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Abstract. 

The target of this thesis is the automatic assessment of the pronunciation quality of words and 

sentences in a second language as well as the automatic assessment of the pronunciation skill 

of non-native speakers. Possible applications are systems for computer assisted pronunciation 

training (CAPT). 

Non-native English speech from 57 German school children (FAU LME data) and non-native 

English adult speech from 96 speakers of multiple accent groups (ATR SLT data) are available 

for expe1iments. The LME data has annotations on word and speaker level, the SLT data on 

word and utterance level. Since the same material in the SLT data was evaluated by several 

human experts w.r.t. pronunciation quality, an analysis of the reliability of the annotations could 

be carried out. A word mispronunciation model is proposed, which allows the estimation of the 

mispronunciation probabilities of single phonemes from a statistic of mispronounced words. 

Features, which are intended to measure the pronunciation quality of words and sentences 

are defined and examined. These so-called pronunciation features are mainly calculated from the 

forced-alignment and the phoneme or word recognition result obtained with a speech recognizer. 

Additionally, phoneme duration statistics and phoneme confusion matrices are considered. 

The efficiency of single utterance level features is analysed by means of the correlation to a 

human evaluation. The data-driven techniques PCA and LDA are examined for feature space 

transformation. However, for selection of suitable combinations of word and utterance features 

the floating search algorithm was found to be more effective. 

Experiments for the discrimination of correctly pronounced and mispronounced words within 

a sentence are carried out with the Gaussian classifier and decision trees by combining several 

features. For both the SLT and LME data a class-wise average recognition rate of 72% is 

achieved. The accuracy was even 90% for native adult speech. 

For scoring utterances the Gaussian classifier and the linear regression are employed. The 

correlation between human ratings and scores was 0.59 on the utterance level and 0.84 on the 

speaker level for the SLT data. In the case of the LME data, the correlation was 0.69. An 

interesting result for children speech is, that the younger the children speaker, the more probable 

is a low pronunciation quality of utterances. 
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Kurzf assung. 

Diese Arbeit beschaftigt sich mit der automatischen Bewertung der Aussprachequalitat von 

Wortern und Satzen in einer Zweitsprache, sowie der automatischen Einschatzung der 

allgemeinen Aussprachefahigkeit nicht-nativer Sprecher. Mogliche Anwendungen sind Systeme 

for das computergesti.itzte Lernen von Fremdsprachen (CAPT). 

Es stehen die FAU LME Stichprobe mit englischer Sprache von 57 deutschen Schulkindem 

und die ATR SLT Stichprobe mit englischer Sprache von 96 Erwachsenen verschiedener 

Akzentgruppen, u.a. Deutsch, Franzosisch, Japanisch, Chinesisch und Indonesisch zur 

Verfiigung. In der LME Stichprobe gibt es Annotationen auf Wort-und Sprecherebene, in 

der SLT Stichprobe auf Wort-und Satzebene. Die Wortannotationen bestehen in erster Linie 

aus Markierungen von falsch ausgesprochenen Wortern. AuBerungen und Sprecher sind auf 

einer diskreten Skala von 1 bis 5 bzgl. ihrer Aussprachequalitat bewertet. Da gleiches Material 

der SLT Stichprobe von mehreren menschlichen Bewertern annotiert wurde, konnte zusatzlich 

eine Analyse der Zuverlassigkeit der Annotationen durchgefohrt werden. Dabei wird auch ein 

Verfahren vorgeschlagen, mit dem die Wahrscheinlichkeit der Falschaussprache von einzelnen 

Lauten aufgrund der Wortmarkierungen geschatzt werden kann. Es zeigte sich eine hohe 

Korrelation zwischen den geschatzten Wahrscheinlichkeiten und der Erkennungsrate for jeden 

einzelnen Laut, sowie zwischen urspriinglichen und geschatzen Wahrscheinlichkeiten des Grades 

der Falschaussprache von einzelnen Wortern. 

Merkmale, welche die Aussprachequalitat von Wortern und Satzen messen sollen, werden 

definiert und untersucht. Diese sog. Aussprache-Merkmale basieren auf dem Ergebnis der 

Laut-und Worterkennung sowie der erzwungenen Zeitzuordnung einer AuBerung, welche 

mit Hilfe eines Spracherkenners ermittelt werden. Weiterhin werden Dauerstatistiken von 

Lauten und Lautverwechslungsmatrizen for falsch und richtig ausgesprochene Worter zur 

Merkmalberechnung herangezogen. Die Giite einzelner Merkmale wird u.a. mit Hilfe der 

Korrelation zu den menschlichen Bewertungen analysiert. 

In Experimenten werden die Karhunen-Loeve Transformation (KLT) und die Lineare 

Diskriminanzanalyse (LDA) als Merkmalraumtransformationen, sowie die alternierende Suche 

als Merkmalauswahlverfahren verwendet. Letztere erwies sich als besonders geeignet for die 

ldentifikation wichtiger Wort-und Satzmerkmale. 

Zur Unterscheidung richtig und falsch ausgesprochener Worter innerhalb eines Satzes 

werden der Gauss-Klassifikator und Entscheidungsbaume eingesetzt. Fi.ir beide Stichproben 

wird dabei eine klassenweise gemittelte Erkennungsrate von 72% erreicht. Der 

Normalverteilungsklassifikator hatte dabei die beste Generalisierungsfahigkeit. Angesichts der 

Tatsache, dass die menschlichen Bewerter im Durchschnitt nur 58% der falsch ausgesprochenen 

Worter erkannt und etwa 8% der als richtig zu behandelnden Worter als falsch ausgesprochen 

markiert haben, ist dies ein gutes Ergebnis. Zudem wurden 90% der AuBerungen von 

erwachsenen englischen Muttersprachlern als richtig ausgesprochen klassifiziert. 

Zur Bewertung von AuBerungen wird der Gauss-Klassifikator und die Lineare Regression 

eingesetzt. Die Ausgabe der linearen Regressionsfunktion musste dabei zusatzlich transformiert 

werden, um ein akkurates Bewertungsergebnis zu erhalten. Die Korrelation zwischen 

menschlichen und automatischen Bewertungen war 0.59 auf AuBerungsebene und 0.84 auf 
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Sprecherebene for die SLT Stichprobe. Im Fall der LME Stichprobe lag die Korrelation auf 

Sprecherebene bei 0.69. Ein interessantes Ergebnis for native Kindersprache ist, dass je geringer 

das Alter der Kinder, desto wahrscheinlicher ist eine mangelhafte Aussprachequalitat. 
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Chapter 1 

Introduction 

1.1 Motivation 

~nglish is not the native language of most humans in the world, but it is the language which 

is taught at schools for secondary education in almost every country. Speaking English is the 

most common way to communicate with other people when traveling in foreign countries whose 

official language you are not sufficiently fa血 liarwith. 

A non-native English speaker, which is somebody whose first language is not English, will 

pronounce words differently from native speakers. There may be various reasons, e.g. the 

unfamiliarity with the pronunciation of certain words, the incapability in recognizing certain 

speech sounds, the difficulty in articulating certain sounds, or the English education regarding 

pronunciation. 

In the last decades there has been remarkable progress in speech recognition technology. A 

speech recognizer is a device which accepts as input a digitized speech waveform and outputs a 

word sequence. When this word sequence matches the transcript of the original utterance, the 

speech recognizer works fine. Recently, practical applications of speech recognition in automatic 

speech dialog systems such as flight reservation or cinema information services or in robotics for 

natural human-machine communication emerged. 

When building a speech recognizer with a large amount of speech data uttered by speakers of 

a certain native speaker group, e.g. native American English speakers from the U.S., and testing 

its performance with speech data from the same group and the evaluation task is feasible, e.g. for 

read newspaper sentences, high recognition accuracy can be achieved. 

However, when trying to recognize English speech of German, Japanese, Indonesian or 

other non-native speakers, the results can be very poor. For everyone it is very annoying, if 

he cannot use a speech-controlled timetable information service or automatic booking service, 

simply because the system cannot properly recognize ones non-native speech. 

How to deal with this unsatisfying situation? There are two possibilities: Make speech 

recognition or humans'English pronunciation better! To do both is of course the silver bullet. 

The improvement of speech recognition involves approaches like the adaptation of a speech 

recognizer's acoustic model or pronunciation dictionary. However adaptation methods will not 

13 



14 CHAPTER 1. INTRODUCTION 

be considered in this thesis. The main target of this work is to investigate methods for the 

automatic assessment of non-native speech in terms of pronunciation quality. Such methods may 

be employed in software systems to support the learner of a foreign language in acquiring the 

CO汀ectpronunciation of speech sounds. Before more details about contributions of this work 

(cf. Section 1.4) are given, the next two Sections will briefly introduce the technical meaning of 

the word "pronunciation" and the general purpose and architecture of systems for pronunciation 

training. 

1.2 Aspects of Pronunciation 

The meaning of the term "pronunciation" in everyday speech is vague. Here an attempt is made 

to define the technical meaning of the term by three aspects: 

• Segmental: closeness of the pronunciation of single phonemes to native speakers 

• Temporal: speaking rate, duration of phonemes, inter-word pauses 

• Prosodic: sentence intonation, syllable stress 

The segmental aspect may be closest to the meaning in everyday speech. If a non-native 

speaker's pronunciation of a single phoneme is far away from a native speaker's pronunciation 

the phoneme will be considered as "mispronounced". The "distance" necessary to declare a 

phoneme as mispronounced depends on the human listener. Consequently, it is difficult to 

determine objectively a clear boundary between "correctly pronounced" and "mispronounced" 

phonemes. Assuming a method to judge phoneme pronunciation is given, a word will be 

considered as mispronounced, if one or more phonemes are mispronounced, or any phonemes 

are inserted or deleted. 

The temporal aspect of pronunciation can be grasped intuitively. A non-native speaker who 

is able to utter many words and sentences within a certain time, i.e. has a high speaking rate, may 

be regarded as fluent. On the other hand, a speaker's skill is regarded as low, if he makes longer 

pauses before uttering anything, since he needs time to construct a sentence hopefully obeying 

the foreign language's grammar, or he speaks slowly or even stutters, because he is unsure about 

the pronunciation of words or even has difficulty to pronounce certain speech sounds. 

The prosodic aspect, which, strictly speaking, includes the temporal aspects already 

mentioned, comprises the sentence intonation, e.g. rising pitch at the end of inte汀ogative

sentences, and the lexical stress of words, e.g. syllable "pu" in the word "com-pu-ter". 

However for this thesis only the segmental and temporal aspects are examined. No speech 

database with human annotations for the prosodic aspects were available and bad pronunciation 

quality with respect to the two former aspects (segmental and temporal) has presumably more 

detrimental effects to the intelligibility of speech. 
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1.3 CALL and CAPT 

The purp ose of a computer assisted language learmng (CALL) system in general is to make the 

acquisition of a second language (L2) for the learner more effective. The final goal is to built a 

system, which does not rely on the presence of a human teacher. The learning of L2 comprises the 

acquisition of the foreign language's vocabulary, grammar and pronunciation of speech sounds. 

For this thesis only the aspect pronunciation is considered. Systems which serve the purpose 

of pronunciation training are referred to as computer assisted pronunciation training (CAPT) 

systems. 

A lot of research work on the issue of pronunciation training has already been carried out 

and first commercial systems for pronunciation training evolved. The development of a CAPT 

system does not only involve technological but also pedagogical issues. In [NCSB02] Neri et al. 

analyze existing literature in order to identify the pedagogical requirements for a CAPT system. 

A bunch of already available CAPT systems is evaluated for certain criteria. In the following a 

summary is given. 

Pronunciation training consists of the three factors input, output and feedback. 

• Input: e.g. listening to native speech 

• Output: production of L2 speech, e.g. utter a given sentence or speak freely 

• Feedback: assessment of pronunciation, e.g. numerical as a score or graphical 

The input to the learner may for example be native speech: the student listens to speech 

samples of native speakers. Another kind of input may be a description of how to pronounce 

certain speech sounds or a 2D or 3D picture or animation of how to move the articulators to 

achieve the correct pronunciation. 

In order to practice pronunciation the learner produces L2 speech as output. Training may 

consist of exercises where the learner has to read text prompts, listen and repeat drills, or 

interactive dialogs, where the user answers freely to questions or reads one out of a choice of 

given answers. In the study it is emphasized, that pronunciation training should not be limited 

to the reading of single isolated words, since it is unrealistic and may not lead to the necessary 

transfer of skills to actual conversation. Consequently practicing dialogs, which are likely to 

occur in everyday conversation, is recommended. 

Since the learner may not be able to perceive whether his pronunciation of speech sounds is 

CO汀ect,feedback from a teacher, who makes the learner aware of his mistakes, is imperative. The 

meaning of "correct" regarding pronunciation is not straightforward. Its interpretation depends 

whether the target of training should be an accent-free and native-like pronunciation or just 

comprehensibility, i.e. neglecting a non-native accent as long as it does not affect intelligibility. 

The most common type of feedback provided by human teachers is the recast, i.e. repetition 

with change and possibly with emphasis of the learners mistake. This kind of feedback has 

proven to be most effective for the uptake of phonological errors. 

Existing CAPT system provide various kinds of feedback. These include 
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• Waveform, spectrogram, pitch curve, etc. 

• Highlighting of words or phonemes 

• Pronunciation score 

The display of waveform and spectrogram is common but problematic, as usually their 

interpretation is left to the learner. Even if the student can compare his spectrogram of an 

utterance to a reference spectrogram of a native speaker, similarity or difference between these 

does not necessarily allow conclusions about the pronunciation correctness. The display and 

comparison of pitch or intensity (energy), however, is reasonable, since they are not as variable 

as waveforms or spectrograms and easier to interpret. Thus prosodic aspects like word stress 

and sentence intonation can be covered. It remains to address the problem of feedback for the 

segmental aspects of pronunciation. 

Feedback for highlighting words or phonemes, which are classified as mispronounced, as 

well as one or more pronunciation scores for an utterance is implemented in some CAPT systems. 

The highlighting of mispronounced segments is a technological challenge. If there are many 
words, which are in fact correctly pronounced, but are marked as mispronounced and vice versa, 

the usefulness of such a system will be questioned. Reliability is of great importance, so that the 

learner is not confused by erroneous feedback. Cu汀entsystems do not yet meet this requirement 

sufficiently. 

The benefit of pronunciation scores relies on their definition and usage. For example 

to consider only the fluency of a speaker, which can be measured by the speaking rate, is 

problematic, since a speaker can improve his score by just speaking faster. Consequently, a 

different score, which measures overall pronunciation quality, or at least one additional score 

which measures the segmental quality has to be employed. 

In the conclusion recommendations for the building of future CAPT systems are given. A 

CAPT system should address the learners'needs. The aim of pronunciation training should be 

intelligibility rather than accent-free pronunciation. The system should provide L2 input from 

different native speakers and computer animations of, e.g. lip movements. L2 production should 

be practiced in interactive dialogs, but not only by listen and repeat drills. Real-time feedback 

should include the sc01ing of overall comprehensibility and the highlighting of presumably 

incorrectly pronounced areas. Segmental as well as supra-segmental, i.e. prosodic or temporal, 

aspects should be considered in assessing pronunciation performance. The highlighting of areas 

should concentrate on frequent errors, errors which reduce intelligibility, and errors which can 

be detected robustly. 
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1.4 Contribution of this Work 

The following three topics will be covered in this thesis. 

1. Analysis of a human evaluation of non-native speech, which was carried out on the 

sentence and the word level (Chapter 5) 

2. Investigation of methods for the automatic assessment of the pronunciation quality of 

single words and whole sentences. (Chapters 6 ff.) 

3. Find out differences of the characteristics of non-native speech in comparison to native 

speech. 

Issue (1) is a prerequisite for (2), because a human reference is necessary for the validation of 

a system for automatic assessment of pronunciation. The methods in (2) may be used as part of 
a CAPT system. The investigation (2) includes an attempt to develop a method for identification 

of mispronounced words. Issue (3) will be discussed after insight is gained from the results for 

(2). 

A method for automatic assessment of pronunciation should be as universal as possible. 

Therefore, this thesis aims at a scoring system, that is 

● text-independent, i.e. can score any utterance 

• independent from a student's first language (L 1) 

• independent from the target language (L2) 

Of course, a system independent from L2 still requires speech data, models and statistics 

for L2, but the method can work in principle for any target language. Reliability is also an 

important issue. In general the reliability of automatic assessment will increase, as more speech 

data is considered at once at the same time, for example when scoring whole utterances. On the 

other hand for the learner it is very important to localize pronunciation errors, which requires 

to make judgments from little data. Consequently, the trade-off between more reliable, overall 

assessments and less reliable, more specific assessment is critical. 

1.5 Thesis Outline 

Chapter 2 describes the necessary theoretical background for pronunciation scoring and 

evaluation methods employed and developed in this thesis. A survey about literature on human 

evaluation of pronunciation and automatic scoring of pronunciation is given in Chapter 3. 

Chapter 4 provides general information about the speech data used in experiments. English 

speech data was recorded at ATR from 96 non-native speakers of multiple accent groups. 

Furthermore each speaker's data was evaluated by English teachers. The results of that analysis 

are presented in Chapter 5. Features employed for word, utterance and speaker level scoring 
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are defined in Chapter 6. Moreover, a preliminary analysis of the usefulness of utterance level 

features is canied out. Chapter 7 explains the setup of experiments for utterance and speaker 

scoring as well as for the detection of mispronounced words. The results of experiments is 

reported in Chapter 8. Further ideas for future work on pronunciation scoring are described in 

Chapter 9. The thesis closes with a summary in Chapter JO. 

They are several appendices with comprehensive information about the speech data and 

experimental results. Appendix A gives information about the non-native speakers of the ATR 

SLT non-native adult speech database and the FAU LME non-native children speech database. 

Background information about the human evaluation of the ATR SLT data can be found in 

Appendix B. Feature distribution plots are arranged in Appendix C. 



Chapter 2 

Fundamentals 

This chapter describes briefly the fundamentals about speech, speech transcription, speech 

recognition, pattern recognition and statistics. 

2.1 Speech and Transcription 

Speech is the most convenient way for humans to communicate with each other. With the 

emerging of the speech recognition technology, speech is increasingly used for human-machine 

interaction. Every human can produce a huge number of speech sounds with his speech organs. 

The main organs are the vocal tract and the articulators, like the glottis, the lips, the teeth, the 

tongue, the hard and soft palate and the velum. 

Each "configuration" of the speech organs leads to the production of a certain speech sound. 

For example, if the tongue tip is touching the region in front of the upper incisors and the glottis 

is pulsating the sound /1/ is generated. The International Phonetic Association proposed a system 

for classification and transcription of speech sounds. It is intended to be able to transcribe 

the sounds of any existing language in the world. The speech sound categories (phones) are 

determined by place and manner of articulation (cf. [IPA99] for details). 

Each natural language consists only of a subset of the speech sounds a human can produce. 

This subset differs for each language. If concerning only a.certain language, speech sounds are 

categorized into phonemes. For example, there are sounds which can be interchanged without 

changing the meaning of a word. If, however, the meaning changes, the sound belongs to two 

different phonemes. 

Several systems to transcribe speech by means of phones or phonemes exist. The most 

universal system is the International Phonetic Alphabet (IPA) of the International Phonetic 

association. Despite the IPA symbols are available in the Unicode character set, they are 

inconvenient for automatic processing. Consequently, other machine readable systems like 

SAMPA [SAM] were proposed. SAMPA was initially used for several European languages. 

In order to cover the whole symbol inventory of the IPA, there is a draft proposal X-SAMPA 

[Wei] for the necessary extensions. 

There is an English specific transcription system called ARPAbet, which was originally used 

19 



20 CHAPTER 2. FUNDAMENTALS 

Table 2.1: TJMJT and X-SAMPA symbols with examples for American English. 

TIMIT X-SAMPA Word, Transcription TIMIT X-SAMPA Word, Transcription 

aa A pot pAt jh dZ change tSeindZ 

ae ｛ pat p{t k k kin kln 

ah V cut kVt I I long JON 

ao 

゜
cause kOz m m mock mAk 

aw au rouse raUz n n knock nAk 

ax ＠ allow @laU ng N thing TIN 

axr @' comer kOrn@' ow @U obey @Ubel 

ay al nse ralz oy OI oil on 
b b bin bln oh 

゜
nose noz 

ch tS chin tSin p p page peldZ 

d d din din r r nng rIN 

dh D this Dis s s Sin sln 

dx 4 data deI4@ sh s shin Sln 

eh e raise relz t t tin tln 

er 3' furs f3'z th T thin Tin 

ey el able elb@l uh u put pUt 

f f fin fln uw u lose luz 

g g give glv V V vam veln 

hh h hit hlt w w way wel 

ih I pit plt y J yard jArd 

IX I¥ image ImI¥dZ z z zebra zibr@ 

1y 1 idly aldli zh z asian eIZ@n 

for the TIMIT corpus. There are variants of the ARPA bet employing less symbols and which are 

used for other English speech corpora like the Wall Street Journal (WSJ). Any of these alphabets 

are commonly referred to as TIMIT. Table 2.1 lists symbols of the TIMIT alphabet and the 

corresponding symbols in X-SAMPA with example transcriptions for American English words. 

2.2 Speech Recognition 

There is a vast literature about speech recognition. Standard references include [RJ93, Sch95, 

Jel97, GMOO]. The task of speech recognition is to invert the speech production process, which 

is to determine automatically the spoken word sequence from an acoustic speech signal. Figure 

2.1 shows the basic architecture of a speech recognizer. Its components are described in the 

following passages. 

The statistical approach has proven to be successful to solve the problem of speech 

recognition with high performance. Equation (2.1) is fundamental for the statistical approach. 

The idea is to find the word sequence w* with the highest probability given a sequence of acoustic 
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Figure 2.1: The basic architecture of a speech recognizer. 

21 

hypothesis 

observations o and linguistic constraints. This approach separates the problem into the part of 

acoustic modeling to obtain the acoustic probabilities P(olw), and the part of language modeling 

to obtain the word sequence probabilities P (w). 

w* = argmaxP(wlo) = argmaxP(olw)P(w) (2.1) 
w w 

Feature extract10n. The raw speech signal・bl 1s an unsmta e representation for speech 

recognition. For example, it is very prone to interferences by the recording equipment or 

transmission channel and by noise in the recording environment. Furthermore it contains 

much unnecessary information about the speaker and his characteristics. Most important for 

the identification of speech sounds is the vocal tract and its resonance frequencies. The vocal 

tract's characteristics change when the articulators are moved to produce a certain speech sound. 

Furthermore, the presence or absence of an excitation by the glottis pulses determines whether 

the speech sound is voiced or unvoiced. This suggests that the spectrum of the speech signal will 

be a more suitable representation and that the separation of the vocal tract characteristics from 

the excitation is important. 

The most widely used features for speech recognition are the so-called Mel-Frequency 

Cepstrum Coefficients (MFCC) and the logarithmic energy together with their first and second 

derivations. For details about acoustic preprocessing and acoustic feature extraction confer 

[Pic93]. The result of the acoustic feature extraction is a sequence of feature vectors. Each 

acoustic feature vector represents the speech signal of a certain time interval. The length of this 

time interval is commonly set to a value between 10 and 20 milliseconds. 
Lexicon and subword units. The 1 ex1con contams one or more entries for each word of the 

recognition vocabulary. Each entry is a sequence of subword units, e.g. phones or phonemes. 

The lexicon is also called pronunciation dictionary. Which kind of subword unit to use, depends 

on the application and the number of data available to train the acoustic model of the recognizer. 

If the application is only digit recognition, no subword units have to be defined at all. However, 

as the desired recognition vocabulary increases, it becomes necessary to employ a smaller set of 

subword units to transcribe each word, because it would be infeasible to build a robust acoustic 

representation for each word otherwise. If the chosen set of subword units is universal, i.e. the 
transcription of any word in a language is possible, the recognizer will in principle be able to 

decode any word even if it was not encountered during training. 

The most common subword units are the context-independent monophones and the context-
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dependent polyphones. Monophones correspond to single phonetic or phonemic units of the 

target language. A polyphone is defined by its center unit and a certain left and/or right context. 

For example the word "and" can be represented as a sequence of three monophones "ax n d" or 

as the sequence of three triphones "sp-ax+n ax-n+d n-d+sp". Here, "sp" is the phoneme symbol 

for inter-word pauses. The maximum number of polyphones, e.g. n2 bi phones and州 triphones, 

is much larger than the number of monophones (n), since any combination of the n base units 

may occur in words in general. The benefit of employing polyphones as subword units is the 

capability of a more accurate acoustic modeling, which accounts for coarticulation effects. A 

drawback of using them is the requirement for more training data and they may be less robust 

to variability. For example, while the recognition performance improves for native speech when 

switching from monophones to biphones or triphones, adverse results were observed for non-

native speech [CGN]. 

Acoustic model. Most state-of-the-art speech recognition toolkits use the HMM-based 

approach for speech recognition. The acoustic model consists of one Hidden Markov Model 

(HMM) for each subword unit and additional models for silence, non-verbals or other kinds of 

noise. An HMM consists of states, state transitions and one output density per state. Figure 2.2 

shows a left-to-right HMM with three states q1, ... , q3 with no state skips, which is typical for 

the acoustic modeling of one phonetic subword unit. With such an HMM a two-stage stochastic 

process can be modeled: The first stage of the process is hidden and consists of HMM state 

transitions St→ st+1, resulting in a sequence of states s = s1, ... , sr. Here, St denotes a state 

variable having any state value qj. The second stage is observable. Its outcome is a sequence of 

observations o = oい...'0ゎ oneper state St = qj. 

An HMM入canbe used to calculate an approximation of the probability P(oJp) for an 

observation sequence o, given a subword unit p. It is an approximation since the true duration 

characteristics of a phoneme and the distribution of HMM state sequence lengths are different 

[RSS92]. Furthermore, to make computation feasible, the calculation of P(oJ入） is simplified by 

two assumptions to relax dependences: 

(a) If the output probability P(otJs1, ... , St) depends only on the current state St, the 

probability P (o J s) is calculated as: 

enter exit 

output output output 

／八／
Figure 2.2: Illustration of a three state HMM with output densities. 
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/ch/ 

0-0-0 

Figure 2.3: Concatenation ojfour subword HMMs to a word model. 

T T 

P(ols, 入） = IJ P(otlsい...,st)~IJ P(o凸）
t=l t=l 

(b) If the probability for a transition from state qi to qj depends only on qi, the computation 

of the state sequence probability simplifies to 

T T 

P(sl入)= P(so) IT P(stlsい..., St-1) :=:::: P(so) IT P(stlst-1) 

(2.2) 

(2.3) 
t=l t=l 

The parameters of an HMM, i.e. the state transition probabilities P(q晶） and the probability 

density functions to calculate P(otlSt = qj) are unknown. They can be learned automatically 
if speech data for each subword unit is available. A maximum likelihood estimation of the 

parameters is obtained by the Baum-Welch algorithm (cf. [Jel97] for a derivation). 

The probability of an acoustic observation o given a subword HMM入iscalculated by 
summing over all possible sequences of states s through HMM入(cf.Eq. 2.4). Another often 

needed value is the probability in Equation (2.5) of the HMM's best path. It is the probability of 
the state sequence s* with maximum observation probability. Its calculation will be described in 

the passage about speech decoding. 

P(ol入） = LP(ols, 入）P(s l 入） ~LP(so) IJ P(stlSt-1)P(o凸） (2.4) 

s
 

s
 

t==l 

T 

P(o,s*I入） = m:,x P(ols, 入）P(sl 入） ~maxP(so) IT P(stlSt-1)P(ot図） (2.5) 

t=l 

Subword HMMs only represent single phonetic units. Word models can be obtained by 

concatenation of several subword HMMs. For example, Figure 2.3 illustrates the construction 

of an acoustic model for the word "speech" by combining the subword HMMs Isl, Ip/, /iy/ and 

/ch/. The exit transition of HMM Isl is the enter transition of HMM /p/ a.s.o. at the same time. 

The probability of an acoustic observation for the word HMM is calculated by summing up the 

logarithmic probabilities (also called likelihoods) of each subword unit's best path. For a whole 

sentence -represented as a sequence of word HMMs, which is nothing more than sequence of 

phoneme HMMs on the next lower level -the computation is analogue. 

Language model. The last passage on acoustic modeling revealed how to get an estimate 

for the acoustic probability P(olw) of subword units, single words or a whole sentence. It 

remains to determine the probability P(w) of an utterance's word sequence w = (w1, ... , wm). 

The probability of a word wi depends on the history of all previous words w1, ... , Wi-l・A 
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standard approach is to model this probability by an n-gram which only considers sequences of 

n words, i.e. a history of only n-1 words, to make model estimation and probability computation 

feasible. For example, in case of the bigram (n = 2) the probability of the word sequence w 

is the product out of the probability P(w1) that a sentence starts with word w1 and the bi gram 

probabilities P(wilwi_1) of all following word pairs (see Equation 2.6 with k = l). For details 

about statistical language modeling confer [Jel97]. 

m m 

P(w) = P(wりIIP(叫Wい..., Wi-1)~ P(wリ ITP(wilwi-k, ... , wi-1) (2.6) 
i=2 i==2 

Decoder. Speech decoding is a search problem: find the word sequence w* with maximum 

probability for a given sequence of observations o. It is a difficult task, since the search space, 

i.e. a word graph which describes all possible word sequences, is in general almost infinite. 

For practical applications the search space is reduced by limiting the recognition vocabulary and 

constraining possible word sequences with a language model. 

In literature different decoding strategies are proposed. Confer [Sch95] or [Jel97] for several 
examples. Only the Viterbi decoding and the beam search method shall be introduced here. 

These decoding strategies are commonly employed in connection with word bigram language 

models. 

The search space is a network of word HMMs as shown in Figure 2.4. Bigram probabilities 

P(vlw) are associated with each link between the exit state of HMM for word wand the enter 

state of HMM for word v. The Viterbi search starts from the enter state s0 of the network 

and calculates the state sequence s* to an exit state Se with maximum probability. The word 

sequence w* which corresponds to the likeliest state sequence s* is taken as recognition result. 

Viterbi decoding works as follows: 

L = {so}; ao(so) = 1.0 

fort in {1, ... ,T} 

叫s)= max {aい (s')P (s I s') P (Ot I s) } 
Lぅぷ→S

bt(s) = argmax{at-1(s')P(sls')P(otls)} 
L3s'→S 

L'= {sis'→ s, s'E L}; L = L' 

s'→ s refers to all possible transitions from states'to states. at(s) is the probability of 

the best path of length t starting from s。andending in s. The state sequence with maximum 

probability ar(se) can be reconstructed by recursively evaluating s'= bt(s); s = s'fort = T 

down to 1 starting with s = Se. 

The number of cu汀entstates in list L becomes too large in practice after a few iterations 

of the for loop. An approximative solution is the beam search. Instead of keeping all states in 

L and the corresponding values of a、t(s)and bt(s), states s'which are endpoints of paths with 
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＞
 

Figure 2.4: Recognition network with word HMMs and word bigram transition probabilities. 

The circles in the rectangular boxes represent HMM states. 

a probability at(s') sma11er than max 丹~ are purged from L. The value of k is application 
sE!-' 

dependent and has to be found expenmentally [Je197]. 

The hypotheses w corresponding to the N best state sequences s ordered by their acoustic 

probabilities P(ols) are referred to as N-best list. N-best lists are used, for example, to calculate 

word confidence measures (cf. Section 2.2.1). 

The decoder can also be employed to compute the forced-alignment of an utterance. Instead 

of a large word graph, only a small network is constructed, which consists of sequentially 

connected word HMMs corresponding to the utterance's known transcription. Additionally, there 

may be two or more HMMs in parallel, if the lexicon contains pronunciation variants, i.e. there 

is more than one possible subword sequence for certain words. Results of the forced-alignment 

are the acoustic likelihood and the duration (in number of frames) of each word or subword unit. 
．． 

Recogmtion performance. There are several measures for evaluating the performance of a 

speech recognizer. They differ with respect to what kind of errors are taken into account. The 

correct rate 

Cor = 
# of tokens in reference 

#cor 
(2.7) 

only measures the number of correctly recognized tokens (#cor). The accuracy is defined as 

#sub + #ins + #del 
Ace= 1 -

# of tokens in reference 
(2.8) 

and takes into account substitutions (#sub), insertions (#ins) and deletions (#del). ln 

this thesis, the normalized minimum-edit-distance (Dist) [DHSOl] between the reference and 

the recognized sequence is employed as feature to measure the recognition performance for 

pronunciation scoring. It is calculated as 

#sub + #ins + #del 
Dist= 

max{# of recognized tokens,# of tokens in reference} 
(2.9) 
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2.2.1 Confidence Measures 

Since speech recognition does not work perfectly, recognition errors occur. For each word of 

the recognition output it is important to obtain information about its degree of correctness. The 

degree of correctness can be measured by an estimate of the word posterior probability P(w Jo). 

Additionally to classifying recognized words as con-ect or wrong, there are also attempts to 

determine whether presumably wrong words are insertions or substitutions [SSN+Q2]. In the 
following some approaches from literature to measure the confidence of recognition hypotheses 

on different levels are introduced. In this thesis it is investigated, whether these measures are 

also useful for the identification of mispronounced words. 

Phoneme correlation technique. Cox et al. [CD02] describe several high-level confidence 

measures. High-level means that a measure's calculation does not depend on the decoding 

process or the decoder's architecture, but on final recognition results only. Here the phoneme 

correlation technique is introduced, for which only the best hypothesis of the word recognizer 

and the phoneme sequence obtained by free phoneme recognition with phoneme segment time 

intervals are needed. 

Let p = (p1, p2, ...) be the phoneme symbol sequence corresponding to the best word 

hypothesis and q = (q1, q2, ...) be the phoneme symbol sequence corresponding to the phoneme 

recognition result. The sequences can be obtained on two different levels: 

• Frame-level: 
each frame is tagged with the phoneme symbol of the segment it belongs to; for this 

operation the time interval of each phoneme segment is needed. 

• Phoneme-level: 

the two phoneme sequences from word and phoneme recognition are aligned; any 

phonemes from the phoneme recognition result which cannot be paired are regarded as 

insertions and will be discarded. 

The following definitions are independent from the level concerned. For both correctly 

C and incorrectly I recognized words a phoneme confusion matrix can be estimated on a 

training data set. Given the prior probabilities P(C), P(I) and confusion matrix probabilities 

P(qiJPi, C), P(qiJPi, I) for each phoneme pair, a likelihood ratio can be defined: 

Li= 
P(Clqi, Pi) P(qilPi, C)P(C) 

＝ 
P(Ilqi,Pi) P(qilPi,I)P(I) 

(2.10) 

By summing up all Li for a word, a confidence measure is obtained. The higher the sum of 

Li the higher the possibility that the recognized word is correct. 

Word posterior probability. The problem of speech decoding is to find the word sequence 

with maximum posterior probability (Eq. 2.11) for an observation sequence o. However, for 

decoding itself, only the probabilities P(olw) and P(w) are important (cf. Eq. 2.1). The 

evidence P (o) in the denominator need not be calculated because of the argmax operator. 

The true value of the posterior probability, depends on the evidence however. P(o) can be 

calculated as the sum of the probabilities P(o, v) for all possible word sequences v. 
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Figure 2.5: Illustration of N-best lists. Word w appears in several hypothesis at the same time 

interval. Hence, it may have a high posterior probability. 

P(wJo) = 
P(oJw)P(w) P(oJw)P(w) 

＝ 
P(o) 区P(oJv)P(v)

V 

(2.11) 

Since the number of possible v is in theory almost infinite, the computation of word posterior 

probabilities is actually a difficult task. A discussion can be found, for example, in [WSMN叫

Here, the aim is to obtain the posterior probability of a particular word wi in a sequence 

w = (wい..., w M) delivered by the word recognizer, given the acoustic observations of the 

whole utterance o. Let [w」bethe word segment with label wi and its starting and ending time. 

The posterior probability of wi may then be defined as: 

区 P(olv)P(v)

L P(vlo) = 
v: ヨj:f([w;JI[叫）=l 

v: ヨj:f([w;JI[叫）=l 
L P(olv)P(v) 

The function f (・I・) returns 1, if [叫 and[叫 overlap,otherwise it returns 0. For the exact 

calculation of the posterior probability, f () may only return 1, if the starting and ending times 

of both word hypothesis are identical. However this condition is unpractical. Consequently, 

f () is usually relaxed to return 1, if there is only an overlap in time of e.g. H = 75%. Since 
Equation (2.12) is intended to be the sum of posterior probabilities of all sentence hypotheses 

with overlapping wi and Vj, H should be set to a value greater than 50%. An example is shown 

in Figure 2.5. For pairs of the edges 1, 2, 3, 4 and 5, the function f (・I・) shou Id return 1. However 

f(ll6) should be 0, because e.g. edges 3 and 6, and edges 4 and 6 stretch over completely 

different acoustic segments. 

When using the word graph, the word posterior probabilities can be computed efficiently 

during decoding with the forward-backward algorithm. They can also be calculated based on the 

N-best recognition output. If the N-best lists and the word graph are identical, the outcome is 

the same [WSMNOl]. Despite the latter approach is less efficient, it is employed for this work in 

order to be recognizer independent. 

In actual computation based on N-best lists the probabilities P(olv) and P(v) are rescaled. 

The scaling influences the performance of the resulting confidence measure. This is due to the 

large dynamic range of acoustic likelihoods associated with each hypothesis in the N-best list. 

P([叫 lo)= (2.12) 
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To sum up the probabilities of word hypotheses, likelihoods must be converted into probabilities 

with thee-function. Since likelihoods are large negative values, an underflow can easily occur if 

rescaling is not done. 

ence measures based on urat1on ratios and Duration fluctuations. In [Ste01] word confid d ・ 

duration fluctuations are investigated. Duration ratio means the quotient of the expected and the 

actual duration of phonemes or words. Since it describes the relative lengthening or shortening 

of tokens, it is also used as a relative measure of the speaking rate. Duration fluctuation means, 

that the duration ratio (speaking rate) changes over time. The incentive to use duration ratios as 

confidence measures is the observation, that recognition errors increase, if the average duration 

of phonemes in the training data deviates from durations in the test data. 

2.3 Statistical Analysis 

Given is a sample, a set of values, which are measurements of a (physical) quantity. Each value 

is drawn from a basic population with some probability. The basic population consists of all 

values which may be measured for the quantity. The aim of statistical analysis is to investigate 

the properties of the quantity, given only the sample. Simple examples for properties are the 

mean or the variance. Since only a subset of the whole basic population is known, properties 

can only be estimated. Moreover, measurements can be afflicted with errors, i.e. they may be 

skewed or censored. Consequently, the question of the accuracy of estimates arises. A standard 

approach to express the accuracy of an estimate is the indication of a confidence interval. 

In the following methods for estimating the reliability of tests, resampling techniques to 

improve the estimates of statistics and methods for the calculation of certain confidence intervals 

are introduced briefly. 

2.3.1 Reliability 

The meaning of reliability actually depends very much on the context in which it is used. For 

example reliability is a very important concept in psychometrics. That science is concerned with 

measuring psychological aspects of a person such as knowledge, skills, abilities, or personality 

[Wik]. In this work the pronunciation skill of non-native speakers is to be assessed. 

