. This spatial
delay can be expressed as an electrical angular difference defined by
32 Rcos( — ¢,,). Then the steering vector of the ESPAR antenna on

the DoA of § is, when radius is B = %, defined by
a(@) = (a1(0)7 ) a,m(0)7 ) CLI\’I(G))TJ
with 7
am(f) = exp <—j‘27r’—xm—1 cos (ang(Zm) — 9)) )

where the complex-valued Z,, defining the position of the m-th passive
element on the antenna plane and A the wavelength of the radio fre-
quency (RF) signals.The subscript T is the transpose operation.

Suppose there are D arriving signals uy(t) with the DoAs 84 (d=1,2,...

Let s,,(¢) denote the composite signal impinging at the m-th antenna
element and let s(t) be the vector signal

s(t) = (s1(t), .., sa(t)).
Then, s(t) may be expressed as

D

s(t) = > a(fa)u(t),

d=1

where a(f,) is the steering vector depending on the structure of the
ESPAR antenna.
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Figure 2.2: Geometry of an ESPAR antenna.

Then, the signal at the ESPAR antenna output port can be written
as [1, 2, 3]
y(t) = iTs(t) + o(2),
where v(t) is an additive white Gaussian noise {(WGN) signal, and i is
the RF current vector. We defined also, the RF voltage vector

v=V,| . | =Xj, (2.1)

0
where the matrix X = diag(50, jz1, j2s,...72nm) Is a diagonal matrix
called the reactance matrix and the vector i = (44(t), ..., ia:(t))T. Ad-

ditionally, V; is the internal RF source voltage of the active radiator.
And the relationship between the RF voltage and RF current vector is

i=Yv, (2.2)

where Y is the (M + 1) X (M + 1) admittance matrix, with

Yoo T Yonr

L Ymo T YMM |
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and yy represents the mutual admittance between the elements k& and
[ for (k,I) € [0, M]*. Substituting equation (2.1) into equation (2.2)
yields

i=V,0+YX) Y, (2.3)

where I is the identity matrix of order (M x 1) and y, the first column
of Y. PFurthermore, by the reciprocity theorem, it holds, similary to
conventional array antennas, that

\V/(}C,l) € [O, 17‘/[]27 Yrl = Ylk- ) (24)

In addition, the cyclic symmetry of the elements of the ESPAR antenna
implies

Y11 = Y22 = Y33 = Yaa = Ys5 = Yee
Yo1 = Yo2 = Yo3z = Yoa = Yos = Yoe
Y12 = Y23 = Y34 = Yas = Yse = Ye1
Y13 = Y24 = Y35 = Yag = Y51 = Ye2
Y14 = Y25 = Y36 (2.5)

Finally, equation (2.4) and equation (2.5) imply that the admittance
matrix Y is determined by only 6 components of the mutual admit-
tances Yoo, Y10, Y11, Y21, Y31 and ya;. The values of these 6 components
depend on the physical structure of the antenna, e.g., the radius, the
space intervals and the lengths of the elements, and therefore are con-
stant.

Summarizing the above explanation, we write the admittance ma-
trix Y as
[ Yoo Y10 Y10 |
Yo Yir Y21 Ys1 Y41 Yst Y:n

yao - - e T Y
Y = Doyn e e T T ym
Yau - - T T ym
Ya1 Yn

L Y10 Yot Y31 Yar Y31 Y21 Y11 |

Similarly, the y, vector can be rewritten as ¥4 = (Yoo, Y10, Y10, - - - , Y10~ -
The 1 current vector can also be formulated as

i= ‘/;(Z + X)—luo,
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where up is the (M + 1) x 1 vector (1,0,...,0)T. The matrix Z
components are constants and determined by the mutual admittances
between the elements. We may express the ESPAR output y(t) also as

D

y(t) = > iTa(fs)agza(t — 70) + v(2),

d=1

here, z4(t) denotes the original d-th signal and ay, 4, 74 are its complex-
valued amplitude, impact angle, and delay, respectively. The signals
z1(t),...,zp(t) are assumed periodical, i.e., z4(t) = z4(t+7Ts) Vt€ R
with Ts being a constant, and originating from either a common source
or from different transmitters. The DoA and delay estimation is ac-
complished on the basis of the ESPAR antenna output for N different
antenna patterns. That is, we choose N different reactance settings,
i.e., N different current vectors iy, ...,1iy, to obtain an /N-dimensional
vector signal.

