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Abstract 

Non-native speakers pronounce words in multiple different ways compared 

to native speakers. To model these deviations statistically, we propose dis-

crete word HMMs as statistical lexicon. The initialization of the HMMS bases 

on a standard pronunciation dictionary. One HMM is generated per word 

in the dictionary, with one state per phoneme in the baseline pronunciation. 

Non-native training data is segmented into word chunks, on which phoneme 

recognition is performed. The probability distributions of the HMMs are 

trained on the phoneme sequences. 

To apply the models, both an n-best word level recognition and a utterance-

level phoneme recognition of the test data are required. A pronunciation 

score is calculated by performing a Viterbi alignment with the HMM dic-

tionary as model and the phoneme sequence as input data. This score is a 

measure how well the phonemes match with the pronunciation of the word 

sequence. The hypothesis with the highest score is selected as recognition 

result. Experiments performed on the ATR SLT non-native English database 

resulted in a word error rate improvement from 45.88% to 42.14%. 

非母国語話者の発音には母国語話者に比べて種々の差異が見られる．本稿

では，この差をモデル化するための手法として， HMMを用いた発音辞書を提

案する．各単語に対する HMMは，まず通常辞書における音素列の各音素を各

状態とする形で生成される．続いて，実際の非母国語話者の発声データを用い，

それに含まれる単語の音素認識結果を用いて出力確率と遷移確率が学習される．

このモデルの使用にあたっては，通常の単語認識結果の N-bestと音素認識

結果が必要となる．各 N-best単語系列に対し、 HMMを用いた発音辞書を使

い、音素認識結果の音素系列のビタビ・アライメントを得る。その時のスコア

を対応する単語系列の発音スコアとする。最終的に， N-bestの中で最も高い

スコアを示すものが，認識結果として選ばれる．当研究所の非母国語英語デー

タベースで行った実験で単語誤り率が45.88%から 42.12%に下がった。
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Chapter 1 

Introduction 

There are several reports in literature about pronunciation modeling in gen-

eral [SC99] and for the special case of non-native speakers [vCOl]. Many 

approaches follow the similar basic scheme of comparing manually or auto-

matically generated phoneme transcriptions to some baseline transcription. 

Variation information can be extracted from the differences. Typically it is 

represented in the form of rules, which can be weighted based on occurence 

frequency, likelihood, confusability or other measures (e.g. [GMN02]). These 

rules are applied to a baseline lexicon in order to generate some adapted lex-

icon or to optimize an acoustic model [TomOO]. Unfortunately this approach 

usually achieves only limited improvement [BGN02]. 

Other researches are based on the knowledge-based approach of inserting 

additional phonemes to the dictionary and acoustic model [UB99]. This mul-

tilingual approach assumes that non-native speakers use phonemes from their 

own language that are similar to the foreign language. Those phonemes can 

be included as pronunciation variants in the dictionary, resulting in some 

improvement in recognition accuracy. But rule-based approaches are less 

flexible than data-driven approaches and as more non-native databases be-

come available (e.g. [MTY+04, CGN04]), automatic modeling of non-native 

pronunciation is the more promising approach. 

In this research, we suggest a new data-driven approach to deal with 

pronunciation variations. It is based on word-level pronunciation HMMs. 

The concept of generating HMMs to model pronunciation has been an-

alyzed earlier for automatically generated acoustic subword units. This 

method has been applied to an isolated word task with one Norwegian 
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speaker [Pal90] to generate pronunciation dictionaries and for a database 

of 150 Korean speakers [Y099]. 

In this research, we focus on continuous speech recognition of non-native 

speakers. With their high pronunciation variability, they are a very promis-

ing target for such a statistical approach. The approach is phoneme-based, 

making the model capable of handling words that are in the dictionary but 

unseen in the training data, as baseline pronunciations can be retained. The 

pronunciation HMMs are applied by calculating a pronunciation score for 

each hypothesis of an n-best recognition with the Viterbi alignment algo-

rithm. 