To obtain information about a person's skill or ability a test has to be carried out. Imagine, 

for example, a sprint test to measure the time a person needs to run a distance of 100 meters. 

Another example is the TOIEC or TOEFL test to measure certain aspects of a person's English 

proficiency. The outcome of such tests are scores, e.g. 10.5 seconds for the sprint test or 850 

points for the TOIEC test. These observed scores may deviate from the true scores because of 

measurement errors: 

observed x = true T + error E (2.13) 

Test results should be reliable and valid. "Reliable" can mean, that a test is stable, i.e. test 

results are reproducible, that it is consistent, i.e. each test item measures the same aspect, or that 

it is equivalent to another test. "Valid" means, that the test measures those aspects, the designer 
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Figure 2.6: Test reliability. 
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Figure 2.7: Observer reliability. 

test 

reliability 

三

29 

observer 

reliability 

of the test intended to measure. To measure for example the stability a second test has to be 

carried out (cf. Figure 2.6). 

For the evaluation of a speaker's pronunciation skill in this thesis the setting is different, 

however (cf. Figure 2.7). The test consists of reading a rather difficult set of English sentences. 

The test result consists only of the recorded utterances without any score. Their interpretation 

by an expert or a group of experts is needed. These experts (observers) listen to each of 

the recorded utterances and assign a score to each utterance, which is intended to measure a 

speaker's pronunciation quality. Whether the test itself is reliable and valid for assessing each 

speaker's pronunciation ski]] will not be an issue in this thesis. Since the main topic is automatic 

pronunciation scoring, the focus will be on a method which can accurately score an already given 

sample of read sentences. For that it is important to have reference scores for each sentence. The 

reference scores are assigned by one or more observers. If there are two or more observers, the 

observers'reliability can be estimated. 

In test theory, reliability is defined as the ratio of the true score variance CJ; and the observed 

score variance CJ・ 

2 2 
.. び〇―

reliab巾ty = T 
Pxx - = l- ~ 

2 2 
〇-X 

び
X 

(2.14) 

If there are two parallel observations Xi and Xj and it can be assumed, that the covariances 

cov(T, Ei) and cov(T, Ej) of the true scores and the measurement errors are 0, the expectations 

E[叫andE[t:j] of the errors are O and the variances CJx; and CJxj are the same, the reliability 

equals the correlation between Xi and Xj [YehOO]: 

cov(年， xj) cov[(T +叫(T+り）］叶
Px;,Xj = = = - = Pxゎx,

Cfx;Cfx 
2 

J 叫¢巧叫i

(2.] 5) 
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2.3.2 Correlation 

In general, the correlation is used to measure the similarity or dependability of variables or 

numerical series. The measurement for the self si血 larityof just one series is called auto-

correlation. In case of two different series it is called cross-correlation. Here we are interested in 

the correlation of pairs of two different series. The correlation C(X, Y) of two number series X 

and Y is defined as 

C(X, Y) = 
cov(X, Y) E[(X -µx)(Y —四）］

＝ 
吹びY ✓E[(X -μx)門E[(Y-μ 州］

(2.16) 

cov(X, Y) is the covariance of the two series, ax and巧 thestandard deviation of each 

series. The mean of X is denoted asμx, the expectation as E[X]. If the probability of each 

sample Xi of Xis uniform, calculation can be simplified: 

こい(xi-µx)(Yi —曰）
rx,Y = 

✓区~= 1 (xi -μx)2 L ~= l (Yi —四）2
(2.17) 

rx,Y 1s called correlat10n coefficient. Its absolute values are between O and 1. If rx,Y = l 

the points (xi, Yi) of corresponding values of X and Y lie on a straight line [BS97]. 

To compare three or more numerical series, which are measurements of the same quantities, 

the average correlation of all possible number series pairs can be used. An alternative is to 

employ the average open correlation. The open correlation is obtained by first averaging all 

but one series and then calculating the correlation between the averaged series and the excluded 

series (see e.g. [NFDWOO]). If there are K numerical series in total, the open coITelation for the 
k-th series Xk is: 

c(openl(ふ） = C(ふ，
1 

K-1 
区Xi)
i# 

(2.18) 

2.3.3 Resampling Techniques 

Resampling is a procedure to generate several samples from an initial given sample. The 

presumably most widely known and most often applied techniques are jackknife and bootstrap 

resampling (Figure 2.8). 

Jackknife. The jackknife is also known as "leave-one-out". This alternative name is due to 

the concrete resampling procedure: From a given sample S with ISi = n values, n new samples 

Si are produced by removing the i-th value in each new sample. These samples can be used 

to calculate an estimate of a statistic 8, which is more accurate than obtaining it directly from 

the values of the initial set S. The calculation of the jackknife estimate is easy, albeit being 

computationally intensive: It is defined as the mean of the estimates Gi for each sample S( 

＾
しê
 

n

▽
]
[
 

1
-
n
 

＝
 

ê
 

(2.19) 
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Figure 2.8: Illustration ofjackknife and bootstrap resampling. 

Bootstrap. The bootstrap method [ET93] is not deterministic like the Jackknife procedure: 

From the initial sample S with n values, k new samples are produced by randomly drawing n 

items from S. Since items are selected with replacement, the same item may be drawn twice 

or more times. k should be set as large as the computational power available allows it. The 

bootstrap technique can also be employed for estimating a statistic like the Jackknife technique 

[DHSOI]. Furthermore it is commonly used for the estimation of confidence intervals. 

A straightforward and simple procedure to obtain a confidence interval is the percentile 

bootstrap method: Do bootstrap resampling of S to obtain e.g. k = 1000 samples with ISi 
items. Estimate the statistic ei for each bootstrap sample Si. Order the values of ei by their 

magnitude in ascending order. Let the significance level (cf. Section 2.3.4) be a. The lower 

bound of the confidence interval is then given by the l k翠J-thvalue, the upper bound by the 

1k(l -%)1-th value. 

2.3.4 Confidence 

A statistic is estimated with a sample. The larger the sample, the more accurate the statistic's 

estimate will be. Accuracy of an estimate can be described by its confidence interval. The N % 

confidence mterval of a statistic 1s the ran ere rn 
と

which the true value of a statistic hes with a 

probability of N%. In the following the calculation of the confidence interval for the mean and 
the correlation is explained. 

Mean. Given is the sample { x1, ... , Xn} of n values measuring the same quantity. 

Prerequisites are, that the scatter of the basic population is unknown and the values are distributed 

normal. The confidence interval [x -a, x + a] of the mean x of the sample's values is calculated 
by 

全士 a= x土二ta/2,n-l
fo 

~ 1 
n 

X = -
n 
区Xi

i=l 

1 
n 

S= L(叩 ー :i:)2
n-1 

i=l 

(2.20) 

a is the probability of e汀or.It is also called "significance level". The relationship between 

Nanda is蓋=1.0 -a. The quantiles of the Student t-distribution are denoted as t0;2,n-l・ In 
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practice the values of t0;2,n-l have to be obtained by table-lookup [BS97]. 

Correlation. The formula for the calculation of th fid e con ence mterval for the mean 1s 

simple. If no formula is available or a statistic is complicated, the calculation of the confidence 

interval can be done via bootstrap resampling. In this work the percentile bootstrap method is 

used to estimate the confidence interval for the correlation (cf. Section 2.3.3). 

2.3.5 Linear Regression 

The correlation coefficient is a measure for the dependence of two variables x and y. If such 

a dependence is found, the next task is to determine the functional relationship y = f (x). In 

general the problem is to determine the functional relationship y = J(x) = f(x1, ... , 咋）
between three or more variables. A pre-requisite here is to describe the relationship as: 

K 

Y = f(x1, ・ ・ ・, X砂=a。+L佑 *9i(x1, • • •, 砂）
i=l 

(2.21) 

The method to determine the coefficients ai for known functions 9i is called linear regression. 

The functions 9i may be arbitrary. Given a set { (yi, 切}of N samples the following system 
y = Ga of linear equations can be set up: 
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aK 

(2.22) 

Multiplying each side of Equation (2.22) by GT leads to the system of normal equations 
GT y = GT Ga. Cholesky's method is especially suitable to solve this system. See [BS97] for 

further details. 

2.4 Pattern Classification 

As literature about pattern classification confer [DHSOl] and [Nie03]. Here only the basic 

concepts and classification methods employed in this work are explained briefly. 

Let [l = { w1, ... , w砂 bea set of K classes. The classes are mutually disjoint and build a 

partition of the considered task domain. The task domain consists of a certain kind of patterns, 

e.g. 2D images or speech signals. A feature vector is denoted as c. The features are intended 

to represent a pattern. They have to be designed in order to capture all relevant information. A 

numerical classifier for simple classification tasks takes as input a feature vector c and outputs 

a class label w E [l based on a decision rule and parametric models for each class. The model 

may for example consist of the parameters of a probability density function (e.g. Gaussian), the 

weights of a neural network (e.g. multi-layer perceptron) or if-then rules (e.g. decision tree). In 

the following section the classifiers employed in this work are described in more detail. 
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2.4.1 Classifiers and Decision Rules 

In general the aim in classifier design is to optimize the decision rule and model for each class 

so that the classification risk becomes as small as possible. The risk R is defined as the average 
costs which go along with the classification of each pattern. It depends on the p1ior probabilities 

p(叫 ofeach class w入，theprobabilities p(叫 叫 thata pattern which belongs to class wK is 

classified as a pattern of w入，andthe corresponding costs r恥

K K 

R= LP(叫 Lr枯 p(w刈叫） (2.23) 
1,,=l 入=l

Bayes rule. If the costs are 1 for misclassification and O for correct classification, it can be 

shown, that the optimal decision rule is the Bayes rule 

K, = argmax p(叫 c)= argmax p(w入）p(cl叫）
入E{l,…，K} 入E{l,…，K} 

(2.24) 

which assigns an unseen pattern to the class with maximum posterior probability. For 

application of the Bayes rule, the prior probabilities p(叫） and the probability density p(cl叫
must be known. While the former can be obtained easily for each specific task domain, the latter 

may in general be difficult to determine. 

Gaussian classifier. The term G aussian classifier is employed here for the framework, that 

there is one model for each class叫， whichis based on a single Gaussian density or a Gaussian 

mixture density. Each model is intended to describe the distribution of feature vectors belonging 

to class w入bya probability density function p(cl w入） • The formula of a multivariate Gaussian 

density is given in Equation (2.25). d is the feature dimension, μ 入isthe mean vector and E入 is

the covariance matnx of the Gaussian density N(clμ ふ E;,).

1 1 
N(c[μ 入，勾＝三すexp[—2(c-µ 入汀幻(c-四] (2.25) 

A mixture density is a combination of two or more base densities. The weighting of two or 

more Gaussians is called Gaussian mixture model (GMM). The GMM is able to approximate 

any probability density. The higher the number m of mixture components is, the more accurate 

the distribution of a training sample can be modeled. The weighting coefficients wi are called 

mixture weights and must sum up to 1.0 to comply with the law of probability. 

m 

p(cい） = LWパ(clμiふ瓦） (2.26) 

i=l 

The parametersμand E of a Gaussian density can easily be obtained by ML estimation. For 

the mixture density case, however, no closed-form solution to parameter estimation exists. The 

difficulty is, that for each sample it is unknown which density influenced its generation to what 

extent. In literature algorithms for learning mixture model parameters can be found. The standard 

method for GMM training is the expectation-maximization (EM) algorithm [DLR77], which 
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starts with an initial guess of nuxture parameters and successively converges to a maximum-

likelihood (ML) estimate in each iteration. The drawbacks of the EM algorithm are, that it 

finds only suboptimal parameters in general. Furthermore, the number of mixture components 

must be set manually. The problem of mixture model learning is discussed in [FJ02]. That 

paper also proposes a method for estimating the density parameters and the number of mixture 

components at the same time. The new learning algorithm, which will be called FJ algorithm 

here, is employed to estimate mixture model parameters in experiments. 

Decision trees. The prerequisite is, that each pattern is represented as attribute-value pairs, 

e.g. {color= red, taste= sweet}, or as a real-valued feature vector c. A decision tree consists of 

nodes with questions and leaves with class labels wand optionally class probabilities P(叫.Each 
question tests for an attribute or checks whether a component ci of the feature vector c lies within 

a certain range. The test's outcome determines, which branch to follow up to the next question 

until a leaf node is reached. The class label associated with that leaf is taken as classification 

result. It is obvious that a decision tree can also be represented as cascaded if-then rules. If a 

pattern is represented as an-dimensional vector with real-valued components, the decision tree 

actually defines regions for each class in野．

While the procedure of how to classify a pattern is straightforward, the problem is to find 

automatically suitable questions for the tree nodes. There is a general framework called CART 

(Classification And Regression Tree) for constructing a decision tree from a labeled sample. 

The CART learning procedure starts with an initial tree with only one root node, which 

contains the whole training data. The aim is to partition the whole data into subsets associated 

with the leaves of the final tree, which are as homogene (pure) as possible w.r.t. to the patterns' 

class labels. A concrete algorithm requires: 

1. a measure of impurity, e.g. leaf entropy 

2. a set of questions to test, e.g. intervals for real-valued features 

3. a criterion when to stop splitting leaf nodes 

4. a method to prune a too large tree 

5. a rule to label an impure leaf node 

In each iteration, the set of questions is applied to the current leaf. The leaf is split according 

to the question which reduces impurity most. After the stopping criterion is reached, e.g. 

impurity or number of patterns associated with a leaf node falls below a threshold, the tree may 

be pruned. Pruning means to remove or merge leaves, if for example, the classification accuracy 

increases for a separate validation sample. 

Further details can be found in [DHSOl]. In this work the wagon tool from the Edinburgh 

Speech Tools Library is employed for CART. The tool can be set up to use either the conect rate 

or the entropy as impurity criterion for building classification trees, and the co汀elationor the 

mean square error (MSE) for construction of regression trees. 
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2.4.2 Feature Select10n and Feature Transformation 

Patterns are represented by features. The more features there are, the more accurate the 

representation of the pattern is going to be. On the other hand, the extraction of features is us叫 ly

costly and the required amount of data for robust classifier training increases exponentially with 

the number of features. The solution would be to use the n best features available. The set of n 

best features has the property, that there is not another set with n or less features, which has a 

smaller classification risk. However, it is in general impossible to determine this set [Nie03]. 

In practice methods for feature selection and feature transformation are employed to reduce 

the dimension of the feature vector c. The floating search algorithm is a heuristic selection 

procedure which often yields a set of good features. The principal component analysis (PCA) 

and linear discriminant analysis (LDA) are methods for feature transformation, which optimize 

the feature space with respect to certain criterions. 

Floating search algorithm. Here only a rough description of the algorithm is given. The 

detailed algorithm can be found in [Nie03]. First some criterion to evaluate the q叫 ityof a 

feature set has to be defined. A reasonable criterion is for example the classification error of a 

test set or the classification risk. The algorithm works as follows: 

1. Start with an empty feature set S. 

2. Add relatively best feature to S. 

3. Remove relatively worst feature from S, if quality of feature set 

becomes better than best set S'with ISi -1 = IS'I features so far. 

4. Stop if a predefined number of features is used, else go to 2. 

PCA. The principal component analysis (PCA) is an analytic method to obtain feature 

components, which are uncorrelated and ordered by the magnitude of their variances. It can be 

employed to calculate a basis of each k-dimensional subspace which is the best approximatio.n 

of the original n-dimensional feature space (k < n) w.r.t. the mean square error~MSE). 
From a training sample of feature vectors, the mean vectorμand the covanance matrix E 

are calculated. The first k Eigenvectors ordered descending by the magnitude of the Eigenvalues 

of the covariance matrix E are a basis of the k-dimensional subspace. Original features vectors 

care mapped into the PCA space by application of the Karhunen-Loeve transform: 

KLT(c) =が(c―μ) (2.27) 

The columns of matrix A are the Eigenvectors belonging to the k largest E屯envalues

[DHS01 ]. 

LDA. Although PCA finds the best approximation of the original feature space in the MSE 

sense, it may happen that those dimensions, which are very important for the discrimination of 

certain classes are eliminated. The linear discriminant analysis (LDA) avoids that by seeking 

those directions, which are most effective for discrimination. The LDA transformation is given 
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as a matrix W , which maximizes the between-class scatter SB and minimizes the within-class 

scatter Sw: 

K J( 

Sw=区L(c―μi)(c-μif 品=I: 叫μi-μ)(μi -μf (2.28) 
i=l cEw, i=l 

μi is the mean vector of samples c of class wi, μis the mean of the whole sample and ni is 

the number of samples available for class wi. 

The rows of matrix W are the Eigenvectors corresponding to the largest Eigenvalues of the 

solution of the Eigenvalue problem in Equation (2.29). Like PCA, the dimension of the resulting 

feature space can be reduced by setting up W with only the first k Eigenvectors. 

S翫SB砥＝入i砥 (2.29) 



Chapter 3 

Literature Survey 

This chapter gives an overview of selected publications on human evaluation of pronunciation 

and automatic pronunciation scoring. Subjective and objective measures of pronunciation are 

introduced. Subjective measures are assessments of pronunciation made by humans. Measures 

which are calculated automatically on the speech signal with speech processing tools are 

called objective. By combining several objective measurements an automatic assessment of 

pronunciation quality can be obtained. Some methods from literature which effectively combined 

multiple pronunciation scores are presented. 

3.1 Definition of Technical Terms 

In literature about human evaluation of pronunciation and pronunciation scoring, different terms 

are used to refer to the same thing. Here, an attempt is made to unify the usage of technical terms 

for this thesis. 

Units. Speech is made up of phones. By narrowing the view on speech to a certain natural 

language, it can be abstracted from certain sets of phones -the allophones -to phonemes. 

Phoneme strings form words, which may be separated by short pauses. Concrete phonemes 

or words are also called tokens. Strings of word tokens make up a sentence/utterance. Words 

may be separated by short pauses and utterances by silence. Consequently, the phoneme-level, 

the word-level, the sentence/utterance-level and the speaker-level are differentiated. On each 

level certain assessments of speech qualities can be made. Aspects of low-level units inevitably 

influence aspects of high-level units. 

Th Pronunciation. e term pronunciation will be used for a wide range of speech quality 

aspects. These include not only segmental aspects like the concrete pronunciation of a word as 

a string of phonemes together with their realization, but also supra-segmental aspects like the 

speaking rate, pauses between phonemes or words, lexical stress of a word, sentence intonation, 

etc. (cf. Section 1.2) 

Evaluator. A human being who listens to speech data of non-native speakers and assigns 

a label of pronunciation quality to certain evaluation units is called evaluator or rater. When 

reporting about the labeling procedure, the evaluator may also be called annotator. 

37 
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Human Ratings. The labels of pronunciation q叫 itymade by humans are referred to as 

ratings. Ratings may be discrete, e.g. integer values from one to five, or continuous, e.g. values 

which lie inside a fixed interval [a; b]. Depart from that, the term phoneme-level or word-level 

marking is employed, if the label is binary, i.e. 1 if the token is mispronounced, and O if the 

token's pronunciation is correct. 

Scoring. The process of automatic assessment of speech qualities by a machine is called 

pronunciation scoring or just scoring. The result of the automatic assessment are scores for 

certain aspects of pronunciation. A score may be based on only one or several features describing 

speech quality. 

3.2 Performance Measures 

There are several measures for comparing human evaluations and scoring algorithms. For 

example, Witt el al. [WYOO] define four measures either for the consistency of phoneme 

markings, which are also meaningful for word markings, or the similarity of utterance ratings 

assigned by two or more human evaluators. A descriptive explanation of each measure together 

with its calculation formula are given here. The transcription vector with n components is 

denoted as y = (Yi, ... , Y砂.There are as many components as tokens in an utterance. A 

component Yi is O if the corresponding token is not marked, i.e. it is correctly pronounced, and 1 

if it is marked as mispronounced. 

Strictness. How many of the tokens presented are marked as mispronounced? Since the 

decision to mark a token is subjective, the number of marked tokens may vary depending on how 

strict an evaluator is in correcting mispronounced tokens. Furthermore, the bounda1-y between 

correct and wrong pronunciation may not be clear in some cases. The strictness is defined as the 

ratio between the number of rejected tokens and the total number of tokens. 

1 
n 

S=-
n LYi 

i=l 

(3.1) 

Agreement. To what extent do two annotations of mispronounced tokens differ? The 

measure Aj,k gives the relative share of tokens with the same annotation for a pair of evaluators 

(j, k). The more the evaluators agree with each other, the closer Aj,k is to the value 1.0. 

C orrelat10n. The concept of 

n 
1 

Aj,k = l --区Jyf-y~ り
n 

i=l 

(3.2) 

correlat10n 1s rntroduced in Sect10n 2.3.1. It is used to measure 

the reliability of scoring results by means of calculating the correlation between machine-based 

pronunciation scores and human ratings. Furthe1more it is employed to assess the similarity of 

rating behavior of multiple human evaluations for the same material (see e.g. [NFDWOO]). 

Another example can be found in [WYOO]. Witt el al. measure the overall similarity of 

rejection counts of mispronounced tokens marked by two evaluators. The rejection correlation is 

calculated as: 
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c(phone_reject) 
j,k ＝ 
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凸(c?n-μ り (c~-µり
m=l (3.3) 
M 

I: (品ー正） 2 舟 (c~-µ予
m=l m=l 

Here c~denotes the number of rejections of phoneme m annotated by evaluator k. μk is 

the mean number of phoneme rejections by evaluator k, i.e. the sum of all rejections counts of 

evaluator k divided by the number of different phonemes M. 

3.3 Human Evaluation 

Human evaluation of pronunciation quality can be carried out on any level. The costs for 

evaluation on all levels are usua11y ve1-y high. Fortunately, it is possible to obtain a rating for 

a unit higher in the hierarchy, e.g. word or sentence, if annotations are available for a lower level 

only, e.g. phoneme or word, by combining the lower level ratings. In the following sections, a 

survey of methods for direct evaluation on sentence or phoneme level is given. 

3.3.1 Sentence Level 

Cucchiarini et al. [CSBOO, CSBBOO] report about human evaluation and automatic scoring of 

pronunciation in read and spontaneous speech. Here, only the part about human evaluation of 

read speech will be summarized, since spontaneous speech is out of the scope of this thesis. 

From 60 non-native, 16 native and four native standard speakers two sets of five phoneticalJy 

rich sentences (about 60 seconds of speech per speaker) were recorded. The target language 

is Dutch. Evaluation is carried out by one group of phoneticians and two groups of speech 

therapists. Pronunciation quality is assessed by four different aspects: Overall pronunciation 

(OP), Segmental quality (SQ), Fluency (FL) and Speaking rate (SR). 

The grading scale for OP, SQ and FL ranged from 1 to 10. For SR a scale from -5 to +5 is 

used. The evaluation of OP, which was supposed to be an overall assessment of pronunciation, 

is carried out separately from the evaluation of the specific aspects of pronunciation, SQ, FL and 

SR. No specific instructions about the meaning of each scale are given to the evaluators. In order 
to put the human ratings on a common basis, each evaluator listened to uniform speech material 

from five different non-native speakers before proper evaluation started. 

Table 3 .1 shows the co汀elationbetween the four pronunciation measures. The correlation 

between the measures segmental q叫 ity(SQ) and overall pronunciation (OP) as well as between 

the measures fluency (FL) and speaking rate (SR) is highest. Least correlation was found between 

speaking rate (SR) and overall pronunciation (OP) or segmental quality (SQ), respectively. The 

authors point out that the high correlation between SQ and OP is in line with the general idea 

of pronunciation meaning "the degree of correctly articulating individual speech sounds". The 

fact that correlation among the four measures OP, SQ, FL and SR is rather high, is interpreted as 
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Table 3. 1: Correlation ben-veen different aspects of pronunciation and overall pronunciation 

score. Table is taken from [CSBBOOJ 

'Correlation II Segmental Q叫 ityI Fluency I Speaking Rate I 

゜二三~~~:;" II 0.90 I >;: I rn 
evidence that the dependency between the different aspects of pronunciation are actually high, 

rather than that the raters have not correctly used the different metrics. 

Measurements of inter-rater and intra-rater reliability were made. Reliability measured by 

Cronbach's a [Cro51] were reported to be satisfactory (0.72 < a < 0.99). Furthermore, 

correlations between the ratings of different expert groups were shown to be high (0.84 < r < 
0.96) after normalization by subtraction of mean and division by standard deviation is applied. 

Neumeyer and Franco et al. [NFDWOOJ also report about human evaluation of whole 

utterances. In contrast to Cucchiarini et al. only one metric to measure the overall pronunciation 

quality is employed. For the study non-native French speech spoken by 100 natives from the 

U.S. is recorded. Each subject reads 5,089 sentences from newspapers with 14 words on average. 

Each sentence is rated on a scale from 1 to 5 by five teachers, who are native speakers of French. 

The average inter-rater correlation calculated on a common set of 342 sentences is 0.65 on the 

sentence and 0.8 on the speaker-level. The values for the average inter-rater open correlation are 

0.76 and 0.87 respectively. Intra-rater correlation is 0.77 for 130 sentences evaluated twice by 

each rater. 

3.3.2 Phone Level 

Witt et al. [WYOO] report about human evaluation and scoring of non-native pronunciation on 

the phone level. The database available consists of non-native English speech of ten students (6 

female, 4 male) from several countries with an intermediate proficiency level. Each subject 

reads 40 phonetically balanced sentences and 80 sentences from "Penguin Readers", a text 

written for English teaching purposes with a limited vocabulary and simple grammar. Six 

trained phoneticians, who are native speakers of English, annotated insertions, deletions and 

substitutions of phones. All six evaluators labeled a set of 20 calibration utterances of one non-

native speaker. The remaining speech material was split up, so that the material of each speaker 

was annotated by only one evaluator. The phoneticians were instructed to transcribe each phone 

as closely as possible to non-native speech sounds. Additionally each word and each sentence 

was graded on a scale from 1 to 4. However, only the annotations on the phone level were used 

for experiments. 

The study reports acceptable values for correlation of phoneme rejections, coITelation of 

annotations and agreement between phoneticians for the calibration sentences: About 10-25% of 

the phonemes were marked as mispronounced depending on each annotator's strictness. When 

considering all pairs of two different evaluators, the average values of the performance measures 
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were: agreement A = 0.91, phoneme rejection correlation C(phone.reject) 

correlation of annotations C = 0.47. 
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0. 78 and cross-

In order to assess the pronunciation of a non-native speaker automatically, scoring metrics for 

pronunciation quality must be defined. The automatic assessment may take place on each of 

the different levels, i.e. phoneme-level, word-level or sentence-level. Pronunciation scores 

which have a high correlation with human ratings are favored to use them for a scoring method 

in a CAPT system (cf. Section 1.3). In the following sections several metrics for scoring 

pronunciation are introduced together with experimental results of con-elation analysis. 

The flow chart for pronunciation score extraction on the phoneme-level is shown in Figure 

3. 1. It illustrates all important processing steps, which have to be carried out to extract different 

kinds of pronunciation scores: The speech signal of the utterance to be analyzed is fed into a 

speech recognizer, which performs phoneme recognition and computes the forced-alignment, 

i.e. the segmentation into words and or phonemes together with an acoustic score of each 

token. Pronunciation scores are then calculated based on the segmentation, the recognition result, 

acoustic scores and statistics (e.g. phoneme duration) estimated on native speech data. 

speech 

signal 

native pronuncia110n 

dictionary 

Forced Alignment 

Phoneme Recognition 

utterance 

segmentation 

phoneme 

duration 

probabi Ii ty 

rate of speech 

phoneme 

likelihood 

phoneme 

posterior 

probability 

phoneme 
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Figure 3.1: Procedure for pronunciation scoring on the phoneme-level. 

3.4.1 Acoustic Scores 

In literature three kinds of acoustic scores are employed to define segmental pronunciation 

scores. These acoustic scores can be calculated from the speech recognition result and the forced 

alignment. 

• The likelihood L(ol入)of observation o given acoustic model入，

● the posterior likelihood L(入lo)of observation o, 
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• the likelihood ratio L(olふ)-L(ol入砂 ofobservation o given two models入1and心

In the following passages, examples for the usage of each kind of acoustic score are given. 

Witt et al. [WYOO] propose the goodness of pronunciation (GOP) metric for scoring the 

pronunciation quality of single phonemes. Their aim is to locate phonetic pronunciation errors, 

assess the closeness of each phoneme's pronunciation to a native speaker and identify systematic 

deviations in pronunciation. The GOP score together with a rejection threshold for each target 

language phoneme is applied to reject mispronounced phonemes. In the following a brief 

description of the basic GOP algorithm is given. 

The utterance to be scored is segmented into phonemes by the force-aligning with a native 

acoustic model, the word level transcription and a native pronunciation dictionary. The acoustic 

model represents each phoneme q as one HMM Aq・For each phoneme segment x, the acoustic 

likelihood log P(x入） for each phoneme model can be obtained. From these likelihoods the 

segment posterior score 5(9ov) (pix) is calculated for the reference phoneme p. The definition 

of the GOP score is: 

1 1 P(x内）P(p) 1 P(xl心)
5(gop)(plx) = -logP(plx) = - log~-log 

t t 区P(xl心)P(q) t maxP(叫）
qEQ qEQ 

(3.4) 

Here t denotes the number of frames of segment x and Q is the set of all phonemes in the 

target language. The approximation in Equation (3.4) is obtained by assuming that the prior 

probabilities P(q) of all phonemes q E Qare equal and substituting the segment evidence P(x) 

by the probability P(xl心)of the phoneme q with maximum segment likelihood log P (x I心)• In 
practice, the calculation of the GOP score is carried out in the following way: 

1. Obtain the forced-alignment (A) with the 

utterance transcription and a pronunciation dictionary. 

2. Carry out free phoneme recognition (B) on the utterance, 

i.e. the recognition network is a phoneme loop. 

3. Determine the likelihood of each frame for the phoneme model 

corresponding to the segment label in A and B. 

4. Calculate the GOP score for each phoneme segment p in A. The nominator of Equation 

(3.4) is calculated by summing up the likelihoods of frames belonging to phoneme segment 

p in A the denominator by summing up the corresponding frame likelihoods of B. 

Frame likelihood are easily obtained by dividing the segment likelihood with the segment 

length, measured in number of frames. The higher the value of 5(9op) is, the closer is the 

pronunciation of p to the native sound. In order to reject or accept a speech sound, a score 

threshold can be employed. The simplest approach is to use a uniform global threshold. The 

value of this threshold depends on the desired strictness. However, the authors do not give further 
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Table 3.2: Performance of human evaluation and the basic GOP algorithm; from [WYOO J 

[ Performance II Agreement A I Correlation C(phonueject) I Correlation C.) 

Human Evaluators 0.91 0.78 0.47 

GOP (global T) 0.89 0.71 0.46 

GOP (individual 7: 炉） 0.88 0.57 0.46 

GOP (individual Tp(b) ) 0.89 0.76 0.48 

details about how to choose the global threshold effectively. Further considerations concentrate 

on the development of phoneme-specific thresholds. Since the distribution of GOP scores is 

different for each phoneme and class of phonemes, e.g., vowels vs. fricatives, two approaches to 

obtain phoneme-specific thresholds are examined: 

• Linear combination of mean, standard deviation of the 
GOP score 5(9op) and an additive constant 

T?) =μS(p) +叩S(p)+ j3 

• Phoneme reJection counts of human evaluators 

(b) 1 
T = log万こk 保(p)
p 

k=l 
区叫q)
qEQ 

(3.5) 

(3.6) 

K denotes the number of speakers and ck(q) the number of rejections of phoneme q for 

speaker k. Q is the phoneme set of the target language. 

Phoneme rejection with the GOP algorithm is evaluated with a global and individual rejection 

thresholds for each phoneme by comparing its performance to a human annotation, as it was 

described in section 3.3.2. 

The performance of the basic GOP method with a global threshold is reported to be lower 

than the human evaluation in terms of the performance measures agreement A = 0.89, phoneme 
rejection count correlation C(phone_reject) = 0. 71 and cross-correlation of annotations C = 0.46. 

The correlation values increase to C(phone_reject) = 0.76 and C = 0.48 respectively for individual 
(b) 

thresholds'P based on the human rejection counts for each phoneme. However, performance 

is worse for individual thresholds 7, 炉basedon mean and standard deviation of GOP scores (cf. 

Table 3.2). 

In [WY97] Witt et al. report about evaluation results with a modified GOP metric 5(9op') 

which also incorporates probabilities of phoneme strings in contrast to the previous simplifying 

assumption of equal prior probabilities. However, no increase in scoring accuracy could is 

achieved. 

Neumeyer and Franco et al. [NFDWOO, FNDROO] employ several kinds of duration-

normalized likelihood scores for a sentence-based pronunciation scoring method. 
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With the forced-ah0nment of the target utterance, a likelihood score L(x) = logP(xl心)
can be calculated for each segment x given its phoneme label p and the corresponding HMM心
L(x) is the logarithmic probability of the best path through the HMM心forsegment x. Since 

this acoustic score depends on the segment length, it is normalized by the segment duration. A 

score for a whole sentence u = (xい・・．，叫） is obtained by summing up likelihood scores of 

all utterance segments a: り.Figure 3.2 illustrates the calculation of the utterance scores defined in 

Equation 3.7. 

L(x) 

phoneme segment 
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segment 
scores 

total 
sentence likelihood 
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区L(xi)
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global (U) = n 

i=l 
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t 
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Figure 3.2: Relationship beti,veen the likelihood scores of Equation (3. 7). 

(3.7) 

Almost similar to the GOP measure employed by Witt et al. a frame-based phoneme 

posterior probability P(pJx』isformulated. Denoting the set of all phonemes with Q, the 
prior probability of phoneme q with P(q) and the probability of the current observation xi with 

P(xiJq), it is defined as: 

P(plふ）＝
P(xiJp)P(p) 

I: P(xiJq)P(q) 
(3.8) 

qEQ 

By summing up the logarithm of P(pJふ)for all frames of the segment x and dividing by 
the number of frames t of segment x a duration-normalized segment score 5(se9ment) (x) can be 

calculated. A sentence posterior score is then available via 

1 
n S(segment) 

掌7t¥u)=ーLpost t (xj) 紺。:{ment¥x)= logP(pJェ） (3.9) 
J I: n j=l i=l 

The posterior probability P(pJxi) is calculated in the same way as for the GOP measure, 

which was already described in previous passages. However, the calculation of the posterior 
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probability employed for computation of S 
(sent) . 
post 1s more precise, smce no approx1mat1on of the 

denominator (see Equation 3.4) is done. 

The difference L1 -L2 of two log-likelihoodsムandL2 is called likelihood ratio (LR). L1 

andら arescores for a single speech frame or a whole phoneme or word segment. The LR is 

employed to compute a pronunciation score from two lattices for the same utterance. The lattices 

may originate from a forced-alignment or from word or phoneme recognition. Furthermore 

different acoustic models may have been used for alignment or decoding. The subtraction of L2 

from L1 can also be regarded as normalization of score L1. The dynamic range of acoustic scores 

is very large. This brings about the problem that the acoustic score for one segment influences 

the scores of other segments, e.g. when calculating a sum score for a whole utterance. The LR 

alleviates this problem, because the likelihoods L1 andら areof the same order of magnitude 

and the LR is likely to have smaller values. 

For example, Neumeyer et al. [NFDWOO] report that the rating to score con-elation increases 
(ratio) 

if using the likelihood ratio ScD/cr(u), which is defined in Equation (3.10), instead of the local 
(sent) 

average likelihood slocal (u). LcD位） is the likelihood of segment x for the context-dependent 
(CD) model, Lc1(x) for the context-independent (CI) model. 

s(ratio) 
CD/CI(u) = -

l n Lcn(xi)ー LcI(xi)

L n、
i=l 

ti 
(3.10) 

Nakagawa et al. [NMN03] also employs several likelihood ratio scores, e.g. the ratio of a 

native and a non-native acoustic score. The rating-score correlation could be improved from 0.30 

for a traditional duration-normalized likelihood score to 0.50 for the LR. 

3.4.2 Rate of Speech 

The rate of speech (ROS) measures how many speech tokens a speaker produces during a certain 

time interval. The rate of speech in terms of phonemes R(phon) is defined as the average number 

of phonemes articulated every second [NFDWOO], the word-based rate of speech R(word) as the 

average number of words per second. Which measure is preferable depends on the application. 

For example, an important normalization of phoneme durations can be achieved by multiplication 
with R(phon) (cf. Section 3.4.3). 

There are other measures similar to rate of speech, which are defined in [CSB97] and 

[CSBBOO]. For example, the phonation-time ratio and the articulation rate. While the rate 

of speech is defined as the ratio of number of phones and duration of speech with pauses, 

articulation rate is defined as the ratio of the number of phones and the duration of speech without 

pauses. The phonation-time ratio is the ratio of the duration of speech without pauses and the 

duration of speech with pauses. Experimental results in [CSBBOO] showed, that the correlation 

between these ROS measures and the aspect fluency (FL) and speaking rate (SR) of pronunciation 

is highest, varying between 0.8 and 0.9. The correlation for segmental quality (SQ) is between 

0.6 and 0.7. 
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3.4.3 Duration and Timing Scores 

Duration of tokens and pauses between tokens in non-native speech may significantly differ 

from native speech. This phenomenon is caused by the unfamiliarity of a non-native speaker 

with certain words or speech sounds. Consequently, a non-native speaker needs more time to 

think about how to articulate [NFDWOO]. 

A phoneme duration statistic is estimated from the phoneme durations obtained by forced-

alignment of native speech data with a native acoustic model. The duration probability 

Pj翌゚n)(tip, x) of a phoneme p with duration t is modeled with a histogram function. The 
(sent) 

sentence level durat10n score S dur (u) is defined by the sum of logarithmic duration 

probabilities of each phoneme segment x of the utterance u. 

1 
n 

鵡~nt\u) =一LlogP,此~on)(f (ti) !Pi, Xi) 
n 

i=l 

(3.11) 

f (t) is a function for duration normalization. For a text-independent n01malization Neumeyer 

et al. propose to multiply the duration t of each phoneme segment x by the rate of speech R, 
leading to the Equation J(t) = t * R(phon)_ 

The typical length of syllables is different for each language. Neumeyer et al. [NFDWOO] 

examined this phenomenon for scoring. They define syllabic periods as the time interval between 

the center vowels of two syllables. These syllable durations are also n01malized by multiplication 

with the rate of speech. Scores based on probabilities of syllable durations are refe汀edto as 

timing scores. 

3.4.4 Recognition Accuracy 

Recognition performance for non-native speech is usually lower than for native speech when 

recognition is performed with a native acoustic model. The closer a non-native speaker's 

pronunciation is to standard pronunciation, the better speech recognition will work and the higher 

recognition accuracy that can be expected. Consequently, recognition accuracy may be a good 

indicator of a non-native speakers pronunciation proficiency [NFDWOO]. 

3.4.5 Other Prosodic Features 

In order to further improve the scoring based on the three most approved features, posterior 
phoneme likelihood, phoneme duration and timing scores, Teixeira et al. [TFs+oo, TFS+Ol] 

investigated pronunciation scoring with prosodic features. The features they employ are based 

on the fundamental frequency Jo, pause statistics and also include lexical stress information. 