It should be emphasized that the signal vector s(¢) impinging on the
elements of the ESPAR antenna is not measurable. This differs from
the conventional adaptive array antennas where the received signal
vector on the elements is observed. For the ESPAR antenna, only
the single-port output y(t) can be measured. More unfortunately, the
single-port output y(¢) is a highly nonlinear function of x, and includes
an intractable matrix inverse, which makes it difficult to produce an
analytical expression of adaptive performance. It is clear from Eq. (2.3)
that each component of i is not independent but mutually coupled with
each other. The discussion above implies that a direct application of
most of the algorithms of the conventional adaptive array to the ESPAR
antenna is impractical.

Since the ESPAR antenna has much higher gain than omni-
directional antennas, the RF power necessary to transmit in wireless
systems can be effectively reduced. Moreover, the ESPAR antenna
consumes much lower power as well as, and can be fabricated much
more cheaply.






Chapter 3

Likelihood Function

In this chapter, we will explain the purpose of the likelihood function
for the SAGE algorithm.

The maximum likelihood [4, 5, 6] method is based on the idea that
different populations generate different samples and that any given
sample is more likely to have come from some populations than from
others. To determine the estimation of the parameters signals, it would
be necessary to determine a formula for the likelihood function and then
maximize that function. Because likelihood is proportional to proba-
bility, we need to know the entire joint probability density function
measurement in order to determine a formula for the likelihood func-
tion.

Let us consider a vector of unknown parameters © that describes a
collection of NV independent identically distributed z(k) (k = 1,2, ..., N)
and the vector z=(2(1), 2(2), ..., 2(V))T. The likelihood of @, given
the observations z, is defined to be proportional to the value of the
probability density function of the observations given the parameters,
we have

[(©]z) o< p(2]0) o p(2(1)|0)p(2(2)|O)...p(2(N)]O),

because z(7) are independent and identically distributed. Where [ is the
likelihood and p is the conditional joint probability density function.
We could also write the likelihood with the natural logarithm when
p(2|0©) is an exponential function, in this case, we have

L(©]z) =1nl(0|2z)

The important of maximum likelihood (ML) estimation is that it
produces estimates that have very desirable properties. The ML esti-
mates are consistent, asymptotically Gaussian and asymptotically effi-
clent.






Chapter 4

SAGE Algorithm

4.1 Introduction to the SAGE Algorithm

Maximum likelihood (ML) estimation is the preferred signal param-
eter estimation technique. But a direct maximization of the likelihood
function is often intractable due to its complexity. The expectation
maximization (EM) method can facilitate maximizing likelihood func-
tions that arise in statistical estimation problems. The EM algorithm
iteratively alternates between an E-step, caleulating the conditional
expectation of the complete-data log-likelihood, and an M-step, simul-
taneously maximizing the expectation with respect to all the unknown
parameters. But the EM algorithm has two drawbacks, i.e, the slow
convergence due to the simultaneous updating of all parameters, and
the high complexity to maximize the likelihood function. Therefore, the
space-alternating generalized expectation-maximization (SAGE) algo-
rithm [7] was introduced. Unlike subspace-based techniques like MU-
SIC and ESPRIT [8], the SAGE algorithm adopts a ML approach,

l.e., it aims at maximizing some likelihood function.

4.2 Maximum Likelihood DoA and Delay Estima-
tion

The SAGE algorithm uses a ML approach to estimate the parame-
ters of the arriving signals. This set of parameters is denoted as

O = (0-'17 017 T1y.0 @Dy aDa TD)-
The associated log-likelihood function is given by [5]
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A®;y(2) = Z‘ZR{<Jn ,Zl a(fz)oqzq(t — /d)>}

n=1 d=1

N || D 2
=3I Dira0y)ess(t — )|

n=1 || d=1 2

where (-, -} denotes the scalar product in the L*-space, || f(¢ )”2 =(f, )3,
and R{-} is the real part operator. The ML estimate is given as

O, = arg mgxz\(@; y(t)). (4.1)

4.3 The SAGE Algorithm

The SAGE algorithm evades the drawbacks of the EM algorithm,
e., the low convergence rate and the high complexity to maximize
the likelihood function with respect to the set of parameters [9]. The
main purpose of the SAGE algorithm is to generalize the idea of data
augmentation to simplify the computations of the EM algorithm.

To solve the equation (4.1), the SAGE algorithm breaks up the
parameter estimation problem into several smaller problems by condi-
tioning sequentially on a subset of the parameters and then using the
EM to simplify the computation of each reduced problem. By introduc-
ing these parameter subsets, each of which constitutes a hidden-data
space, we replace the maximization of the log-likelihood function for
all the parameters by the maximization of a number of log-likelihood
functions with reduced numbers of parameters.