Similar to the standard approach of extracting pronunciation confusion 

rules, we generate a phonetic transcription with a phoneme recognizer. These 

phoneme string sequences are used as training data for discrete word HMMs; 

one HMM for each word. There is no attempt to explicitly represent the 

phoneme variations. Even phoneme substituions unseen in the training data 

are allowed, as a certain floor probability exists for all possible phoneme 

sequences for each word. Insertions and deletions are also modeled implic-

itly. The HMM training process takes care of all variation-and likelihood 

issues, unlike in other approaches. E.g. rule firing frequencies, thresholds to 

determine whether a rule is applicable or not, do not have to be calculated. 
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Chapter 2 

Word HMMs 

2.1 
． 

Generation 

As illustrated in Figure 2.1, two levels of HMM-based recognition are involved 

in this approach: 

• Acoustic level: phoneme recognition to generate the phoneme sequence 
ふfromthe acoustic features O; 

• Phoneme label level: For training, the phoneme sequences S; are con-
sidered as input. For all words, a discrete word HMM is trained on all 

instances of that word in the training data. The models are applied for 

rescoring, generating a pronunciation score given the observed phoneme 

sequence Si and the word sequence. 

The first step requires a standard HMM acoustic model, and preferably 

some phoneme bigram language model as phonotactic constraint. The con-

tinuous training speech data is segmented to word chunks based on time 

information generated by Viterbi alignment. Acoustic feature vectors are 

decoded to an 1-best sequence of phonemes. 

For each word in the vocabulary, one discrete untied HMM is generated. 

Figure 2.2 shows as an example the HMM for the word "and". 

The models are initialized on the phoneme sequence in some baseline 

pronunciation lexicon. The number of states for a word model is set to be 

the number of phonemes in the baseline pronunciation, plus enter and exit 

states. Each state has a discrete probability distribution of all phonemes. 
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Figure 2.1: Two layers of processing are required to generate pronunciation 

models: an acoustic level for phoneme recognition and the phoneme label level 

for word model training. 

The phoneme sequence(s) in the baseline dictionary are given a high probabil-

ity and all other phonemes some low but non-zero value. Forward transition 

between all states is allowed, with initial transition probabilities favouring a 

path that hits each state once. 

2. 2 Training 

The probability distribution as well as the transition probabilities are rees-

timatecl on the phoneme sequences of the training data. For each word, all 

instances in the training data are collected and analyzed. The number of 

states of each word model remains static. Phoneme deletions are covered 

by state skip transitions, phoneme insertions are modeled by state self-loop 

transitions. 

Data sparseness is a common problem for automatically trained pronun-

ciation modeling algorithms. In this approach, pronunciations for words 

that do appear sufficiently frequent in the training data, the pronunciations 
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are generated in a data-driven manner. For rare words, the algorithm falls 

back on baseline phoneme sequences from a given lexicon. This combination 

should make it more robust than for example an application of phoneme 

confusion rules on a lexicon (as e.g. in [ G MN02]) could be. 

2.3 Application 

As Figure 2.3 shows, the pronunciation word models are applied by rescor-

ing an n-best recognition result. On a non-native test utterance, both a 

1-best phoneme recognition and a n-best (word-level) recognition step are 

performed. 

In standard Viterbi alignment, a speech signal is aligned to a reference 

text transcription using an acoustic model, with an acoustic score as a by-

product. In this approach, the time-aligned lattice is of no interest, although 

usually it is the main target of Viterbi alignment. Figure 2.4 gives a graphical 

explanation. 

With the pronunciation HMMs as "acoustic model" and each n-best hy-

pothesis as reference, a Viterbi alignment results in an "acoustic score", which 

is in fact the pronunciation score. Together with the language model score 

of that n-best hypothesis, a total score is calculated. 
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Figure 2.2: An example discrete word HMM for the word "and7¥ initialized 

with two pronunciation variations for the first phoneme. 
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Figure 2.3: Rescoring an n-best recognition result with word pronunciation 

models. 
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Chapter 3 

Experiments 

3.1 Non-native database 

The non-native database was collected at ATR and consists of 90 speakers of 
English. The first languages of the speakers are Chinese (mostly Mandarin) 

(CN), French (FR), German (GER), Indonesian (IN) and Japanese (JP). 
About 14 minutes of read speech are available per speaker. The sentences 

include six hotel reservation dialogs, TIMIT phonetically balanced sentences 

and credit-card style digit sequences. The text is uniform for all speakers. 
Two of the hotel reservation dialogs were chosen as a test set of about three 

minutes, the rest of about eleven minutes as training data. The number of 

speakers is shown in Table 3 .1. 