Except for some pause-related features, e.g. duration of the first or second longest inter-sentence 

pause or time interval between two pauses, the correlation between each prosodic feature and 

human ratings is less than 0.3. Moreover, when combining the three most approved features with 

one or more of the new prosodic features only very slight improvements in the human rating to 

score correlation can be observed. 
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Table 3.3: Comparison of several pronunciation scores; from [NFDWOO ]. 

I Correlation of scores with ratings 11 Sentence level J Speaker level I 

Global likelihood S a(sloebnatl ) 0.18 0.31 

Local likelihood S l(osceanl t) 0.29 0.48 

Posterior likelihood S v(soesnl t) 0.52 0.84 

Phoneme recognition accuracy 0.40 0.47 

Duration score S d(suer nt) 0.41 0.86 

I Human evaluation 0.65 0.80 

3.4.6 Correlation with Human Ratings 

Neumeyer et al. [NFDWOO] analyzed the correlation between human ratings and the different 

scores explained in this section. The analysis was based on 100 non-native speakers and 30 

utterances per speaker. Results are summarized in Table 3.3. On the sentence level, correlation 

of any scores with the human ratings is lower than the average inter-rater correlation. The 

posterior likelihood and the phoneme duration score lead to the best result for both sentence 

level and speaker level correlation. The correlation values for these two scores are even better 

than the speaker level inter-rater co汀elation(though not significantly better w.r.t. to the number 

of speakers). Adding more scores like global likelihood or phoneme recognition rate did not 

improve correlation with human ratings. 

3.5 Combination of Scores and Classification 

From section 3.4. 1 through section 3.4.4 several scores (e.g. likelihood, duration) for automatic 

assessment of pronunciation on different levels (e.g. phoneme, sentence) were introduced. To 

build a robust system for automatic pronunciation scoring, scores, which proved to have a high 

correlation with human ratings, have to be combined. 

When regarding scores as features and scoring as classification, the task is to construct a 

classifier which is able to assign one out of several discrete levels of overall pronunciation quality 

to each token like a human rater who selects a grade e.g. from 1 to 5. Franco et al. [FNDROO] 

define the problem of automatic pronunciation assessment as estimation of a random variable 

which measures a particular or the overall pronunciation skill. 

When denoting the pronunciation rating of a token with h and the different scores with si, 

the task is to find a functional dependency 

h = J(s1, ... , Sm) (3.12) 

between the scores and the human ratings. Since in reality this kind of mapping is usually 

not perfect, the goal is to find at least a good approximation h会 J(s1,... , sm) or a function f 

which correlates well with h. When applying the mean square error (MSE) criterion to Equation 

(3.12), the following optimization problem has to be solved: 
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f* = minE[h 2 
f 

-J(s1, ... , Sm)] が =E[hlsい・ ・． ，玩 l (3.13) 

The solution is the conditional expected value h* of the human rating h given the scores 

si. In the following, several approaches employed by Franco et al. [FNDROO] to determine 

J(sい..., sm) are explained in more detail. They differ in the assumptions which can be made 

about the score distributions or about the relationship between human ratings and scores. 

Distribution Estimation. Th d. ・1  e con 1t1ona expectat10n can directly be calculated via the 

conditional probabilities P(hlsい..., sm)- Applying the Bayes rule to P(hls1, ... , sm) in 

Equation (3.14) leads to Equation (3.15) with the probability density functions P(s1, ... , s叫h).

が=E[h!s1, ... , s』 =~h*P(h l sい... , Sm) (3.14) 

P(hls1, ... , Sm)= 
P(sい...)s叫h)P(h)= P(s1, ... , smlh)P(h) 

P(s1, ... , Sm) 区P(s1,... ,s』g)P(g)
(3.15) 

g 

Since these probability functions are not known a priori, they have to be estimated. One 

possibility is to approximate these functions with discrete probability distributions. Therefore 

the score space spanned by the scores si is discretized by vector or scalar quantization (VQ). 

The probabilities P(V(s1, ... , sm)lh) can be obtained by counting the number of occurrences 

of each VQ index V(s1, ... , sm) for each human rating hand then dividing each count by the 

number of occurrences of each corresponding human rating. 

Linear Combination. Assuming there is a linear relationship between the human ratings or 

the scores are distributed normal, the conditional expected value of h is a linear combination of 

the scores si. Their weightings ai and the bias b can be obtained by linear regression (cf. Section 

2.3.5). 

h = a1釘十 a2的＋・ ・・+aM紅 +b (3.16) 

Artificial Neural Networks. In the general case, i.e. any kind of score distribution and any 

kind of relationship between human ratings and scores, a nonlinear function J(s1, ... , sm) has 

to be estimated. Neural networks with a sufficient number of hidden layers and suitable neuron 

activation functions are in general capable of approximating any function [DHSOl]. The input to 

the network are the scores si. For the number of outputs there are two choices: Only one output 

neuron for all values of h, or one output neuron for each human rating value, i.e. if there are five 

human grades there will be five output neurons. 

Regression tree. An alternative to estimate the distributions P(hls1, ... , sm) of the human 

grades as described before is to employ a regression tree. Such a tree can be constructed with the 

CART framework (cf. Section 2.4.1). 

Results. Franco et al. [FNDROO] carry out numerous experiments for different combinations 

of scores with the approaches described in the last passages. Their objective was sentence-level 

scoring on a discrete scale from I to 5. The criterion for selection of the scores to be combined 
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is a high correlation of these scores with human ratings and for each additional score a low 

CO汀elationwith already employed scores. Important results are summarized in Table 3.4. 

Best results were achieved with a neural network leading to a correlation of 0.64 between 

scores and human ratings, which is almost as high as the inter-rater correlation of 0.65 (cf. Table 

3.3). The performance of score combination with regression trees and discrete distributions 

was slightly lower than neural networks but sti11 acceptable. Furthermore, construction of 

distribution-based or regression-tree-based classifier is much less computationa11y intensive and 

needs less experimentation than neural network training and design. 

Table 3.4: Combination of several scores lead to a. higher correlation between scores and 

human ratings. The objective was sentence-level sconng on a discrete scale from I to 5. Best 

performance was achieved with a neural network; from [FNDROO]. 

[ Scores II Combination Method I Correlation I 

Posterior score (P) None 0.58 
Duration score (D) None 0.47 
Timing score (T) None 0.35 

P+D+T Linear Combination 0.59 

P+D+T Discrete Distribution 0.62 

P+D+T Regression Tree 0.62 

P+D+T Neural Network 0.64 

3.6 Speaker Scoring 

Recently Minematsu [Min04] proposed a method for obtaining a speaker score directly from a 
speaker-dependent acoustic model without using any information from sentence or lower level 

scoring. The motivation of this approach is the argument, that speech recognition technology is 

still unreliable and a more robust scoring paradigm should be employed for a CALL system. 

The scoring method is based on a distortion measure. Initially, a simple speaker dependent 

acoustic model is constructed from 60 phonetically balanced sentences. The model consists 

of 3-state HMMs with single mixture Gaussian distributions of spectral features. The distance 

between two phonemes can be defined via the Bhattacharyya distances [Nie03] between the two 

model distributions. Minematsu shows, that the Bhattacharyya distance is invariant against any 

affine transformations, i.e. rotation, shear and shift, of the underlying spectral feature space. 

The distances between each phoneme model pair define a so-called "universal structure". This 

universal structure can be calculated for each native and non-native speaker. 

A structural distortion measure can be defined between two structures. To measure this 

distortion the structures have to be aligned. The center of gravity of the structures is calculated 

by shifting one structure that the two centers of gravity fall together and rotating them until the 

sum of angles between each pair of edges becomes minimal. The structural distortion can then 

be expressed as the sum of edge pair length differences. 
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This structural distortion measure had a correlation of -0.88 with human ratings for 
a set of 200 non-native Japanese speakers of English. While for inter-speaker distances 

based on the average HMM distance there were almost no differences for American-Japanese 

and American-American speaker pairs, the distribution of American-Japanese inter-speaker 

structural distortions for vowels were different from American-American distortions. 

3. 7 Conclusion 

In previous work on pronunciation scoring, which is described in the last sections, methods 

for detecting血 spronouncedphonemes, and methods for the automatic assessment of the 

pronunciation quality of utterances and the pronunciation skill of speakers have been developed. 

Promising results are achieved, i.e. the agreement between human raters and the automatic 

method w.r.t. mispronounced tokens is high, and there is also a rating to score correlation 

comparable to the inter-rater correlation at the utterance level. 

The pronunciation scores with the highest con疇elationto human ratings for the overall 

pronunciation quality of utterances are the sentence posterior score, the recognition accuracy, 

and duration and timing scores. Scores based on prosodic features only had a low correlation 

with the human ratings. 

Investigations in previous work are carried out for adult speech of either many adult speakers 

having the first language in common or few adult speakers with different first languages. For 

this thesis two databases are available: The ATR SLT non-native speech database with English 

speech data with about 100 non-native English speakers data from several accent groups and 

the FAU LME non-native children speech corpus contains speech of German children reading 

English texts. 

Since there are annotations available on the word, utterance or speaker level, the main tasks 

in this work are the detection of mispronounced words, scoring the pronunciation quality of 

utterances and obtain an assessment of a speaker's pronunciation skill. Additionally, the human 

annotations of the ATR SLT database are analyzed in detail. 



Chapter 4 

Speech Data 

A speech database with native English speech for building the acoustic model of a word 

recognizer, and a non-native English speech database with human annotations regarding 

pronunciation quality are necessary for conducting pronunciation scoring experiments. This 

chapter describes each database. Results of overall analysis for the human labels of the ATR SLT 

non-native speech data are also reported. 

4.1 Non-Native Speech Data Collected at ATR SLT 

Speakers and Contents. English speech from non-native and a few native speakers was 

collected at the Spoken Language Translation Research Laboratories (SLT) of ATR. The subjects 

are from several countries with different mother tongues. The first language of most speakers 

was Japanese, Chinese, German, French and Indonesian (cf. Table 4.1). About half of the 

subjects are or were members of ATR at the time of the recording. The remaining subjects in the 

database were hired from an agency. Each subject had to read a uniform set of about 150 English 

sentences. There are 25 utterances with credit card numbers, 48 phonetically rich sentences 
(TIMIT SX set) and six hotel reservation dialogs with 73 sentences in total (see overview in 

Table 4.2). The total duration of all SX sentences of the 96 non-native speakers is 6.4 hours. 

Table 4.1: Distribution of speakers'first languages in the ATR SLT database. 

I NNS-DB II # Ma_le I # Female I Age I 
Chinese 16 2 21-52 

French 15 1 21-42 

German 15 

゜
23-43 

Indonesian 15 1 24-43 

Japanese 15 ， 21-45 
other 5 2 31-42 

[ total ~81 15 三

51 
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Table 4.2: Detailed contents for each speaker of the ATR SLT non-native English database. 

Set Contents l_# Word~tter~ 

48 phonetically rich 

SX sentences from the 395 48 

TIMIT database 

TAC22012 252 19 

TAS12008 Hotel 104 ， 
TAS12010 reservation 144 12 

TAS22001 dialogs 162 10 
TAS32002 182 13 

derno02 70 10 

DIGITS Credit card numbers 200 25 

There are also recordings of some sentence sets for a few native speakers in the database. 
The data of these speakers are used for validation of the pronunciation scoring system. 

Recording Conditions. Recording was carried out in an acoustic booth with reverberant-

free walls. As recording equipment a Sennheiser close-talking microphone (HMD-410) and 

a Sony DAT Recorder (DTC-2000ES and TCD-Dl 00) were employed. The speech data was 

downsampled to 16-kHz with 16-bit precision. 

Each sentence a subject had to read was displayed on a computer screen. The subject started 

and stopped the recording by himself. The recording was supervised by ATR staff, including 
the author. Each subject reads each sentence us叫 lyonly once for recording. However, he/she 

was asked to repeat the recording of a sentence, when he/she completely misread a word, forgot 

to utter a word, made too long pauses between words or noise during recording. Furthermore, 
a subject was allowed to repeat the recording of a sentence, if he/she was not satisfied with the 

recorded utterance. 

Evaluators and annotations. For a pronunciation scoring system human made labels are 

necessary as a reference in order to validate the system. 15 English teachers were hired via 

an agency each for seven hours (six hours working time, one hour break). All teachers were 

native English speakers from North America. Further information about each annotator, e.g. 

English teaching experience, can be found in Appendix B. Each evaluator had to listen to 1,152 

utterances (48 TIMIT sentences times 24 non-native speakers) in order to assign a utterance-

level rating from 1 (best) to 5 (worst) in terms of pronunciation and fluency to each utterance and 

mark any words which are mispronounced. In total the speech data of 96 non-native speakers 

was evaluated, i.e. since there are 15 evaluators and each evaluator annotated the data of 24 

non-native speakers, each speaker is assessed by three to four evaluators. The next passages will 

explain details and results of the human evaluation procedure. 

Human evaluation procedure. Each evaluator was given an instruction sheet as it is shown 

in Appendix B. In the beginning, each evaluator had to listen to a uniform set of 22 calibration 

sentences. This set consists of 22 different sentences of 22 different non-native speakers. The 

evaluator had to assign a rating from 1 to 5 to each calibration sentence considering pronunciation 
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and fluency. The selection criterion for the speakers was their recognition rate in the hotel 

reservation tasks TAS22001 and TAS32002 with a native acoustic model. For each of the five 

major first languages, one speaker with the highest, one speaker with the lowest and one speaker 

with a medium recognition rate were selected. Furthermore, one sentence of one speaker each of 

the remaining first languages (Bulgarian, Spanish, Portuguese, Hindi, Sinhalese, Hungarian and 

Korean) was included. Since the evaluators were asked to assign level l to the best utterances 

and level 5 to the worst utterances and to use each level at least once, they had an anchor for 

future ratings. 

In the next step 48 sentences of 24 speakers were presented separately to the evaluator. 

The order of presentation was determined randomly and was different for each evaluator. The 

evaluator had first to listen to an utterance, mark mispronounced words and finally select a level 

of proficiency. For these utterance level ratings, the evaluators were instructed to ignore sentence 

intonation, for marking of words to consider phonetic pronunciation errors but to ignore wrong 

lexical stress. The evaluator was not allowed to go back to already processed utterances and 

change previously assigned labels. See Appendix B for screen shots of the web interface used 

for human evaluation. Results of the human evaluation are discussed in Chapter 5. 

4.2 FAU LME Children Speech Corpus 

The corpus contains speech data from 57 German children. There are 26 male and 31 female 

children. The age of the children is between 10 and 15. Each child reads English sentences. 

A large number of sentences consist only of single words. The sentences are made from a 

vocabulary of 1,077 words. There are 4,630 utterances or 3.4 hours of speech in total. 

The corpus has been annotated by one German student of Anglistics. Instead of rating each 

utterance separately, the annotator assigned only one overall rating of pronunciation to each 

speaker. Most of the speaker level ratings are discrete on a scale from 1 to 5. There are only 

three ratings of the form "a-b". These ratings will be treated as atb. The distribution of the 

ratings is shown in Figure 4.1. The ratings are almost distributed normal with a mode of 3. 

Furthermore the annotator marked mispronounced words and transcribed insertions, 

substitutions and deletions of words, non-speech noise and garbage words. A statistic of the 

relative number of words considered mispronounced for each speaker is also shown in Figure 

4.1. The distribution is different from the distribution of the ratings, but there is still a correlation 

Table 4.3: Correlation between the relative number of marked or substituted words (MisRatio), 

the speaker level human rating (HumRating), the word accuracy (WordAcc) with a unigram 

language model, and the phoneme accuracy (PhonAcc) with a zerogram language model (FAU 

LME data). 

I Correlation I HumRating I WordAcc I PhonAcc I 

＇悶悶:~t~ng I +0.67 I 点認 I ば謬
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Figure 4.1: Distribution of the ratings and the relative share of marked or substituted words for 

each speaker (FAV LME data). 

of 0.67 between the relative number of words marked and the speaker rating (cf. Table 4.3). The 

correlation between the speaker rating and the word or phoneme accuracy are both -0.49. These 

values of the correlation coefficient are lower than for ATR SLT data, as the results in Section 

6.2.4 will demonstrate. 

Any word which is marked as mispronounced or which is transcribed as an insertion 

or substitution is considered as candidate for the class X of mispronounced words in the 

experiments. Furthermore garbage words, e.g. words which are aborted during reading, are 

also members of class X. 

4.3 Wall Street Journal (WSJ) Corpus 

The Wall Street Journal Corpus was collected in two phases: the pilot project CSR-WSJO in 1991 

and the main project CSR-WSJl from 1992 to 1993. The collection has been sponsored by the 

Advanced Research Projects Agency (ARPA) and the Linguistic Data Consortium (LDC) and 

has been carried out by MIT, Texas Instruments and SRI International. WSJ 1 contains about 73 

hours (approx. 78,000 utterances) of speech for training and 8 hours (approx. 8,200 utterances) 

of speech for testing purposes. Most of the training data is read speech style. However most of 

the test data are from spontaneous dictation by journalists. 

For this thesis only read speech data from non-journalists subjects is employed for training 

and evaluation of a speaker-independent acoustic model. The data was recorded with a 

Sennheiser close-talking head-mounted microphone. The speakers are from North America 

and read texts from the Wall Street Journal. The selected training set consists of about 30,000 

utterances of 200 speakers from WSJl and 7,200 utterances from WSJO. 

In order to evaluate the performance of the acoustic model built with the training data, the 
Hub2 test set was used. It comprises 20 utterances of ten native speakers each. The test set is 

designed for a 5000 word bigram closed-vocabulary grammar. 
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4.4 WSJ Cambridge Corpus 

The WSJCAMO corpus is derived from the Wall Street Journal text corpus. It consists of British 

English speech recorded from 140 native speakers uttering about 110 utterances each. There are 

92 training speakers. The age of most training speakers is between 18 and 28. Only 16 speakers 

are of age 29 or older. There are more than 18 hours of training speech data in total. Recordings 

were carried out in an acoustically isolated room and made with a Sennheiser close-talking head-

mounted microphone [RFP+ 94]. 

4.5 TIMIT Corpus 

The TIMIT corpus was sponsored by the Defense Advanced Research Project Agency (DARPA) 

and set up by MIT, SRI and Texas Instruments. The corpus contains a total of 6300 sentences, 

10 sentences spoken by each of 630 speakers from eight major dialect regions of the U.S. These 

10 sentences are from three different sets: 

• SA: dialect sentences, which are meant to expose the dialectal variants of speakers 

• SX: phonetically compact sentences, which are designed to provide a good coverage of 

pairs of phones 

• SI: phonetically diverse sentences, which are selected from the Brown Corpus and the 

Playwrights Dialog in order to add diversity in sentence types and phonetic contexts 

There are two SA, five SX and three SI sentences for each speaker. In this thesis the corpus 

is used in order to build a phoneme bigram grammar which is used to calculate the probability of 

phoneme strings obtained by unconstrained phoneme recognition of non-native speech data. 

4.6 PF _STAR BE Children Speech Corpus 

The goal of the PF _STAR project [PFS] is to establish baselines for automatic speech recognition 

performance for children's speech in a range of European languages [DWR]. Read and 

spontaneous Italian, German, Swedish and British English (BE) speech was collected during 

the project. The following description is only for the read speech part of the British English 

corpus. 

There are 159 subjects from 4 years of age up to 14. Each subject reads 25 digit triples, a 

list of 40 single words and longer sentences, which are taken from a set of 460 phonetically rich 

SCRIBE sentences. The SCRIBE sentences are the anglicized version of the TIMIT sentences. 

The SCRIBE sentences were divided into two sets of difficult degree. Children up to 8 years 
read only one list of ten sentences, and the older children two lists of ten sentences. The corpus 

comprises 14 hours of read speech in total. 
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The training data set of the corpus consists of 7.4 hours of speech from 86 children. It 

is employed in this work for training a monophone acoustic model for recognition of children 

speech and as native validation data for pronunciation scoring of children speech. 



Chapter 5 

Analysis of Human Annotations 

In Section 5.1 results from the analysis of the human evaluation for the SX sentences of the 

ATR SLT non-native database are reported. Inter-rater correlation for the utterance level discrete 

ratings, the agreement between annotators with regard to the marking of mispronounced words 

and statistics of word markings are investigated. The confidence of the human ratings for the 

utterance and speaker level is examined in Section 5.2. 

In Section 5.3 a word mispronunciation model is proposed. With that model it is 

possible to calculate the mispronunciation probability of phonemes if only information about 

mispronounced words (i.e. markings of mispronounced words) and the phonemic transcription 

of words is available. 

5.1 Results of Human Evaluation 

In order to analyze to what extent the raters agreed with each other regarding utterance ratings 

and the marking of mispronounced words, the performance measures introduced in Section 3.2 

are employed. 

Correlation analysis for word, utterance and speaker level. Tables 5 .1, 5 .2 and 5 .3 

show the inter-rater correlation for word markings, utterance level and speaker level ratings 

respectively. The speaker level ratings were obtained by averaging the ratings assigned to the 

48 phonetically rich sentences available for each speaker. 

The inter-rater correlation for word markings is between 0.16 and 0.52. Its average for all 

evaluator pairs was 0.34. This value, which is even lower than the correlation of 0.47 which was 

reported for an evaluation on phoneme level in a previous study (cf. Section 3.3.2), indicates 

that there was hardly a common basis among most of the evaluators regarding the notion of 

"mispronounced words". The decision to mark a word as mispronounced is obviously very 

subjective. 

The utterance level correlation ranged between a very low value of 0.28 and an acceptable 

value of 0.65. The average correlation for all rater pairs was 0.49. In previous work of Franco 

and Neumeyer et al. an average inter-rater correlation of 0.65 was reported (cf. Section 3.4.6). 

The reasons for these comparably low correlations could be one or more of the following: 

57 
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Table 5.1: Word level inter-rater correlation for the ATR SLT data. 

8 I 12 I 16 I 20 I I EvalID II 3 7 I 11 I 15 
+1.00 +0.34 +0.40 +0.28 3 +1.00 +0.47 +0.36 +0.34 

12 II +1.00 +0.23 +0.16 7 +1.00 +0.37 +0.35 

16 II +1.00 +0.36 11 +1.00 +0.31 

s ， 13 17 I Eva!ID II 2 6 

+ 1 .oo I +o.44 +0.43 +0.23 2 +1.00 +0.41 +0.52 

+1.00 +0.37 +0.21 6 +1.00 +0.42 

13 II I +1.00 +0.20 10 +1.00 

Table 5.2: Utterance level inter-rater correlation for the ATR SLT data. 

8 12 16 20 I EvalID II 3 I 7 I 11 I 15 
+1.00 +0.37 +0.63 +0.64 3 +1.00 +0.55 +0.48 +0.44 

12 II +1.00 +0.40 +0.39 7 +1.00 +0.47 +0.39 

16 II +1.00 +0.62 11 +1.00 +0.41 

/ EvalID I/ s ， 13 17 I EvalID II 2 I 6 10 I 
5 +1.00 +0.53 +0.45 +0.39 2 +1.00 +0.61 +0.65 ， +1.00 +0.39 +0.40 6 +1.00 +0.60 

13 +1.00 +0.28 10 +1.00 

1. The raters were asked to assign one rating for the two different aspects pronunciation and 

fluency. The subjective importance of these aspects may be different for each evaluator. 

2. Disagreement between evaluators concerning the term "mispronounced". Although the 

evaluation instructions are fairly clear ("consider only phonetic errors and ignore lexical 

stress"), some raters reported after evaluation that they were unsure, whether to mark only 

words which are not intelligible or all words which are pronounced phonetically incorrect. 

3. Different usage of the grading scale despite initial calibration with a set of 22 utterances 

balanced with respect to the pronunciation quality of the corresponding speakers. For 

example, one rater (ID 16) reported, he changed his rating behavior during evaluation. 

Furthermore, each evaluator's experience in teaching English may have influenced the 

grading behavior. 

4. There was at least one evaluator (ID 12) who did not diligently evaluate all utterances, 

since he was found out skipping at least some of the utterances, i.e. he assigned any rating 

without listening to the utterance in order to finish his work quickly. This finding could 

also apply to some of the other evaluators with low correlation values, but is rather unlikely, 

since raters'performance was monitored. 
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Table 5.3: Speaker level inter-rater correlation for the ATR SLT data. 

I EvalID 11 8 I 12 I 16 I 20 I I EvalID II 3 7 I 11 I 15 
8 +1.00 +0.85 +0.94 +0.97 3 +1.00 +0.94 +0.85 +0.96 

12 +1.00 +0.88 +0.85 7 +1.00 +0.90 +0.90 

16 +l .00 +0.94 ] ] +1.00 +0.84 

I EvalID 11 5 ， 13 17 I I EvalID II 2 6 10 I 

5 +1.00 +0.93 +0.95 +0.95 2 +1.00 +0.94 +0.91 ， +1.00 +0.88 +0.86 6 +1.00 +0.94 

13 +1.00 +0.89 10 +1.00 

A further aspect for reasons (1) and (3) is, that the evaluators were instructed to consider 

aspects like "strong non-native accent", "mispronounced words", "long between-word pauses", 

"stuttering", etc. as guideline, but it is unknown which characteristic of non-native speech 

influences a human evaluator to what extent in his/her rating decision. 

Nevertheless, there were six evaluator pairs with a correlation greater or eq叫 to0.6, which 

indicates that the evaluation procedure is of acceptable quality compared to results reported 
in literature. There was a certain extent of agreement among raters about the notion of 

pronunciation and the grading scale. An analysis of evaluator's subjectiveness in Section 6.2.4 

will support this hypothesis. 

The correlation between the mean rating of all but one evaluator and the remaining evaluator 

for a speaker or an utterance is refe汀edto as open co汀elation(cf. Section 3.2). This performance 

measure can be calculated for each rater. The utterance level inter-rater open correlation is 

between 0.45 and 0.70, the speaker level open correlation between 0.88 and 0.98. The average 

value for the open correlation is 0.60 on the utterance level and 0.94 on the speaker level. These 

values may be taken as a reference for the accuracy of an automatic pronunciation scoring system. 
Such a system can be considered to work reliably if its scores have a correlation to averaged-

ratings as high as the open correlation. 

Relationship between utterance ratings and word markings. The evaluators marked 

Table 5.4: Correlation between the number of marked words and the discrete sentence 

level rating, and strictness for each evaluator. Most evaluators are strongly influenced by 

mispronounced words in their rating decision (ATR SLT data). 

Evaluator ID 2 3 5 6 7 8 ， 
Correlation +0.77 +0.65 +0.64 +0.72 +0.65 +0.60 +0.45 

Strictness 0.14 0.10 0.05 0.12 0.18 0.04 0.04 

Evaluator ID 10 11 13 15 16 17 20 

Correlation +0.71 +0.83 +0.36 +0.50 +0.63 +0.86 +0.85 

Strictness 0.06 0.09 0.04 0.17 0.09 0.29 0.28 
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Table 5.5: Most frequently mispronounced words ranked by relative and absolute frequency in 

the ATR SLT corpus. The values in the third columns is the absolute number of how often the 

word was marked as mispronounced by any of the evaluators for any speaker. The values in 

the second columns are obtained when dividing the absolute frequency by the frequency of each 

word in the utterance transcriptions and the number of .speakers. 

Word relative absolute [ Word 11 relative I absolute j 

EXTRA 1.00 96 THE 0.24 562 
EXPOSURE 1.00 96 WERE 0.47 179 
EXAM 1.00 96 OIL 0.58 111 
BOX 1.00 96 A 0.12 108 
MIRAGE 0.91 87 EXTRA 1.00 96 
CENTRIFUGE 0.85 82 EXPOSURE 1.00 96 
BUGLE 0.85 82 EXAM 1.00 96 
FRANTICALLY 0.84 81 BOX 1.00 96 
OASIS 0.77 74 MIRAGE 0.91 87 
PURCHASE 0.75 72 CENTRIFUGE 0.85 82 

mispronounced words before they made their decision for the sentence level ratings. 

Consequently, the absolute number of words marked may strongly influence a human rater. The 

correlation between this number and the sentence level rating was calculated and is shown in 

Table 5.4 separately for each evaluator. The average correlation is 0.63, supporting the initial 

suggestion. Furthermore the higher the strictness (Eq. 3.1) of a rater is, the higher word-

markings to sentence-rating co汀elationseems to be, as there is a correlation of 0.73 between 

these two values. 

Mispronounced words. How many words an annotator marked as mispronounced depends 

on his strictness (Equation 3.1). While some annotators will mark a word if it is unintelligible, 

others will mark a word if just one phoneme was pronounced incorrectly. Each evaluator's 

strictness was calculated by dividing the number of marked words by the total number of words 

in the presented utterances, which is 24 speakers times 395 words equal to 9,480 words. The 

comparison of strictness values of two different rater groups is not reasonable, since the raters 

of each group evaluated utterances of different speakers with presumably different pronunciation 

skills. Consequently, the number of mispronounced words varies. 

The ten most often marked words are shown in Table 5.5. The complete mispronunciation 

index of words as well as the ratio of words which are marked as mispronounced for each non-

native speaker can be found in Appendix A. From the listing it is apparent that words which 

consist of many phonemes are more likely to be marked as short words. 

Reference ratings. In order to obtain more robust pronunciation labels, which reflect the 

true pronunciation rating, the annotations of several human evaluators have to be combined 

effectively. For the sentence level ratings the combination can easily be carried out by averaging 

the ratings of all evaluators for the same utterance, since they consist of integer values on a linear 

scale from 1 to 5 and it may be assumed, that the human measurements are distributed normally. 
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Table 5.6: Each evaluators strictness and inter-rater open correlation for word markings, 

utterance level ratings, and speaker level ratings obtained by averaging the utterance level 

ratings (ATR SLT data). 

I EvalID II Strictness I Word level I Utter level I Speaker level_j 

2 0.14 +0.55 +0.70 +0.94 

3 0.10 +0.51 +0.61 +0.96 

5 0.05 +0.45 +0.60 +0.98 

6 0.06 +0.47 +0.67 +0.96 

7 0.09 +0.53 +0.59 +0.95 

8 0.04 +0.44 +0.70 +0.97 ， 0.04 +0.42 +0.57 +0.91 

10 0.12 +0.57 +0.70 +0.94 

11 0.18 +0.45 +0.56 +0.88 

12 0.02 +0.28 +0.45 +0.88 

13 0.04 +0.40 +0.46 +0.93 

15 0.17 +0.43 +0.50 +0.93 

16 0.09 +0.46 +0.70 +0.95 

17 0.29 +0.27 +0.44 +0.92 

20 0.28 +0.37 +0.70 +0.96 

I Avg. II 0.11 +0.44 +0.60 +0.94 

The final speaker level rntings are obtained by averaging the utterance level ratings available for 
one speaker. In Section 5.2 a statistic of the confidence interval of the mean utterance ratings is 

computed. The ratings of the unreliable evaluator with ID 12 are not taken into account. 

Reference markings. The reference markings of mispronounced words for a word level 

scoring method have to be determined. Since the strictness of many raters seem to be rather 

low, the markings of each evaluator group were unified, i.e. a word of any utterance of any non-

native speaker which was marked by at least one evaluator is considered as mispronounced. The 
annotations of the unreliable evaluator with JD 12 are not taken into account. 

Evaluator specific analysis. Table 5.6 summarizes each rater's strictness and each rater's 

open correlation on word level, utterance level and speaker level. The higher the level of 

annotation, the higher the inter-rater correlation becomes. This may be not astonishing, since 

at a higher level a rater's decision is based on more information than on a lower level, which 

makes his assessment more reliable. 

5.2 Confidence of Human Ratings 

In this section the confidence of the mean human ratingsμat the utterance level and at the 

speaker level is analyzed. Since there are at maximum four evaluators for each utterance, the 

reliability of the average utterance level ratings may be questioned. To measure this reliability, 
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Figure 5.1: Histogram distribution of the half ranges of the two-sided 90% (left) and 95% (right) 

confidence intervals for the 4608 utterance level mean ratings (ATR SLT data). 

a statistic of the confidence interval of all utterance level ratings is employed. The calculation 

of the confidence interval for the mean is explained in Section 2.3.4. Prerequisites were, that 

the scatter of the basic population is unknown and its values are distributed normal. For human 

ratings we may assume a normal distribution. A test for normal distribution (e.g. Chi-square x2 
test) cannot be carried out, because the sample size is too small. 

A two-sided confidence interval [μ-a,μ+ a] can be calculated for each utterance. Figure 

5.1 shows the histogram of the values of Jal, which is the half range of the confidence interval. 

Since the average half range of the 90% confidence intervals is 0.52, the simple averaging of 

utterance level ratings seems to be very unreliable. At the speaker level, the situation is much 

better as Figure 5.2 illustrates. The average half range of the 99% confidence intervals is only 

0.05. Consequently, the speaker level average ratings are fairly reliable. 

To deal with the unsatisfying result for the utterance level rating confidence, the jackknife 

resampling technique can be used to obtain more satisfactory estimates for the mean ratings 

(cf. Section 2.3.3). Instead of the traditional scatter of utterance ratings, the square root of 
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Figure 5.2: Histogram distribution of the half range of the two-sided 95% (left) and 99% (right) 

confidence intervals for the 96 speaker level mean ratings (ATR SLT data). 
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Figure 5.3: Histogram distribution of the half range of the two-sided 90% (left) and 95% (right) 

confidence intervals for the 96 utterance level jackknife mean ratings (ATR SLT data). 

the jackknife variance estimate is used for confidence interval computation. The statistic of the 

corresponding estimates of the confidence interval is shown in Figure 5.3. From the figure it is 

clear, that the confidence intervals are much smaller for the jackknife mean than the traditional 

mean. The average half range of the 90% confidence intervals is 0.28, which is nearly half than 

for the traditional mean ratings. Consequently, resampling is used to increase the confidence of 

ratings. In following chapters, the jackknife mean ratings will be used for the utterance level and 

the traditional mean ratings on the speaker level. 

Word Mispronunciation Model 

The relative frequencies of mispronunciation markings for any speaker by any evaluator was 

determined in Section 5.1. These relative frequencies can be regarded as the mispronunciation 
probabilities for each word w, which will be denoted as p(mis)(w). Starting from these 

probabilities a word mispronunciation model can be devised. This model should reflect the true 

circumstances of mispronunciation events and their detection by the human evaluator. 

Let Q = (q1, ... , 知） be the English phoneme set. Consider the event E芹闊 thata phoneme 

Pi is mispronounced. This event will obviously have a relation to the event Eば:;iark)that word 
w, which consists of a sequence of N phonemes, 1.e. w = (p1, pあ ..., PN), will be marked by 

an evaluator. In order to find out, which kind of relationship between these two events exists, 

two probabilistic mispronunciation models are proposed deductively and they are verified by 

comparing re-estimated with the already known word mispronunciation probabilities p(mis) (w). 

Model A. A simple idea is to assume, that the probability p(mis) (w) and the detection of this 

event is related to the arithmetic or geometric mean of the probabilities p(mis) (p』=P(E悶間），
that phonemes Pi in word ware mispronounced: 

p(mis) 1 
N 

a (w) = N区p(mis)(Pi) 

i=l 

(5.1) 
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PJm''l(w) = [!] p(mi,)(p,)l点 (5.2) 

By taking the logarithm on both sides of Equation 5.2, the product is transformed into a 

sum, thus obtaining a linear relationship as in Equation 5.1. Consequently, in the following the 

solution will only be explained for the case of the arithmetic mean. 

The phoneme mispronunciation probabilities p(mis) (Pi) are unknown. Since the probabilities 

p(mis) (w) can be estimated from a training sample, Equation 5.1 can be set up for each word w. 

By taking all these single equations together an overdetermined system of linear equations for 
the probabilities p(mis)(qi) is obtained. 

Let the system of linear equations be denoted as Ax = y. Each row of matrix A contains 
the relative phoneme frequencies of the words w, the phoneme mispronunciation probabilities 
p(mis) (qi) are the components of vector x and the word mispronunciation probabilities 
p(mis) (w) are the components of vector y. Applying the matrixが toboth sides leads to the 

system of normal Equations (5.3). This system can be solved with Cholesky's method as in the 

case of linear regression (cf. Section 2.3.5). 

AT心＝ぷy (5.3) 

In order to see whether model A applies to real data, the phoneme mispronunciation 

probabilities obtained were used to reconstruct the word mispronunciation via Equation 5.1 or 

5.2, respectively, in order to compare them to the already known values. This procedure is 

carried out for each of the five major non-native speaker groups of the non-native database. The 

correlations between reconstructed and originally determined probabilities are shown in Table 

5.7. 

Table 5.7: Correlations Ca 
(word) (word) 

and C9 between probabillfles reconstructed with model A 
l d . and origina war mtspronunctatwn probabiltttes, and correlations 

(phon) (phon) 
Ca and C9 between 

phoneme recognition accuracy and estimated phoneme mispronunciation probabilities (ATR SLT 

data). 

[ Speaker Group 

Arithmetic ciWOTd 

Arithmetic ciphon 

Geometric Cドword

Geometric cthon 

11 Non-Native I German I French I Jndon. I Chin. I Japan. I 

. -~:~I -~~~I -~:~I '>:~1 -~~: 1-~:~ 
0.40 I o.34 I o.34 I 0.40 I 0.44 I o.36 
-0.31 -0.14 -0.28 I -0.42 I -0.31 I -0.31 

The correlation between original and reconstructed word mispronunciation probabilities as 

well as correlation between estimated phoneme mispronunciation and phoneme recognition 

accuracy is lower than 0.50 except one value, which suggests, that Model A does not match 

with real data. 
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Model B. A reasonable alternative is to think of the process of phoneme mispronunciation 

and its detection by a human evaluator as a Markov chain. To keep the model simple, we assume 

as a first approximation that the detection of mispronounced phonemes is perfect, i.e. if there is 

one mispronounced phoneme in a word, it will always be marked by the evaluator. Figure 5.4 

depicts the random process. 

pf and p{ are the probabilities that phoneme Pi is pronounced correctly or mispronounced 

respectively. Their sum pf + Pi must be 1.0 in order to comply with the laws of probability 
theory. Based on this Markov chain, the mispronunciation probability of a word p(mis) (w) can 

be defined as: 

p(mis)(w) = 1.0 _ p『・・・p和=p{+p『p{+ p~p肛p{ + ... + p~.. . p和-1Pん (5.4)

Equation (5.4) can be rewritten as Equation (5.5) by adding pf・・・p和， subtractingp(mis) (w) 

and taking the logarithm on both sides. As before a system of linear equations can be set up for 

each word with mispronunciation probability not equal to 1.0. 