4.3.1 Continues time

In every iteration, the SAGE updates a subvector (ay,0,,7,) in © for
a signal z,(t). After u-th iteration, we compute

(dg”l),é;““),%g(““)) = arg max [
{crg.8g,7g)

A((&g“),0%“),/‘1(“),...,ag, 04, 7g, -, &g), “) 7 “)) v(t))|.
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Omitting the terms which are independent of (¢, 8, 7,) we find

(&§u+l)’ Hlut1) ,:g(u+1)) —

arg max [ZZR{ Yn(t )a'gxg(t—%»}

ag 04,7q)
N D R ‘
-> 2R < > ira(0)aP za(t — 27), 1T a(0,)apm, (¢ )>
n=1 j;—; .
-3 et 42)
n=1
By introducing
D A
yo(t) = ya(t) = Y ixa(8)alea(t — 20, (4.3)
d=1
d¥g

where a(”) 9( #) CS “) are the estimated oy, 04, 74 after the p-th iteration,
we can transform the equation (4.2) into

(d,g#-%-l)’ é§ﬂ+1? ) I;g(u+1)> —

N
arg( max [Z 2R {(yn(t), ina(l) gz, (t — Tg)>}

ag,99,7g) el

al 2
—Z]EM@%%@—mm} )

n=1

The equation (4.3) is referred to as the expectation (E) step and
the equation (4.4) is the maximization (M) step. The flowchart of the
SAGE algorithm is shown in Fig. 4.1. Note that K iteration cycles are
employed to further improve the estimates.

4.3.2 Discrete time

As Matlab use only vector representation, we write the equations
of the SAGE algorithm in the discrete time. As well as, we can apply
directly the mathematical equations to the Matlab script.
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Figure 4.1: Flowchart of the SAGE algorithm for D arriving signals and K
number of iteration cycles.
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The ESPAR output is defined by:

[ yl,l oo yl,N i
Y = - Yk )
| YK,1 YK.N ]
with
D
Yk = Z C(n,0y)aX(d, (14 + k) modulo K) + vy,
d=1

where K is the number of sample of the antenna output, Y a K x N
matrix, C is the equivalent steering D x [N matrix of the receiving signal
in respect of the patterns of the antenna. The D x K matrix X denote
the PN-sequence for all the signals. The script X(d, (14+%) modulo K)
denote a scalar from the PN-sequence of the d-th signal with a delay
of 74. In the same way C(n,#8;) is the equivalent steering scalar for
the angle 8; and the n-th pattern. And we expressed the discrete log-
likelihood function:
2

K N D
A=— Z Z Ykn — Z C(n,84)csX(d, (4 + k) modulo K)| .
k=1 n=1 d=1

Like in the continues time, we introduce the hidden-data space to
simplify the computation of the log-likelihood function. Then, we note
the log-likelihood function as follow,

K N
A=-— Z Z ]y}’” — C(n,8,)c,X(g, (74 + k) modulo K)l2 . (4.5)

k=1 n=1
where
D
y,’w = Y — Z C(n, 03)caX(d, (14 + k) modulo K),
d=1
d#g

and the subscript , denotes the g-th signal which we want estimate its
parameters. For a sake of simplicity, we derive the Eq. (4.5) in respect
of the parameter «, and we find an analytic expression for &,:

N K
1
6, = 3 G, 0,) S X, (7 + ) modulo K),
! Zivzl |C(n799)l2 nzﬂ g—;



The subscript * is the complex conjugate. But the problem is that
we cant do same operation to find the DoA and the delay due to the
high complexity of the log-likelihood function. Therefore, we estimate
the delay and DoA by recursive try as shown in the flowchart Fig. 4.1.
This mean that we search in the range of the delay and the angle
the maximum of the log-likelihood function. So we could deduce the
estimate value of the delay and angle.
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Chapter 5

Computer Simulations

5.1 Improvement

The main problem of the SAGE algorithm is the time of computing
due to the number of loop and the large size of the vectors. Therefore,
we find a time improvement for the simulation. By analysis, the curves
of the log-likelihood function, it’s clear that when one estimate param-
eter is a good one, the numerical values of the log-likelihood function
are much bigger than all parameters are wrong, as shown in the figure

below.

% 10 0
T ¥ T T T T -1

Delay = 85 o Estimate parameters:
-»> delay : 86,

-2.8246x10*

-2.17x10"

~2.20

-2

Figure 5.1: On the left, log-likelihood function where the delay are wrong
and on the right, the delay is the good one. The value of the right parameters
are : delay=86 and angle=127.

For a sake of simplicity, we represent the log-likelihood function
by a I{x 360 matrix, where K is size of the PN-sequence and 360 denote
the angles. Then the improvement consist to compare the actual value
of the first column of the log-likelihood matrix, i.e., the angle equal
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to one and for a certain delay, to the previous calculations always in
the first column of the matrix. If the the value of the log-likelihood
function for the angle one, is much higher than the others, we calculate
the log-likelihood function for all the angle but if it is smaller, we stop
the computing and we pass to the next delay. So, the time of computing
is divide by three.