Table 3.1: Number of speakers per nation. 

CH FR GER IN JP 

# speakers I 17 15 15 15 28 

Some experiments focus on a development set, which is a subset consisting 

of 11 Japanese speakers. 
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3.2 Word HMM  initialization 

The discrete probability distribution for each state is initialized depending 

on the "correct" phoneme sequence(s) as given in the lexicon. The correct 

phoneme has a probability of 0.99. If more than one pronunciation variant is 

included in the lexicon, the variations all have the same probability, totalling 

0.99. All other phonemes are assigned some non-zero probability. 

The transition probabilities depend on the number of succeeding phonemes 

in the baseline lexicon. The probability to skip k phonemes is initialized to 

0.05k. Insertions are allowed with a chance of 0.05. The transition to the 

next state therefore has a probability of slightly below 0.9. 

3.3 Phoneme recognition 

As a data-driven approach, the pronunciation modeling method proposed 

here includes a phoneme recognition step. For native speakers, context-

dependent acoustic models achieve higher accuracy than monophone models. 

To examine the impact of context for non-native speakers, phoneme recog-

nition was performed on full utterances with a monophone, right-context 

biphone and triphone model. All models are trained on more than 60 hours 
of native English speech data from the LDC Wall Street Journal (WSJ) read 

newspaper speech corpus [P J92]. The phoneme set consists of 43 phonemes 

plus silence. The three acoustic models have the following properties: 

• the monophone HMM model has 132 states and 16 mixtures, 

• the biphone model 3000 states and 10 mixtures, 

• the triphone model 9600 states and 12 mixtures. 

The word error rates of these models for the (native English) Hub2 5k task are 

19.2%, 15.2% and 6.4%, respectively. The features are 12 MFCC coefficients, 

energy and the first and second level derivatives. 

Table 3.2 shows the phoneme accuracy for monophone, biphone and tri-

phone models on the non-native data. A phoneme bigram model trained on 

the result of a forced alignment of native speech (WSJ) provided some phono-

tactic constraint. The references for evaluation are generated automatically 

from a baseline lexicon. If a correct phoneme transcription was available, 
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higher numbers could be expected. The monophone model performs best 

for all speaker groups. Obviously, the phonetic context for native English 

speakers is considerably different to non-native speakers. 

Table 3.2: Phoneme accuracy in %1 compared to a canonic transcription. 

monophone 

biphone 

triphone 

CH FR GER IN JP 

39.2145.4148.85 43.3137.74 

29.54 37.87 41.15 33.84 29.24 

30.07 41.57 45.45 27.08 29.46 

For the rescoring step, the phoneme sequence of the whole utterance 

is recognized. For the training of the word models, the non-native training 

data set is segmented into single words based on time information aquired by 

Viterbi alignment. On these word chunks, phoneme recognition is performed. 

The HTK toolkit [WY93] is used for all training and decoding steps. 

3.4 N-best word recognition 

The HMM pronunciation models are applied in the form of rescoring the 

n-best decoding result. The n-best recognition uses the monophone acoustic 

model introduced in Section 3.3 and a bigram language model. Two types 

of dictionaries have been the base of both pronunciaiton HMM creation and 

n-best recognition, a LVCSR dictionary with 8875 entries for 7311 words is 

used in the main experiment. Some experiments that focus on a development 

set consisting of a group of Japanese speakers of English were conducted with 

a task-specialized hotel reservation topic dictionary of 6650 entries for 2712 

words. 

We chose to examine 10-best recognition in this research. 

3.5 Rescoring 

On each utterance in the test data, both a 1-best phoneme recognition and 

a standard n-best recognition (on word level) is performed. For each of 
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the n-best word sequences, we apply a forced alignment using the discrete 

pronunciation models, the phoneme sequence as input features and the word 

sequence as labels. The resulting score is the pronunciation score. 

sequences 

Figure 3.1: The rescoring process. 

phoneme seguence ----- -------------------------
＇ 

best 
hypothesis 

'ae n 1 eh n w ih ch ih 1 eh kt ix st ey , 
＇ 

r - - - I 

＇ 

.,＇ 0 ~an~y~wh~er~e ~ y年心ou ~ ~ d 000 l心i~ke~ 防 C>OO ~~~ ＇ 

＇ ＇ ＇ 
to stay 9→ , -82.5 • 

＇ and when would you like to stay 9→ '-69. 0' 
＇ 

， 
＇ 

and what I would you like to stay 』→ '-75.0' 
------------------------- - - -- -- p ro. n-un-c. 1a-t1o、n n-best 

score 

Figure 3.2: For each n-best hypothesis of an utterance (bottom three lines)1 a 

pronunciation score is calulated relative to the phoneme sequence (top line). 
The correct result is aand when would you like to stay". 