N M M 

log [1.0 -p(misl(w)] = Llogpf =区nilogqJ = L 巧XJ (5.5) 
i=l J=l J=l 

In Equation (5.5), nj denotes the absolute number of occurrences of the j-th phoneme qj E Q 
in word w and Pi = q<J the probability that phoneme qj is pronounced correctly. M is the 

cardinality of the phoneme set Q. The equations can be combined so that matrix A contains 
the occurrence frequencies nj, the components Xj of vector① the probabilities log qJ and vector 

y the probabilities of the left sides of Equation (5.5). Matrix A has as many rows as there are 

words and as many columns as there are phonemes. The result is a system of linear equations 

as in Equation (5.3). After solving the system, the phoneme mispronunciation probabilities are 

calculated via q J = 1.0 -exp (xj)-

The higher correlation values in Table 5.8, ranging from 0.54 to 0.69 for the re-

estimated word mispronunciation probabilities and -0.32 and -0.59 for the estimated phoneme 

mispronunciation probabilities, show that model B is more suitable than model A to describe 

mispronunciation and detection events. Nevertheless it must be mentioned, that the value of 

the correlation C(phon) has a rather low confidence, since it is based on only M = 41 values: 

approximately士0.25. The correlation c(word) is more reliable with a confidence interval of 

about士0.07.The error level was set to 5%. 

e汀or
detection 

error 
detection 

enor 
detection 

．．． 

error 
detection 

pronunciation 
correct 

Figure 5.4: Mispronunciation and detection process based on a Markov chain. 
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Table 5.8: Correlation C(word) betvveen probabilities reconstructed with model B and original 

word mispronunciation probabilities, and correlation C(phon) between English phoneme 

recognition accuracy and re-estimated phoneme mispronunciation probabilities (ATR SLT data). 

[ Speaker Group 

Correlation c(woTd 

Correlation C(phon 

II Non-Native I German I French I Indon. I Chin. I Japan. I 
" 0.69 I 0.54 I 0.64 I 0.67 I 0.61 I 0.68 ' 

-0.59 -0.32 -0.58 I -0.56 I -0.46 I -0.49 

Further refinements of model B are possible in theory. For exan1ple, in model B it is assumed, 

that the evaluators mark any word with only one phoneme mispronounced, i.e. the detection rate 

is 100%. Unless the evaluator is very strict and diligent, perfect detection is unlikely to be true 

in reality. 
Table 5.9 shows the list of phonemes with the highest mispronunciation probability for each 

non-native accent group. The probabilities are estimated with model B. The phonemes /th/ and 

/er/ are among the phonemes with the highest mispronunciation probability of all accent groups. 

Among the worst ten candidates of four groups are the phonemes /dh/, /sh/, /aw/ and /ax/. 

Table 5.9: List of phoneme mispronunciation probabilities (ATR SLT data). 

French German Indonesian Japanese Chinese 

er 0.46 th 0.29 sh 0.53 th 0.47 th 0.50 

th 0.36 y 0.25 er 0.45 er 0.44 sh 0.45 

ax 0.29 er 0.25 th 0.36 sh 0.35 dh 0.36 

dh 0.27 sh 0.25 ax 0.31 axr 0.29 er 0.32 

aw 0.24 aw 0.20 ch 0.30 r 0.26 l 0.29 

ah 0.24 g 0.17 y 0.28 1 0.26 aw 0.28 

jh 0.22 ax 0.13 uw 0.25 ax 0.25 w 0.25 

ao 0.22 jh 0.13 dh 0.25 dh 0.22 V 0.25 

ow 0.20 uw 0.13 jh 0.25 g 0.22 r 0.24 

uh 0.20 ow 0.10 g 0.24 aw 0.20 ng 0.24 



Chapter 6 

Features for Pronunciation Scoring 

In this chapter features describing the pronunciation quality of utterances and words are defined. 
Besides employing features already known from literature (cf. Chapter 3), a large number of 

additional features are considered. The usefulness of utterance and speaker level features is 

investigated by analyzing the correlation coefficient between human ratings and scores for the 
ATR SLT data. Actual evaluation and combination of utterance and word level features is carried 

out in Chapter 8 for both the ATR SLT and FAU LME data. 

6.1 Experimental Setup for Feature Extraction 

This section describes the setup of experiments for investigation of correlations of human ratings 

with automatically extractable pronunciation scores. Figure 6.1 gives an overview of data 

flow (black arrows), models (round boxes with white arrows) and processing steps (rectangle 

boxes). The setup includes a speech recognizer for unconstrained word and unconstrained 

phoneme recognition. The recognizer is also necessary for obtaining the forced-alignment of 

phoneme level acoustic models for an utterance with the word level utterance transcription and 

a pronunciation dictionary. Furthermore, a native phoneme duration statistic for extraction 

of duration-related features and a native phoneme language model (LM) for extraction of 

phoneme sequence probabilities are required. The software toolkit HTK V3.2 is employed for 

all recognition and alignment experiments and for phoneme sequence probability computation. 

Native acoustic model (AM). Th e acoustic model 1s built with native English speech data 

from the WSJ corpus (cf. Section 4.3). 39 MFCC features are extracted every 10 ms: 12 cepstral 

coefficients and normalized log-energy with first and second derivations. The derivations are 

calculated as the regression line over five frames. The frame duration is 20 ms. Cepstral mean 

subtraction (CMS) is applied. A monophone AM consisting of 44 3-state phoneme HMMs and 

one combined 3-state silence (sil) / I-state short pause (sp) HMM is trained from scratch: the 

parameters of single-mixture Gaussian distributions with diagonal covariance matrix for each 

HMM state are initialized with the mean and variance of the MFCC feature vector sequence 

of acoustic segments of equal length. There is one segment for each HMM state of the state 

sequence which corresponds to the concatenation of each word's phoneme HMM sequence of the 

67 
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Figure 6.1: Experimental setup for pronunciation feature extraction at different levels. 

utterance. The number of mixtures was increased successively during training one by one until 16 

mixtures were reached. Models were retrained for four iterations after each mixture increment. 

The performance of the acoustic model just described was evaluated for native English speech 

with the 5000 word Hub2 evaluation test set from the WSJ corpus. The recognition accuracy 

with a bigram language model was 80.8%. 

Native pronunciation dictionary. The pronunc1at1on d1ct1onary for expenments with the 

ATR SLT non-native database contains 429 phoneme transcriptions for 290 words including 

native pronunciation variants. The pronunciation dictionary is used for computation of the 

forced-alignment of the TIMIT SX sentences of the database and for doing unconstrained word 

recognition, i.e. decoding without a statistic language model. 

Native phoneme language model (LM). In order to compute probabilities of phoneme 

sequences, a bigram phoneme language model (LM) is employed. It serves the purpose of 

calculating the probability of phoneme sequences, which are obtained by unconstrained phoneme 

recognition. The LM is estimated from all SX, SI and SA sentences in the TIMIT corpus. 

Native phoneme duration statistic. In order to calculate the expected duration of words and 

phoneme duration scores, the distribution of phoneme durations has to be modeled. To estimate 

a phoneme duration histogram or the parameters of an analytic probability density function, a 

large number of samples is required. The phoneme duration statistics employed in the following 

experiments are estimated from the SA, SI and SX sentences of the TIMIT database, since the 

sentences contain relatively many samples also of rare phonemes like /zh/. Phoneme durations 

are extracted from the utterance's forced-alignment obtained with the native AM. More accurate 

phoneme durations could have been extracted from the phonetic transcriptions of the TIMIT 

corpus which are made by phoneticians. However using them leads to a mismatch condition. 
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Manually derived phoneme durations are different from those based on the forced-alignment 

with an HMM-based speech recognizer and for pronunciation scoring phoneme durations must 

inevitably be determined automatically in real time. 

Wo~d/phoneme recognition. For speech recognition a statistical language model, e.g. n-

gram with n 2'. 2, is usually employed to exclude unlikely word sequences and to reduce the 

search space. However in pronunciation scoring the application is different in the sense, that 

the recognition performance should reflect the quality of a non-native speaker's pronunciation. 

A statistical language model with strong constraints would introduce the undesired effect, that 

the recognition is still rather high, despite the pronunciation skill of a non-native speaker being 

rather low. Consequently, a word-loop and a phoneme-loop recognition network are employed 

for phoneme and word recognition, i.e. any phoneme (word) may follow any phoneme (word). 

6.2 Features and Scores 

Section 6.2.1 introduces a set of base features. Some features of this set can be used without 

modifications as phoneme, word or sentence scores. The features and scores are intended to 

measure segmental and temporal qualities of non-native speech. Additionally word and utterance 

level scores, which are combinations of certain base features, are defined in Sections 6.2.2 and 

6.2.3. The performance of utterance and speaker level features is evaluated by analyzing the 

correlation between human ratings and scores. 

The base features are extracted with the setup described in Section 6.1. For every utterance 

unconstrained phoneme and word recognition is carried out. Furthermore, the forced-alignment 

is computed. From the recognition output and the segmentation into phonemes and words 

the features describing the pronunciation quality of phonemes, words and sentences can be 

calculated. 

6.2.1 Base Features 

Most of the base features are based on information about phoneme segments. There are two kinds 

of acoustic scores: likelihood and posterior scores. The higher the acoustic score, the better the 

match of the acoustic observation with the acoustic model. The higher the acoustic match, the 

more similar is the non-native speaker's pronunciation to native speech, i.e. the acoustic score is 

a possible metric of segmental aspects of pronunciation. 

Two more features are based on phoneme durations. Besides the actual duration t 

of phonemes in the current word w or sentence u, their expected duration t(exp) is also 

considered. The expected duration of a phoneme segment is estimated as the mean duration of 

the corresponding phoneme in a native speech corpus. Since the duration of a certain phoneme is 

distributed log-normal, the duration probability can also be used as a feature. These duration-

related features can measure temporal aspects of pronunciation. Further temporal aspects can be 

captured by the number and duration of pauses between words in an utterance. 

Let q = (q1, ... , q刈bethe phoneme sequence obtained by phoneme or word recognition. 

Given a language model (LM) trained on native phoneme sequences, i.e. phoneme sequences 



70 CHAPTER 6. FEATURES FOR PRONUNCIATION SCORING 

which correspond to standard English words, sentences and texts, a phoneme sequence 

probability P(qjLM) can be calculated. If the pronunciation characteristics of a non-native 

speaker are near to native speech, phoneme recognition will work well. Consequently the 

phoneme sequence probability will be rather high. Opposite effects will occur for speech of 

low proficiency speakers. The same argument applies to the recognition performance, which 

will also be employed as base feature. 

6.2.2 Utterance Features 

Different kinds of utterance scores are investigated. Only the ATR SLT data is employed for the 

investigations, since utterance level ratings are not available for the FAU LME data. Each feature 

defined has an identifier consisting of a capital letter followed by a number. There is a different 

capital letter for each feature kind, which are related to likelihood (L), expected word duration 

(E), likelihood ratio (K), rate of speech (R), between-word pauses (P), duration (D), recognition 

performance (X), phoneme sequence likelihood (M) and others (Y). 

Likelihood. There are many possibilities to define a likelihood score for a whole utterance. 

Frame level scores can be combined to phoneme level scores, phoneme level scores to word level 

scores, and word level scores to utterance scores. Here the direct combination of phoneme level 

scores to sentence scores is considered. The score L(xi) for a phoneme segment xi is calculated 

as the logarithmic probability of the best path through the HMM of the segment's phoneme pか

Since the likelihood scores a speech recognizer calculates for each unit are logarithmic 

probabilities, the simplest way to obtain an utterance score is to sum up the scores of all phoneme 

segments. However this score value does not only depend on the acoustic match, but also on 

the utterance duration and the number of phoneme segments. Consequently, the score has to 

be normalized. There are several possibilities for normalization. Dividing the sum of phoneme 

likelihoods by the utterance duration or number of phoneme segments is most obvious. However, 

this way of score normalization is not optimal in the sense, that the score's correlation with 

utterance level ratings becomes maximum. In the following, experimental results will reveal a 

good combination of score normalization factors. 
Table 6.1 and Figure 6.2 illustrate the various elements of an utterance, which are involved in 

utterance score calculation. An utterance u consists of phoneme segments叫， shortpauses (sp) 

and silence segments (sil) segments. The duration of inter-word short pauses (sp) may be zero. 

Successive phoneme segments yf without any pauses in between make up word segments Wj-

The total sentence duration tu is defined as the sum of the durations ti of all phoneme segments 

plus the sum of interleaving sp/sil segments. sp/sil segments before the first and after the last 
phoneme are removed. The rate of speech in terms of phonemes R(phon) is calculated as the 

number of phonemes n divided by the total utterance duration tu. The calculation of R(wordl is 

similar (cf. Table 6.1). The unit to measure durations may be chosen arbitrarily, although it has 

to be consistent for all score definitions. A preferable unit is the number of frames. 

Table 6.2 gives the definition of several likelihood scores. The correlation coefficients for 

these scores and the discrete human ratings are shown in Table 6.3. 
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[ Name of entity 

Table 6.1: Definition of variables and symbols. 

II Symbol I Definition 
Utterance (as phoneme sequence) u u = (叫，．．．，叫）
Utterance (as word sequence) u = (wぃ---,Wm)

Word (as phoneme sequence) w 叫=(y{, ...'Y!i,) 
Phoneme segment (in sentence) X 叫 =(xi,... ,xt) 

Phoneme segment (in word) y Yi = (yi, ・ ・ ・, 汎）
Segment frame x,y Acoustic observation 

Duration ti Duration (of segment x1) 

dJ Duration (of word w1) 

# Segments n # Segments (in utterance u) 

巧 # Segments (in word wj) 

#Words m # Words (Sentence) 

Sentence duration t u Sentence duration 

(leading and trailing sp/sil removed) 

Rate of speech R(phon) # Phonemes (n) I Sentence duration (tu) 
R(word) # Words (m) I Sentence duration (t叫

sil ← d1一←dj 
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W1 .. ・・ 

.. I 
sp 

← Wj 

I鴫 dm .. I 
I~ ー _,,Isp I 

Wm  

sil 
u 

word segment 

J 
Y1 

J 
Y2 J Yn J 

phoneme sequence 

t1 t t 

sil 
I 
I-

X1 

ゎ t3.-1 .. .-1.. .-1 1,. 
I I I Spl 
I I I 鼻 1

叫

二:eechfr=es

X2 Xi 

稔.,1,. .,1 
I I Sp 

[
xiし

．．
 ．．

 
•• 

• • • 
．．．

 

．．
 

5
.
 

8
 

phoneme segment 

I tn 
鴫~

I 

I I Sp sil 
u 

Xn 

Figure 6.2: Illustration of various utterance elements. The duration of inter-word short pauses 

(sp) may be zero, or there may be silence segments (sil), i.e. long pauses between words. 
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Table 6.2: Definition qf likelihood scores. 

I Score-ID 11 Name Symbol Definition 

Segment-likelihood L(x) logP(叫HMM入）

L(word)(wサ
nj 

Word-likelihood L L(y;) 
i=l 
n 

L3 L(sent) (u) 区L(xi)
i=l n 

sg'(l sent) 
区L(叫）

L4 Global sentence-lh. i=l 
obal n 

L ti*R(phon) 
i-1 

n 
LS i図L(xi)

t=l 
n 

L6 土とL(xi)
i=l 

sl'o(sc ent) 
n 

L7 Local sentence-lh. 1 L L(叫）
cal 五 t*R(phon) 

i=l ， 

L8 
上戸正ord)(wj)
m dJ ・*R(word) 
j=l 

L9 
.l. i= L(word)(wj) 
rri nJ ・ 
J=l 

Tab]e 6.3: Correlation between sentence level human ratings and likelihood scores. 

I Score-ID 11 L3 I L4 I LS I L6 I L7 I L8 I L9 I 

I Correlation 11 -0.24 I -0.41 I -0.34 I -0.28 I -0.42 I -0.37 I -0.35 I 

!(sent) 
The highest correlation 1s present for the scores S 

!(sent) 
(L4) and S global local (L 7) with 0.41 and 

0.42. These scores are not only normalized by the duration or the number of segments, but also 

by the rate of speech (ROS), which is defined in Table 6.1. The calculation of the rate of speech 

was carried out separately for each utterance. In the research of Neumeyer et al. (cf. Table 3.3, 

Chapter 3) this kind of normalization was not considered. The correlation of the original scores 
s(sent) (sent) 
global and S with human ratings was only 0.18 and 0.29, respectively. local 
The correlation for the scores {L5,L8,L9} is higher than 0.33. The remaining scores {L3,L6} 

have a correlation lower than 0.28 and may not be of much use. Which of the five scores 

with correlation higher than 0.33 {L4,L5,L 7,L8,L9} should finally be selected as features for 

utterance classification does not only depend on the degree of correlation but also on the inter-

score correlation. Since the scores L3-L9 are all based on similar info1mation, the inter-score 

co汀elationmay be high. From Table 6.4 we see, that the scores of pair (L4,L 7) have a 

correlation of 1.0, i.e. these two scores are identical measures. Using both of these two scores 

for classification will probably not lead to better results. Furthermore, the score-pairs { (L4,L5); 

(L4,L9); (L5,L7); (L5,L9); (L7,L9)} are highly correlated. Since the inter-score correlation of 
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Table 6.4: Correlation between likelihood scores (ATR SLT data). 

LS 

L7 

L8 

+ 1.00 +0.54 +0.84 

+0.85 +0.32 +0.95 

+0.54 +0.83 

+0.36 
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the pairs { (L4,L8); (L8,L9); (L 7,L8); (L5,L8)} are relatively low, one of these two pairs may 

be chosen as features for pronunciation scoring. In Appendix C.3 detailed information about 

inter-score correlation is given. 

There is an alternative and more convenient way to get rid of correlated scores automatically 

rather than doing manual analysis: Application of principal component analysis (PCA). This 

approach will be employed in Chapter 7 when score combination is considered. 

Expected word duration. Given the likelihood scores L(屯）， thetrue ti and expected 

durations t巳exp)of each utterance's phoneme segments, additional features describing the 

pronunciation quality of an utterance can be defined. The expected duration of a phoneme 

(segment) is approximated by the mean duration of the phoneme in the utterances of native 

speakers from the TIMIT DB. In order to obtain accurate estimates for the expected duration 

of words, a large number of samples of each word is necessary. For the special case of the SX 

sentences of the ATR SLT non-native database, the estimates could be obtained from the SX 

sentences of the TIMIT DB. However this kind of word duration statistic may not be available 

in general. Consequently, the expected duration of a word Wj with the phoneme sequence 

(p1, ... , Pni) is approximated by the sum of mean durations of the phonemes Pi. 

Table 6.5: Definition of features involving the expected duration of phonemes and words. 

I Score-ID I Symbol I Definition Meaning 

d~exp) Expected duration of word Wj 

t i (exp) Expected duration of segment屯

△ ti t i t i (exp) Duration deviation 
n 

El 五 .!.区△tn i Mean duration deviation 
i=l 

n 
E2 ¼ ~(△t戸五）2 Duration deviation scatter 

i=l 

E3 
1 m L(word)(w1) 

Word-based sentence score 
云LiJ •xp) *R(word) 
J=l 
n 

E4 1 I: L(x;) Phoneme-based sentence score n /exp)*R(phon) 
i=l i 

The mean duration of a phoneme is derived from the annotations of phonemes in the TIMIT 
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DB. Table 6.5 gives the definitions of the six features El-E4. Cf. Tables 6.1 and 6.2 for already 

introduced definitions. The results in Table 6.6 show, that there is almost no improvement in 

correlation, e.g. compare E3 with LS and E4 with L7. 

Table 6.6: Correlation beti,veen sentence level human ratings and features based on the expected 

duration of phoneme segments (ATR SLT data). 

I Score-ID II El I E2 I E3 I E4 I 

I Correlation II +0.30 I +0.28 I -0.43 I -0.41 I 

Likelihood ratio. The concept of the likelihood ratio was already introduced in Section 
p 

3.4.1. It is the logarithm of the quotient log戸 oftwo probabilities or the difference L -L'of 

two log-likelihoods. If the logarithm of the posterior probability log P(plxi) is approximated as 

P(年 lp)P(p) P(年 IP)
log P(plxi) = log~log 

LP(叩 lq)P(q) maxP(xilq) 
qEQ qEQ 

(6.1) 

which is in the line of the GOP score calculation in Equation 3.4, it has the form of a 

likelihood ratio. 

L(ratio) (叫P,ず） = log P(xilP) -log P(x詞） が=argmaxP(叫q)
qEQ 

(6.2) 

The phoneme set of the target language is denoted as Q. The variable Xi symbolizes the i-

th frame of the cu汀entlyconsidered phoneme segment x = (xい・．．，叩）. The log-likelihood 

log P (xi IP) can be approximated as t log P (x I心)， whereP(xl>-p) is the probability of the 

best path through the HMM入Pfor phoneme p. This probability is obtained from the forced-

alignment. The segment likelihood log P(x I心)to approximate log P(叫q*)is determined 

by unconstrained phoneme recognition. Since the recognized phonemes and their segment 

boundaries may not match the phoneme segments of the forced-alignment, the likelihood ratio 

has first to be calculated separately for each frame. Figure 6.3 illustrates this calculation. 

The likelihood ratio score£(ratio) (x) for the whole phoneme segment x is calculated as the 

sum of the likelihood ratios£(ratio) (xi IP, q*) of all frames t of x. The utterance level scores 

Kl-K3 based on the likelihood ratio are defined in Table 6.7. 

Table 6.7: Correlation between sentence level human ratings and likelihood ratio. 

II Kl (cf. LS) K2 (cf. L4) K3 (cf. L4) 

Correlation -0.48 -0.50 -0.52 
n n 

n L L(ratio)(x;) I"; £(ratio)(叫）

Equation II¾L£(ratio) (か i=l i=l n 凸t;exp)*R(phon) i=l 区 l;*R(phon)
i=l i=l 
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The results of the coITelation analysis show, that a sentence score based on the fran1e-wise 

likelihood ratio is a better pronunciation score than the scores L3-L9. Maximum correlation of 

0.52 is present for score K3. 

Forced-alignment of word sequence "DIG MY" with phoneme sequence Id ih g m ay/ 
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Figure 6.3: Illustration of the likelihood ratio score. 

Speaking rate and pauses. S 1 mce eva uators were asked to consider the aspect fluency 

for evaluation, the features word-based (R 1) and phoneme-based (R2) rate of speech as well 

as the total duration of between-word pauses may contain useful information. The rate of 

speech is defined in Table 6.1. Additionally the reciprocal features, i.e. the average word (R3) 

and phoneme duration (R4) and the phonation-time ratio (RS) are considered here. The total 

duration of between-word pauses D(pause) (u) is calculated as sum of all pause segment durations 
excluding the segments before the first word and after the last word of a sentence. Results are 

summarized in Table 6.8. There is a correlation of +0.37 for the average phoneme duration and 

the reciprocal rate of speech features perform better than the traditional ones. The total duration 

of between-word pauses (Pl) is correlated with sentence level ratings by 9.33. An interesting 

observation is, that there is a correlation of +0.14 for the first between-word pause. As more of 

the following pause segments durations are taken into account, the correlation increases until a 

maximum of +0.33 is reached. Normalization of the pause duration by the number of pauses 

did not lead to an increase in correlation. The number of between-word pauses longer than 0.2 

seconds (P2) itself is correlated to human ratings with 0.32. 

Table 6.8: Correlation of sentence level ratings to rate of speech and pause-related features. The 

bottom row gives information about the mean value of each feature for non-native speech. 

Score-ID Rl R2 R3 R4 RS Pl P2 

Symbol R(word) R(phon) 1 1 l:..!i D(pause) (U) R(word) R(phon) t 

Correlation -0.34 -0.37 +0.37 +0.39 -0.32 +0.33 +0.32 

Mean Value 2.74 [Hz] 9.90 [Hz] 390 [ms] 105 [ms] 0.95 0.38 [s] 1.34 
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Figure 6.4: Duration statistics for phonemes lax/ and /kl uttered by native (upper histograms) 

and non-native (lower histograms) speakers. The histograms were estimated from the forced-

alignment of utterances in the ATR SLT non-native database, which contains also data of some 

native speakers uttering the same sentences as the non-native speakers. 

Duration scores. In every language, the durations of phonemes may be different. The 

typical duration of phonemes of a non-native speaker's first language may influence the 

duration of second-language phonemes. Additio叫 lysevere deviations can occur if there are 

mispronunciations or non-uniform speaking behavior. Phoneme durations are obtained from the 

forced-alignment. Consequently, there can be extraordinarily short or long phoneme segments, 

since the recognizer is forced to match reference phonemes regardless whether they are present 

in the speech signal or not. 

As already mentioned in previous sections, phoneme durations depend on the speaking 

rate. Consequently, normalization (multiplication) of phoneme durations with the rate of speech 

is imperative. A phoneme duration statistic for native phonemes can be approximated by a 

histogram or a log-normal distribution. Figure 6.4 shows the difference of duration histograms 

of the vowel /ax/ and the plosive /k/ for native and non-native speakers. 

For each phoneme segment x with phoneme label p and duration t a phoneme duration 

score S 
(phon) = log P, 如

(phon) 
can be calculated. P 

(phon)• 
1s defined as: dur dur 
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Table 6.9: Correlation of utterance level ratings to duration likelihoods (D l-D3), phoneme (X 1) 

and word (X2) recognition peけormance,and phoneme sequence likelihood (M l-M3). 

M2 口
-0.28日

I X2 II Ml I 
1 -o.3s 11 -0.22 I 

Xl 口
日 -0.45

Dl 

5
 

4
 ゜

―
―
―
―
 

Score-ID 

I Correlation 

p(phon¥Tlp, X) = 1 (logT -vP)2 
exp[-

dur T三 2CJp

The parameters CJp and vP of the log-normal duration probability density function can be 

obtained by ML estimation from a sample of durations of phoneme p. The normalization by 

multiplication with the rate of speech is applied as suggested in literature (cf. Section 3.4.3). 
(phon) 

The duration scores S of all phoneme segments in an utterance can be summed up to dur 

obtain the sentence level duration score (D1) as already proposed in literature (cf. Equation 

3.11). A normalized duration score (D2) is obtained by dividing Dl with the total number of 

phoneme segments n. As Table 6.9 shows, there is a high correlation between duration scores 

and human ratings. 

Recognition performance. For practical reasons, the recognition performance is calculated 

as the minimum-edit-distance between the recognized and the reference token sequence divided 

by the number of tokens in the longer of the two sequences (cf. Eq. 2.9). This feature has values 

between 0.0 and 1.0. Its extreme values are 1.0, if not even one token is correct, and 0.0, if the 

two sequences are identical. Table 6.9 shows the correlation of ratings with phoneme (Xl) and 

word (X2) recognition performance. The computation of (X2) is based on the phoneme sequence 

corresponding to the recognized word sequence. The correlation for score (X 1) is higher than for 

score (X2). This result can be explained easily by the fact, that there are many times more 

phonemes than words in a sentence on which the calculation of the recognition accuracy is 

based. Consequently, the phoneme-based accuracy is a more reliable measure than the word-

based accuracy. The correlation for (XI) is slightly lower (-0.43), when its calculation is based 

on the phoneme sequence obtained by unconstrained phoneme recognition. 

Phoneme sequence probability. Every natural language has a certain phonotactic structure. 

There are phoneme sequences which have a high probability and others which have a low 

probability due to a language's phoneme set, its vocabulary, its grammar and word usage. Since 

a non-native speaker does not pronounce all phonemes and words of a sentence correctly, the 

resulting phonotactic structure of his utterances will differ from native speech. Consequently, it 

is worth considering the logarithmic probability log P(qlLM) of recognized phoneme sequences 

q as a feature for pronunciation quality. As phoneme language model (LM) a phoneme bigram 

trained on the TIMIT corpus (cf. Section 6.1) is employed here. Table 6.9 shows that the 

phoneme sequence likelihood (Ml) divided by the number of phonemes in the current sentence 

(M2) has a correlation of -0.28 with the utterance level ratings. The correlation increases to 

-0.40 if Ml is divided by the rate of speech (M3). 

Second order features. The likelihood scores L5-L9 are in fact a first order statistic of 

phoneme or word likelihoods. As additional features, the scatter of word likelihoods (Y3), the 

T = t * R(phon) (6.3) 
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Table 6.10: Correlation of utterance ratings to minimum (Yl) and maximum word likelihood 

(Y2), scatter of word (Y3) and phoneme likelihoods (Y4), and minimum of the local ROS (Y5). 

I Features 11 Yl I Y2 I Y3 I Y4 I YS I 

I Correlation II -0.26 I -0.21 I +0.17 I +0.20 I +0.24 I 
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Figure 6.5: Distribution of scores Kl (left) and XI (right) w.r.t. each rating class (ATR SLT data). 

scatter of phoneme likelihoods (Y 4) and the minimum of the local rate of speech (YS) are used. 

The local rate of speech is defined as the number of phoneme segments in a word, divided by 

its duration. Furthermore, the minimum (Yl) and maximum likelihood (Y2) of all words in a 

sentence are considered, since an evaluator may especially be influenced by the pronunciation 

of the best or worst word segment. As Table 6.10 shows, the correlation to the human ratings 

for all these features is lower than 0.30. Further investigation was also done for the maximum 

and scatter of the local rate of speech and the minimum and maximum phoneme likelihoods. 

However the correlation of these features was even less than 0.20. Nevertheless, features Y1-Y5 

may be useful, since they have a rather low correlation with other utterance level pronunciation 

scores. 

s core distributions. Figure 6.5・ visualizes the distnbut1on of th e two pronunciations scores, 

Kl and Xl, which have one of the highest correlations with the human ratings among the 

investigated scores. The distribution for each discrete human rating class is shown. The average 

human ratings for each utterance were rounded in order to obtain five classes of pronunciation 

quality. From the figure it can be seen that the distributions of neighbored classes overlap and 

there is less overlap between non-neighbored classes. Furthermore it is apparent that the scores 

build a continuum. This means, that scores for utterances with the highest (1) pronunciation 

quality rating make up the left-most and with the lowest (5) rating the right-most distribution. 

Additionally scores for the remaining pronunciation levels lie between the two extremes in a 

reasonable order. Score distributions of other features can be found in the score gallery in the 

Appendix C. 
Subj . echveness of pronuncmhon evaluation. In Section 5 .1 the hypothesis was claimed, 

that the importance of the various aspects of pronunciation may weighted different by each 
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evaluator. To test this hypothesis the rating to score correlation for utterances was calculated 

separately for each evaluator (cf. Table B.3 in Appendix B). Figure 6.6 visualizes the differences 

graphically. The line L 7 is the value of the correlation coefficient of feature L 7, the line K3 

the sum of features L 7 and K3, the line R4 the sum of features L 7, K3 and R4, a.s.o. The left 

graph shows, that if there is a relatively high correlation between a score and the ratings of one 

evaluator, there is also a relatively high co汀elationfor the other scores. From the right graph it 

is apparent, that there are some differences in the relative degree of correlation depending on the 

evaluator. However the differences are not remarkable enough to be able to conclude that there 

is a strong inter-rater discordance. The difference between raters lies in the degree of correlation 

in general, rather than in the difference of correlations for each score. The low rating to score 

correlation of some evaluators suggests that for these evaluators, despite clear instructions, other 

aspects (e.g. prosodic) than the investigated aspects (segmental, temporal) may have been more 

important or that they were unsure about how and what to evaluate. 
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Figure 6.6: Left: Accumulation of the correlation coefficients of selected features from Table 

B.3. Line L7 is the correlation for L7, line K3 is the sum of correlations for L7 and K3, line 

R4 the sum of correlations L7, K3 and R4, a.s.o. Right: Same as left graph, but normalized by 

dividing with the sum of correlations for all considered features (ATR SLT data). 

6.2.3 Word Features 

For words there are only binary annotations: X for mispronounced and O for correctly 
pronounced words. Consequently, correlation analysis is not the optimal way to examine the 

usefulness of word level pronunciation scores. In the following word level features are only 

defined. The quality of the features is evaluated in Chapter 7 for both the ATR SLT and the FAU 

LME database. 

Most utterance level features from Section 6.2.2 can be adopted for the word level. The word 

level scores are analogue to the scores of one-word sentences. Except for the word-based rate of 

speech and pause-related features, all feature kinds can also be applied to words. However, in 

a preliminary investigation it was found out, that a normalization of word likelihood scores by 
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dividing with the number of phoneme segments nor the expected word duration d(exp) decreases 

the quality of the feature. This is apparent when comparing the distributions, e.g. of features 

WO] (analogue to L3) and W02 (analogue to LS) in Appendix C. Consequently, the definition of 

features W03 and W04 deviates from other utterance level likelihood features. Table 6.11 gives 

the complete overview to other word level features (W08-W19), which were also defined for the 

utterance level. 

Additionally, the expected word duration (W05), the actual word duration (W06), the number 

of the word's phoneme segments (W07), the relative word likelihood (W20), the duration ratio 

(W21), features based on the fluctuation of the rate of speech and the duration ratio (W22-W27), 

features based on the phoneme confusion matrix for correctly pronounced and mispronounced 

words (C01-C05) and word confidence measures (C06-C08) based on N-best lists of word 

recognition are employed to score words. The following passages explain some of these features 

in more detail and give the motivation for their employment. 

Relative word likelihood. The distribution of acoustic likelihoods generally depends on the 

individual speaker. Furthermore, some evaluators may only have marked those words with a 

relatively bad pronunciation, if comparing it with other words in the sentence. Feature W20 is 

an attempt to account for these two issues. It is defined as the difference between the likelihood 

of the current word w and the likelihood of the current utterance u, which are both normalized 

by the corresponding durations d and tu. 

Duration ratio. The rate of speech is an absolute measure of speaking rate. The advantage of 

the duration ratio is, that it can measure the relative lengthening or shortening of the duration of 

a phoneme or word. It is defined as the quotient of the expected duration and the actual duration. 

For calculation of the expected duration confer the corresponding passage in Section 6.2.2. The 

duration ratio is also employed as a base feature for measuring fluctuations of the speaking rate. 

Fluctuat10ns. A non-native speaker s rate o speech can vary while reading a sentence. This 

can be due to unfamiliarity with certain words and the difficulty to pronounce certain speech 

sounds. Consequently, features which are able to measure fluctuations of the local rate of speech 

and the duration ratio may be a useful indicator of a speaker's fluency. 

The objective in word scoring is to identify mispronounced words. The features W22-W27 

are intended to detect such words based on fluctuations of the speaking rate: The value of feature 

W22 becomes large if the current word's rate of speech rj is lower than the neighbored words' 

rate of speech rj-l and Tj+i, i.e. the event that a non-native speaker gets stuck at an unfamiliar 

word can be captured. Feature W24 does only consider the left context of the current work, so 

that its value is smaller than 1.0 for increasing ROS and larger than 1 .0 for decreasing ROS, 

but it serves the same purpose. Features W23 and W25 are analogue to W22 and W24. The 
. d(exp) 

only difference is, that the duration ratio instead of the local rate of speech rj is employed. 

Feature W26 is similar to W25, but even considering the duration ratio of the previous two words. 

For the features W23 and W25-W27, the duration ratio d(ratio) may not be defined for the 

first or last words of an utterance. In that case, a default value of 1.0 is used for the duration 

ratio. Feature W22 is defined as __!j__ for the first word and 巧 forthe last word. Feature W24 is 
巧+1 Tj-1 

defined as 1.0 for the first word. If there are even too few words in an utterance to calculate any 
of the fluctuation features W22-W27, their value defaults to 1.0. 
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Phoneme confusion matrix. In Sect10n 2.2.1 a confidence measure based on the frame 

level phoneme confusion matrix for both correctly recognized and misrecognized words was 

introduced. Here the measure definition is transferred to correctly pronounced (0) and 

mispronounced words (X). Figure 6.3 shows an example of a frame level alignment at the 

frame level of the reference phoneme sequence p = (p1, ... , pリofan utterance fragment to the 

recognized phoneme sequence q = (q1, ... , qt). The segmentation of the reference sequence is 

obtained by forced-alignment. The phoneme symbols of two corresponding frames are different 

in case of recognition errors, i.e. there are phoneme confusions. A confusion matrix can be 

estimated for both classes O and X. These matrices contain the probabilities P(qilPふthatthe 

i-th frame is recognized as phoneme qi if belonging to phoneme Pi in the reference sequence. 

Given these two matrices, the ratio of the confusion probabilities of X and O can be calculated 

for each speech frame. Any speech frame which belongs to a pause (sp) or silence (sil) segment 

in the alignment or the recognition result is discarded in advance. The mean (COl), maximum 

(CO2), minimum (C03), scatter (C04) and median (COS) of these ratios of all frames of the current 

word are finally used as features (e.g. cf. Eq. 6.4 for COl, CO2). 
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CO2= max log 
P(qi[Pi, X) 

iE{l, …，t} P(qi[Pi, 0) 
(6.4) 

Word posterior. For speech recognition the word posterior probability is employed to 

measure the confidence of each word hypothesis from the recognizer. Here it is used to measure 

the probability of words in the reference sequence, given a non-native speaker's utterance. The 

assumption is: the better the pronunciation of a particular word is, the higher is its posterior 

probability. The calculation of the word posterior probability based on N-best lists is described in 

Section 2.2.1. For feature calculation the language model (LM) probabilities P(w) in Equation 

(2.12) are set uniform, because at most a unigram LM was employed during recognition. The 

reason for not using higher order LMs was already explained in Section 6.1. Feature C06 is the 

relative share of N-best hypothesis, which contains the word Wj at an overlapping interval: 

1 
C06 =ー Lf([wj]I[叫）

N 。
(6.5) 

Function f([wj]I[防])returns 1.0, if the overlap condition for word wj in the forced-alignment 

with word vi in the recognition hypothesis is met. Let Oi be the acoustic observation belonging 

to word vi. Furthermore let v denote any of the N-best hypothesis. The posterior probability of 

word Wj based only on sentence or word likelihoods of N-best hypothesis are used as features 

C07 and COS: 

区P(olv)f([wj]I[叫）
C07= v 

L P(olv) 
V 

I:P(o叫）J([wjll[叫）
cos= V 

区P(o叫）
V 

(6.6) 

Since we are interested in a posterior probability which is only based on acoustic scores, the 

probabilities P(v) and P(v』ofword sequences and words are not taken into account. 
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Table 6.11: Definition of word level pronunciation quality features. 

I Score-ID JI Name I Symbol 

' - II Phoneme segment lb. I L(y) 

WOl Word likelihood L(w0rdl(w) 

W02 

W03 

W04 

wos 

W06 

W07 

W08 

W09 

WlO 

Wll 

Wl2 

Wl3 

W14 

W15 

Wl6 

Wl7 

Wl8 

W19 

W20 

W21 

W22 

W23 

W24 

W25 

W26 

W27 

Mean segment lh. 

Expect. word duration 

Total word duration 

# phoneme segments 

Rate of speech (ROS) 

Mean phoneme duration 

Word duration score 

Recognition performance 

Phoneme sequence lh. 

Minimum phoneme lh. 

Maximum phoneme lh. 

Scatter of phoneme lh. 

Relative word lh. 