5.2 Sinusoidal Signals

At first, we employ the SAGE algorithm to estimate the DoAs and
amplitudes of a number of simultaneously arriving sinusoidal signals
on the basis of the ESPAR antenna output. The first simulation is
conducted in order to determine the performance of the SAGE algo-
rithm in a very simple case. We consider a scenario with one ESPAR
antenna receiving only two signals with different DoAs (see Fig. 5.2).
The polar plot provides the amplitude of every signal as the distance
from the origin besides of the angle 8;. For this simulation, the number

180 ' ‘ : : 0

Figure 5.2: DoA and amplitude estimation for 2 sinuscid signals.
(+ : estimates, o : true values)

of patterns is N=7 and the number of the iteration cycles is K=10. The
patterns of the ESPAR antenna determined by iy,...,iy are randomly
generated for the simulation. The true values in this simulation are
given by Tab. 5.1.

36



Table 5.1: Amplitudes and DoAs.

Amplitude Angle
Signal | True value | Estimation | True value | Estimation
1 4-2i 4-2 20 20
2 -1451 -0.9+5i 93 94

As we can see, the estimates found by the SAGE algorithm are
close to the true parameters. In the next simulation, we investigate
the behavior of the algorithm for three arriving signals in the same
conditions as the previous simulation, i.e., N =7 and K = 10.

Figure 5.3: DoA and amplitude estimation for 3 sinusoid signals.
(4 : estimates, o : true values)

Table 5.2: Amplitudes and DoAs.

Amplitude Angle
Signal | True value | Estimation | True value | Estimation
1 4-21 44-1.71 20 27
2 -2+-5i -243.61 93 82
3 3+4i -3.245.11 150 137

Obviously, in Fig. 5.3, the performance of the SAGE algorithm is
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poor for the case of 3 impinging signals. This is due to the high corre-
lation between the arriving signals.

5.3 CDMA Signals

In code division multiple access (CDMA) systems, the information
is modulated onto pseudo-noise {PN) sequences, which are known by
the receiver. We consider such a scenario, letting the PN-sequences
be randomly generated. For the sake of simplicity, the size of the PN-
sequences is fixed to 100. We make the assumption that the receiver
knows the PN-sequences. Now, the original d-th signal z4(t) reads

4o p—1

zq(t) = Z Z ql(d)r(t —T. — kpT,),
k=—o00 I=0
with p=100 defining the length of the PN-sequence. The vector
(qéd),...,qéj)_l)) is the PN-sequence of the d-th signal where ql(d) €

[~1,1]. Furthermore, the chip pulse of every signal z4(t) is defined

r(t):{ 1, t€[0,Ty)

0, otherwise ’

where T, is the chip length. Here, we choose K=5. We also use only
seven patterns, i.e., N=7. For one and two arriving signals, the SAGE
algorithm again turns out to provide good results. In the next simu-
lation, we make the assumption that the number of arriving signals is
equal to four. As we can see, in the Fig. 5.4 and Tab. 5.3, the estimated
values are very close to the true values.

In the next simulation, we investigate the behavior of the algorithm
when the number of arriving signals is high, i.e., sixteen arriving signals.
The results of the simulations are presented in Fig. 5.5 and Tab. 5.4.
The last simulation shows us that the algorithm works very well with
a large number of signals. In fact, with PN-sequences, the algorithm
can distinguish the signals much easier than with sinusoidal signals.

For all simulations, the polar plot provides the delay 74 € [0,Ts) of
every signal as the distance from the origin besides of the angle 8.

We can see in Tab. 5.4 that all the parameter estimates are close
to the true values. We conclude that the SAGE algorithm applied for
the ESPAR antenna works even on a large number of arriving signals.
However, the convergence of the SAGLE algorithm is not guaranteed, as
can be seen in Tab. 5.4 for the DoA of the first signal. But this does
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180

270

Figure 5.4: DoA and delay estimation for 4 CDMA signals.
(+ : estimates, o : true values)

Table 5.3: Values of the amplitudes, angles and delays.

Amplitude Angle Delay
Signal | T.V. E. TV.| E.|T.V.| E
1 3-21 128231 10 7 15 {15
~T+1i | -7.3+1i | 100 | 103 | 37 | 37

-2461 | -246.21 | 132 | 130 58 | 58
-2-51 | 2451 | 274 | 270 98 98

W= | o

not affect the estimation of the others parameters.