Figure 3.2 shows an example of calculating the pronunciation score for 

three recognition hypotheses of the utterance "and when would you like to 

stay". On the phoneme sequence in the top line, an alignment is performed 

with each hypothesis as transcription. The score is highest for the correct 

word sequence. Because of mispronunciation and phoneme recognition errors, 
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the phoneme sequence is only similar to the baseline pronunciations of the 

words. 

This pronunciation score is combined with the weighted language model 

score for this hypothesis. The hypothesis achieving the highest total score 

among the n-best is selected as correct. 

Table 3.3: Word error rates in % for non-native speech recognition without 
and with pronunciation rescoring. 

CH FR GER IN JP avg 

baseline 151.23 37.93 31.77 40.48 56.92 45.88 
rescoring 45.12 34.80 29.88 38.3152.3642.14 

Table 3.3 shows the word error rates for recognition of non-native speech 

of the five speaker groups. The larger LVCSR dictionary was used in this 

experiment. For all speaker groups, the recognition performance could be im-
proved by rescoring then-best. Averaging over all language groups while con-

sidering the number of speakers in each group, the word error rate dropped 

from 45.88% to 42.14%. Both the highest absolute gain (6.11 %) as well as 

the best relative improvement (11.93%) was archieved for the Chinese speak-

ers. As the size of the database is somewhat limited, it is possible that the 

Chinese speakers in this database incidentally have the most similar speaking 

style and English skill, therefore the modeling is most effective for them. An 

evaluation of their English skill can help analyzing this effect. 

Figure 3.3 shows detailed results obtained on the development set with 

the smaller dictionary for various language model score weights. The baseline 

performance of 32.54% word error rate can be improved to 29.04%. The 

correct choice of the language model score weight is very important, in this 

experiment a factor of 5 was the optimum. 

The pronunciation HMMs are initialized from the baseline pronunciation 

dictionary, then several reestimation iterations modify the probabilities. The 

effect of this training can be seen in Figure 3.4. Most improvement can be 

gained with the initial models already, from 32.54% to 29.88% WER. The first 

training iteration reduces the WER to 29.11 %, further iterations bring only 

minor improvement. Limited coverage of the test data due to small training 

data may be the reason why the effect of increased training is limited. 
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Figure 3.3: Word error rate for rescoring of n-best based on prounciation 

score combined with weighted language model scores. 

3.6 Acoustic score 

In the previous experiment, the pronunciation score was combined with a 

weighted language model score. Rescoring only on the basis of the pronunci-

ation score did improve the word error rate. But the pronunciation informa-

tion alone did not perform as well as when language model information was 

added. 

Another possibility is to take the acoustic score into account as well. 

The acoustic score for each of the hypothesises is calculated at the n-best 

recognition step and therefore do not cause any additional computation cost. 

The acoustic score can be weighted relative to the pronunciation (and lan-

guage model) scores. But it turnes out that considering the acoustic score for 

rescoring does not archieve any improvement. The results of an experiment 

conducted on the smaller set of Japanese speakers is shown in Figure 3.5. 

The baseline system considers only pronunciation and language model score, 

the language model weight is set to 5. Independent from the acoustic score 

weight, the baseline system always performs better. 
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Figure 3.4: Word error rate for rescoring of n-best based on prounciation 
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Figure 3.5: Considering the acoustic score additionally to pronunciation and 
language model score does not lead to WER reduction. 
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Chapter 4 

Conclusion 

Word error rate could be improved in average from 45.88% to 42.14% with 

pronunciation rescoring, showing the effectiveness of the approach for non-

native speech. The full strength of the approach may not be achieved in 

this evaluation because the non-native training data covers only a limited 

share of the total vocabulary. Many word models just default to the standard 

pronunciations. This will always be a problem in a large vocabulary scenario. 