Duration ratio (DR) 

Context fluct. (ROS) 

Context fluct. (DR) 

ROS fluctuation 

DR fluctuation 

DR fluctuation 

Context fluct. (DR) 

L(y) 

d(exp) 

d 

n=  IPI 
T = !!. 
三-= -
r n 

S(word) 
dur (W) 

L(qJLM) 

d(ratio) 

Definition 

logP(y[HMM入）
n 

L L(yi) 
i=l 

n 

¼L L(yi) 
i=l 

l n 
R(phon)区L(yi)

i=l 
f L(y;) 

ti 
i=l 

土 t~exp)
i=l 

喜L
# phonemes in word w 

# phonemes / word duration 

word duration I# phonemes 

fs盟戸(ti* R(phon) !Pi, Yi) 
i=l 

1 (word) 
-Sdur (w) 
『 S(word)

竺盟如霊~ (q ,~;v)
max{lql,lvl} 

Phoneme sequence likelihood 

豆 (qJLM)
『

R(phon) L(q JLM) 

min L(y』
i=L.n 
_max L(y』
i=l. .. n 

n 

；区[L(yi)-L(y)]2 
i=l 

L(word)(w) L(sent)(u) 
d t d(exp) 11 

吋
三2d. ratio 

J 

d(ratio) +iratio) 
7-l 1+1 

□二L
T・

三d 
ratio 

J-1 

d 
(ratio) 

d(ra向戸atio)
J-2 J-1 

2iratio) 
I) 

4d. 
ratio 

J 

d;':_aiio) +d¥':_a1tio)+d誓叫d¥雰゚）
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Relationship between human ratings and word accuracy 
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Figure 6.7: Relationship between human ratings and phoneme and word accuracy for the TIMIT 

sentences. The values of the word accuracy are extremely low, because no statistical language 

model was employed during recognition and it is non-native speech (ATR SLT data). 

6.2.4 Speaker Scores 

These average speaker level human ratings (HumRating), the relative number of words each 
speaker mispronounced (MisRatio) and the recognition performance (PhonAcc, WordAcc) in 

an unconstrained phoneme and word recognition task without a statistical language model are 
summarized in Appendix A.1.1. The recognition accuracies are calculated from the recognition 

result of the 48 TIMIT sentences with a monophone acoustic model trained on native English 

speech data. The relationship between the four variables {HumRating, MisRatio, PhonAcc, 
WordAcc} can be examined by looking at the inter-variable correlations (cf. Table 6.12). 

Table 6.12: Correlation between speaker level human ratings (HumRating), relative number of 
mispronounced words (MisRatio), phoneme accuracy (PhonAcc) and word accuracy (WordAcc). 

[ Correlation 

HumRating 

MisRatio 

II MisRatio I WordAcc [ PhonAcc 

+0.87 -0.75 

-0.58 

-0.70 

-0.52 

It is not surprising that speakers'ratings and the number of words they mispronounce 

are highly correlated (0.87). This suggests, that the evaluators were strongly influenced by 

mispronounced speech sounds in their rating decision. The correlation of human ratings 

with phoneme (0. 70) and word accuracy (0. 75) is lower, but the values still suggest a strong 

relationship between recognition errors and pronunciation quality. The relationship is also clear 

from the phoneme and word accuracy versus rating plots in Figure 6. 7. The correlation between 

mispronounced words and recognition accuracy, either word (0.58) or phoneme (0.52), is much 

lower. This may be due to the fact, that for calculation of the recognition accuracy not only 

substitutions, which ideally correspond to mispronounced words, but also insertions, deletions 

and substitutions of tokens are taken into account and to the phenomenon that there are many 

recognition errors. 
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Table 6.13: Correlation between averaged utterance level ratings and scores. 

[ Correlation 

Utter. level 

Speaker level 

L7 Kl R4 P2 D2 Xl M3 El 

-0.42 

-0.58 

+0.48 

+0.80 

+0.39 

+0.55 

+0.32 

+0.55 

-0.46 

-0.72 
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Figure 6.8: Relationship between the rating to score correlation and the number of utterances 

for averaging in order to obtain speaker level ratings and scores (ATR SLT data). The scores 
are LhRatio (Kl), AvgPhonemDur (R4), NumPauses (P2), DurScore (D2), PhonAccu (XI) and 

PhseqScore (M3). 

For the speakers of the ATR SLT non-native database no speaker level annotations for 

pronunciation quality are available. However a speaker level pronunciation rating is easily 

obtained by averaging all the utterance ratings available for each speaker (cf. Section 5.2). 

In Section 6.2.2 the correlation between several pronunciation-related features and human 
ratings was examined on the utterance level. That investigation can be extended to the speaker 

level. By averaging the ratings and scores of two or more utterances of the same speaker, 

speaker level ratings and scores are obtained. The benefit of averaging is, that scores and ratings 

become more accurate and reliable. Table 6.13 compares the speaker level correlation of the 

most successful scores from Section 6.2.2. For all scores there is a remarkable increase in score 

to rating correlation. 

Figure 6.8 shows the relationship between the correlation and the number of utterances 

employed for averaging. Even when averaging only the first two utterances, there is an increase in 

correlation for all scores. The correlation reaches almost its maximum after about 10 utterances. 

There is a rating to score correlation higher than 0.70 for the scores Kl and D1. Consequently, 

segmental aspects of pronunciation seem to be as important to the human evaluators as temporal 

aspects. 

The high correlation for score Xl can easily be explained by the fact, that the recognition 

performance will be low, if the duration and the spectral characteristics of phonemes uttered by 

non-natives are different from native phonemes. 



Chapter 7 

Experimental setup 

In this chapter the features defined in Chapter 6 are employed for the classification of words 

and the scoring of single utterances. While the target of word classification (Section 7 .1) is 

the detection of mispronounced words, the aim of utterance scoring (Section 7.2) is to obtain 

an automatic assessment of the overall pronunciation quality of an utterance. If more than 

one utterance from the same speaker is available, an assessment of a speaker's pronunciation 

proficiency can be made (Section 7.3). 

7 .1 Word Classification 

The task is to build a classifier which can discriminate correctly pronounced and mispronounced 

words. Each word is represented as one feature vector c. 35 word level pronunciation features 

are defined in Section 6.2.3. However, since the amount of available data is relatively small 

(37,920 samples = 96 speakers times 395 words) and the discrimination ability of each feature 
is unknown, the number of feature components has to be reduced. To achieve this, methods for 

feature selection and feature space transformation are applied (see Figure 7 .1). 

Feature selection. In order to determine the single best feature and heuristically a suboptimal 

set of good features, the floating search (FS) algorithm (cf. Section 2.4.2) is employed. For 

that algorithm an optimization criterion, which describes the q叫 ityof a feature set has to be 

defined. Here, the criterion is a gain function J(M, P) which is defined as the sum of the 

point-wise multiplication of the confusion matrix P = (p叫 ofthe classifier with a gain matrix 

M=(m叫：

K K 

J(M,P) ＝元とどm以 P心 (7 .1) 

氏=l入=l

Entry pぃofmatrix P is the probability that the classifier confuses class ,¥ with class "'and 

entry m心 ofmatrix M defines the corresponding gain. With this definition the search algorithm 

will find a feature set which maximizes the classification gain as much as possible. The notion 

of classification gain is simiJar to the classification risk (cf. Section 2.4.1) with the difference, 

that the risk has to minimized and the gain to be maximized. 
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CHAPTER 7. EXPERIMENTAL SETUP 

selection or transformation 

LDA I PCA I FS 

feature 
vector 

Figure 7 .1: Feature preprocessing to reduce feature dimension. 

In principle any classifier can be used to obtain the confusion matrix. Nevertheless, the choice 

should be made in favor of a classifier which is able to model the class distributions as accurately 

as possible. However, as a large number of feature subsets has to be examined by the algorithm, 

the evaluation speed needs to be fast. To meet this requirement, the Gaussian classifier with 

single densities is employed, since the estimation of its parameters as well as the classification 

of test samples can be carried out quickly. 

Feature transformation. An alternative to feature selection is the transformations of the 

original features space. Two standard transformations are LDA and PCA. LDA yields feature 

components which are ordered by their class discrimination ability, PCA components are ordered 

after their variance. Which transformation to chose depends on the sample distribution. 

As mentioned in Chapter 6, some of the pronunciation features are highly correlated. The 

higher the correlation between two features, the less beneficial will be the usage of both of 

them for classifier construction. An advantage of PCA is, that it yields uncorrelated feature 

components. By applying PCA to the original features space, features components with higher 

correlations are removed automatically if the final dimension of the feature space is set small 

enough. 

C lassificat10n. There are several possibilities for the partitioning of words mto classes. 

Details wil1 be discussed in Chapter 8 when reporting about experimental results. In the 

following it is assumed that there are at least two classes: Class O for correctly pronounced 

words and class X for mispronounced words. Furthermore there may be a rejection class R to 
avoid unreliable classification decisions. 

The Gaussian classifier with either a single Gaussian density or multiple Gaussian densities is 

employed. In the single density case, one multivariate Gaussian distribution with mean vectorμ 氏

and full covariance matrix江 isobtained by ML estimation from a set of samples { c1, c2, ... } 

for each class r;,_ A model with multiple Gaussian densities is called Gaussian mixture models 

(GMM) and was introduced in Chapter 2. For classification, the Gaussian classifier yields one 

score for each class: the conditional probability P(clw). The standard way is to use the Bayes 

rule to decide whether a word's pronunciation is correct or wrong (cf. Equation 7.2, Figure 7.2). 

For this simple setup, the prior probabilities P(w) should be uniform, since it is not reasonable 

to assume a relatively higher probability for any each class if nothing in known about the target 

speaker's pronunciation proficiency. 

feature 
vector 

correct 0 
--- • indefinite R 

wrong X 

Figure 7 .2: Setup for the detection of mispronounced words. 
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Figure 7.3: Relationship between the utterance rating and the average number of marked words 

(ATR SLT data). 

＊ 

w = argmax P(clw)P(w) 
wE{O,X, 冗｝

(7.2) 

Besides the word level features additional information may be considered for classification: 

the sentence score, prior probabilities and marking strictness. The sentence score can be derived 

automatically from the current utterance. Figure 7 .3 and Table 7 .1 show, that the worse the 

pronunciation score of an utterance, the more words are marked as mispronounced. The graph in 

Figure 7.3 is obtained by estimating the interpolation polynome through five supporting points 

(h, 加）， whereh E { 1, ... , 5} and mh is the average number of words marked as mispronounced 

in utterances with rating h. 

Table 7.1: Distribution of the number of marked words for each utterance rating (ATR SLT data). 

I # words marked I none I one 
Rating 1 0.96 0.04 0.00 0.00 0.00 0.00 

Rating 2 0.70 0.28 0.02 0.00 0.00 0.00 

Rating 3 0.30 0.44 0.21 0.04 0.01 0.00 

Rating 4 0.09 0.27 0.37 0.19 0.07 0.01 

Rating 5 0.00 0.06 0.17 0.33 0.35 0.10 

j two 三 fourj five 

Prior probabilities and strictness have to be set manually. The parameter strictness is intended 

to control the number of words to be marked out of a set of probable mispronunciation candidates. 

By modification of the priors, the probability for marking words as mispronounced can be 

increased or decreased. Especially it may be useful to set a higher probability for class O and a 

lower for class X to not confuse the student by false rejections. 

Figure 7.4 shows the extended setup for word level classification. The output of the Gaussian 

classifier and the additional information is combined in a post processing unit. It remains to 
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Figure 7 .4: Extended setup for the detection of mispronounced words. 

design the post-processing procedure and the final decision rule. One possibility is to use prior 

probabilities, the likelihood ratio log P(clX) -log P(c!O) of the classifier output, the mean 

value of these likelihood ratios of all words in the current utterance and the sentence score as 

new features to train a classifier, e.g. decision tree. The procedure for automatic detection of 

mispronounced words would then consist of two steps: In the first stage scoring of the utterance 

and classification of all its words with a Gaussian classifier. The final classification decision w.r. t. 

mispronounced words is obtained with the decision tree in a second stage. 

For evaluation in Chapter 8, only a variation of the class prior probabilities P(0) and P(X) 

to shift the decision boundary is carried out in order to obtain performance curves based on 

precision and recall. Furthermore a recombination of the classification result with the three 

classes O, X and R is considered. 

7 .2 Utterance Scoring 

As for word classification, each utterance u is represented as one feature vector c = (c1, ... , cd). 

To assess the overall pronunciation quality of a single utterances, there are two possible 

viewpoints: 

• Hard scoring: 

assignment of a discrete value h E { 1, 2, 3, 4, 5} 

• Soft scoring: 

assignment of a continuous value s E [1.0, 5.0] 

From these two viewpoints, the approaches outlined in Figure 7 .5 can be applied for realizing 

an utterance scoring scheme. For hard scoring it is necessary to make a "hard" decision, i.e. the 

outcome must be an integer value like 2 or 3 but nothing in between like 2.5. Since the human 

reference ratings may also be continuous, e.g. mean rating of two or more evaluations, they 

have to be discretized first. Rounding is the simplest way to achieve that. This yields five rating 

classes. Finally, pattern recognition methods for the discrimination of multiple classes can be 

applied. 
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There is only relatively little training data, but relatively many features (33) were defined. 

Consequently, the floating search (FS) technique is also applied for utterance classification. The 

difference to word classification is, that there are five classes to recognize and a different gain 

matrix has to be chosen. For each rating class one Gaussian density is estimated. Mixture model 

densities are not employed, because the available number of samples is too small. 

The Gaussian classifier yields one probability P (cl h) for each class h. The hard classification 

decision is made with the argmax-rule. Class prior probabilities P(h) are assumed uniform. 

Hard scoring has the disadvantage, that the differences between the reference rating and 

the estimated score can easily become greater than 1.0. This is due to rounding and the hard 

classification decision. Soft scoring alleviates this problem, since scores may assume any value 

within the interval [1.0, 5.0]. 

The soft scoring scheme is illustrated in the bottom part of Figure 7 .5. Two methods for soft 

scoring are used: Gaussian classification and Linear classification, both with approp1iate post 

processing. In the Gaussian approach the classifier output, i.e. the class likelihoods P(clh), are 
used to calculate the expected score E[hic]: 

s = E[hlc] = L h * P(hlc) 
h 

P(hlc) = 
P(cJh)P(h) 

L P(cJg)P(g) (7.3) 

g 

This approach was already employed in literature (cf. Section 3.5). The linear classifier 

yields a continuous value, which is a linear combination of one or more pronunciation features: 

s = r0 + t ri * ci (7.4) 

i=l 

The coefficients ri of the linear combination can be estimated by linear regression for a set 

of training samples { (c, h)}, where c is the vector of utterance level features and h the human 

reference rating. The same relationship (Eq. 7.4) is then used to predict the utterance scores with 

the utterance features c. To get robust regression coefficients, the training data for estimating the 

coefficients must be balanced w.r.t. the reference ratings. However, the data available for this 
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thesis do not fulfill this requirement. Resampling can be used to make the distributions uniform: 

from the available training samples for each class as many samples as in the set of the class with 

highest cardinality are selected randomly with replacement. 

Experimental results in Chapter 8 will show, that especially the linear classifier has the 

tendency to assign too bad scores even for the training sample if reference ratings are close 

to 1, and too good scores if reference ratings are close to 5. To alleviate this problem, the score 

values s are adjusted to s'with a combination of two transformations: 

1. linear transformation: 

x = g(s, a)= a。+a悛

2. multiplicative polynomial transformation: 

s'=印 *f(x,b)=b。X+ b1丑+b2丑+••• +bk炉+l

The purpose of the linear transformation is to adjust the mean of the automatically assigned 

scores and the slope of the regression function (Eq. 7.4). The multiplicative polynomial 

transformation can cope with certain non-linear distortions of the scoring output. From Figure 

8.1 the necessity to apply both transformations is apparent. 

The parameters a = (a。,aリofg(s, a) can be obtained by linear regression based on the 

actual scoring output for the training data and the corresponding reference labels. However, 

instead of estimating a far the mapping of scores s to the reference ratings x, the variables sand 

x are interchanged, i.e. the parameters a'of s = g(x, a') are calculated. The coefficients a of 

the desired linear mapping are then taken from the reciprocal function of g(x, a'), i.e. a。=_ao 
al 

and a1 =牛．
al 

Finally, the coefficients b of the polynome s'= f(x, b) must be determined. For training 

samples which belong to the discrete rating class h (by rounding), the meanμh of the estimated 

scores x = g(s, a) is calculated. To bring a score for a sample of class h closer to its reference 

value, it is multiplied by ..!!:..._ A more smooth transformation is the multiplication x with a 
μh 

polynome J(x, b), which fits through the coordinates (h, -/};.). The polynome coefficient bare 

obtained by interpolation with Newton's method [BS97]. 

Such a score adjustment has also the disadvantage, that a scoring result of e.g. t = s + d1 

for a reference value of u = s -d2 with d1, あ >0 gets worse, if t < t * f(g(t, a), b) and 

u > u * J(g(u, a), b) and vice versa. 

7 .3 Speaker Scoring 

The overall pronunciation proficiency of a non-native speaker can be estimated on a set of that 

speaker's utterances. The sentence set should ideally be phonetically balanced or at least cover a 

wide range of phonetic contexts. Otherwise the proficiency assessment is likely to be biased. For 

example a speaker's pronunciation skill would be overestimated, if speech sounds he pronounces 

correctly occur more frequently in the sentences than those he is likely to mispronounce. 
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There are possibilities to estimate a speaker level rating directly avoiding to go the 

way round utterance scoring (cf. Section 3.6). However such a scoring method is rather 

computationally intensive and requires a certain amount of speech data with examples for all 

phonemes. Utterance-based estimation is much faster and straightforward. Figure 7.6 shows 

the experimental setup for speaker level scoring. The Figure describes two approaches which 

differ in the order initial features and final scores are processed. The method in the upper part 

of the figure first extracts the feature vectors ci from all utterances, averages the feature vectors 

and finally performs scoring identical to utterance scoring based on a single feature vector. The 

method in the bottom part first scores each utterance separately with its corresponding feature 

vector and finally takes the average of all utterance scores. 

utterances 
speaker 

score 

Figure 7.6: Scoring of multiple utterance to obtain a speaker level score. 





Chapter 8 

Results 

This chapter reports the results for experiments described in Chapter 7. Experiments are canied 

out for two corpora: ATR SLT non-native English database and FAU LME non-native English 

children speech corpus. For validation purposes some native speech is employed additionally: 

English speech from seven adult native speakers uttering the same sentences as the non-native 

speakers in the ATR SLT database, and British English children speech from the PF _STAR BE 

corpus. 

The utterance scoring accuracy is indicated by three measures: the co1Telation (COR) for 

soft scoring and the class-wise average recognition rate (CL) as well as the class-wise average 

recognition rate which tolerates confusions of neighbored classes (CL-A) for hard scoring. For 

example, if the reference rating is 3 and the classification result is 4 or 5 it is still considered as 

correct with CL-A. 

Discrimination of correctly pronounced and mispronounced words is a 2-class classification 

problem. Besides the total recognition rate (RR), i.e. the relative share of correctly classified 

tokens, and the class-wise average recognition rate (CL), the accuracy can also be indicated 

by the measures recall (REC) and precision (PRC). They can be calculated from the confusion 

matrix P of the classifier: 

P=ロh__]= [ # correctly assigned to゚ I# tokens misclassified as X 
f2 c2 # tokens misclassified as O # correctly assigned to X ] 

(8.1) 

Table 8.1 summarizes the definitions of all measures of classification accuracy. Recall w is 

the relative share of the tokens with reference label w, which are classified as w. Precision w 

is the relative share of co汀ectclassifications among the tokens classified as w. By shifting the 

decision boundary a recall vs. precision for one class or a recall vs. recall curve for both classes 

can be obtained. The decision boundary can be shifted by setting the class prior probabilities 

P(0) = l -P(X) to values sampled from the interval [0.0; 1.0]. 
The number samples of each class for word classification and each rating class for utterance 

scoring is unbalanced. Resampling is carried out to obtain a balanced training and test set for 

each class. For each class as many examples as in the sample of the class with highest cardinality 

are redrawn randomly with replacement. 

93 
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Table 8.1: Accuracy measures for word classification experiments. 

Abbrev. Name Definition 

CL class-wise average recognition rate ぅ1(CJC十Jfi + c2C+2f2 ) 

RR total recognition rate c1+c2 
CJ +c2+ f1十'2

REC 1 recall of class 1 c1C+J f1 

PRC 1 precision of class 1 c1C+J f2 

REC2 recall of class 2 c2C+ ・2f2 

PRC 2 precision of class 2 c2c+2 h 

Table 8.2: Number of utterances w.r.t. human ratings in the ATR SLT database. 

Data II Training set Test set 

Class 1 2 3 4 5 1 2 3 4 I s 
Part. A 333 1,298 1,308 462 55 49 493 436 161 13 

Part. B 335 1,356 1,289 430 46 47 435 455 193 22 

Part. C 160 1,322 1,441 492 41 222 469 303 131 27 

Part. 1J 318 1,397 1,194 485 62 64 394 550 138 6 

8.1 ATRSLTData 

Tables 8.2 and 8.3 show the amount of data available for utterance scoring and word classification 

experiments. There are four groups of annotators and the members of each group evaluated the 

data of 24 non-native speakers. The data was divided into a training set consisting of the data 

of three groups (72 speakers) and a test set consisting of the data of one group (24 speakers). 

Hence, there are four possibilities (A, B, C and 1J) for data partitioning, if training and test set 

are kept disjoint w.r.t. speakers and evaluators. Initial experiments are carried out with C. Final 

experiments are done with 4-fold cross-validation (CV), i.e. evaluation is carried out for all four 

possibilities taking the average result. 

The jackknife mean estimate of the human evaluation is employed as reference rating for each 

utterance. For hard utterance scoring these continuous ratings are rounded to obtain five discrete 

rating classes. For classification experiments on the word level, words are categorized according 

Table 8.3: Number of words in each class (ATR SLT data). 

Data 
， Class 

゜
I R I え'

゜
I R、 I え'

Part. A 20,532 5,173 2,735 6,533 2,154 793 

Part. B 20,639 4,910 2,891 6,426 2,417 637 

Part. C 19,445 6,307 2,688 7,620 1,020 840 

Part. D 20,579 5,591 2,270 6,486 1,736 1,258 
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to the number of evaluators who marked it. A word which was not marked at all belongs to class 

0 and is considered as coITectly pronounced. The words with two or more markings are treated 

as mispronounced and are part of class X. For words with only one marking it is difficult to 

decide whether they should be assigned to O or X. They are categorized into class R. 
The speech recognizer and its modules are set up in the same way as described in Section 

6.1. The phoneme confusion matrices for calculation of the features C01-C05 are estimated in 

advance with the training data and the associated word markings. 

8.1.1 Utterance Scoring 

First the results for soft scoring with linear combination of one, two or more features is reported. 

Only those features in each group (L,K,D,R,P,M,E) for which already a relatively high correlation 

to the human ratings was observed in Section 6.2.2 are considered. The IDs of these feature 

are: L 7,Kl ,K3,X1 ,M3,P1 ,P2,D2,R4,E2,E3. Table 8.4 shows the performance of utterance soft 

scoring by linear feature combination. For single features only the bias term and the slope of the 

straight line, which describes the relationship between the feature value and the human reference 

rating, are estimated. The best single feature is the likelihood ratio (K3). The feature combination 

with the highest rating to score correlation is {K3,Xl,M3}. If the X (recognition performance), 

M (phoneme sequence likelihood) and K (likelihood ratio) features, which are based on the 

recognition result, are not available, the same performance cannot be achieved even if several 

other features {D2,L 7 ,R4,P l ,E3} are employed. 

Table 8.4: Experimental results for utterance soft scoring with non-native ATR SLT data. 

Performance is measured by the correlation coefficient. 

□町Features I Part. C I Cross-Vali I 
4 {K3,Xl,M3,D2} (**) 0.64 0.59 

3 {K3,Xl,M3} 0.64 0.59 

2 {K3,M3} 0.63 0.56 

2 {K3,Xl} 0.59 0.55 

s {D2,L7,R4,Pl,E3} 0.57 0.51 

3 {D2,L7,E3} 0.56 0.51 

2 {D2,E3} 0.56 0.51 

2 {D2,L7} 0.52 0.47 

1 Likelihood ratio (K3) 0.57 0.52 

1 Likelihood score (E3) 0.49 0.44 

1 Recognition performance (X 1) 0.48 0.46 

1 Duration score (D2) 0.47 0.45 

1 Likelihood score (L 7) 0.47 0.42 

1 Phoneme sequence lh. (M3) 0.48 0.40 

The highest rating to score correlation is 0.59 with cross-validation. In Section 5.1 an 

average inter-rater open correlation of 0.60 was reported. Consequently, the automatic scoring 



96 CHAPTER 8. RESULTS 

by linear combination of features may be considered almost as reliable as the human evaluation. 

However, a closer look at the scoring result reveals, that the output of the regression function is 

distorted. Utterances with a good pronunciation quality are scored too bad and vice versa. With 

a linear and a polynomial transformation as described in Section 7.2 this undesired effect can be 

alleviated. If ratings and scores are discretized by rounding, the classification gain f (M2, P) can 
be calculated. For example, it descreases from -0.59 without adjustment to -0.24 after adjustment 

when scoring is based on the feature set(**). The correlation between human ratings and scores 

does not change significantly with and without score adjustment (cf. Figure 8.1). 

3
」
0
~
suor
1c1~

unu

o
1d 

5

5

4

5

3

5

 

．

．

．
 

4

3

2

 

?
-

5

l
 

◇

◇

父

〉

◇

◇

◎

営

◇

◇

。I

◇

◇
X〉

0z1-p.弓
e

Q
.
-
9-9l-芸-｛
＂
◇

◇

◇

-̂
＿＿

1-I◇
 

◇

◇

-

1
>
 

.̂冶
*
|
宣

--V

◇
仝

2ニ
・
―
~
―

◇

＄
◇
＾

.
0
1緬

K〉

o
_
-
1-0◇

 

§
ュ
—
_
．
宣

◇ ◇ i 

一 ~ ~ 

5◇ ◇ @llq ~s · 
◇ i H I゚：＇;,. I':: 
$ 1, @ 8 ~ ◇ 

i ! I. ◇ ◇ 

; 8 ◇ 

1.5 2 2.5 3 3.5 

Average human rating 

4
 

4.5 5
 

3
」

C
J
S
 LIOI
JU
IJ
U
n
u
 C」
d

5

5

4

5

 

．

．
 

4

3

 

5

2

5

ー

．

．
 

2

,_ 

1.5 2 2.5 3 3.5 

A vcragc human rating 

4
 

4.S 5
 

Figure 8.1: Soft scoring result for Part. C with linear regression and feature combination(**). 

Plot shows ratings vs. scores before (left) and after (right) adjustment with a linear and a 

polynomial transformation (ATR SLT data). 

Nevertheless, linear feature combination does not work as good for pronunciation scoring as 

the reader might have been expected. The reason is an unsatisfactory scoring accuracy for native 

speech as shown in Table 8.5. The values in each column describe the recall w.r.t. each rating 

class h for each scoring approach. The soft scoring result was discretized for easier comparison 

with the approach based on the Gaussian classifier. Without score adjustment only 7.4% of 

the natives'utterances are classified correctly. If adjustment is applied, the scoring accuracy 

increases to 85.4%. 

Experimental results for both hard and soft scoring with a Gaussian classifier are shown 

in Tables 8.6 and 8.7. Besides manual1y selected feature combinations, which proved to be 

successful for soft scoring with linear regression, automatic feature selection with the floating 

Table 8.5: Scoring of utterances of native speakers with the Gaussian class~fier and linear 
regression (LR) with and without score adjustment (ATR SLT data). 

三
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Table 8.6: Experimental results for utterance hard and soft scoring with the Gaussian classifier. 

Results are shown for evaluation with Part. C (ATR SLT data). 

~Features L~ 朽旦(in%)_I-CL-A (in%)) 

5 {K3,M3,X2,Yl,L3} 0.58 46.4 86.8 

4 {K3,M3,X2,Yl} FS,M1 0.58 45.4 86.7 

3 {K3,M3,X2} 0.60 42.2 87.3 

2 {K3,M3} 0.60 42.3 86.4 

5 {E3,K2,Xl,Yl,Ml} 0.58 48.0 85.2 

4 {E3,K2,Xl,Yl} FS,M2 0.58 47.4 85.1 

3 {E3,K2,Xl} 0.60 46.1 85.5 

2 {E3,K2} 0.59 44.1 84.5 

s {K3,M3,El,P2,Xl} 0.60 46.1 87.2 

4 {K3,M3,El,P2} FS,COR 0.59 45.7 86.1 

3 {K3,M3,El} 0.58 43.9 86.7 

2 {K3,M3} 0.60 42.3 86.4 

3 {K3,Xl,M3} 0.60 40.9 85.9 

5 {D2,L7,R4,Pl,E3} 0.51 39.0 82.2 

3 {D2,L7,E3} manual 0.52 38.1 81.1 

2 {D2,E3} 0.53 37.6 80.4 
2 {K3,Xl} 0.56 34.5 79.9 

1 Likelihood ratio (K3) 0.56 36.0 79.8 

1 Duration-normalized lh. (E3) 0.48 39.9 76.4 

I Phoneme sequence lh. (M3) single 0.47 37.7 75.6 

1 Phoneme recognition (XI) 0.46 35.5 71.5 

1 Phoneme duration score (D2) 0.45 32.8 73.6 

search (FS) algorithm was carried out. Different types of optimization criterions are examined: 

the gain function (Eq. 7.1) with two different gain matrices M1 and M2 as shown in Equation 8.2 

and the correlation coefficient. The matrices are designed so that the more severe the confusion 

is, the higher the loss becomes, e.g. the worst case is a confusion between class 1 and class 5. The 

only difference between M1 and M2 is, that the gain function based on M1 ignores confusions 

of neighboring classes, while with M2 they have a negative effect. 

+1 

゜
-2 -4 -8 +1 -1 -2 -4 -8 

゜
+l 

゜
-2 -4 -1 +1 -1 -2 -4 

M1 = I -2 

゜
+1 

゜
-2 M2= -2 -1 +1 -1 -2 (8.2) 

-4 -2 

゜
+l 

゜
-4 -2 -1 +l -1 

-8 -4 -2 

゜
+1 -8 -4 -2 -1 +l 

The likelihood ratio (K3) turns out to be the best single feature. The scoring accuracy for 

native utterances is also highest (94.4%) with feature K3. If other features like E3, M3, D2 or XI 
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Table 8. 7: Results for scoring utterances of non-natives and natives with the Gaussian classifier 

(ATR SLT data). 

Non-Native (Cross-Vali) Native 

#F Features COR I CL I CL-A I J(M2, P) RR 

3 {E3,K2,Xl} (*) 0.54 40.1 79.9 -0.25 90.2 

3 {K3,M3,X2} 0.54 38.7 78.6 -0.27 91.1 

2 {K3,M3} 0.54 39.6 78.0 -0.27 92.7 

5 {K3,M3,El ,P2,Xl} 0.54 38.5 78.2 -0.29 91.1 

5 {D2,L7,R4,P1 ,E3} 0.47 34.0 74.8 -0.39 85.7 

3 {D2,L7,E3} 0.46 34.4 75.5 -0.40 82.7 

1 Likelihood ratio (K3) 0.51 36.7 75.1 -0.32 94.4 

1 Phoneme recognition (XJ) 0.44 35.3 71.5 -0.43 86.6 

1 Phoneme duration score (D2) 0.42 32.3 70.2 -0.43 87.8 

1 Duration-normalized lh. (E3) 0.40 34.5 69.1 -0.49 69.9 

1 Phoneme sequence lh. (M3) 0.38 31.5 66.7 -0.59 78.3 

are used individually, the performance decreases especially w.r.t. COR and CL-A for non-native 

data and RR for native data (cf. Table 8.7). 

Depending on the optimization criterion, different feature combinations are found by the 

floating search (FS) algorithm. The search is carried out with all features. The best combinations 

with up to five features are shown in Table 8.6. For the combinations it is characteristic that 

at most one feature from each feature group (L,K,E,M,X,P,Y,R) is present. Furthermore, the 

features of the groups K,M,X,E seem to carry most of the relevant information. 

Cross-validation was carried out for feature combinations from Table 8.6. If only the 

utterance segmentations are available, the highest accuracy is achieved with the feature 

combination {D2,L7,R4,P1 ,E3}. If also any of the X, Kand M features are available, which 

depend on the utterance recognition result, the correlation increases to 0.54 for the feature set 

{E3,K2,X1 }. At the same time the scoring accuracy of native utterances is 90.2%. 

Conclusion. In terms of the correlation, the performance of soft scoring with a linear 

regression function of the pronunciation features (0.59) is almost as high as the average inter-rater 

open correlation between the human evaluators (0.60). Nevertheless, the output of the regression 

function is distorted and the scoring accuracy is only 7.4 % for native speech. By adjusting 

scores with a linear and a multiplicative polynomial transformation, the performance increases 

to 85.4% (cf. Table 8.5). 

Regarding correlation, the Gaussian classifier performs worse (0.54) than linear regression. 

However, the scoring accuracy can be higher. This is evident from Table 8.5, which shows 

a recognition rate of 90.2% vs. 85.4% for native utterances. This result suggests, that the 

con-elation coefficient alone is not a reliable indicator of utterance scoring performance. The 

classification gain f (M2, P) may be used additionally. 

The lower performance with linear regression than with the Gaussian classifier may be due 

to the following reasons: 
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Table 8.8: Hard scoring based on the Gaussian classifier and the feature combination(*). 

I Confusion matrix for evaluation with Part. C (in%) I 

↓ Ref. 1 2 3 4 5 h土 1

1 69.7 13.0 12.4 4.9 0.0 82.7 

2 46.9 25.2 20.7 6.0 1.3 92.7 

3 24.7 21.8 38.0 14.3 1.3 74.0 

4 4.5 4.3 30.3 43.3 17.7 91.2 

5 0.0 0.0 13.2 32.2 54.6 86.8 

1. The training data is not balanced w.r.t. the human ratings. Most utterances are labeled with 

rating 2 or 3 and only very few utterances with rating 1 or 5 exist. 

2. A linear relationship between pronunciation features and ratings was assumed. However, 

this assumption is not true for many scores as the plots in Appendix C show. Hence, the 
Gaussian classifier is employed in pending experiments for speaker scoring. 

8.1.2 Speaker Scoring 

Table 8.9 shows the experimental results for speaker level scoring. Evaluation is carried out 
with 4-fold cross-validation. The calculation of the correlation (COR) and its 95% confidence 

interval is based on 1000 bootstrap samples. The final speaker level score is obtained by taking 

all available 48 utterances per speaker into account. 

There is no significant difference in performance regarding to whether first score utterances 

and then average the scores and vice versa. Feature set {E3,K2,X1 }, which was most effective 

for utterance scoring, seems to be superior to {K3,M3}, but the difference is not significant. In 
Section 5.1, the average inter-rater open correlation at the speaker level was found to be 0.94. 

Since the performance of the automatic procedure is only 0.84, the human evaluators have to be 

considered as more reliable. 

Figure 8.2 shows the plot of reference ratings versus automatic scores to get an impression 

of scoring accuracy. Furthermore the relationship between the number of utterances employed 

to calculate speaker level scores and each speaker's ratings is shown. There is a steady increase 

Table 8.9: Speaker level scoring based on 48 utterances per speaker (ATR SLT data). 

Features Method Mean COR 95% Conf-Int 

{K3,M3} first score, then average 0.79 [0.72;0.85] 
first average, then score 0.80 [0.73;0.86] 

{E3,K2,X1} first score, then average 0.83 [0.77;0.88] 

first average, then score 0.84 [0.78;0.88] 
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Figure 8.2: Left: Speaker level scoring based on the Gaussian classifier and the''first score, then 

average" method with the feature set { E3,K2,Xl} -Right: Relationship between the number of 

utterances employed for scoring and the rating to score correlation (ATR SLT data). 

in correlation with the number of utterances. Most is gained for the first ten utterances and the 

curve's slope indicates that further increase can be expected for using more than 50 utterances. 

8.1.3 Word Classification 

Three different classification approaches are examined: Floating search (FS) with a single density 

Gaussian classifier, decision tree building with CART and training of GMMs in a feature space 

reduced by LDA or PCA. The gain matrix M3 employed for FS is defined as 

[>~~]
With this matrix, the negative effect of wrong classifications of tokens belonging to class 0 

as X is three times higher than classifying mispronounced tokens as correct. The reason for this 
definition is, that misclassifications of the former kind are much more disadvantageous for the 

second language learner than misclassifications of the latter kind (cf. Section 1.3). 

Decision trees are trained stepwise by greedy selection of features. The performance of three 

pre-selected feature sets is examined for stepwise training: (a) all 35 features, (b) 33 features, 

i.e. without WOS and W07, which are based on prior information, (c) 21 features, i.e. without 

{W05,W07} and {Wl3-Wl6,C01-C08} which are based on the word recognition output. 

GMMs are trained for each feature dimension d E {1, 2, 3. 4. 5 10 15 ) }. A maximum number 

of d * 2 densities was a11owed for training with the FJ algorithm. 

For evaluation two kinds of reference labels for mispronounced words are examined: 

M戸 (8.3) 

1. Words from R belong to X, i.e. a word is considered as mispronounced, if it was marked 

by one or more evaluators 

2. Words from R belong to 0, i.e. a word is treated as mispronounced if it is marked by at 

least two evaluators. 



8. 1. ATR SLT DATA 101 

Table 8.10: Word classification with class R belonging to X, i.e. reference word is considered 

as mispronounced if it was marked by one or more evaluators. Part C (ATR SLT data). 

Classifier #Fts I Feature selection 匹 ¥3,P)j 

1 {CO2} 65.4 

Single 2 {C02,C08} 66.4 

Gaussian 3 {C02,C08,W08} 66.9 

(FS,CL) 4 { C02,C08, Wl O,C07} 67.5 

5 {C02,C08,Wl0,C07,W06} 67.9 

6 {C02,C08,W10,C07,W06,C03} 68.4 

1 {W12} 60.1 / 0.098 

Single 2 {W12,C01} 63.6 / 0.133 

Gaussian 3 {W12,C01,C07} 64.9 I 0.146 

(FS,M3) 4 {W12,C01,C07,W17} 66.2 I 0.152 

5 {W12,COl ,C07,Wl O,WOl} 65.3 I 0.170 

6 {Wl 2,C01 ,C07,W1 O,W01 ,Wl 6} 65.9 I 0.176 

(a) 35→ 3 {W05,C07,C06} 67.8 

CART[STEP] (b) 33→ 5 {C08,W03,C04,W22,C06} 66.5 

(c) 21→ 3 {W03,W12,W18} 63.6 

The results for both categorizations are shown in Tables 8.10 and 8.11, respectively. The 

maximum accuracy observed for (2) is 73.5 %, which is higher than the maximum performance 

of 68.4 % achieved for categorization (1). This result backs the hypothesis, that the boundary 

between correctly pronounced and mispronounced words is unclear and the decision of the 

human evaluators to mark words is highly subjective. If two or more evaluators agree about 
the minor pronunciation quality of a word token, the determination of mispronounced words 

becomes more consistent. Consequently, the higher classification accuracy for (2) is reasonable, 

since classifiers are trained on data with more reliable and more valid reference labels. 