In the next simulation, we investigate the influence of the noise
on the SAGE algorithm. Therefore, we choose for a signal to noise
ratio (SNR) of 25, 8 and 0 dB. In this simulation, we only focus on
the estimated value of the DoA. The SNR is defined as the ratio of the
energy of the antenna output signal over the variance of the noise.

Tab. 5.5 shows the results for these different SNRs. Obviously,
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270

Figure 5.5: DoA and delay estimation for 16 CDMA signals.
(+ : estimates, o : true values)

Table 5.4: Values of the amplitudes, angles and delays.

Amplitude Angle Delay
Signal | T.V. E. TV.| E. | T.V.| E

1 3-21 3.2-1.81 10 15 15 15
STH1 | -T41.21 100 | 100 | 69 |69
-2461 | -2.145.81 ] 132 | 132 | 84 | 84
-2-bi -1.7-51 274 | 276 | 98 | 98
10-11 | 9.8-1.51 | 301 | 300} 15 |15

16 64101 | 649.81 123 | 123 11 11

when the SNR increases, the precision of the estimation values becomes
better.

In the next simulation, the arriving signals are very close to each
others. The polar plot in Fig. 5.6 shows the results of the simulation.
As we can see in the Fig. 5.6, the SAGE algorithm finds the delay
accurately, whereas the DoA estimates exhibit some deviations.
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Table 5.5: DoA and delay estimation for different SNR.

Estimated DoA.
DoA | SNR=25 dB | SNR=8 dB | SNR=0 dB
1] 114 114 110 126
21 25 25 27 31
3| 315 316 313 307
4| 246 245 244 249
30

120 /9/

20

10

Figure 5.6: DoA and delay estimation of nearby arriving signals.
(+ : estimates, o : true values)

To more precisely assess the DoA and delay estimation errors
for different PN-sequence lengths and different SNRs we define the
estimation error as

1 D
E=5;l5d—§d|a

where s, is true value of the DoA or the delay for the d-th signal and
34 is the estimation of the parameter. In this simulation, the number
of arriving signals is D = 6. The range of the SNR is from 3 dB to 57
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dB and the length of the PN-sequence is between 16 and 100.

3
10

10

E-angle
{degree]

1
10

10

PN-length
size

40 50

SNR {dB]

Figure 5.7: DoA estimation errors.

Obviously in I'ig. 5.7 and in Fig. 5.8, the error £ grows as both the
SNR and the PN-sequence length decreases. The worst case is to have
a low SNR and a short PN-sequence.

5.4 Conclusion

We have proposed in this chapter the SAGE algorithm for the ES-
PAR antenna. The simulations show that our proposed algorithm can
be used with an ESPAR antenna to estimate the DoAs and delay of
impinging signals.

We have shown in the first simulation that the estimation of

sinusoid signals is difficult due to the high correlation between the
arriving signals. For one or two arriving signals SAGE algorithm can
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Figure 5.8: Delay estimation errors.

estimate the parameters with a good accuracy. But the resolution of
the algorithm is poor.

By introducing the PN-sequences we can access to better results
especially for a large number of signals. A simulation with twenty ar-
riving signals and reasonable SNR, show us that the SAGE algorithm
give a very high accuracy estimation of the signals parameters. There-
fore, precision and resolution are good. The precision of the SAGE
algorithm is about one degree and the resolution is less than three de-
grees. However, we have noted that the delay estimation give better
results than DoA estimation. Furthermore, the convergence of the log-
likelihood function is not guaranteed for each arriving signal but this
does not affect the estimation of the others parameters signals.

Obviously, the estimation results become better as the SNR in-
creases but it depends also of the length of the PN-sequence. This
mean if the PN-sequence is too short even for a high SNR the estima-
tion of the parameters is not good. In the case of six arriving signals,
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a reasonable SNR and a twenty PN-sequence length, we obtain a good
estimation of the parameters.
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Conclusion

In this paper, we have applied the SAGE algorithm to estimate
the DoAs, amplitudes and delays of multiple arriving signals on an
ESPAR antenna. Computer simulations have shown that this set-up
enables an accurate estimation of the DoAs and amplitudes of two
arriving sinusoidal signals. Furthermore, in the case of PN-sequences
of e.g. length one hundred and negligible noise, twenty signals can
- be reliably resolved, including their time delays. The precision of the
estimates becomes better as the SNR increases. Due to the use of an
ESPAR antenna, the proposed technique is for instance a cost-efficient
alternative for locating mobile terminals in cellular systems.
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Annexe 1 : MatLab source
codes