It could be countered by extending the training data to other non-native 

databases, e.g. [MTY+04]. Alternatively, modeling pronunciation on other 

levels than words may be a solution, but as the English language has a high 

number of syllables, the coverage problem might worsen in case syllable-

level pronunciation is modeled. Considering the acoustic score together with 

pronunciation and language model score did not improve the performance of 

res coring. 

Possible future work could include taking the speakers English skill into 

account by providing skill-dependent pronunciation models. It may also be 

helpful to initialize the transition probabilities in the pronunciation models 

based on an examination of typical insertion and deletion error frequencies. 
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Appendix A 

Software 

A.l 
． 

Overview 

This section gives an overview on the typical procedure for training and appli-

cation of pronunciation HMMs. The steps are explained briefly and include 

command examples. The software consists of the HTK Version 2.2 toolkit 
and several programs that are explained in this appendix. The documen-
tation does not include the steps to train a standard HTK format acoustic 

model and (bigram) language model. 

A.1.1 Training 

Training data segmentation: The training data needs to be segmented 
into word chunks. Phoneme recognition accuracy is higher if performed 

on short segments, and cross-word segments are avoided. The nec-

essary time information is aquired through a Viterbi alignment step 

with HTK HVi te. For the physical split of the wave files, the script 

DB2words..nphone. py is provided. 

Phoneme recognition: After generating file lists for the language/speaker 

group to be analyzed, phoneme recognition is performed with HTK 

HVi te. Typically, a phoneme bigram provides some constraints. 

Feature vector generation: The phoneme recognition result must be con-

verted from the text result format into HTK feature vector format. The 
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script mlf2phnbin. py also generates a file list as side output. Users 

who wish to write their own conversion program are reminded that 

HTK Headers are always in BigEndian byteorder, even if the data is in 

LittleEndian byteorder. 

Pronunciation HMM  initialization: The script Lex2Ini tAM. py reads a 
standard pronunciation dictionary and outputs a file with one discrete 

HMM per word in the dictionary. 

HMM  training: After removing words from the training data, that have 
not been in the lexicon, with mlfCheck. py the training is performed 

with HERest or LSFherest. Repeat this step as needed. 

A.1.2 Application 

The application of word pronunciation models described in this research is 

by rescoring an n-best list. It is based on both HTK 2.2 and HTK 3.X as 
well as some python programmes. The procedure is as follows: 

Phoneme recognition: On the test data, we perform a phoneme recog-

nition with HVi te. Accuracy on word chunks would be higher, but 

as the prerequisite reliable pre-segmentation is not possible, the whole 

utterance is recognized. 

N-best recognition: On the test data, an n-best recognition is performed 
with HVi te. 

Rescoring: All evaluation steps, such as parsing the n-best and phoneme 

recognition files, calculating the scores and creating the target file are 

included in the script nb_alignェescore. py. 

A.1.3 Usage example 

This section gives a step-by-step example on how the experiments described 

in this report were conducted. There are some incompatibilities between 

HTK 2 and HTK 3, the all the training and most of the experiments require 

HTK 2 (and were conducted under HTK 2.2). 

The first step is Viterbi Alignment with HVi te to get the time information 

for the training data to make a segmentation into word chunks possible. The 
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python script DB2words_nphone. py provides the actual_ physical information. 

That script, takes no command line options, the settmgs are in the initial 

segment of the script file. 

cd /data/tetsu4/rgruhn/WSJ/nn/rbiphone_full 

find /DB/MDB/EDB1/SPH/WAV -follow -noleaf I grep 16k I grep 
-v "A_" I grep -v 11B_11 I sort > ! allutt.list 