The single density Gaussian classifier based on a feature set selected by the floating search 

algorithm yields the highest performance. There is no significant difference in accuracy to 

GMMs and reduction of the feature space dimension with PCA. The performance is significantly 

lower, if LDA is used for feature reduction. In Table 8.11 only the result of the GMM/LDA 

and the GMM/PCA approach for feature space dimension d with highest accuracy are shown. 

Since the computational complexity of the GMM/PCA approach is higher, the single Gaussian 

approach should be favored. The classification accuracy with a decision tree is best, if it is 

constructed stepwise from the full feature set (a). Performance decreases when using the feature 

subset (b) or (c). 

Important features, which are selected by the floating search algorithm or in the stepwise 

CART training procedure are the confidence features based on the phoneme confusion 

matrix {C01,C02}, the confidence measures {C07,C08} based on the word posterior 

probability, duration features Wl0-W12, word likelihood features W01-W03 and the recognition 

performance Wl3. Features which do not occur in features sets with six or less features 
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Table 8.11: Word classification with class R belonging to 0, i.e. re;ference word is considered 

as mispronounced, if'it was marked by two or more evaluators. Part C (ATR SLT data). 

Classifier #Fts jF eature selection / transformation 〖ピfJM3 , P))
1 {COl} 67.6 

Single 2 {W01,C08} 70.9 

Gaussian 3 {W01,C08,Wl 1} 72.1 

(FS,CL) 4 {W01,C08,W11,C01} 72.8 

s {W01,C08,W11,C01 ,COS} 73.5 

1 {WIO} 63.7/0.156 

Single 2 {W10,C02} 68.1 / 0.202 

Gaussian 3 {Wl0,W21,C01} 70.0 I 0.229 

(FS,M3) 4 {W10,W21,W20,C01} 70.4 / 0.233 

5 {WI O,COl ,Wl 1,W02,Wl 3} 71.0 / 0.233 

6 {Wl O,COl ,Wl 1 ,W02,Wl 3,W21} 71.4 / 0.236 

(a) 35→ 2 {W05,C08} 73.0 

CART[STEP] (b) 33→5 {Wl 3,W06,C08,C01 ,WI 2} 71.2 

(c) 21→ 4 {W03,W12,W19,W08} 67.3 

GMM 10 Linear Discriminant Analysis (LDA) 68.9 

4 Principal Component Analysis (PCA) 72.6 

selected by the floating search algorithm nor selected during stepwise decision tree learning 

are {W09,W14,W15,W23-W27}. An interesting observation is the selection of the features 

WOS and W06, the expected and the actual word duration. From the mispronunciation index 

in Appendix A and the distribution plots of W05 and W06 in Appendix C it is clear, that the 

longer the duration of a word or the larger the number of phones in a word is, the more likely is 

its mispronunciation. 

As for utterance scoring, the word classifier has to be validated with native speech data. All 

words of the native data are assumed to be pronounced correctly. The performance for native 

speech is evaluated for all single features and all feature combinations found by the floating 

search algorithm. The best twenty feature combinations determined for native speech are then 

evaluated again for non-native speech with cross-validation. Table 8.12 shows a selection of the 

best results for both native and non-native speech. Since it is still difficult to determine the best 

feature combination among those listed in the table, final comparison is made by looking at the 

trade-off between precision and recall. 

Figure 8.3 shows the recall O vs. recall X and the recall X vs. precision X curves 

for part C. For better visibility, the curves are only plotted for four feature combinations. 

Performance for native speech is highest with feature Wl2. However, the precision for 

the detection of mispronounced words for non-native speech is too low. The feature set 

{W01,C08,Wll,C01,C05} seems to give the highest performance for non-native speech, 

although RR for native speech decreases to 90.3 %. 
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Table 8.12: Results for cross-validation with non-native data and results for validation with 

native data (words in the T!M!T SX sentences of 7 native speakers). R belongs to 0. 

Native Non-Native (Cross-Vali) 

Classifier Features RR CL RECO RECえ'

Wl2 98.8 61.2 92.1 30.3 

WlO 96.2 64.0 88.0 40.1 

Gaussian WJ 2,COl ,C07,W1 O,W01 95.9 69.0 86.5 51.5 

Wl O,COI ,Wl 1,W02,Wl 3 93.1 69.5 81.4 57.5 
W01,C08,Wl l,COl ,COS 90.3 72.2 73.7 70.8 
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Figure 8.3: Performance curves for word classification experiments with Part. C (ATR SLT data). 

It remains to analyze, whether the accuracy of automatic word classification can be 

considered as "acceptable" in comparison to the human evaluators. Their performance is shown 

in Table 8.13. The confusion matrix "pairwise average" is obtained with the following procedure: 

select two evaluators; use the 1st evaluator's labels as reference and the 2nd evaluator's labels as 

classification result and obtain the confusion matrix; repeat calculation for all evaluator pairs and 

take the average result. The confusion matrix "open average" is obtained in the following way: 

determine a reference from the labels of all but one evaluator: a token belongs to class X if it 
is marked twice or more, otherwise it belongs to class O; take labels of the remaining evaluator 

as classification result and obtain the confusion matrix; repeat this procedure for each possible 

combination and take the average result. 

Disagreement among evaluators is apparent, since 8.1 % of the presumably correct tokens 

Table 8.13: Performance of human evaluators. Left: pairwise average Right: open average. 

゜
え' 〇 え'

Class 0 

Class X 

88.8 

42.3 

11.2 

57.7 

Class 0 
Class北'

91.9 

42.2 

8.1 

57.8 
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are marked as mispronounced w.r.t. the open average. When employing the feature combination 

{Wl0,C01,Wll,W02,Wl3} the classification error w.r.t. class O is 18.6 %, which is more than 
two times higher. At the same time, the detection accuracy of mispronounced words is equal 

to the human evaluators. The classification error w.r.t. class O can be reduced by shifting the 
decision boundary. This inevitably leads to a lower recall, but also a higher precision for class 

ぷ Thoughthe automatic method cannot achieve the same accuracy as the human evaluators, 

performance is promising. 

The result for three-way classification, i.e. discrimination of the classes 0, X and R, is 

shown in Table 8.14. The feature combination {C02,C07,W12,Wl0,W03} is found by the 

floating search algorithm. As for two-way classification the same important features are selected. 

The gain matrix M4 employed for FS is: 

M, ~ [ :~;: :n (8.4) 

For its definition, the same considerations as for matrix M3 apply. Furthermore it does not 
matter if class R is classified as(] or X, but it should also have a positive effect, if it is identified 

correctly (2nd row). Furthermore tokens belonging to class X should not be classified as R, but 

for tokens from class (] it should have a positive effect (2nd column). 

With the usage of the rejection class R, two possibilities of how to process the classification 

result arise: 

1. Tokens classified as (] may be highlighted in green (pronunciation correct), R in yellow 

(indefinite) and X in red (mispronounced). Such a color coding scheme serves as feedback 

to the language learner like it is employed in existing CAPT systems (cf. Section 1.3). 

2. Treat tokens classified to Ras correctly pronounced. This leads to an increase of the recall 

of class (]. Furthermore, consider reference tokens of class R as mispronounced. This 

is an acceptable assumption, since such tokens have been marked as mispronounced by at 

least one human evaluator. 

With a recombination of classification results after (2), the confusion matrix in the right 

half of Table 8.14 is obtained. The misclassification rate of tokens from class (] is only 6.9%, 

Table 8.14: Left: Result of word classification for all three classes O, R, X with a Gaussian 

classifier and the features set { C02,C07, WJ2, WJO, W03}. Evaluation is carried out with cross-

validation. Right: Recombination of results for two classes: treat reference labels of Ras X 

and any classification outcome ofR as O (ATR SLT data). 

I Machine II Class O I Class R I Class X I 
I Machine II O I X I 

Class O 85.3 7.8 6.9 

Class R 65.7 14.6 19.7 
Class 0 93.1 6.9 

Classえ' 41.0 16.2 42.8 
Class北' 68.7 31.3 
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lower than the human evaluators. At the same time 31.3% of the mispronounced words are still 

detected. The classification accuracy of mispronounced tokens belonging to class X is even 

42.8% (left table). 

8.2 FAU LME Data 

The corpus contains non-native English speech of German children. Children speech has 

different acoustic characteristics than adult speech, since the vocal tract of children up to an age 

of about 12 years is shorter than adults on average. Furthermore, German school teachers usually 

tend to speak British rather than American English. Since the acoustic model is the most crucial 

part of the pronunciation scoring system, preliminary recognition experiments are carried out to 

cope with the two possible mismatch conditions AE/BE and child/adult. A unigram language 

model covering 970 words estimated on the transcriptions of the corpus is employed for word 

recognition. Phoneme recognition was conducted without constraints. 

Table 8.15 shows the recognition results for three different acoustic models. The AE model 

is trained with American English adult speech from the WSJO/WSJ1 corpus, the BE model 

with British English adult speech from the WSJCAMO corpus and the BE_PF _STAR model 

with British English children speech from the PF _STAR corpus. Additionally, normalization 

of acoustic features by vocal tract length normalization (VTLN) [LR98] is carried out for 

recognition with the AE and BE models. Performance is examined for six different warping 

factors a E {0.80, 0.85, 0.90, 0.95, 1.00, 1.05}. The factor a = 1.0 corresponds to recognition 
without VTLN. 

Performance is worst for the AE and BE models without VTLN. The word accuracy is 

almost eq叫 forrecognition with the AE model plus VTLN and the BE_PF _STAR model. Word 

accuracy with the AE model becomes highest, if the optimal VTLN normalization factor (a*) for 

each speaker is employed. Consequently, for pronunciation feature extraction the AE model and 

acoustic feature normalization with the optimal a* is used. 

For comparison with previous results for SLT data, the correlation between the pronunciation 

features and the human ratings is analyzed. Since only speaker level ratings are available, 

correlation can only be examined at the speaker level. Speaker level features are obtained by 

Table 8.15: Mean recognition performance for all non-native children speech data in the FAU 

LME database with one acoustic model each for American (AE) and British English (BE) plus 

optional VTLN [a}, and with one acoustic model BE children speech (BE_PF ...STAR). 

[ Acoustic model い~ord~cc II Acoustic Mod~! I WordAcc I PhonAcc j 

AE/BE + VTLN [0.80] 20.2 I 18.3 AE+NOVTLN 22.1 -16.3 

AE/BE + VTLN [0.85] 25.0 I 22.7 AE + VTLN [a*] 27.4 -11.3 

AE/BE + VTLN [0.90] 25.9 I 22.8 BE+NO VTLN 18.6 -16.3 

AE/BE + VTLN [0.95] 25.3 I 21.5 BE+ VTLN [a*] 24.3 -9.S 

AE/BE + VTLN [1.05] 17.8 / 15.2 BE_PF_STAR 25.0 1.8 
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Figure 8.4: Relationship between the rating to score correlation and the number of utterances 

used for averaging in order to obtain speaker-level ratings and scores (FAU LME data). The 

scores considered are: Likelihood (L7), LhRatio (Kl), AvgPhonDur (R4), PhonAccu (Xl), 

DurScore (D2), NumPauses (P2), PhseqScore (M3) and DuratDev (El). 

Table 8.16: Correlation between speaker level ratings and scores. 

[ Correlation L7 Kl R4 P2 D2 Xl M3 El 

FAU LME data 

ATR SLT data 

-0.45 

-0.58 

-0.56 

+0.80 

+0.43 

+0.55 

+0.38 

+0.55 

-0.41 

-0.72 

喜
汀

~
~
 

-0.35 

-0.60 

+0.32 

+0.61 

averaging the feature values of several utterances. Figure 8.4 shows the relationship between the 

number of utterances used for averaging and the speaker level correlation. There is an increase 

in correlation with the number of utterances. While the same tendency can be observed for LME 

and SLT data (cf. also Figure 6.8), the maximum correlation reached is lower for LME data than 

for SLT data (cf. Table 8.16). One reason may be the fact, that the speaker level ratings of the 

LME data are only based on one assessment of one evaluator, and the ratings are only of the from 

a or a-b, where a, b E {1, 2, 3, 4, 5}. The speaker level ratings for the SLT data are more nuanced 

because they are based on multiple assessments by several evaluators for 48 phonetically rich 

sentences. Feature X 1 seems to be most reliable for both corpora. The features K 1, L 7, R4 and 

D2 have a correlation greater than 0.4. 

The complete information about each non-native speaker including the number of utterances 

and words, share of mispronounced words, recognition performance, optimalぶ a.s.o.is given 

in Appendix A. Table 8.17 shows the absolute number and relative share of words considered as 

correctly pronounced or as mispronounced for all speakers in the database. 

In the following experiments, LME data are only used as test data. The pronunciation scoring 

system is trained with non-native speech from the SLT database and native speech data from the 

WSJ and TIMIT corpora. 
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Table 8.17: Number of words considered as correctly pronounced and as mispronounced in the 

human annotations (FAU LME data). 

Classes 

Correct 0 

Mispronounced X 

8.2.1 Speaker Scoring 

# words 

17605 

1657 

share(%) 

91.4 

8.6 

Since utterance level ratings are not available for LME data, only experiments for speaker level 

scoring are carried out. Besides the feature combinations that were effective for SLT data, 

additional combinations of the five features Xl, Kl, L7, R4 and D2 with a relatively high 

correlation to human ratings as a shown in Table 8.16 are considered. Classification with a 

single Gaussian per rating class as well as linear combination of features is examined for scoring 

single utterances. The final speaker level score is obtained by averaging two or more utterances. 

Table 8.18 shows the sc01ing performance for the feature combinations among the best 
results. All utterances available were taken into account to calculate the score for each speaker. 

The overall performance of all examined feature sets for LME data is significantly lower than for 

SLT data. The set {E3,K2,Xl}, which is most suitable for SLT data with a correlation of 0.84, has 

only a correlation of 0.52 for LME data. Scoring becomes more reliable with different feature 

combinations. Maximum correlation is present when employing the feature set {Xl,Kl,L7}. 

There is no significant difference in scoring reliability if employing the Gaussian classifier and 

linear combination for this feature set. 

The speaker level correlation for linear combination of features {Xl ,Kl ,L7} is 0.68. Score 

adjustment was applied. The parameters of the regression function and the score transformation 

are only estimated on SLT data. Figure 8.5 illustrates the relationship between human reference 

ratings and the automatic scoring result. As for the SLT data, speaker level correlation increases, 
if more utterances are taken into account for scoring. Since many utterances are single word 

utterances, they were reordered randomly before determining the right graph of Figure 8.5. The 

Table 8.18: Speaker level scoring with the Gaussian classifier and linear feature combination 

considering all utterances available for each speaker (FAU LME data). 

[ Features I Method 王 nCOR I 95% Conf-Int I 

{D2,L 7,R4,Pl ,E3} 0.45 [0.19;0.65] 

{E3,K2,X1} Single 0.52 [0.29;0.69] 

{Xl} Gaussian 0.65 [0.47;0.78] 

{Xl,Kl,L7} 0.66 [0.52;0.78] 

{D2,L7} 0.62 [0.48;0.73] 

{K3,X1,M3} Linear 0.66 [0.52;0.78] 

{Xl} Combination 0.64 [0.46;0.78] 

{X1,Kl,L7} 0.68 [0.53;0.80] 
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Figure 8.5: Left: Speaker scoring with the feature set {Xl,Kl,L7} and a linear regression 

function. -Right: Relationship betvveen the number of utterances employed for speaker scoring 
and the correlation coefficient between human ratings and scores (FAU LME data). 

correlation reaches its maximum after 30 utterances. 

already be observed for the first 10-20 utterances. 

Despite the evaluation of the SLT and LME data are lacking a common basis, speaker scoring 

performance is promising. The speaker level correlation is lower for LME than for SLT data, but 
this may also be to the fact, that the speaker ratings for LME data are less nuanced. Furthermore, 

the LME data does not consist of phonetically balanced sentences, which would allow a more 
accurate estimate of each speaker's pronunciation skill. 

Nevertheless, the highest increase can 

8.2.2 Word Classification 

Word classification for LME data is caITied out with the feature combinations and classifiers 

with best performance for SLT data. Classifiers are only trained with SLT data. Additionally, 

the floating search algorithm is employed for selection of features, which may be especially 

suitable for the LME corpus. Class X consists of all words which were marked as incorrectly 
pronounced, substitutions and garbage words, i.e. non-English words and abortions, class O of 

all other words. 

Two out of three combinations of five features approved for SLT data also seem to have 

an equally high discrimination ability for LME data (cf. Table 8.19). The floating search 

algorithm finds the features {W12,C08,W06,C03,W13} as best combination of five features by 

optimization with the LME data, but petformance is only slightly higher than for the approved 

feature sets. While good results are achieved with a single density Gaussian classifier, the 

approaches based on GMM/PCA or CART lead to worse results. 

The performance curves (precision and recall) in Figure 8.6 show, that the best result 

(71.6%) is obtained with feature combination {Wl2,C01,C07,Wl0,W01}. The accuracy was 

70.4% for the feature set {Wl0,C01,Wll,W02,W13} which was also effective for SLT data. It 
can be concluded, that the duration-related features {W 10,W 11 ,W 12}, the confidence measure 

{C01,C07}, the word likelihood features {W01,W02} and the recognition performance feature 
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W13 are a good choice for discrimination of correctly pronounced and mispronounced words. 

Table 8.19: Word classification with LME data. The results of feature combinations found 

effective for SLT data and those selected by the floating search algorithm are shown. 

I Classifier I #_1:'t_汀Features

5 {W01,C08,Wl 1,COl ,COS} 68.4 / 0.210 

Gaussian 5 {W12,C01,C07,Wl0,W01} 71.6 / 0.292 

5 {WlO,COl,Wl 1,W02,Wl3} 70.4 / 0.314 

1 {W12} 66.5 I 0.237 

Single 2 {W12,C08} 69.1 I 0.280 

Gaussian 3 {W12,C08,W06} 70.4 I 0.303 

(FS,M3) 4 {W12,C08,W06,C03} 70.9 I 0.316 

5 {W12,C08,W06,C03,Wl3} 71.7 / 0.322 

2 {W05,C08} 61.4 

CART 5 {W13,W06,C08,C01,Wl2} 66.3 
4 {W03,W12,W19,W08} 63.9 

GMM 2 33→ PCA→2 67.8 

I CL/ J(M3, P) j 
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Figure 8.6: Performance curves for word classification experiments (FAU LME data). 

90 

Utterance scoring worked quite good for both non-native and native speech of adults (cf. Section 

8.1.1). Whether this also applies to speech of native children is the investigation target of this 

section. The native data is taken from the PF _STAR BE corpus: 11527 utterances from 92 

native children speakers. Utterance scoring is carried out with the Gaussian classifier trained on 

SLT data. The AE acoustic model, acoustic feature normalization by VTLN with optimal a* 
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Table 8.20: Results for scoring utterances of native children in the PF STAR BE corpus with the 

Gaussian classifier. A reference rating of 1 is assumed for each utterance. 

[ Features 1L___3J 3j 41 sl 
{Xl} 56.6 6.7 2.6 4.0 30.1 

{Kl} 54.6 5.8 6.0 11.0 22.6 

{Xl,Kl} 48.8 6.8 4.6 24.7 15.1 

{K3,M3,X2} 52.8 10.7 8.1 4.0 24.4 

{E3,K2,Xl} 28.7 14.1 12.9 17.4 27.0 

Table 8.21: Result for scoring utterances of native children in the PF_STAR BE corpus with the 

Gaussian classifier based on feature Xl. The younger the child, the more probable is the worst 

scoring result of "5 ". 

I Age I #spk I #utr II II 21 31 41 sl 
13,14 6 536 76.3 5.0 1.7 1.5 15.5 

11,12 10 1,114 62.7 6.0 1.3 4.4 25.8 

9,10 41 5,137 62.0 5.6 2.6 4.0 25.9 

7,8 28 3,816 51.5 7.6 3.0 3.5 34.4 

4,5,6 7 924 29.2 10.4 2.8 7.5 50.1 

and a bigram language model trained on the transcriptions of the test data were employed for 

recognition. 
Table 8.20 shows the utterance scoring result. The single features {Kl ,M3,D2,L 7,R4,Xl} 

and feature combinations effective in previous experiments were examined. A reference rating 

of 1 is assumed for each utterance. The best results of 56.6% and 54.6% are achieved with the 

single features Xl (phoneme recognition rate) and Kl (likelihood ratio), respectively. All other 

considered feature combinations perform worse. Remarkably many utterances are scored as "5", 

i.e. they seem have a very low pronunciation quality. 

To get more insight into possible reasons, utterance scoring is canied out separately for five 

age groups. Table 8.21 shows the corresponding result. It is apparent, that the younger the 

speaker, the more likely is the worst case scoring result of "5". For example, while only 29.2% 

of the children's utterances of four to six years of age are scored as "l" and 50.1 % as "5", only 

15.5% of the childrens'utterances of thirteen and fourteen years of age are scored as "5", and 

76.3% are classified as "1 ". Furthermore, most utterances are either scored as "1" or "5" and 

rather very few utterances as "2", "3" or "4". A possible interpretation may be, that the younger 

children do not utter the utterance prompts smoothly enough. However, it cannot be assumed 

that the children make severe mistakes w.r.t. the English pronunciation of words; since they are 

native speakers. 



Chapter 9 

Outlook and Future Work 

This chapter presents several ideas of the author, how pronunciation features, scoring and 

classification methods can be optimjzed further. Moreover, two possible applications of the 

pronunciation features and the results of this thesis are mentioned. 

Features. For the word and phoneme recognition performance features it was shown, that 

their correlation with human ratings is high for the speakers in the SLT corpus. The result was 

less good for the FAU LME data. An obvious drawback of the performance features is, that their 

values do not only vary with the pronunciation skill of the speaker, but also with the difficulty 

of the recognition task and mismatched conditions, e.g. child/adult speech. Furthermore, the 

feature is dependent on whether a zero gram or higher-order n-gram language model is employed. 

To avoid too much recognition errors, the usage of a unigram or bigram language model may be 

recommendable, but it has also the negative effect of distorting the relationship of the recognition 

performance to the pronunciation skill. Consequently, the performance features have to be 

normalized, e.g. by adding a constant, so that a non-native speaker with high pronunciation 

skill is scored as high as a native speaker. Normalization is especially important, if the scoring 

system is trained on data different from the application. 

The necessity of normalization also applies to the likelihood based features. Likelihoods are 

dependent on acoustic conditions and speaker characteristics. A possible approach to likelihood 

normalization is the subtraction of the likelihood P(xlGMM) for each speech frame x given a 

GMM which is trained on non-pause and non-silence native speech data. This approach is similar 

to the acoustic normalization as employed by [SSN+02] for confidence measures. 

The fluctuation features W23-W27 turned out to have almost no discriminative ability as the 

feature distribution plots in Appendix C show. Let d(pau) be the duration of the silence segment 

following a word. Extended duration ratios may then be defined as 

+ ipau) (pau) 

W28= 
dj-1 j-i +も+dj 

d(_exp) 
J-1 

+ iexp) 
J 

vl/29 = dj-1 + dj 
iexp) + iexp) 
J-1 j 

(9.1) 

From the feature distribution plots in Appendix C it is apparent, that features W28 and W29 

have better disc1iminative abilities than W22-W27. The consideration of an even wider context 

may improve the q叫 ityof these new features. 
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Classification. An alternative to direct classification of words with one feature vector is 

the application of the GOP algorithm (cf. Section 3.4.1), which was designed for the detection 

of mispronounced phonemes, to words. If the mispronunciation event of a word is defined as, 

e.g. Ho/o of its phonemes are mispronounced, a new approach for detection of mispronounced 

words evolves: Classify each phoneme of each word with a thresholding method as the GOP 

algorithm. If the relative number of mispronounced phonemes is above Ho/o, consider the word as 

mispronounced. For a practical algorithm, phoneme dependent mispronunciation thresholds and 

the threshold Ho/o have to be determined. Besides the thresholds proposed by Witt et al. [WYOO], 

the following global threshold王 andindividual thresholds Tf l may be worth examination: 

f 
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p. are the mispronunciation probabilities of phonemes which can be estimated with the word 

mispronunciation model B proposed in Section 5.3. 

There is a polynomial relationship between the utterance rating and the number of marked 

words in the same utterance. A post-processing of word classifier scores considering the 

utterance score may improve accuracy. Alternatively, the number of words marked automatically 

could be used as feature for utterance scoring. However, a proper investigation remains. 

Scoring. For utterance soft scoring (cf. Section 8.1.1) based on linear regression the scoring 

result was skewed. This was also due to the uneven distribution of samples for each pronunciation 

rating class. For the robust training of a pronunciation scoring system the availability of non-

native speech data of speakers with a very high and a very low pronunciation skill is important. 

A further reason for the distorted scoring result is the assumption of a linear relationship between 

pronunciation scores and ratings. The feature plots in Appendix C show, that this is not the 

case for many pronunciation scores. The relationship could be linearized by applying certain 

transformations to these features. 

Applications. The pronunciation features employed in this thesis are intended to measure the 

degree of non-nativeness. Consequently, they may also suitable for the discrimination of native 

and non-native speakers in general. 

From the analysis of rating to score co汀elationcarried out in this thesis and previous 

research, the following differences between native and non-native read speech are apparent: 

There are different segmental characteristics. The GOP score, which is an approximation of 

the phoneme posterior probability, can be regarded as a measure of the distance of segmental 

characteristics between native and non-native pronunciation. Also for the SLT data analyzed 

in this thesis, the dependency was highest for a GOP based utterance score. Furthermore, the 

duration characteristics of phonemes differ, because there is a correlation between the duration 

score and the utterance rating and there are deviations between the actual and expected duration 

of phonemes and words. Last but not least it must be mentioned, that there may be longer inter-

word pauses (hesitations) in non-native speech, which may be due to a speaker's unfamiliarity 

with certain words. Methods, which are intended to improve the recognition performance for 

non-native speech will have to cope with these non-native effects. 



Chapter 10 

Summary 

Pronunciation scoring is the automatic assessment of the pronunciation quality of phonemes, 

words or utterances especially for non-native speakers. A possible application are systems for 

computer assisted pronunciation training (CAPT) to support the student of a foreign language 

to acquire correct pronunciation. Such a system is intended to provide also detailed feedback 

like the localization of mispronounced phonemes to pinpoint mistakes. The necessity for 

improvement of pronunciation is due to the circumstances, that a non-native pronunciation can 

hinder inter-human communication and that non-native speech is in general more difficult to 

recognize than native speech. 

There are segmental, temporal and other prosodic aspects of pronunciation. Multiple aspects 

of quality considered at the same time are referred to as overal1 pronunciation quality. In order 

to design a pronunciation scoring scheme, reference data with examples of different degrees of 

pronunciation quality are required. Such reference data can be obtained by a human evaluation 

of non-native speech data (cf. Chapter 1). 

Most CAPT systems employ speech recognition technology for pre-processing the speech of 

non-natives. Furthermore, concepts and techniques from pattern recognition, including feature 

extraction, feature selection or transformation and classification are required. Moreover, to 

analyze a human evaluation and experimental results, methods from statistics, especially for 

the estimation of reliability and confidence have to be employed. The necessary fundamentals 

for building a pronunciation scoring system are introduced (cf. Chapter 2). 

In literature examples for human evaluation of pronunciation are available. Studies for 

assessing the quality of single phonemes and whole utterances are most extensive: Phonemes 

with wrong pronunciation are marked and the quality of utterances is measured on a discrete 

scale by human experts. Since such an evaluation is subjective, the same material was evaluated 

by several experts. It became apparent, that the higher the level of evaluation (e.g. phoneme 

vs. utterance), the higher the reliability of assigned markings or ratings is. In a study for the 

evaluation of utterance quality of phonetically rich sentences, the individual aspects fluency, 

speaking rate and segmental quality were rated separately from overall pronunciation quality. 

It became clear, that the correlation is highest between the overall quality and the segmental 

quality (0.9) and lowest between speaking rate and segmental quality (0.6). Since the segmental 

aspect of pronunciation has the highest correlation to the overal1 rating, one overall measure for 
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utterance pronunciation quality may suffice. 

Several methods for scoring the pronunciation quality of phonemes and whole utterances 

have already been proposed in literature. The employment of speech recognition technology 

is prevalent. The goodness of pronunciation (GOP) algorithm is a thresholding method, which 

declares single phonemes as mispronounced if their acoustic posterior score is below a global or 

phoneme-dependent threshold. For automatic assessment of utterances, several kinds of scores 

were examined. An acoustic sentence posterior score, a phoneme duration score, a sy11able 

timing score and the recognition accuracy were found to be good indicators of pronunciation 

quality. Unnormalized likelihood scores were less effective. Additionally it was shown, that the 

combination of multiple scores improves scoring reliability. The detection of mispronounced 

phonemes as well as utterance scoring performance was promising. The reliability of the 

automatic method was comparable to the human evaluation (cf. Chapter 3). 

For this thesis two databases of non-native speech were available: The ATR SLT non-native 

database, which consists of English speech from 96 adult speakers of multiple accent groups, 

mainly German, French, Chinese, Japanese and Indonesian, and the FAU LME non-native 

children speech corpus, which comprises English speech of 57 German children. A part of the 

SLT data, phonetically rich sentences, were annotated by 15 natives with teaching experience at 

word and utterance level, the LME data by one German student of Anglistics at word and speaker 

level. For training of the acoustic model of a speech recognizer and models of a pronunciation 

scoring system, corpora with native speech were required. The Wall Street Journal corpora with 

American English and British English adult speech and the PF _STAR BE corpus with British 

English children speech serve for acoustic model training. Phoneme duration statistics were 

derived from the TIMIT corpus (cf. Chapter 4). 

Since the same material of each speaker in the SLT data was evaluated by three to four human 

evaluators, the reliability of the annotations was analyzed. The inter-rater reliability at utterance 

and speaker level measured by the average open correlation is 0.6 and 0.9, respectively. These 

values are comparable to those reported in other studies. Moreover, the confidence of speaker and 

utterance level reference ratings was examined. The confidence interval for the jackknife mean 

utterance ratings was土0.28at the 10%, for the mean speaker level ratings士0.05at the 1 % error 

level. In further investigations, it was found out, that there is a high correlation between the 

number of words marked as mispronounced and the utterance rating. From the relative marking 

frequency of each word, which can be treated as mispronunciation probabilities of each word, 

the mispronunciation probabilities of single phonemes were estimated with a newly proposed 

word mispronunciation model (cf. Chapter 5). 

To describe the pronunciation quality of words and utterances, 35 and 33 features are defined, 

respectively. While employing those utterance level features, which were already shown to 

be effective in literature, additionally a score based on the probability of recognized phoneme 

sequences, features based on expected phoneme durations and second order features based 

on phoneme segment likelihoods and the local rate of speech are examined. Furthermore, 

the normalization of durations by multiplication with the rate of speech (ROS), which was 

effective in previous research for the calculation of duration scores, was applied for normalization 

of sentence scores. The correlation to the human ratings became higher than without ROS 

normalization. The correlation between a phoneme sequence probability score and human ratings 
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was almost as high as for likelihood-based scores. The highest correlation (0.5) was present for 

a sentence score based on the likelihood ratio similar to the sentence posterior score and the 

GO~score proposed in literature. Scores based on prosodic features were not examined, since in 

previous research they had only a comparably low correlation of about 0.3 with human ratings. 

Moreover, the correlation did not increase even after combining prosodic with non-prosodic 

scores. Finally, in an analysis of correlation between utterance ratings and several pronunciation 

scores carried out separately for each evaluator no remarkable differences in the rating behavior 

w.r.t. the individual aspects of pronunciation considered could be observed. 

No literature was available for comparison w.r.t. word level features. Besides applying 

utterance level scores to words, especially word confidence measures were considered: the word 

posterior probability based on acoustic probabilities, confidence measures based on the phoneme 

confusion matrix for correctly pronounced and mispronounced words and features measuring 

fluctuations of the relative and absolute rate of speech are defined. Feature distribution plots 

for correctly pronounced and mispronounced words revealed, that features based on confidence 

measures, acoustic score, phoneme sequence probability and phoneme duration probability have 

a good discrimination ability. The fluctuation features turned out to be ineffective (cf. Chapter 6). 

Experiments were carried out for the discrimination of correctly pronounced and 

mispronounced words, hard and soft scoring of utterances and combination of the scoring result 

for several utterances of one speaker to obtain an assessment of the overall pronunciation skill. 

For classification at word level three approaches were examined: The floating search algorithm 

in connection with a single density Gaussian classifier, decision trees trained with the CART 

framework, and training of Gaussian mixture models (GMMs) after feature space reduction by 

PCA or LDA. Since there is a polynomial relationship between utterance ratings and the number 

of marked words in the same sentence, a post-processing step considering classifier scores and 

utterance scores may improve the detection accuracy of mispronounced words. 

Soft scoring of utterances is carried out for a linear combination of features. The weighting 

coefficients for each feature are obtained by linear regression. Furthermore a Gaussian classifier 

with one density per human rating is employed to calculate the expectation of the utterance score. 

The same Gaussian classifier was also employed for hard scoring, i.e. assignment of a discrete 

score rather than a continuous value. Since the result of utterance scoring may be skewed, score 

adjustment with a combination of a linear and a multiplicative polynomial transformation is 

proposed. 

The estimation of the overall pronunciation skill of a non-native speaker is based on utterance 

scoring. The approaches of averaging the feature vector for multiple utterances followed by a 

single classification step as well as separate scoring of each utterance and finally taking the 

average utterance score are examined (cf. Chapter 7). 

Experiments were evaluated with cross-validation for the SLT data. Training and data sets 

are disjoint w.r.t. to the speakers and the human evaluators. Additionally, validation experiments 

with native speech data were conducted. With linear feature combination the rating to score 

correlation (0.59) was almost as high as the average inter-rater open correlation (0.60). Despite 

the automatic scoring being almost as reliable as a human evaluation w.r.t. the correlation, it is 

lacking accuracy. By adjusting the scoring output, the scoring accuracy could be improved for 

native (85%) and non-native speech. Even better results for utterances of natives (90%) could 
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be achieved with hard and soft scoring based on a Gaussian classifier. As alternative measure 

of utterance scoring accuracy, a measure of classification gain (analogue to classification risk) is 

recommendable. If only the segmentation and not the recognition result of the utterances to be 
scored is available, rating to score correlation is 0.53. 

An assessment of pronunciation skill at the speaker level is obtained by averaging the 

pronunciation scores of two or more utterances. The maximum rating to score correlation was 

0.84 based on 48 phonetically rich sentences. The range of the 95% confidence interval was at 

most士0.06.Most of correlation (0.75) was gained for the first ten utterances. 

The performance of the discrimination of correctly pronounced and mispronounced words 

was 72% with a single-density Gaussian classifier w.r.t. the class-wise average recognition rate 

(CL). At the same time 90% of the words uttered by native speakers were classified correctly, 

assuming a co汀ectpronunciation for all words. Performance was not higher when employing a 

decision tree, or GMMs and feature space transformation. 

Evaluation of the LME data is conducted with a pronunciation scoring system trained with 

SLT data. For scoring on the speaker level, the correlation was 0.68. A different feature 

combination than that most effective for SLT data had to be employed to achieve this result. 

A possible explanation for the lower reliability may be the fact, that the speaker level ratings 

of the LME data are less nuanced than those of the SLT data, which are obtained by averaging 

multiple utterance ratings. The word classification accuracy was 70% w.r.t. CL for the same 

feature set as for the SLT data. The accuracy improved to 72% with a feature set selected by the 

floating search algorithm by optimization with LME data. 

The results for word classification are promising, since a cross-validation analysis of the 

word markings of the SLT data revealed, that on average 8% of the correctly pronounced words 

are marked as mispronounced and the detection accuracy of mispronounced word by the human 

evaluators is 58%. 

When scoring utterances of native children in the PF _STAR BE corpus, most utterances are 

scored with a high pronunciation quality. An interesting result is, that the younger the children 

speaker, the higher is the share of utterances with a low pronunciation quality (cf. Chapter 8). 

Some of the pronunciation features may not only depend on a speaker's pronunciation 

skill but also on various other factors. Further normalization especially of those features 

based on acoustic scores and those measuring recognition performance may be necessary. The 

detection of mispronounced words may improve when employing the GOP algorithm, which is 

intended to detect mispronounced phonemes. For example, a word may then be considered 

as mispronounced if a certain number of its phonemes are classified as mispronounced 

(cf. Chapter 9). 

In this thesis several methods for pronunciation scoring on word, utterance and speaker level 
were examined. Good results are achieved on all levels. The class-wise average recognition 

rate for discrimination of correctly pronounced and mispronounced is 72% for native adult and 

children speech. For native adult speech, the recognition rate is even 90%. The reliability of 

utterance scoring for non-native adult speech is almost as high as the reliability of the human 

evaluators. At the same time, 90% of the utterances of native adult speakers are scored correctly. 

For speaker level scoring the reliability is highest with a co汀elationof 0.84 for adult speech and 

0.69 for children speech. 



Appendix A 

Databases and Corpora 

A.1 ATR SLT Non-Native Database 

A.1.1 Speaker 
． 

lnformat10n 

Information about the average utterance level human rating (HumRating), number of 

mispronounced words (Miscnt), the ratio of mispronounced words (MisRatio), phoneme 

recognition accuracy (PA), word recognition accuracy (WA), age and first language (NatLang) 

of each non-native speaker in the ATR SLT database. 