File name: patterns.m,

8,3k s 36 K 3 e o 36 3 o o s ol oo 3 o o s s o ok e o sk sk 3K 8 ok sk sk sk ok ok s ok ok sk sk kol ok ofe s o o s ok e s ok ek s ok ok

h* *
%* Main goal: *
h* *
YA Create randomly some weight vector in respect of the *
A architecture of the antenna. *

*

Yk
83k ok o 3 3 3 6 3 e e e 3 e sk s o sk sk 3k o o s Kk ok o e s s o 33K ok ok stk sk K ke o sk sk sl o ofe s o o s ok sk s ok e s ok o

function [W] = patterns(nrPatterns)

% T-element ESPAR antenna configuration

ESPARx0 = 50; ESPARy00 = 0.0008616-1i*0.0120795; ESPARy10 =

-0.0006963+i*0.0036462; ESPARy11 = 0.0044216-1%0.0071600;

ESPARy21 = 0.0009721+i%0.0047851; ESPARy31 =

—0.0005376-1*0.0011297; ESPARy41 = 0.0001701-1%0.0002950; ESPARY

= [ESPARy0O ESPARy10 ESPARy10 ESPARy10 ESPARy10 ESPARy10 ESPARy10;
ESPARy10 ESPARyil1 ESPARy21 ESPARy31 ESPARy41 ESPARy31 ESPARy21;
ESPARy10 ESPARy21 ESPARy11 ESPARy21 ESPARy31 ESPARy41 ESPARy31;
ESPARy10 ESPARy31 ESPARy21 ESPARy11 ESPARy21 ESPARy31 ESPARy41;
ESPARy10 ESPARy41 ESPARy31 ESPARy21 ESPARy11 ESPARy21 ESPARy31;
ESPARy10 ESPARy31 ESPARy41 ESPARy31 ESPARy21 ESPARy11 ESPARy21; ...
ESPARy10 ESPARy21 ESPARy31 ESPARy41 ESPARy31 ESPARy21 ESPARy11];

ESPARZ inv(ESPARY); ESPARminx = ~-300; ESPARmaxx = 300;

I

ESPARX = (ESPARmaxx-ESPARminx)*rand(nrPatterns, size(ESPARZ,
1)~1)+ESPARminx;

W = zeros(size(ESPARX, 2)+1, nrPatterns); for ii = 1 : nrPatterns
aw = inv(ESPARZ+diag([ESPARXO i*ESPARX(ii, :)]1))*...
[1; zeros(size(ESPARX, 2), 1)];
W(:, ii) = aw/sqrt(aw’*aw);
end
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Annexe 2 : MatLab source

codes

File name: gen u theta.m,

8 4 ek e e s ok ko e oo o ok sk o ok K e 3 o o o K 36 3 ok oo 3 R o o o e s o ok ok ok e ke sk ok ook ok sk sk ok ok ok ok o e s ke ok ok

YA

%* Main goal: .

yAs

YA Computation of the output vector in respect to the angle.
YA

* K O X X

s s e e o ok ok ok ok ek ok ok sk kst ks iR o s o R ok sk o s e sk s s s e sk ok s s ok ok ok ok ok e sk e ok ok ke sk ok

function [u_thetal = gen,u_theta(val_anglé,w)
ESPARpos = [0 exp(i*pi*(0:1/3:1.9))/4];

u_theta = exp(-i*2*pi*((ones(size(val_angle,2),
1)*abs(ESPARpos) ) .*cos (ones(size(val_angle,2),
1)*angle(ESPARpos)~-. ..

(val_angle’#pi/180)*ones(1, length(ESPARpos)))))*W;






Annexe 3 : MatLab source
codes

File name: SAGE.m,

8 s e sk s s s o o ok ks sk sk sk ok K Bk stk s ok s sk ks o ok ko otk sk ok Rk Rk ko ko ok ook ok ok

%* Mathieu LENOBLE - ATR - Internship *
YA *
e SAGE Algorithm using "sinusoidal signals® *
Nk *
Yk ENSSAT - 2003 =*

*

8/ sk e sk sk ok s e s ok o o o ks o s okt o ek sk e ok s ke sk sk e ok e sk o o o ok e ek ok ok ok ok o ok ok e skok o o o o ok

%) sk ek ke s ks s ke ok ook ek sk o s o ok o st sok sk ok ok e e sl ok oo o skofe ok sk sk s sk s e s o ke s ko ek s e ok o
A *
#*  Main goal: *
YA *
h* SAGE algorithm adopts a maximum likelihood approach. *
YA It aims at maximizing some likelihood function. *