HVite -A -T 1 -1 "*" -a -C ./config.align.bigram -S allutt.list 

-I allutt.mlf -H /data/tetsu6/xtcinca/adapted_mono/basemodels/h 

mm.mono.mix16 -b ¥!ENTER -i allutt.align.mlf -m -y lab /data/te 

tsu4/rgruhn/WSJ/LM/ITLdemo/hrt.1000.lex.open99.v3.mod /data/tet 

su6/xtcinca/adapted_mono/basemodels/monophones 

python /data/tetsu4/rgruhn/WSJ/tools/DB2words_nphone.py 

Then, word file lists are created with find, separated by languages (in 

this example: only German natives): 

cd scp/phoneme_train 

touch GER.scp 

foreach i (M001 M006 M007 MOOS M010 M021 M034 M036 M051 M052 MO 

54 M056 M071 M076 M078 M079 M092) 

find /data/tetsu6/rgruhn/nn/all_monophone/wrd_wav I grep $i I gr 
ep 16k I grep -v TAS22001 I grep -v TAS32002≫GER.scp 
end 

These file lists are used for the phoneme recognition. In the phoneme 

recognition, a phoneme bigram and a dummy dictionary (basically a list 

with the same phoneme in two rows) are applied. 

cd /data/tetsu4/rgruhn/WSJ/nn/rbiphone_full/phonerec 

HVite -H /data/tetsu6/xtcinca/adapted_mono/basemodels/hmm.mono.mi 

x16 -S .. /scp/phoneme_train/GER -1'*'-i GER.s12.mono.mlf -s 12 

-w /data/tetsu4/rgruhn/WSJ/LM/bigram_monophone.net -p 0.0 -C .. /c 

onfig.phonerec.bigram /data/tetsu4/rgruhn/WSJ/LM/mono_nosp_EE.dic 

t /data/tetsu4/rgruhn/WSJ/LM/mono_nosp 
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Transfer word-segment phoneme recognition results into discrete feature 

vectors. The program mlf2phnbin. py takes the language as argument, the 

other settings are in the initial segment of the script. 

python /data/tetsu4/rgruhn/WSJ/tools/mlf2phnbin.py GER 

We create an initial word pronunciation HMM from the a standard pro-

nunciation dictionary. 

python /data/tetsu4/rgruhn/WSJ/tools/Lex2InitAM.py 

To make sure only those words are in the training data that are also in 

the lexicon: 

python /data/tetsu4/rgruhn/WSJ/tools/mlfCheck.py GER 

The actual training (repeat steps with increasing HMM  index as desired): 

mkdir /data/tetsu4/rgruhn/WSJ/nn/hmm/ITLdemo/8k/ 

HERest -C /data/tetsu4/rgruhn/WSJ/HTK/config -S /data/tetsu4/rgruh 

n/WSJ/nn/rbiphone_full/scp/wrdphn_train/8k/${i}_no□OV.list -H /dat 
a/tetsu4/rgruhn/WSJ/nn/hmm/ITLdemo/8k/JP/hmmO/MODELS -M /data/tets 

u4/rgruhn/WSJ/nn/hmm/ITLdemo/8k/${i}/hmm1 -I /data/tetsu4/rgruhn/W 

SJ/nn/rbiphone_full/allwords.mlf -m 2 /data/tetsu4/rgruhn/WSJ/nn/h 

mm/ITLdemo/8k/wordlist.txt 

Now that the models are trained, we move to the application steps. For 

rescoring, typically both pronunciation and language model scores are con-

sidered. As the calculation of language model scores requires a program that 

is only available in HTK 3, the following extra step is necessary. It must be 
noticed that the LPlex tool requires <s> and not !ENTER type keywords 

for sentence start and end. 

cd /data/tetsu4/rgruhn/WSJ/nn/rbiphone_full/ 

/usr/bin/python ./nb_align_rescore.py 0 

/home/pxn014/kmarkov/soft/htk/bin.linux/LPlex -T 11 /data/tetsu4/rg 

ruhn/WSJ/LM/ITLdemo/open99.wbigram.ss alignword.mlf > alignword.lms 
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After that, the main experiment can be run automatically for various 

language model scale settings. The script includes all steps until the creation 

of the mlf file with the chosen best hypothesis. 

foreach lms (00 01 02 03 05 07 10 12 15 17 20 22 25 27 30) 

python ./nb_align_rescore.py $lms 

end 
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Appendix B 

Paths 

Some important directories 

/DB/MDB/EDB1 : non-native English database 

/DB/MDB/EDB1/INFO : speaker information, including pronunciation scores 

/DB/MDB/EDB1/SPH : speech and label files 

/data/tetsu4/rgruhn/WSJ/nn : experiments, readme-files, scripts and 

tools 
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