三 HumRatingI Miscnt I MisRatio I PA I WA I Age I NatLang I 
F018 1.03 7 0.02 21.27 -30.38 Japanese 

M076 1.30 29 0.07 26.48 -11.65 43 German 

M036 1.40 21 0.05 22.40 -29.37 30 German 

M052 1.43 17 0.04 38.35 4.56 36 German 

M078 1.43 18 0.05 25.00 -15.70 35 German 

F022 1.60 27 0.07 18.43 -46.58 45 Japanese 

MOOl 1.65 33 0.08 33.99 4.81 39 German 

MOSS 1.67 66 0.17 25.88 -19.24 52 Chinese 

M054 1.75 54 0.14 28.88 -11.90 28 German 

M040 1.77 41 0.10 11.56 -56.96 21 Chinese 

M051 1.77 62 0.16 32.90 0.51 26 German 

M071 1.77 25 0.06 16.67 -43.80 39 German 

F026 1.80 56 0.14 25.39 -42.78 28 Chinese 

M042 1.82 52 0.13 31.59 -12.15 33 Hungarian 

M033 1.83 47 0.12 35.26 -11.90 30 Indonesian 

M056 1.83 59 0.15 28.95 -32.91 35 German 

M014 1.87 58 0.15 12.47 -76.20 35 Japanese 

F021 1.90 66 0.17 30.08 -27.85 40 Korean 
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l Sp叩 HumRatingI Miscnt I MisRatio I PA WA I Age I NatLang I 
M044 1.90 71 0.18 17.50 -40.51 25 French 

M066 1.93 72 0.18 24.20 -36.96 30 French 

M026 1.95 71 0.18 32.33 -25.32 42 French 

M072 1.97 62 0.16 18.27 -33.42 26 French 

M032 2.00 49 0.12 14.16 -45.32 32 Spanish 

F009 2.02 77 0.19 22.52 -44.81 Japanese 

F025 2.03 41 0.10 22.55 -34.68 35 Portuguese 

F012 2.07 72 0.18 2.30 -80.76 Japanese 

M039 2.07 37 0.09 9.37 -66.84 33 Sinhalese 

M061 2.10 58 0.15 26.87 -22.78 25 Indonesian 

M073 2.10 37 0.09 28.25 -30.63 27 French 

F023 2.12 64 0.16 22.34 -44.81 26 Japanese 

F024 2.15 65 0.16 21.20 -42.78 25 French 

M045 2.17 64 0.16 30.95 -19.24 23 French 

MOSO 2.17 45 0.11 26.67 -19.75 29 Indonesian 

MOlO 2.20 85 0.22 22.68 -39.75 25 German 

M024 2.20 47 0.12 15.45 -69.11 21 French 

M034 2.20 86 0.22 26.67 -26.58 23 German 

F014 2.23 78 0.20 14.66 -73.16 Japanese 

M006 2.23 64 0.16 29.73 -8.35 26 German 

M043 2.25 74 0.19 20.97 -28.61 24 French 

M085 2.25 68 0.17 29.40 -18.48 28 French 

FOlO 2.27 63 0.16 15.21 -53.42 Japanese 

M021 2.30 72 0.18 23.69 -29.11 26 German 

M080 2.30 87 0.22 12.87 -46.84 24 French 

M022 2.38 90 0.23 1.50 -75.19 42 Bulgarian 

M059 2.38 62 0.16 6.66 -70.13 43 Indonesian 

M037 2.43 71 0.18 13.17 -63.04 25 French 

F019 2.47 62 0.16 18.45 -48.61 26 Indonesian 

M023 2.47 109 0.28 10.35 -69.87 24 French 

M030 2.47 82 0.21 12.14 -71.39 35 Chinese 

M077 2.47 103 0.26 11 .32 -63.54 30 French 

M092 2.47 47 0.12 17.76 -44.30 26 German 

FOOS 2.50 83 0.21 18.42 -58.48 Japanese 

M016 2.53 60 0.15 -4.13 -108.35 37 Japanese 

FOl3 2.57 65 0.16 8.67 -69.87 Japanese 

M089 2.60 101 0.26 14.88 -45.82 25 Indonesian 

M060 2.62 97 0.25 13.59 -66.08 24 Japanese 

M035 2.65 121 0.31 19.51 -46.58 23 French 
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J SpkID JJ HumRating J Miscnt J MisRatio J PA J WA J Age J NatLang j 

M027 2.67 101 0.26 13.08 -61.01 31 Hindi 

M075 2.67 85 0.22 20.99 -39.49 29 Indonesian 

M068 2.70 95 0.24 0.41 -75.95 32 Indonesian 

M082 2.70 121 0.31 23.84 -36.46 22 Japanese 

M031 2.73 96 0.24 8.28 -63.04 38 Indonesian 

M058 2.73 88 0.22 2.57 -72.66 39 Japanese 

M063 2.73 93 0.24 23.04 -39.75 36 Indonesian 

M065 2.73 92 0.23 20.75 -37.22 22 Japanese 

M084 2.73 56 0.14 -13.75 -106.08 25 Chinese 

M074 2.75 107 0.27 6.45 -67.85 25 Chinese 

MOll 2.77 78 0.20 6.78 -60.76 41 Japanese 

M012 2.83 100 0.25 5.42 -91.90 29 Japanese 

M067 2.83 96 0.24 4.20 -66.58 25 Chinese 

M087 2.83 88 0.22 11.48 -60.76 24 Indonesian 

M046 2.87 74 0.19 17.68 -59.49 31 Indonesian 

M053 2.87 79 0.20 7.33 -81.77 40 Chinese 

M029 2.88 121 0.31 18.24 -52.66 22 French 

M069 2.90 108 0.27 0.34 -86.84 24 Japanese 

M070 2.95 125 0.32 -2.98 -77.22 22 Japanese 

M041 2.98 124 0.31 16.62 -53.16 30 Indonesian 

F011 3.00 132 0.33 12.59 -70.63 Japanese 

M028 3.00 109 0.28 16.98 -55.95 33 Chinese 

M090 3.00 110 0.28 10.26 -52.91 30 Indonesian 

M083 3.05 131 0.33 4.68 -86.08 24 Japanese 

M038 3.10 108 0.27 15.92 -57.72 30 Indonesian 

M015 3.12 100 0.25 8.82 -64.30 29 Japanese 

M057 3.15 120 0.30 12.27 -60.25 26 Chinese 

M064 3.23 117 0.30 -3.25 -89.37 21 Japanese 

M013 3.30 76 0.19 -21.71 -120.51 22 Japanese 

F020 3.33 166 0.42 7.67 -84.30 30 Chinese 

M049 3.47 132 0.33 -2.99 -104.81 33 Chinese 

M086 3.58 124 0.31 8.63 -70.89 28 Indonesian 

M062 3.67 148 0.37 8.60 -68.86 31 Chinese 

M047 3.70 128 0.32 10.93 -80.76 37 Chinese 

M093 3.73 167 0.42 -17.39 -109.37 31 Japanese 

M088 3.93 181 0.46 3.45 -96.46 27 Chinese 

M025 3.97 216 0.55 1.09 -84.05 37 Chinese 

M081 4.07 118 0.30 -28.39 -140.25 28 Chinese 

M091 4.27 137 0.35 -4.61 -119.49 31 Chinese 
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A.1.2 M' 1spronunc1at10n Index 

The following tables show the mispronunciation frequency for all words of the phonetically rich 

sentences of the TIMIT set. How often any of the annotators marked a word is shown in the third 

columns. This number divided by the occurency of the word in the sentence prompts and the 

number of evaluators is shown in the second column. 

[ Word II Normalized I Absolute I [ Word II Normalized I Absolute j 

EXTRA 1.00 96 THURSDAY'S 0.60 58 

EXPOSURE 1.00 96 HALLOWEEN 0.60 58 

EXAM 1.00 96 FORTUNE 0.60 58 

BOX 1.00 96 DISEASES 0.60 58 

MIRAGE 0.91 87 IDLY 0.59 57 

CENTRIFUGE 0.85 82 GENEROUS 0.59 57 

BUGLE 0.85 82 CRAYONS 0.59 57 

FRANTICALLY 0.84 81 THEY'RE 0.58 56 

OASIS 0.77 74 THESE 0.58 56 

PURCHASE 0.75 72 SLIPPED 0.58 56 

CONTAGIOUS 0.74 71 OIL 0.58 111 

AMBULANCE 0.73 70 MONTHS 0.58 56 

PIZZERIAS 0.72 69 GLOVES 0.58 56 

FORMULA 0.72 69 ARGUED 0.58 56 

RARE 0.71 68 WORN 0.57 55 

DEVELOPMENT 0.69 66 THING 0.57 55 

CHABLIS 0.69 66 ELEGANT 0.57 55 

GUARD 0.68 65 CONVENIENT 0.57 55 

GARBAGE 0.67 64 GALLON 0.56 54 

COLORED 0.67 64 THOUGHT 0.55 53 

COLESLAW 0.67 64 SOLVE 0.55 53 

THURSDAYS 0.66 63 BEG 0.55 53 

MERGERS 0.66 63 SERVE 0.54 52 

AMBLED 0.66 63 DECORATE 0.54 52 

OVERCHARGED 0.65 62 INGREDIENTS 0.53 51 

ALLOW 0.65 62 BOWL 0.53 51 

WELFARE 0.62 60 BEAUTIFUL 0.53 51 

SYNAGOGUE 0.61 59 AUDITION 0.52 50 

PEWTER 0.61 59 WHILE 0.51 49 

CLOTH 0.61 59 TWELFTH 0.51 49 
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[ Word II Normalized I Absolute I [ Word II No1mali zed~bsolute j 

COMPLETELY 0.51 49 SCARED 0.42 40 

SURFACE 0.50 48 PROBLEM 0.42 40 

BEDROOM 0.50 48 OBJECTS 0.42 40 

ANNOYING 0.50 48 LORI'S 0.42 40 

SPRAINED 0.49 47 KINDERGARTEN 0.42 40 

RUN 0.49 47 UPON 0.41 39 

PROBLEMS 0.49 47 NEAREST 0.41 39 

LEARN 0.48 46 MIAMI 0.41 39 

HOLIDAYS 0.48 46 LOWER 0.41 39 

CLEANERS 0.48 46 BLACK 0.41 39 

WERE 0.47 179 AWAY 0.40 38 

POPULAR 0.47 45 ASSISTANCE 0.40 38 

LUNCH 0.47 45 ANSWER 0.40 38 

HARD 0.47 45 YARD 0.39 37 

ANTELOPE 0.47 45 THIS 0.39 37 

WORKING 0.46 44 LESSONS 0.39 37 

TWILIGHT 0.46 44 LARGE 0.39 37 

REMOTE 0.46 44 GRADES 0.39 37 

POTATOES 0.46 44 EVERY 0.39 37 

GOAT 0.46 44 WHERE 0.38 36 

FROST 0.46 44 DIAGRAM 0.38 36 

ARRANGE 0.46 44 ANKLE 0.38 36 

SHOULDER 0.45 43 SHAVING 0.36 35 

RATHER 0.45 43 LIE 0.36 35 

PROJECT 0.45 43 THEIR 0.35 34 

CLASSROOMS 0.45 43 STEEP 0.35 34 

AVOID 0.45 43 RIDE 0.35 34 

WITHIN 0.44 42 QUICK 0.35 34 

REVIEW 0.44 42 NANCY'S 0.35 34 

JANUARY 0.44 42 LAUGH 0.35 34 

DIRTY 0.44 42 TOMORROW 0.34 33 

CHARGE 0.44 42 QUESTION 0.34 33 

OWN 0.43 41 PROCEEDING 0.34 33 

EARN 0.43 41 HIGHER 0.34 33 

CHANGE 0.43 41 COUNTRYSIDE 0.34 33 

ADD 0.43 41 COSTUME 0.34 33 

THROUGH 0.42 40 CHILDREN 0.34 66 

SHOES 0.42 40 CAROL 0.34 33 
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[ Word II Normalized I Absolute I [ Word 11 Normalized I Absolute j 

WE  0.33 32 SUCH 0.25 24 

WALKING 0.33 32 SUBWAY 0.25 24 

FAVOR 0.33 32 JENNIFER'S 0.25 24 

CREAM 0.33 32 JANE 0.25 24 

BUSINESS 0.33 32 FISH 0.25 24 

WOULD 0.32 31 YOUNG 0.24 23 

WITH 0.32 31 THE 0.24 562 

SLOWLY 0.32 31 MUCH 0.24 23 

GUESS 0.32 31 MICHAEL 0.24 23 

DRIVING 0.32 31 FIVE 0.24 23 

BROKEN 0.32 31 ENOUGH 0.24 23 

PAM 0.31 30 DISTANCE 0.24 23 

HAVEN'T 0.31 30 COMBINE 0.24 23 

ENJOY 0.31 30 ARM 0.24 23 

DIG 0.31 30 WE'LL 0.23 22 

USE 0.30 29 SING 0.23 22 

TABLE 0.30 29 PEOPLE 0.23 22 

SLOPE 0.30 29 I'D 0.23 44 

MONEY 0.30 58 HOUSE 0.23 22 

GIVES 0.30 29 GAS 0.23 22 

FORMS 0.30 29 FREEWAY 0.23 22 

DROP 0.30 29 BIG 0.23 44 

STUDY 0.29 28 HER 0.22 42 

STOCKINGS 0.29 28 FIRST 0.22 21 

MEDICAL 0.29 28 DANCE 0.22 21 

LEAP 0.29 28 AFTER 0.22 42 

THAT 0.28 82 TWO 0.21 20 

NOISE 0.28 27 THEY 0.21 40 

FARM 0.28 27 SMILES 0.21 20 

OUT 0.27 26 SAME 0.21 20 

WILL 0.26 25 RIGHT 0.21 20 

WALL 0.26 25 LAKE 0.21 20 

THAN 0.26 49 HAVE 0.21 40 

SWING 0.26 25 CALL 0.21 20 

NEEDED 0.26 25 ALL 0.21 40 

MINE 0.26 25 YOUR 0.20 38 

CHEAP 0.26 25 PLEASE 0.20 39 

ALWAYS 0.26 25 ITEM 0.20 19 
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[ Word 11 Normalized I Absolute I I Word 11 Normalized I Absolute j 

FELT 0.20 19 BEGAN 0.10 10 

CAN 0.20 19 AT 0.10 20 

THERE 0.19 18 TOO 0.09 ， 
SHOULD 0.18 17 TIME 0.09 18 

1T 0.18 35 TAKE 0.09 ， 
HIGHWAY 0.18 17 ONLY 0.09 ， 
UP 0.17 16 NOW 0.09 ， 
AN 0.17 16 NICE 0.09 ， 
WHEN 0.16 30 MADE 0.09 ， 
SPEND 0.15 14 DAY 0.09 17 

MORE 0.15 42 ARE 0.09 35 

JEFF 0.15 14 OF 0.08 37 

GO 0.15 14 MEAN 0.08 8 

COMES 0.15 14 MAKES 0.08 8 

BEST 0.15 28 GROWS 0.08 8 

SHE 0.14 13 FROM 0.08 8 

SENSE 0.14 13 FOR 0.08 69 

EACH 0.14 13 AS 0.08 22 

BEFORE 0.14 41 WHY 0.07 14 

YOU 0.12 69 BY 0.07 7 

SOUND 0.12 12 BUT 0.07 7 

HIS 0.12 12 NEED 0.06 6 

HIGH 0.12 12 ME 0.06 6 

A 0.12 108 IN 0.06 28 

SMALL 0.11 11 IF 0.06 23 

ONE 0.11 11 WAY 0.05 s 
I 0.11 33 OR 0.05 5 

DECEMBER 0.11 11 WAS 0.04 7 

BUY 0.11 21 ON 0.04 18 

AND 0.11 41 NO 0.04 4 

NOT 0.10 28 BE 0.04 21 

MEETING 0.10 10 MY  0.03 3 

MAY 0.10 28 IS 0.03 5 

HE 0.10 10 TO 0.02 15 
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A.2 FAU LME Non-Native Database 

Information about the speaker level human rating (HumRating), number of words considered as 

mispronounced (Miscnt), the relative share of words considered mispronounced (MisRatio), the 

number of utterances (#utr) and words (#words), the optimal warping factor a for VTLN, and 

word (WA) and phoneme accuracy (PA) for each speaker in the FAU LME Non-Native Children 

Speech Corpus. 

[ ID _J HumRating I Miscnt I MisRatio I #utr I #words I VTLN ex I WA I PA I 
w014 1 2 0.01 62 388 0.90 44.85 25.64 

mlOl 1 24 0.04 289 624 1.00 28.21 -5.74 

m031 1 5 0.03 29 156 1.00 46.79 9.96 

m023 2 4 0.02 30 208 0.95 40.38 9.67 

w028 2 6 0.02 62 390 0.90 38.46 2.07 

mOll 2.5 14 0.08 22 165 1.05 33.33 -20.68 

w020 2 17 0.05 46 328 1.0 26.83 0.19 

w018 2 5 0.02 56 316 0.90 23.42 -0.46 

m002 2 3 0.02 29 182 1.00 31.32 2.48 

m008 2 6 0.03 30 214 0.90 15.42 -5.15 

m025 2 7 0.02 60 365 0.95 33.70 0.93 

m027 2 5 0.01 62 395 0.95 31.65 -0.99 

w006 2 5 0.01 61 420 0.90 35.48 1.53 

m030 2 6 0.02 62 394 0.95 27.66 2.35 

w207 2 18 0.04 79 440 0.95 36.82 12.86 

m005 2 10 0.05 32 195 1.00 28.72 3.43 

m102 2 57 0.09 289 641 1.00 22.46 -12.90 

m210 2 17 0.10 100 177 1.00 32.20 -20.70 

m221 2 16 0.09 100 172 1.00 25.00 -31.55 

w225 2 6 0.04 100 168 0.95 26.79 -28.11 

w032 3 5 0.01 60 361 0.90 26.59 -8.41 

m217 3 31 0.10 127 324 0.95 29.01 -7.24 

m218 3.5 45 0.12 134 373 0.90 32.71 -15.54 

w224 3 26 0.15 100 174 1.00 17.82 -51.23 

w223 3 18 0.11 100 170 0.95 27.06 -43.24 
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I ID I HumRating I Miscnt I MisRatio I #utter I #words I VTLN a I WA I PA I 
w222 3 26 0.05 143 496 1.00 30.04 -8.74 

wOOl 3 11 0.03 62 392 0.90 30.10 3.58 

w003 3 17 0.04 62 389 0.90 30.85 -7.61 

m103 3 99 0.09 349 1083 0.95 22.07 -11.13 

m029 3 14 0.07 29 190 1.00 35.26 -14.39 

w216 3 55 0.10 79 531 0.95 12.05 -22.22 

m021 3 6 0.03 31 209 1.00 36.36 -1.70 

w213 3 37 0.08 147 465 1.00 37.20 -8.44 

w212 3 27 0.15 100 175 0.90 14.29 -37.78 

m013 3 20 0.05 61 384 1.05 30.47 -10.80 

w022 3 16 0.04 56 358 0.90 29.89 -14.44 

w024 3 25 0.07 61 379 0.90 33.77 2.72 

m009 3 22 0.05 62 402 1.05 28.36 -15.19 

w209 3 67 0.16 49 423 0.95 14.42 -7.89 

wl04 3 38 0.06 289 636 1.00 23.78 -7.68 

w208 3.5 70 0.14 76 485 0.90 23.51 -8.40 

m007 3 5 0.03 29 157 0.90 27.39 -16.20 

w203 3 47 0.09 76 497 0.90 24.55 -9.81 

w205 3 40 0.19 30 212 0.95 32.08 -15.36 

m211 4 61 0.13 141 474 1.00 27.43 -21.04 

w202 4 61 0.22 58 277 0.95 23.47 -14.91 

w201 4 47 0.21 28 220 0.90 15.45 -42.98 

w206 4 77 0.24 46 326 1.05 28.83 -9. 15 

m019 4 19 0.09 32 203 1.00 17.24 -16.52 

w016 4 ， 0.04 30 216 0.95 21.76 -8.38 

w214 4 33 0.10 37 333 0.95 20.72 -25.94 

m220 4 65 0.15 141 445 1.05 15.96 -26.42 

wOlO 4 27 0.07 62 398 0.90 27.14 -8.17 

w215 4 37 0.14 41 270 0.90 21.11 -9.08 

m204 5 43 0.19 35 229 1.20 12.23 -15.63 

m219 5 23 0.21 41 112 0.90 17.86 -47.06 

w004 5 17 0.11 23 156 0.90 34.62 -7.76 
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A.3 TIMIT Corpus 

Table A.3 shows how the narrow transcriptions were converted into wider transcriptions using 

less phoneme symbols. The conversion was necessary to be able to compute the forced-alignment 

with the native acoustic model trained with speech data from the WSJ c01-pus. The conversion 

rules are de1ived from the phoneme symbol documentation included in the TIMIT corpus. 

Original Symbol Target symbol 

ax-h ax 

enB ° lX ng 

el ax l 

en ax n 

em axm 

hv hh 

q t 

ux uw 

nx n 



AppendixB 

Human Evaluation 

B.1 Evaluation Instructions 

• The aim of this experiment is to obtain an assessment of proficiency of non-native speakers 
in terms of pronunciation and fluency. 

• First we would like you to listen to 22 utterances. Each sentence is uttered by a different 

speaker. Please assign a level of proficiency to each utterance. Each level of proficiency 

should be selected at least once. Level 1 (green) should be used for maximum proficiency, 

Level 5 (red) for minimum proficiency present among speakers. The purpose of this step 
is to give a feeling of how to use the grading scale. 

• Then you will start evaluation for a subset of 100 non-native speakers. There are 48 

different utterances per speaker. They are presented in random order. You can listen twice 

to an utterance if it seems necessary to you. First we would like to ask you to mark any 

mispronounced words. Please tolerate any pronunciation variations which may exist in 

standard British or standard American English. Please consider only phonetic errors and 

ignore wrong lexical stress. 

• There may be some words a speaker has (completely) misread. Please also mark these 

words as mispronounced. 

• Next, we would like you to select a level of overall proficiency for the utterance by 

considering both pronunciation and fluency. Badly pronounced words, misread words, 

strong non-native accent, long pauses between words, stuttering, etc. should have an 

influence on your assessment. Please ignore sentence intonation for your evaluation. 

• If there is an utterances which was not playable, please skip the sentence by selecting 
*NONE*, any proficiency level and clicking on the submit button. Please write down the 

number of any sentence for which the utterance was not playable on this instruction sheet. 
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B.2 Evaluator Information 

Table B.1 gives information about the human evaluators, who marked mispronounced words and 

assigned ratings to each utterance of the non-native speakers. The evaluators {3, 16} grew up and 

went to school in Canada, all other evaluators in the U.S. 

Table B.1: Information about the evaluators. 

Evaluator Working Teaching Background in 

ID Places Experience Phonetics 

2 Private School (Japan) 9 months no 

3 Private School (Japan) 6 months yes 

5 Private School / Companies 5 years yes 
(Japan) 

6 Private School I Companies/ Privately 4-5 years no 

7 Privately (Japan) 2-3 years some 

8 Privately (Japan) 1-2 years yes ， University (Japan) 5 years yes 

10 Public School (Japan) 3 years some 

11 Private School (Japan, Canada) 2-3 years yes 

12 Private School (Japan) 17 months no 

13 Private School (Japan) 18 months no 

15 Private]y (Japan) 3-4 years no 

16 Private Schools/ Companies 8 years no 
(Taiwan, Hong Kong, Japan, Canada) 

17 Company (Japan) 6 years some 

Various places (Europe,Asia) 

20 Creation of teaching material 9 years yes 
(e.g. audio CDs for TOIEC test) 
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Table B.2 shows, which rater had to evaluate the utterances of which speakers. All evaluators 

processed all of the requested 1152 utterances (24 speakers times 48 sentences). The result of 

utterance rating to score correlation analysis carried out separately for each evaluator is shown 

in Table B.3. 

Table B.2: Which rater evaluated which non-native speaker? 

I Evaluator IDs II Non-native speaker IDs 

8 12 16 20 M082 M027 M077 F018 M044 M088 MOlO M080 M072 M064 M030 M049 

M02S M033 M093 F012 M023 F014 M014 MOSS M061 M028 MOS6 M076 

591317 M029 M021 M038 M057 F021 M047 M066 F023 MOJ 1 M054 F009 M075 

M031 M034 M067 M051 MO 15 M032 M062 M006 F008 M065 M090 M086 

2 6 10 F010 M071 M052 M045 M024 M081 F025 M092 M016 M078 M073 M040 

F013 M046 M053 F022 M084 M091 M039 F019 M013 M036 M050 M037 

371115 M074 M043 M026 M070 M060 F024 F026 M022 M041 F011 M087 M058 

M042 M069 M012 F020 M085 M068 M089 M063 M059 M083 M001 M035 

Table B.3: Separate human rating to score correlation analysis for each evaluator. 

I EvalID 11 L7 I K3 I R4 I P2 I D2 I Xl I M3 I El 

2 -0.36 -0.50 +0.32 +0.21 -0.40 -0.43 -0.37 +0.23 

3 -0.30 -0.42 +0.27 +0.23 -0.30 -0.38 -0.27 +0.17 

5 -0.33 -0.40 +0.30 +0.28 -0.37 -0.32 -0.35 +0.23 

6 -0.39 -0.45 +0.36 +0.28 -0.38 -0.38 -0.43 +0.30 

7 -0.32 -0.39 +0.30 +0.24 -0.31 -0.37 -0.35 +0.19 

8 -0.42 -0.49 +0.40 +0.34 -0.47 -0.39 -0.37 +0.36 ， -0.39 -0.39 +0.37 +0.33 -0.37 -0.34 -0.37 +0.24 

10 -0.46 -0.55 +0.43 +0.29 -0.45 -0.45 -0.44 +0.28 

11 -0.21 -0.39 +0.18 +0.14 -0.25 -0.41 -0.20 +0.13 

12 -0.33 -0.34 +0.31 +0.33 -0.34 -0.29 -0.28 +0.29 

13 -0.28 -0.30 +0.27 +0.21 -0.31 -0.26 -0.28 +0.16 

15 -0.12 -0.31 +0.09 +0.11 -0.17 -0.29 -0.16 +0.11 

16 -0.40 -0.48 +0.37 +0.32 -0.47 -0.46 -0.33 +0.30 

17 -0.19 -0.26 +0.17 +0.17 -0.25 -0.27 -0.20 +0.15 

20 -0.43 -0.51 +0.42 +0.34 -0.49 -0.42 -0.38 +0.35 

B.3 Screenshots 
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APPENDIX B. HUMAN EVALUATION 

htt p://lab.sl t .atr.co.j p/cgi-bi nix tci nca/start. py 

Hello Tobias Cincarek ! 

1. Listen to the following sentences to get an impression of proficiency of 
some non-native spea~~rs. 

2. Assign a level of prof1c1ency to each speaker. Each level of proficiency 
should be selected once. 

3. Start evaluation. 

Proficiency Level (Pronunciation, Fluency) 

j Listen to… 1 12 3 4 : 5 

jutterance of speaker(i r I'r● ●・

................................... 1 .................................. , ............. . .............................................................................. 

r I r • r 
::::.: ● ：●● ：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：．：：：：：：：；：：：：：：：：：：：：：：：：：：：：：● ：： : : : ： : ：： : : ：：：：: : : : ： : ：： : ： : : .. : ..... : ... ::::::.::: ● ：：．．：．：：：：：● : ：：： .:::::.::.: ● ,~::.::::::::::::::::::::::::::::::::: '.::::::::::: ... ::: 

jutterance of speaker 2 I r j r r I r l r 
, •• ::: • :・.::::・::: •• ::: ••• :: •• ::: ••• :.: •• •••• :: •• :.: •••• : •••••.•••.•.• : •••.. : .• :.::::.: .• :.::.:::::::::::::.::.::::::::::: •••• ~............. : ・ .・::::・:•• : •••• : ••• : •• : .....': •• : ••• •• ••••••• 

utterance of speaker 3 I r I 
1・・・・:::・・・:・・・:・・・・・・・・・:::・・・・・・・・・:・・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・:::・・・・・:::・・・:・::・:・:・:::・・・・・・・・・・............................... , r r I .. r ..........• 1 ~ 
utterance of speaker 4 I r r す r 1・・・.r I・ r 

•••••• ·•• •••·••••••••••• • 曹.................................. : ==・・・・・・・・・・・・・ I・・・・・・・..... ・・・:・........ ···•··................... , 
jutterance of speaker 5 • r r , r r • r 
utterance of speaker 6 j •••• r .• 1 r r ···:·······:··~:, I ................................ . 1~ 三iiTiJ r. •·••···· r I r J r 

.... J ................. , .... r 

lltt~~~~ce of speakers I r J . r. ...... r .. I r. J r 
jutterance of speaker 9 I r r r r I r 
............................ ● ● ........ . ................. 曹● ● ・・・・・・・・・・・・・・・・・・・・・・・ 

L ......... ・..... ・................... I 
utterance of speaker 10 I r j r r I r • r I 
I utterance of speaker 11 I r I戸 r iで一 r 

[utterance of speaker 12 • r . ・ r , r 
............ 口―― ・ ~: •• r 

[utterance of speaker 13 I r 
1・......... ... . ... . ... ; 「r一 r 「で― r
utterance of speaker 14 j r . r r r : r I . = I 

I r r I r : r utterance of speaker 15 j r ... ・・j 

jutterance of speaker 16 ! r ・・・I r ' r・・1・・ r i r 

I (' 'i r I utterance of speaker 17 ! r I r • r 
1・・・.. ... .. ...... : ..... . 
utterance of speaker 18 i r r r r , r 

utterance of speaker 19 i r I r ' r 1・ · r ·• ・r 
... .. . ........... . 

1uuerance of speaker 20 r・・・ r I r r r • r 

I utterance of speaker 21 j r I戸 r 「~― r 

!utterance of speaker 22 i r 「~ r ~• r 

Start evaluation from sentence戸―+l Start evaluation・・・・・・・・・・・I 

05/ 18/04 I I :52 
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http://lab.slt.atr.eo.jp/cgi-bin/xtcinca/eval_utterance.py 

Evaluation of utterance 2 of 1152 

I. Click on hyperlink *PLAY* to replay the utterance. 
2. Mark mispronounced words. Click on checkbox for *NONE* if there 

are not any. 
3. Select level of proficiency considering pronunciation and fluency. 
4. Go on to the next utterance by clicking on the submit button. 

I *PLAY* Mispronounced? 

I ms 「ゞ

SHOULDER 「‘

I FELT r 
AS r 
IF 「ず

IT r 
... 

1・・ WERE 「W

I BROKEN r 
I *NONE* r 

·······················································•·•······································································· 

Proficiency level (Pronunciation, Fluency) 
1:::::::::.:::::::.:.:.:::: .. ・．：．．．．．．．．，．．．．．．．． ．．．． ．．．．．．．．．． ，．．．．．

1 

I 
；．● ●．：：．：．；．● ● ● ● ● ：：● : ● : ● ● ：：：● ● ● ● ： 

r r 

ニ ニ

05/18/04 11 :53 
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C.3 Inter-Score Correlations 

The following tables show the inter-score co汀elationsand the correlation between human ratings 

and scores for the ATR SLT data at the utterance level. 

II HR I L3 I L4 I LS I L6 I L7 I L8 I L9 I Kl j 

HR +1.00 -0.24 -0.41 -0.34 -0.28 ← 0.42 -0.37 -0.35 -0.48 

L3 -0.24 +1.00 +0.25 +0.16 +0.56 +0.25 +0.56 +0.19 +0.04 

L4 -0.41 +0.25 +1.00 +0.86 +0.28 +1.00 +0.54 +0.84 +0.31 

L5 -0.34 +0.16 +0.86 +1.00 +0.25 +0.85 +0.32 +0.95 +0.23 

L6 -0.28 +0.56 +0.28 +0.25 +1.00 +0.28 +0.91 +0.29 +0.14 

L7 -0.42 +0.25 +1.00 +0.85 +0.28 +1.00 +0.54 +0.83 +0.33 

L8 -0.37 +0.56 +0.54 +0.32 +0.91 +0.54 +1.00 +0.36 +0.23 

L9 -0.35 +0.19 +0.84 +0.95 +0.29 +0.83 +0.36 +1.00 +0.25 

Kl -0.48 +0.04 +0.31 +0.23 +0.14 +0.33 +0.23 +0.25 +1.00 

K2 -0.50 +0.08 +0.44 +0.27 +0.17 +0.46 +0.34 +0.29 +0.97 

K3 -0.52 +0.13 +0.60 +0.44 +0.21 +0.62 +0.41 +0.45 +0.91 

Rl -0.34 +0.56 +0.51 +0.37 +0.89 +0.51 +0.92 +0.40 +0.18 

R2 -0.37 +0.22 +0.91 +0.88 +0.23 +0.91 +0.42 +0.84 +0.24 

R3 +0.37 -0.54 -0.57 -0.35 -0.87 -0.57 -0.98 -0.39 -0.22 

R4 +0.39 -0.21 -0.98 -0.84 -0.24 -0.98 -0.49 -0.81 -0.29 

RS -0.34 +0.28 +0.69 +0.26 +0.21 +0.69 +0.57 +0.30 +0.26 

Pl +0.33 -0.36 -0.71 -0.27 -0.25 -0.71 -0.63 -0.31 -0.25 

P2 +0.32 -0.46 -0.54 -0.25 -0.25 -0.54 -0.50 -0.28 -0.21 

D1 -0.45 +0.57 +0.51 +0.23 +0.37 +0.53 +0.59 +0.28 +0.43 

D2 -0.46 +0.06 +0.69 +0.50 +0.13 +0.70 +0.37 +0.52 +0.54 

Xl -0.45 +0.06 +0.30 +0.26 +0.21 +0.30 +0.26 +0.28 +0.63 

X2 -0.38 +0.18 +0.22 +0.17 +0.36 +0.22 +0.37 +0.20 +0.49 

Ml -0.22 +0.88 +0.14 +0.00 +0.45 +0.13 +0.48 +0.06 +0.03 

M2 -0.28 -0.02 +0.62 +0.67 +0.08 +0.61 +0.17 +0.67 +0.21 

M3 -0.40 +0.75 +0.71 +0.50 +0.47 +0.71 +0.66 +0.53 +0.20 

Y1 -0.26 +0.16 +0.61 +0.68 +0.08 +0.61 +0.16 +0.77 +0.20 

Y2 -0.21 +0.10 +0.42 +0.46 +0.42 +0.41 +0.41 +0.54 +0.16 

Y3 +0.17 -0.02 -0.43 -0.46 +0.02 -0.43 -0.06 -0.56 -0.16 

Y4 +0.20 -0.07 -0.14 -0.15 -0.10 -0.18 -0.11 -0.15 -0.38 

YS -0.24 +0.14 +0.61 +0.69 +0.01 +0.62 +0.11 +0.75 +0.16 

El +0.30 -0.21 -0.45 -0.20 -0.38 -0.46 -0.57 -0.30 -0.27 
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『K2 K3 Rl R2 R3 R4 RS Pl P2 ] 

HR -0.50 -0.52 -0.34 -0.37 +0.37 +0.39 -0.34 +0.33 +0.32 

L3 +0.08 +0.13 +0.56 +0.22 -0.54 -0.21 +0.28 -0.36 -0.46 

L4 +0.44 +0.60 +0.51 +0.91 -0.57 -0.98 +0.69 -0.71 -0.54 

LS +0.27 +0.44 +0.37 +0.88 -0.35 -0.84 +0.26 -0.27 -0.25 

L6 +0.17 +0.21 +0.89 +0.23 -0.87 -0.24 +0.21 -0.25 -0.25 

L7 +0.46 +0.62 +0.51 +0.91 -0.57 -0.98 +0.69 -0.71 -0.54 

L8 +0.34 +0.41 +0.92 +0.42 -0.98 -0.49 +0.57 -0.63 -0.50 

L9 +0.29 +0.45 +0.40 +0.84 -0.39 -0.81 +0.30 -0.31 -0.28 

K1 +0.97 +0.91 +0.18 +0.24 -0.22 -0.29 +0.26 -0.25 -0.21 

K2 +1.00 +0.96 +0.26 +0.33 -0.34 -0.42 +0.44 -0.45 -0.33 

K3 +0.96 +1.00 +0.33 +0.49 -0.42 -0.59 +0.49 -0.53 -0.37 

Rl +0.26 +0.33 +1.00 +0.49 -0.93 -0.50 +0.51 -0.50 -0.48 

R2 +0.33 +0.49 +0.49 +1.00 -0.49 -0.93 +0.57 -0.53 -0.49 

R3 -0.34 -0.42 -0.93 -0.49 +1.00 +0.57 -0.60 +0.65 +0.51 

R4 -0.42 -0.59 -0.50 -0.93 +0.57 +1.00 -0.67 +0.69 +0.52 

RS +0.44 +0.49 +0.51 +0.57 -0.60 -0.67 +1.00 -0.92 -0.77 

Pl -0.45 -0.53 -0.50 -0.53 +0.65 +0.69 -0.92 +1.00 +0.72 

P2 -0.33 -0.37 -0.48 -0.49 +0.51 +0.52 -0.77 +0.72 +1.00 

Dl +0.54 +0.57 +0.51 +0.41 -0.60 -0.50 +0.64 -0.71 -0.57 

D2 +0.63 +0.71 +0.31 +0.60 -0.40 -0.69 +0.58 -0.59 -0.39 

XI +0.61 +0.57 +0.23 +0.23 -0.24 -0.26 +0.23 -0.21 -0.19 

X2 +0.48 +0.44 +0.35 +0.17 -0.35 -0.18 +0.20 -0.19 -0.20 

Ml +0.08 +0.08 +0.46 +0.09 -0.45 -0.09 +0.30 -0.35 -0.45 

M2 +0.24 +0.35 +0.19 +0.61 -0.19 -0.59 +0.28 -0.24 -0.23 

M3 +0.33 +0.44 +0.63 +0.63 -0.69 -0.69 +0.65 -0.73 -0.66 

Yl +0.23 +0.36 +0.17 +0.60 -0.19 -0.59 +0.22 -0.25 -0.21 

Y2 +0.18 +0.25 +0.43 +0.41 -0.42 -0.40 +0.18 -0.17 -0.17 

Y3 -0.19 -0.29 -0.04 -0.38 +0.08 +0.42 -0.14 +0.19 +0.09 

Y4 -0.35 -0.34 -0.09 -0.12 +0.09 +0.12 -0.06 +0.06 +0.06 

YS +0.19 +0.32 +0.16 +0.71 -0.17 -0.64 +0.23 -0.23 -0.24 

El -0.37 -0.39 -0.50 -0.36 +0.58 +0.44 -0.59 +0.59 +0.42 

E2 -0.30 -0.33 -0.42 -0.30 +0.49 +0.37 -0.48 +0.50 +0.36 

E3 +0.40 +0.54 +0.80 +0.66 -0.88 -0.75 +0.58 -0.67 -0.51 

E4 +0.41 +0.60 +0.49 +0.88 -0.54 -0.96 +0.56 -0.60 -0.46 
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~D1 D2 X1 X2 Ml M2 M3 YI Y2 ] 