*

*

%k

8/ 3k ek o ke e o 3 3 3 ok ke o ookl ok ok ko ik e ok o sk ok e i ok ok o o s ke 36 3 ok e ok koo 3 ok ok ok o o okok ok ok ek sk ok ok ok

sk e ok sk ko ok o sk ok K o ook s o sk koo ok ke ke ks ok sk ok s ks ks ke o e ok sk ok sk ek o s ok ok o o ok sk o sk ok ko ok ook o o
% Mathlab variables

clc;
close all;
clear all;

8/ ok s e e sk e ok o o 6 ok ke e s s ek sk sk sk sk s e s ok o o sk Rk o ek ok ok ke sk sk s sk ok ok o o R ok o sk ok ok ek ok

% Program constant :
nrPatterns=T7; % Number of patterns
nr0fSample=50; % Number of samples

¥k ok ok o ok ok ok ok sk ok ook o o okok ok ok ok ok o ok o ok ko o K o ok ok ok ok Sk o ook K ok sk ook sk ok ok o ok ok o ok ok ke s
% Signals parameters )

% Amplitudes and angles of the arriving signals,



parameters=[4-2+%1i,10,-1+5%1,146,3+4%i,75,1~6%1,220,1-3%1,290,-5-2%1,300] ;
parameters2=parameters;
si=size(parameters,2);

9 sk ks e s ok sk ok stk ok sk ke ko ks ke ke s o ekt s ook el ks s ok ke ok ok oo sk ok ko ok sk ok ok o o ok o ok ok
% . Antenna parameters :

W = patterns(nrPatterns); % Weight vector
u_theta ESPAR=gen_u_theta(parameters(2:2:si),W); % Output vector in
% respect to the angle

Yot ok sk e o s s ok sk ook ok ek s ok Aok ok stk ok ok o o ko ko sk ook sk ook sk ek sk ok ok ok ek ok o ok o ke okok
% Noise parameters

SNR = 1; % Signal to noise ratio (not in dB!)

O s s e ke ok ke ook ek oo ek sk ke ok sk ok ok s ok ke ok ke e ok ke ke ok ook ok ok ok o
% Antenna output signal

parameters=parameters?2;

for jj=1:nr0fSample
noise=sqrt(SNR*0.5)*(randn(l,nrPatterns)+i*randn(1l,nrPatterns));
Y(jj,:)=parameters(1:2:si)*u_theta_ ESPAR+noise;

end

Yk ks ko ok ok sk koo ok ok K K K kK R Sk R o Rk ok ok ok
% SAGE algorithm :

% Initialisation,
parameters=zeros(1,si);

for nrLoop=1:10
for p=1:2:si

% E-step :

osignal=0;

for ii=1:2:si
if ii"=p

osignal=osignal+parameters(ii)*gen_u_theta(parameters(ii+1),W);

end

end

% M-step :

for angle=1:360
u_theta=gen_u_theta(angle,¥);
alpha=(sum(Y)~-nr0fSample*osignal)*u_theta’/(nr0fSample*u_theta*u_theta’);
L=0;
for k=1:nr0fSample
L=L-(Y(k,:)~alpha*u_theta~osignal)*(¥(k,:)-alpha*u_theta-osignal)’;
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end

if angle==1
L_max=L;

elseif L_max<L
L_max=L;
parameters (p:p+1)=[alpha,anglel;

end

end
end
end

Yk ko o K KRR R KRR R SR KR R ok KR R R sk o K SRk KRR K R R R Rk kR o ok ok
yA Display of the estimation and the right parameters

% Good parameters in red cross,
polar(parameters2(2:2:5i)*pi/180,abs(parameters2(i:2:51)), ’r+’)
hold on '

% Estimation parameters in blue,
polar(parameters(2:2:5i)*pi/180,abs(parameters(1:2:51)),’+"’)






Annexe 4 : MatLab source
codes

File name: SAGE cplx.m,

8/ sk s o ke s e o ok R R o o Rk ek e ok ek sk et ek s sk s sk sk st sk ok skok ok ok o ok ok o ko ok ok

%* Mathieu LENOBLE - ATR - Intermnship *
% *
Nk SAGE Algorithm using "CDMA signals" *
hE *
* ENSSAT - 2003 *

*

8ttt ok o e ok ok K o ok ok oK o K ok o o ok okl sk ook sk s ok ok o K ok s sk sk okl s sk s o s ke oko ook ek ok ok e kokok

8 ok sk o o ok sk o ok o o ok o ok ok ook sk e ok ok sk sk o ok kiR o ok ok R kiR Ak o ok ok ok ok R sokokokok s kok ok o
%k *
%* Main goal: *
%x *
%k SAGE algorithm adopts a maximum likelihood approach. *
yAS It aims at maximizing some likelihood function. *