HR -0.45 -0.46 -0.45 -0.38 -0.22 -0.28 -0.40 -0.26 -0.21 

L3 +0.57 +0.06 +0.06 +0.18 +0.88 -0.02 +0.75 +0.16 +0.10 

L4 +0.51 +0.69 +0.30 +0.22 +0.14 +0.62 +0.71 +0.61 +0.42 

LS +0.23 +0.50 +0.26 +0.17 +0.00 +0.67 +0.50 +0.68 +0.46 

L6 +0.37 +0.13 +0.21 +0.36 +0.45 +0.08 +0.47 +0.08 +0.42 

L7 +0.53 +0.70 +0.30 +0.22 +0.13 +0.61 +0.71 +0.61 +0.41 

L8 +0.59 +0.37 +0.26 +0.37 +0.48 +0.17 +0.66 +0.16 +0.41 

L9 +0.28 +0.52 +0.28 +0.20 +0.06 +0.67 +0.53 +0.77 +0.54 

Kl +0.43 +0.54 +0.63 +0.49 +0.03 +0.21 +0.20 +0.20 +0.16 

K2 +0.54 +0.63 +0.61 +0.48 +0.08 +0.24 +0.33 +0.23 +0.18 

K3 +0.57 +0.71 +0.57 +0.44 +0.08 +0.35 +0.44 +0.36 +0.25 

Rl +0.51 +0.31 +0.23 +0.35 +0.46 +0.19 +0.63 +0.17 +0.43 

R2 +0.41 +0.60 +0.23 +0.17 +0.09 +0.61 +0.63 +0.60 +0.41 

R3 -0.60 -0.40 -0.24 -0.35 -0.45 -0.19 -0.69 -0.19 -0.42 

R4 -0.50 -0.69 -0.26 -0.18 -0.09 -0.59 -0.69 -0.59 -0.40 

RS +0.64 +0.58 +0.23 +0.20 +0.30 +0.28 +0.65 +0.22 +0.18 

Pl -0.71 -0.59 -0.21 -0.19 -0.35 -0.24 -0.73 -0.25 -0.17 

P2 -0.57 -0.39 -0.19 -0.20 -0.45 -0.23 -0.66 -0.21 -0.17 

Dl +1.00 +0.77 +0.34 +0.33 +0.54 +0.17 +0.71 +0.31 +0.09 

D2 +0.77 +1.00 +0.42 +0.29 +0.04 +0.43 +0.46 +0.48 +0.18 

Xl +0.34 +0.42 +1.00 +0.83 +0.17 +0.42 +0.27 +0.20 +0.23 

X2 +0.33 +0.29 +0.83 +1.00 +0.29 +0.33 +0.30 +0.11 +0.22 

Ml +0.54 +0.04 +0.17 +0.29 +1.00 +0.21 +0.76 +0.07 +0.06 

M2 +0.17 +0.43 +0.42 +0.33 +0.21 +1.00 +0.51 +0.50 +0.36 

M3 +0.71 +0.46 +0.27 +0.30 +0.76 +0.51 +1.00 +0.42 +0.28 

Yl +0.31 +0.48 +0.20 +0.11 +0.07 +0.50 +0.42 +1.00 +0.19 

Y2 +0.09 +0.18 +0.23 +0.22 +0.06 +0.36 +0.28 +0.19 +1.00 

Y3 -0.24 -0.42 -0.14 -0.06 +0.03 -0.37 -0.25 -0.87 +0.09 

Y4 -0.21 -0.25 -0.14 -0.12 +0.00 -0.03 -0.07 -0.13 -0.08 

YS +0.28 +0.46 +0.14 +0.05 +0.03 +0.47 +0.41 +0.86 +0.18 

El -0.61 -0.56 -0.26 -0.25 -0.21 -0.19 -0.45 -0.37 -0.19 

E2 -0.51 -0.45 -0.24 -0.21 -0.21 -0.18 -0.41 -0.33 -0.18 

E3 +0.60 +0.53 +0.30 +0.33 +0.38 +0.40 +0.76 +0.49 +0.50 

E4 +0.47 +0.67 +0.30 +0.21 +0.12 +0.63 +0.68 +0.64 +0.44 
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~Y3 Y4 ] Y5 El E2 E3 E4 ] 

HR +0.17 +0.20 -0.24 +0.30 +0.28 -0.43 -0.41 

L3 -0.02 -0.07 +0.14 -0.21 -0.21 +0.50 +0.25 

L4 -0.43 -0.14 +0.61 -0.45 -0.39 +0.77 +0.96 

LS -0.46 -0.15 +0.69 -0.20 -0.18 +0.62 +0.89 

L6 +0.02 -0.10 +0.01 -0.38 -0.32 +0.72 +0.29 

L7 -0.43 -0.18 +0.62 -0.46 -0.39 +0.77 +0.96 

L8 -0.06 -0.1 l +0.11 -0.57 -0.48 +0.86 +0.50 

L9 -0.56 -0.15 +0.75 -0.30 -0.30 +0.69 +0.87 

Kl -0.16 -0.38 +0.16 -0.27 -0.21 +0.28 +0.31 

K2 -0.19 -0.35 +0.19 -0.37 -0.30 +0.40 +0.41 

K3 -0.29 -0.34 +0.32 -0.39 -0.33 +0.54 +0.60 

Rl -0.04 -0.09 +0.16 -0.50 -0.42 +0.80 +0.49 

R2 -0.38 -0.12 +0.71 -0.36 -0.30 +0.66 +0.88 

R3 +0.08 +0.09 -0.17 +0.58 +0.49 -0.88 -0.54 

R4 +0.42 +0.12 -0.64 +0.44 +0.37 -0.75 -0.96 

RS -0.14 -0.06 +0.23 -0.59 -0.48 +0.58 +0.56 

Pl +0.19 +0.06 -0.23 +0.59 +0.50 -0.67 -0.60 

P2 +0.09 +0.06 -0.24 +0.42 +0.36 -0.51 -0.46 

Dl -0.24 -0.21 +0.28 -0.61 -0.51 +0.60 +0.47 

D2 -0.42 -0.25 +0.46 → 0.56 -0.45 +0.53 +0.67 

Xl -0.14 -0.14 +0.14 -0.26 -0.24 +0.30 +0.30 

X2 -0.06 -0.12 +0.05 -0.25 -0.21 +0.33 +0.21 

Ml +0.03 +0.00 +0.03 -0.21 -0.21 +0.38 +0.12 

M2 -0.37 -0.03 +0.47 -0.19 -0.18 +0.40 +0.63 

M3 -0.25 -0.07 +0.41 -0.45 -0.41 +0.76 +0.68 

Yl -0.87 -0.13 +0.86 -0.37 -0.33 +0.49 +0.64 

Y2 +0.09 -0.08 +0.18 -0.19 -0.18 +0.50 +0.44 

Y3 +1.00 +0.08 -0.65 +0.31 +0.29 -0.35 -0.47 

Y4 +0.08 +1.00 -0.14 +0.10 +0.08 -0.13 -0.15 

YS -0.65 -0.14 +1.00 -0.35 -0.27 +0.41 +0.63 

El +0.31 +0.10 -0.35 +1.00 +0.70 -0.54 -0.37 

E2 +0.29 +0.08 -0.27 +0.70 +1.00 -OSI -0.34 

E3 -0.35 -0.13 +0.41 -0.54 -0.51 +1.00 +0.80 

E4 -0.47 -0.15 +0.63 -0.37 -0.34 +0.80 +1.00 



AppendixD 

Software 

This chapter describes the software and further necessary details to reproduce all experimental 

results in this work. As speech recognition toolkit HTK V3.2 was employed. File formats are 

explained in Section D.l. Sections D.2 and D.3 describe software libraries and scripts in RUBY, 

PYTHON and PERL w1itten by the author or taken from public sources. Most scripts display 

a help message if they are executed on the commandline without any arguments. Look at the 

HISTORY files and scripts in the scripts directory in each experiment directory for usage 

examples. In Section D.5 the connections between experiment directories and experimental 

results shown in tables and figures are given. Section D.6 describes the implementation of the 

pron f ex module. 

D.1 File formats 

Input and output files used by various scripts and libraries have to obey a certain format. The 

abbrevations of the file formats are: 

• MLF: HTK-style Master Label File 

• UAF: Unlabeled Ascii Feature file 

• LAF: Labeled Ascii Feature file 

• PDS: Phone(me) Duration Statistic file 

• PCS: Phoneme Confusion Statistic file 

• GDP: Gaussian Density Parameter file 

• GMP: Gaussian Mixture Parameter file 

• LRP: Linear Regression Parameter file 

• CRF: Classifier Result File 
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• LTP: LDA Transformation Parameter file 

• KTP: KLT Parameter file 

• WTP: Whitening Transform Parameter file 

• PLM: Phoneme Language Model file 

• LAB: Label file 

• RES: Result file 

• APF: Adjustment Parameter File 

The file formats are described in the following subsections. <string> denotes variables, 

{<string>} none or multiple repetitions of <string>, (<string>) one or more 

repetitions of <string> and values in [<string>] are optional. Other symbols do not have 

a special meaning. 

D.1.1 MLF 

MLF are generated by HVi te for the forced-alignment or recognition results. An MLF contains 

one or more entries of the form: 

''<path>/<file>.<suffix>'' 

{<segment>} 

Instead of specifying the <path> the wildcard * can be used. <file> is the name of the 

acoustic features file. The <suffix> is usually lab for reference label files and rec for files 

containing of phoneme or word recognition output. Each <segment> has the format: 

[ <start> [<end>] ] (<name> [<score>]) [<comment>] 

<start> and <end> are the starting and ending times in向microsecondsof the acoustic 

segment, <name> and <auxname> a state, (phoneme) model or word label and <score> 

the corresponding acoustic score. However, scripts and binaries for extraction of pronunciation 

features, which are described later, assume the following format: 

[<start> <end>] [<namel> [<scorel> [<name2>]]] 

<namel> and <name2> are phoneme or word labels. 
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D.1.2 UAF 

An unlabeled ASCII features file has one or more lines in the following format: 

(<featval>) 

<feat val> is the value of a feature. 

D.1.3 LAF 

A labeled ASCII feature file has one or more lines in the following format: 

<class> (<featval>) 

<class> is the class label of each pattern. 

D.1.4 PDS 

A file containing a phone(me) duration statistic has a header of the form 

DTYPE <type> 

followed by one or more lines in the format 

<symbol> <count> <parameterl> <parameter2> 

<symbol> is the phone(me) symbol and <count> the occurence frequency. <type> can 

have the values log for log-normal density parameters, normal for normal density parameters 

and hist for histogram parameters. However, the pronfex module does not support the 

format hist. A phoneme duration statistic can be obtained from a MLF with the script 

phondurstat. rb. 

D.1.5 PCS 

A phone(me) confusion statistic file contains phone(me) labels in the first line. These are 

followed by the phoneme confusion probabilities. There is one line per row of the confusion 

matrix. Two PDS files, one containing the phoneme confusion matrix for correctly pronounced 

words (0), the other for mispronounced words (X), can be generated from a forced-alignment 

MLF, a recognition MLF with phoneme segment labels and files containing word labels and the 

corresponding markings with O and X by the script confusionmatrix. rb. 
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D.1.6 GDP 

A Gaussian density parameter file contains the parametersμand E for one multivariate 

Gaussian. The header format is 

GAUSS <type> 

<dim> 

<type> may be FULL, for a full covariance matrix Gaussian, or D IAG for a diagonal covaiiance 

matrix. <dim> is the feature dimension. The header is followed by the mean vectorμand the 

full covariance matrix E or only its diagonal. A GDP file can be generated with nvk-make. rb. 

D.1.7 GMP 

A Gaussian mixture model parameter file contains the parameters of one or more multivariate 

Gaussians and mixture weights. The header format is 

GAUSSMIX <type> 

<dim> <ndens> 
(<weight>) 

<type> has the same meaning as for the GDP file format. <dim> is the feature dimension, 

<ndens> the number of mixture components. There are as many weights <weight> as there 

are mixture components. The header is followed by the mean vectorsμi and the covariance 

matrix Ei of each Gaussian. GMP files can be generated with gmm-train. py and can be used 

by gmm-test. py for classification. 

D.1.8 LRP 

A linear regression parameter file contains the parameters ai of a linear regression function 

f (x) = L aixi. There is one line per parameter starting with the bias term. Such a parameter file 

can be generated by linreg-estimate. rb and can be used by linreg-trans form. rb. 

D.1.9 CRF 

A classifier result file contains the classification result generated by scripts nvk. rb or 

gmm-test. py. There is one line per classified sample. Each line has the format 

<class> (<score>) 

<class> is the class index starting from 1 up to the number of classes. The class index 

is followed by the logarithmic probabilities <score>, i.e. the values of the log-likelihood 

probability function for each class. 
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D.1.10 LTP 

A LDA transformation parameter file contains the Eigenvalues in descending order from the 

LDA in the first line and the Eigenvectors of the LDA transformation in the following lines. A 

LTP file can be generated by the script lda-train. py from one LAF or multiple UAFs. It is 

employed by lda-test. py to transform a LAF or multiple UAFs. 

D.1.11 KTP 

A KLT parameter file contains the Eigenvalues in descending order from the PCA in the first 

line, the source and target dimensions in the second line, and the Eigenvectors of the KLT in 

the following lines. A KTP file is generated by the script pca-t rain. py from one UAF or 

HTK-style feature files. 

D.1.12 WTP 

A whitening transform parameter file contains a mean vector <mean> and the vector of 

standard deviations <stddev> of each component. This file can be generated with the script 

wht-train. py from a sample. 

m <mean> 

s <stddev> 

D.1.13 PLM 

The phoneme language model file in HTK ARPA format. 

D.1.14 LAB 

A label file contains reference labels. There is one label per line and sample. The labels may 

have any value. By combining a LAB and a UAF file with the UNIX command paste, a LAF 

file is generated. 

D.1.15 RES 

A result file contains classification or scoring results. There is one line per sample. 

Result files are the output of the scripts linreg-transform. rb, softscore. rb and 

adjust scores. rb. 

D.1.16 APF 

An adjustment parameter file contains the parameters of the linear and the multiplicative 

polynomial transformation for score adjustment. The parameters can be estimated with 

adjusts cores. rb with a reference label file (LAB) and a score result file (RES). 
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D.2 Libraries 

Table D.1 gives an overview to libraries written in RUBY or PYTHON consisting of functions 

often used in various scripts. 

D.3 Scripts 

The names and purposes of scripts are shown in Tables D.2, D.3, D.4 and D.5. The scripts 

101-105 call HTK Tools for feature extraction, acoustic model training, etc. Scripts 106-113 are 

for editing MLF or extracting information from MLF files. Scripts 201-209 are for processing 

features, e.g. LDA, PCA or whitening. Scripts 301-307 are for training/testing based on a 

Gaussian classifier and for Linear Regression. The scripts 501-520 in Table D.5 are for stream-

based processing of data files, i.e. they read lines from standard input and write lines to standard 

output. 

D.4 Speech Recognizer 

HTK V3.2 is employed for acoustic model training and speech recognition. Table D.6 shows the 

experiment directories w.r.t. each trained acoustic model. 

The topology of each model is the same. There is one 3-state HMM for each of the 

monophones aa, ae, ah, ao, aw, ax, axr, ay, b, ch, d, dh, dx, eh, er, ey, f, g, hh, ih, ix, iy, jh, 

k, 1, m, n, ng, ow, oy, p, r, s, sh, t, th, uh, uw, v, w, y, z and zh. Moreover, there is a combined 

silence HMM sil/sp and a 1-state short pause HMM sp. Each state has a 16 Gaussian mixture 

density with diagonal covariance matrix. The HTK feature kind employed is MFCC_E_D_A.:Z 

with 39 acoustic features in total. The HTK configuration file for acoustic feature extraction is 

SOURCEFORMAT NOHEAD 

SOURCEKIND WAVEFORM 

SOURCERATE 625 

TARGETFORMAT HTK 

TARGETKIND MFCC_E_D AZ  

TARGETRATE 100000 

WINDOWSIZE 200000 

USEHAMMING T 

PREEMCOEF 0.97 

NUMCHANS 26 

CEPLIFTER 22 

NUMCEPS 12 

SAVEWITHCRC F 

DELTAWINDOW 2 

ACCWINDOW = 2 

THIRDWINDOW 2 
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Table D.1: RUBY and PYTHON software libraries. 

I JD I Lib-Name I Author/Status I Purpose 
L1 uci.rb Command line parsing 

L2 misc.rb Miscellanenous functions 

L3 htk2.rb HTK related stuff 

L4 matvec.rb T.Cincarek Matrix and vector functions 

LS log.rb Simple logging facility 

L6 spkdata.rb SLT Non-native DB speaker information 

L7 pronscore.rb Some functions for pronunciation FEX 

L8 matrix-algebra. rb S.Hara Matrix algebra 

L9 numarray.py Open Source Matrix algebra V0.7 

LIO stats.py Mean, Co-Variance, Correlation, a.s.o. 

L11 vq.py Clustering algorithms (k-means, LBG) 

L12 gmm.py GMM training (EM and FJ algorithm) 

L13 pca.py T.Cincarek Principal Component Analysis (PCA) 

L14 lda.py Linear Discriminant Analysis (LDA) 

LIS rrusc.py Miscellaneous functions 

L16 uc1.py Command line parsing 

Table D.2: Scripts for HTK Tools and MLF. 

~Script I Purpose 

101 htk-fex.rb Acoustic feature extraction (HTK) 

102 htk-buildmonophAM.rb Monophone AM training from scratch (HTK) 

103 htk-makelm.rb Build language model (HTK) 

104 htk-phonerecognizer.rb Phone(me) recognition (HTK) 

105 htk-lmscore.rb Calculate LM score (HTK) 

106 mlf-getcolumn.rb Get certain columns from MLF 

107 mlf-stripsilsp.rb Strip sp/sil symbols from MLF 

108 mlf-edit.rb Edit MLF (delete, insert, substitute) 

109 mlf-getid.rb Get utterance IDs from MLF 

110 mlf-score.rb Get AM score from MLF; calculate LM score for MLF 

111 mlf-nbestfex.rb Pronunciation feature extraction (C06-C08) 

112 mlf-wordfex .rb Pronunciation feature extraction (W01-W27, COl-COS) 

113 mlf-utrfex.rb Pronunciation feature extraction (Utterance) 
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Table D.3: Scripts for feature processing. 

団 Script I Purpose 

201 pca-train.py PCA (Eigenvector estimation) 

202 pea-test. py KLT 

203 lda-train.py LDA (Eigenvector estimation) 

204 lda-test.py LDA (Transfo1mation) 

205 wht-train.py Whitening (Mean/Variance estimation) 

206 wht-test.py Whitening (Transformation) 

207 selectfeatures.rb Select features by index or name from LAF/UAF 

208 combinedata.rb Combine multiple UAFs to one LAF 

209 splitdata.rb Split one LAF into multiple UAFs; optional resampling 

Table D.4: Scripts for classification. 

I ID I Script I Purpose 

301 gmm-train.py GMM Training 

302 gmm-test.py GMM Classification 

303 nvk.rb Gaussian c1assifier; floating search 

304 nvk-make.rb Build Gaussian classifier 

305 linreg-estimate. py Estimation of LR function 

306 Ii nreg-transform.rb Application of LR function 

307 linreg-feateval.rb Feature evaluation with LR 
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Table D.5: Scripts for various purposes. 

国 Script I Purpose 

401 

402 

403 

404 

405 

406 

407 

408 

409 

501 

502 

503 

504 

505 

506 

507 

508 

509 

510 

511 

512 

513 

514 

515 

516 

517 

518 

519 

520 

interpolate.rb Po]ynome coefficients with Newton's method 

cor _bs_confint.rb Confidence interval of correlation with Bootstrap 

correlation.rb Calculate correlation, open correlation 

performance.rb Performance for binary classification results 

softscoreprec.rb Calculate performance of soft-scoring results 

result.rb Calculate confusion matrix, gain, CL, RR 

recrate.pl Calculate confusion matrix, gain, CL, CL-A, RR 

shufflelist.rb Reorder input lines randomly 

confinterval.rb Calculate the confidence interval for the mean 

col.rb Grep then-th column 

exp.rb Calculate thee-function 

format.rb Format strings 

docmd.rb Execution of a command for several紅 guments

round.rb Rounding of float values to integers 

sort.pl (Correct) sorting of floats 

words.rb Split lines into word tokens 

split.rb Split strings into single characters 

log.rb Calculate the logarithm 

sum.pl Sum up values 

mincol.pl, maxcol.pl argmin, argmax operator 

geomean.pl 

stripnl.rb 

abs.pl 

mean.pl 

stddev.pl 

vanance.pl 

sqrt.rb 

upcase.rb 

downcase.rb 

~del 
瓦

Calculate geometric mean 

Strip newline characters at end of lines 

Take the absolute value 

Calculate the mean 

Calculate standard deviation 

Calculate variance 

Take square root 

Capitalize input strings 

convert to lower case letters 

Table D.6: Acoustic models. 

I Directory I Training data (Corpus) I 

・baseline_mono I WSJO/WSJ 1 

BE I baseline_mono_be I WSJCAMO 

PF_STAR BE baseline_children PF_STAR BE 
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lda-train.py 

mlf-utrfex.rb 

mlf-nbestfex.rb 

Ida-test. py 

pca-train.py 

APPENDIX D. SOFTWARE 

splitdata.rb 

combinedata.rb 

wht-train.py 

wht-test.py 

pca-test.py 

Figure D.1: Scripts for feature extraction and feature processing. 
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phondurstat.rb confusionmatrix.rb 

gmm-train.py linreg-estimate.rb 

gmm-test. py linreg-transform.rb 

adjustscores.rb 

softscore.rb 

Figure D.2: Scripts for classification and scoring. 
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Additionally, the byte order has to be specified w.r.t. the source data with 

BYTEORDER = <order> 

where <order> is VAX for little-endian and SUN for big-endian. The byte order of the training 

corpora as shown in Table D.6 is little-endian and big-endian for the ATR SLT data. For feature 

normalization by VTLN the following lines must be added to the configuration file: 

WARPFREQ 

WARPLCUTOFF 

WARPUCUTOFF 

<alpha> 

10.0 

8000.0 

<alpha> is the warping factor. 

For word recognition a beam size of 2 0 0 . 0, for unconstrained phoneme recognition a 

beam size of 5 0 0 . 0 was used, respectively. N-best recognition was carried out for N=lOO 

(HVi te argument -n 10 10 0). 

The directory asr contains all necessary acoustic models, configuration files and grammar 

files for phoneme recognition with the script htk-phonerecognizer. rb based on HTK. 

The content of the grammar file for unconstrained phoneme recognition is as follows: 

$phones = aa I ae I ah I ao I aw I ax I axr I ay I b I ch I 

d I dh I dx I eh I er I ey I f I g I hh I ih I 
ix I iy I jh I k I 1 I m I n I ng I ow I p I r I 
s I sh I t I th I uh I uw I v I w I y I z ; 

sil < $phones [sp I sil] > sil 

The grammar can be converted into a recognition network with HParse. 

D.5 Sources of Tables and Figures 

Tables D.7 and D.7 show the names of the directories in which the experiments to generate the 

results arranged in Tables and Figures were carried out. References to history files, result files 

and scripts are given. 
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Table D.7: Experiment directories for the results shown in all tables (T) and figures (F). 

げ亙~Directories I Commands, scripts and/or files 

T4.3 lme_adult HISTORY, spk. { rating,misratio,vt]n_wordacc, vtln_phonacc} 

F4.1 lme_adult HISTORY, spk. { rating,misratio} 

TS.1 cgi_data evalres_miscor.rb 

TS.2 cgi_data evalres_utrcor.rb 

T5.3 cgi_data evalres_spkcor.rb 

T5.4 cgi_data rat. { strict,cor _miscnLutrlab} 

TS.5 cgi_data HISTORY, mispron_hitlist.X, mispron_hitlist_norm.X 

TS.6 cgi_data HISTORY, rat.{ stiict,wordcor,utrcor,spkcor} 

T5.7 cgi_data HISTORY, evalres_mispronstaL { amean,gmean} .rb 

TS.8 cgi_data HISTORY, evalres_mispronstaL {chain} .rb 

TS.9 cgi_data mispron_phonestat. { C,F,G,I ,J} 

FS.l nn_database HISTORY, README, utrleveLconfint_{0.05,0.1 }.data 

FS.2 slLutrcon-elation HISTORY, spkleveLconfinL { 0.05,0.01} .data 

FS.3 nn_database HISTORY, READ ME, utrleveLjn_confinL { 0.05,0.1} .data 

F6.4 native_stats HISTORY, phondurstaL {k,ah} _native_ {hist,func} .eps 

F6.5 s]Lutrexp」r score_gallery.csh; {X1 ,K 1} _distribution.eps 

F6.6 slLu trco1Tela ti on HISTORY, analyze_evaluators.rb 

F6.7 cgi_data spk. { meanratings,phacc_free, wa_free} 

phone-1・ecognition phonrec_free_mono.rb 

word_recognition evaLzerogram.rb 

F6.8 slLutrcorrelation HISTORY, analyze_spkcor _avgutr.rb 

T6.3 slLutrcorrelation RESULTS_UTRCOR, analyze_utrcor.rb 

T6.4 s1Lutrcorrelation RESULTS_UTRCOR, analyze_utrcor.rb 

T6.6 sl Lu trcorrelation RESULTS_UTRCOR, analyze_utrcor.rb 

T6.7 slLu trcorrelation RESULTS_UTRCOR, analyze_utrcor.rb 

T6.8 s]Lutrcorrelation RESULTS_UTRCOR, analyze_utrcor.rb 

T6.9 slLutrcorrelation RESULTS_UTRCOR, analyze_utrcor.rb 

T6.10 slLutrcorrelation RESULTS_UTRCOR, analyze_utrcor.rb 

T6.12 cgi_data spk. { meanratings,mispronratio,phacc_free, wa_free} 

T6.13 s]Lutrcorrelation RESULTS_UTRCOR, RESULTS_SPKCOR 

F7.3 nn_database analyze_rating2miscnt.rb, polynome.eps 

T7.1 nn_database analyze_..rating2miscnt.rb 

F8.1 slLutrexp」r lr_eval.csh K3,Xl ,M3,D2; rating_score.eps 

T8.4 s]Lutrexp」r HISTORY, lr_eval.csh, cv Jr_eval.csh 

T8.5 slt_native_utr README, eval.csh K3,Xl,M3,D2, nvk_eval.csh E3,K2,Xl 

T8.6 slLutrexp_fs HISTORY, RESULT_FS_{COR,GAINMATRIX1,GAINMATRIX2} 

T8.7 slLutrexp_fs HISTORY, { nvk,cv _nvk} _eval.csh, cv _resuluable.csh 

T8.8 slLutrexp_fs nvk_eval.csh E3,K2,X1 
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Table D.8: Experiment directories for the results shown in all tables (T) and.figures (F). 

~Directories ] Commands, scripts and/or files 

F8.2 slLutrexp」r spkscore.csh E3,K2,Xl 

T8.9 slLutrexpJr spkscorel .csh, spkscore2.csh 

T8.10 slLwordexp_fs HISTORY, RESULT _FS, RESULT _FS_GAINMATRIX 

slLwordexp_cart one/RESULT竺

TS.11 sl L wordex p _alt HISTORY, RESULT _FS, RESULT _FS_GAIN 

slLwordexp_cart alt/RESULT_* 

slL wordexp_gmm pca.csh, lda.csh, gmm_ {pca,lda} _train_test.csh 

T8.12 slL wordexp_alt cv _nvk_eval.csh 

slt__native_ word HISTORY, eval.csh, nvk_eval.csh 

F8.3 slLwordexp_alt recall.csh, precision.csh 

T8.13 nn_database RESULT_ WORDMARK, evalperf _wordmark.rb 

T8.14 slLwordexp_cls HISTORY, RESULT王S_GAIN

T8.15 lme_adult HISTORY _VTLN, best_{ wordrec,phonrec }.rb 

lme_adulLbe HISTORY _VTLN, best_{ wordrec,phonrec }.rb 

lme_child word,phoneme_recognition.rb 

F8.4 lme_utrexp analyze_spkcor_avgutr.rb 

T8.16 lme_utrexp analyze_spkcor _avgutr.rb 

slLutrcorrelation RESULTS_SPKCOR, analyze_spkcor.rb 

T8.17 lme_wordexp HISTORY 

T8.18 lme_utrexp HISTORY, spkscore l .csh, spkscore2.csh 

F8.5 lme_utrexp spkscore.csh Xl,Kl,L7 

T8.19 lme_wordexp HISTORY, RESULT _FS_GAIN 

lme_ wordexp/ gmrn gmm」da_test.csh

!me_ wordexp/cart HISTORY 

F8.6 lme_wordexp precision.csh, recall.csh 

T8.20 lme_native_utr2 results_nvk.csh 

T8.21 lme_native_utr3 HISTORY 
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D.6 Pronfex Module 

D.6.1 Impl 
． 

ementation 

The calculation of pronunciation features on word and utterance level with the scripts 

mlf-utrfex. rb, mlf-wordfex. rb and mlf-nbestfex. rb was re-implemented in 

C++ as the command line tool pron f ex. Besides the utterance level feature Y1-Y5, all 

other word and utterance features can be calculated with pronfex. The extraction of the 

utterance features Ml-M3 and the word features W14-W16 is based on the HTK tool LP lex, 

i.e. it is employed to calculate phoneme sequence probabilities. Additionally, a few frame 

level and phoneme level features can also be calculated. The implementation of the pronfex 

module consists of the source files as given in Table D.9. There is a Makefile in the source 

directory. Just execute make on the command line and the binary will be build. Compilation 

was successfully tested with the gcc 3.2.2 compiler. 

Source Files Short Description 

lattice.{ cc,h} Read HTK MLF files (forced-alignment, recognition) 

Read HTK MLF files (N-best word recognition) 

Calculate Word Posterior Probability (WPP) 

main. { cc,h} Parse command line arguments 

Read configuration file 

rnlf.{ cc,h} Determine number of utterances in MLF 

Determine number of N-best hypothesis in MLF 

phonstat. { cc,h} Read phoneme confusion statistic 

Read phoneme duration statistic 

score. { cc,h} Frame level feature extraction 

Phoneme level feature extraction 

Word level feature extraction 

Utterance level feature extraction 

util. { cc,h} Helper functions 

typedefs.h Type definitions 

Makefile Makefile for building the pronfex binary 

Table D.9: Source files belonging to the implementation of the pronfex tool. 

Additionally to the source files of the implementation, the directory contains also examples 

of the files necessary in order to extract pronunciation features. There are three MLFs 

alignment .mlf, recognition .mlf and nbestrec .mlf containing the result of the 

forced-alignment, the word recognition with phone(me) segment labels, and N-best word 

recognition. Furthem1ore there is a configuration file f ex . cf g, two confusion matrices 

confmatrix. O and confmatrix. X in PCS format, a phoneme duration statistic (PD~) 
phondurstat. native and a phone(me) bigram language model phonbigram. arpa m 

HTK ARPA format. By executing the command 
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pronfex -a alignment.mlf -r recognition.mlf -n nbestrec.mlf 

-m phonbigram.arpa -p phondurstat.native -x confmatrix 

-c fex.cfg -1 <level> 

pronunciation features can be extracted for the example files at frame [1 ], phone(me) [2], word 

[3] or utterance level [4]. The extracted features and additional information is written to standard 

output. Depending on the <level> of feature extraction, the format of the output changes. The 

meaning of each output column is summarized in the following Table: 

Feature Extraction Level 

Column Frame [l] I Phone(me) [2] I Word [3] I Sentence [ 4] 

1 Frame number Beginning Frame Beginning Frame Utterance ID 

2 Utterance ID Ending Frame Ending Frame # words 

3 Word (alignment) Utterance ID Utterance ID # phone(me)s 

4 Phoneme (alignment) Word (alignment) Word (alignment) feature L3 

5 Phoneme (recognition) Phoneme (alignment) feature WO] feature L4 

6 Confidence score [CJ Acoustic score [L] feature W02 feature LS 

7 GOP score [K] GOP score [K] feature W03 feature L6 

8 Actual Duration feature W04 feature L7 ， Expected Duration feature WOS feature L8 

10 Duration score [D] feature W06 feature L9 

11 Confidence score [C] feature W07 feature Kl 

12 feature W08 feature K2 

13 feature W09 feature K3 

14 feature WlO feature R1 

15 feature Wl 1 feature R2 

16 feature W12 feature R3 

17 feature W13 feature R4 

18 feature W14 feature RS 

19 feature WIS feature Pl 

20 feature W16 feature P2 

21 feature Wl 7 feature Dl 

22 feature W18 feature D2 

23 feature W19 feature Xl 

24 feature W20 feature X2 

25 feature W21 feature Ml 

26 feature W22 feature M2 

27 ... feature W23 feature M3 

31 feature W27 

32 ... feature CO] 

39 feature C08 
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D.6.2 Usage 

Pronunciation feature extraction on multiple levels 

(c) 2004 Tobias Cincarek, FAU LME, AIR SLT 

Usage: . /pronfex 

-1 <int:level> 

-c <file:config> 

-a <mlf:align> 

-r <mlf:recog> 

-n <mlf:nbest> 

-m <arpa:phlm> 

-p <file:stat> 

-x <file:stat> 

-d <int:level> 

l:frame, 2:phon, 3:word, 4:utter 

Configuration for feature extraction 

HTK MLF file (forced-alignment) 

HTK MLF file (recognition) 

HTK MLF file (N-best word) 

Phoneme LM in HTK ARPA format 

Phoneme duration statistic 

Phoneme confusion statistics {.O, .X} 

Verbose/debug level 
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-1 Specifies the level of feature extraction. l: frame level feature extraction, 2: phone(me) level 

feature extraction, 3: word level feature extraction, 4: utterance level feature extraction 

-c Specifies the name of the configuration file. 

-a Specifies the name of the HTK-style MLF containing the result of the forced-alignment. To 

generate the MLF, HVi t e has to be executed with option -m in order to obtain not only 

an alignment at the word but also at the phone(me) level. 

-r Specifies the name of the HTK-style MLF containing the result of word or phoneme 

recognition. To generate the MLF, HVi te has to be executed with option -m in order 

to obtain not only the word hypotheses but also the corresponding phone(me) segments. 

-n Specifies the name of the HTK-style MLF containing the result of N-best word recognition. 

To generate the MLF, HVi te has to be executed with e.g. -n 10 10 0 for 100-best word 

recognition. 

-m Phone(me) language model (LM) in HTK ARPA format for phoneme sequence probability 

computation (Not yet implemented). 

-p Specifies the name of the PDS file with a phoneme duration statistic, which can be generated 

with phondurstat. rb. 

-x Specifies the <basename> of the PCS files <basename>. 0 and <basename>. X with a 

phoneme confusion statistic for correctly pronounced words (0) and mispronounced words 

(X). This statistic can be generated with confusionmatrix. rb. 

-d Debug level. I: file I/0, 2: parameter values, 3: lattice, 4: features 
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D.6.3 Usage Example 

In the following the necessary steps to extract pronunciation features for utterances and words 

are explained by an example. The first step is to obtain the forced-alignment and do phoneme 

and or word recognition on the utterance. An acoustic model file <model> and a file containing 

the names of all phoneme models <ph on list> have to be available. If <fl is t > is a file with 

the name of raw speech files or feature files on each line, <lexicon> the file which contains 

the pronunciation lexicon, i.e. the mapping of words to sequences of HMM model names, and 

<label> the MLF with the word level utterance transcriptions, the alignment can be computed 

by 

HVite -a -m -b '<silence>'-y lab -i <MLF> 

-C <config> -H <model> -I <label> <lexicon> <phonlist> 

<silence> is the name of the word always aligned at the beginning and at the end of each 

utterance. It must be mapped to a silence model in the pronunciation dictionary <lexicon>. 

The file <conf ig> contains the configuration parameters especially w.r.t. the form of the input 

speech files. The commands for recognition and N-best recognition are 

HVite -m -w <network> -i <MLF> 

-C <config> -H <model> <lexicon> <phonlist> 

HVite -m -w <network> -i <MLF> -n 10 100 

-C <config> -H <model> <lexicon> <phonlist> 

The file <net work> contains the recognition network. It differs for phoneme recognition 

and word recognition with and without a language model. An example of how to generate a 

<network> file for unconstrained phoneme recognition is given in Section D.4. Any results, 

either for alignment or for recognition, are written to the <MLF> specified with option -i. 

For pronunciation feature extraction three additional models are required: A phoneme 

duration statistic, a phoneme duration statistic for correctly pronounced and mispronounced 

words and a phoneme bigram LM trained on native data. 

The phoneme duration statistic (PDS) can be estimated with phondurstat. rb. Let 

<fl i st> be a file which contains the names of MLFs with timing information, i.e. there are 

three colums, the first two for the beginning and the ending time of each phoneme segment and 

one column for the phoneme symbol itself. A statistic for each phoneme with the parameters of 

a log-normal distribution can then be generated with the command 

phondurstat.rb -r -m <flist> -n <factor> -f <phonstat> -d log 

Option -r means ROS normalization. <fact or> is the duration normalization factor to convert 

segment times to milliseconds. <phonstat> is the name of the output file containing the 

phoneme duration statistic. Confer Section D.l for the file format of <phonstat>. 

The phoneme confusion statistics (PCS) for correctly pronounced and mispronounced words 

can be generated with the command 
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confusionmatrix.rb -a <flist_align> 

-r <flist_recog> 

-w <labeldir> 

-p <phonlist> 

-m <confstat> 

-t <factor> 

-e <markcnt> 

<flist_align> contains the names of MLFs with phoneme and word level alignment 

information, <fl is t_recog> with the recognition result including phoneme segment 

information, <phonlist> the names of all phoneme symbols, <factor> is the normalization 

factor to convert segment times to frame indices, <markcnt> is the number of times a word 

had to be marked by a human evaluator to be considered as mispronounced and <labeldir> is 

a directory which contains one file per utterance in the MLFs with word level mispronunciation 

information. Each file in <labeldir> has as many lines as there are words in the reference 

transcription of the utterance. Each line has the format 

<word> <misproninfo> 

<misproninfo> is a string consisting of the characters O and X, one character per human 

evaluator. The <word> is considered as mispronounced, if there are at least as many characters 

X as specified by option -e <markcnt>. Two phoneme confusion matrix files are written: 

<confstat>. O for correctly pronounced words and <confstat>. X for mispronounced 

words. The matrices are estimated from the frequencies of phoneme confusions at the frame 

level. Confer Section D.1 for the file format of <confstat>. *. 
The phoneme bigram language model can be generated by executing the command 

htk-makelm.rb -1 <network> 

-b <phonlm> 

-w <phonlist> 

-m <MLF> 
-s 

The file <phonlist> contains the list of phonemes to be covered by the language model. The 

training data can be specified directly by -m <MLF> or by -f <flist> containing a list of 

MLFs. There are two output files: A <net work> for recognition and an n-gram statistics file 

<phonlm> in ARPA format, which can be used for calculating phoneme sequence probabilities 

with the HTK Tool LP lex. 

Given the three models (PDS in file <phonstat>, PCS in files <confstat>. O and 

<confstat> .X, and the phoneme bigram LM in file <arpa>) and at least the MLF of the 

forced-alignment <ml f_al ign> with phoneme segment information, pronunciation features 

can be extracted with pronfex. For example, features at the word level are extracted with the 

command 
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pronfex -1 3 

-c <config> 

-a <mlf_align> 

-r <mlf_recog> 

-n <mlf nbest> 

-m <phonlm> 

-p <phonstat> 

-x <confstat> 

An example of the pronfex configuration file <config> is 

factor_2ms 

frameshift 

sp_symbol 

sil_symbol 

utt_start 

utt_end 

wpp_lhscale 

wpp_overlap 

0.0001 

10.0 

SP 
sil 

!ENTER 

!EXIT 

0.01 

0.5 

APPENDIX D. SOFTWARE 

fact or_2ms is the normalization factor to convert segment times to milliseconds. With 

frameshift the window shift can be specified in milliseconds, in order to convert segment 

times given in milliseconds to frame indices. sp_symbol specifies the short pause symbol 

between words and sil_symbol the silence symbol. With utt_start and utt_end the 

utterance start and end symbol can be set up, respectively. These symbols have to be present at 

the beginning and end of each utterance in the <mlf_align> file in case of feature extraction 

at the word level. wpp_lhscale is a factor to scale likelihoods for word posterior probability 

(WPP) computation. wpp_over lap defines the necessary degree of overlap between words in 

order to be considered for WPP computation. Valid values for wpp_over lap are between O. O 

and 1. 0, but it should be equal to or greater than O. 5. 

If the MLF with the recognition result and/or the MLF with the N-best recognition result 

are not available, just specify the MLF <ml f_a l i gn > of the forced-alignment again for the 

cornmandline options -r and/or -n. Unneccesary to mention, that the features based on the 

(N-best) recognition result become meaningless and should neither be employed for scoring nor 

for classification. 
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