*

*

YA
(]
S,k e sk ok e ek e sk ok e e sk ke 6 ke sk o skok e ke skoke sk ek o skl sk ok ek ok 6 ok sk s s Sk ok ok K K ok ok skok ok o ok ok

Y sk ks e sk e e sk e ok ok sk e ok ook sk o ok ok sk skt o e ek ok sk ok o ok sk ook o ok ok ok
yA Mathlab variables :

close all;
clear all;
clc;

8t o ke s ok o ok ok ek ko Ak ok o o o ke s ook ks sk ks o o ok ok sk sk sk etk o o ks o skl ok ok 3 ok ko ok ok ook ok

h Program constant
nrPatterns=7; % Number of pattermns
nrSample=100; % Number of samples

YAk ko ok o sk ok ko sk ok o sk ok R ook ook sk o ok ek ok o ok o
A Signals parameters :

% Amplitudes of the arriving signals,
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amplitude2=[3-2*i,-7+1*%1,-246%1 ,-2~54i ,5+9%1i,1-7*i];
nrSignal=size(amplitude2,2);

% Angles randomly generated,
angle2=round (1+(380-1)*rand([1,nrSignall));

% Delays randomly generated,
delay2=round (1+(nrSample-1)*rand([1,nrSignall));

O, e ok e sk sk e ok o o ok e ek o e s o o o o e sk o st e ok stk ek ook ek ek s s ok e ok ke et sk o ko s ok e s ok sk e sk ok kok ok ok

% Antenna parameters :

W=patterns(nrPatterns); % Weight vector

u_theta ESPAR = gen_u_theta(angle2,W); % Output vector in respect to the angle
C=gen_u_theta([1:360],W);

¥=sign(rand(nrSignal,nrSample)-0.5); % PN-sequence

X=cat<2>x.vx) 3

9 s ke ook e oo ke ke e ook s s ko ok sk ok sk ko ook ko o ek ok e ok ko kb
% Noise parameters

SNR = 20; % Signal to noise ratio (not in dB!)

Yk koo AR ook ok ok AR R AR AR o AR ko Ak ok o ok ek o
% Antenna output signal :

noise=sqrt (SNR*0.5)*(randn(nrSample,nrPatterns)+i*randn(nrSample,nrPatterns));
Y=0; for ii=1:nrSignal
Y=Y+transpose(X(ii,delay2(ii):delay2(ii)+nrSample~1))*amplitude2(ii)*...
u_theta_ ESPAR(ii,:);
end Y=Y+noise;

Of ek s sk e ok o ok ok e sk ke o ok ok sk o ki stk Rk sl ok ook o KR e ok o sk o ok ok Rk ok o K s ok ok ok o ok kR
% SAGE algorithm :

% Initialisation,
amplitude=zeros(1,nrSignal);
angle=zeros(1,nrSignal);
delay=ones(1,nrSignal);

for nrlLoop=1:5
for pp=1:nrSignal

% E-step :
Yinter=0;
Cin=gen_u_theta(angle,W);
for ii=1:nrSignal
if ii~=pp
Yinter=Yinter+transpose(X(ii,delay(ii):delay(ii)+...



end

end

nrSample~1))*amplitude(ii)*Cin(ii,:);
end

end
Yis=Y-Yinter;

% M-step :
for phi=il:nrSample
rho=X(pp,phi:phi+nrSample~1)*conj(¥is);
for theta=1:360
% Calculation of the alpha estimate,
alpha(phi,theta)=conj(rho*transpose(C(theta,:)))/(nrSample*. ..
sum{abs(C(theta,:)).*abs(C(theta,:))));
% Calculation of the Log-likelihood function
Linter=Yis-alpha(phi,theta)*transpose(X(pp,phi:phi+...
nrSample~1))*C(theta,:);
L(phi,theta)=—sum(sum(abs(Linter).*abs(Linter)));

% Improvement of the algorithm :
if theta==
if phi==
Lmax1=L(phi,theta);
else
if L(phi,theta)>Lmaxi
Lmax1=L(phi,theta);
else
L(phi,2:360)=—10*9;
break
end
end
end
O ek ok e s o o sk sk s s s ok o ok oo o sk ok o o sk o o s ok
end
end

% Find the angle and delay optimum,
[phi_opt,theta_optl=find(L==max(max(L)));

% Update of the parameters,

amplitude (pp)=alpha(phi_opt,theta_opt);
angle(pp)=theta_opt;

delay(pp)=phi_opt;

% New cycle
clear L Linter Lmaxl;

7,**************************************************************************

h

Display of the estimation and the right parameters



% Good parameters in red cross,
polar(angle2#*pi/180,delay2, ’r+’) hold on
% Estimation parameters in blue,
polar(angle*pi/180,delay,’+’)
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