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概要

We present a novel approach to trigger-based language model adaptation for large 

vocabulary continuous speech recognition (LVCSR) that uses two different corpora to 

construct the set of trigger pairs. In language modeling for LVCSR, when the training 

data set is considerably big, it is usually too general and the task dependency is lost. On 

the other hand, when the training data are task-dependent, they are usually 

insufficient and the probability estimates are unreliable. The proposed approach tries to 

overcome this generality-sparseness trade-off problem by first building task-dependent 

trigger pairs from a Japanese conversational text corpus, which is the target task, and 

then avoiding data sparseness by calculating the likelihoods of the pairs from a huge 

text corpus. A small improvement in word recognition accuracy was achieved when 

using the two corpora, while accuracy degradation was obtained when we used either 

only the conversational text corpus or the huge corpus to both extract・the pairs and 

calculate their likelihoods. 
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Abstract 

We present a novel approach to trigger-based language model adap-
tation for large vocabulary continuous speech recognition (LVCSR) that 
uses two different corpora to construct the set of trigger pairs. In language 
modeling for LVCSR, when the training data set is considerably big, it is 
usually too general and the task dependency is lost. On the other hand, 
when the training data are task-dependent, they are usually insufficient 
and the probability estimates are unreliable. The proposed approach tries 
to overcome this generality-sparseness trade~off problem by first building 
task-dependent trigger pairs from a Japanese conversational text corpus, 
which is the target task, and then avoiding data sparseness by calculating 
the likelihoods of the pairs from a huge text corpus. A small improvement 
in word recognition accuracy was achieved when using the two corpora, 
while accuracy degradation was obtained when we used either only the 
conversational text corpus or the huge corpus to both extract the pairs 
and calculate their likelihoods. 

1 Introduction 

Statistical language models are an integral part of state-of-the-art automatic 

speech recognition (ASR) systems. The most widely used language model in 

LVCSR is then-gram language model, where n typically ranges from 2 (bigram) 
to 5 (5-gram). n-grams model the occurrence probability of n consecutive words 

in the text, and their parameters are estimated from a large text corpus. These 
models have fixed probabilities that are independent of the document being 

predicted, and they are us叫 lyvery general in order to cover many different 

topics or domains. 
Adaptation tries to improve language modeling by creating language models 

closer in style to the target task. In then-gram language model, when the model 

is trained from a big corpus, we can obtain a good general n-gram model, but 

a rather poor task-dependent model. Conversely, when the training data and 

the target task are from the same domain, the data are usually sufficient for 

building a task-dependent n-gram, but not for building a general one. 
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Some works in the literature, such as the trigger-based language model [1], 
tried to broaden the scope of the n-gram by modeling long-range dependencies 
between words. In this model, however, when we train the trigger pairs (content 
word pairs that are related to each other) we usually find two problems, depend-
ing on the nature of the training data. When the trigger pairs are trained from a 
considerably big corpus, even though we can find good probability estimates for 
them, since the corpus is usually too general we cannot know which of the pairs 
are task-dependent. On the other hand, when the training data are from the 
same domain as the target task, although the trigger pairs are task-dependent, 
the data are usually insufficient and the probability estimates are unreliable. 
Therefore, there is often a trade-off between generality and sparseness. 
The proposed approach takes advantage of two different corpora to create a 
trigger-based language model whose trigger pairs are adapted to the target task 
and have reliable estimates. 

2 Proposed approach 

In order to overcome the generality-sparseness trade-off problem, the trigger 
pairs were first extracted from a conversational text corpus, which is the target 
task, and then searched for in a large text corpus, to compute their likelihoods 
based on their co-occurrence frequency within a text window. Since the trigger 
pairs are task-dependent, because they were built from the target domain, we 
solve the generality problem. 恥 rtherrnore,since the likelihoods of the trigger 
pairs were calculated frorn a huge corpus, we avoid the data sparseness prob-
lem. By overcoming the generality-sparseness trade-off problem, a significant 
improvement in speech recognition accuracy is pursued when using the new 
language model for rescoring N-best lists. 

2.1 Extraction of trigger pairs 

The trigger pairs were extracted from the Japanese Basic Travel Expression 
Corpus (BTEC) [2]. The BTEC is a conversational text corpus consisting of 
sentences from many different topics that usually appear in travel conversations. 
It is divided in two disjoint sets: training and evaluation. The former contains 
467,964 utterances and 3.5 million words, and the latter comprises 24,682 ut-
terances and 184 thousand words. 
The BTEC was segmented using the ChaSen morphological analysis system 
2.02 [3] to match the segmentation of the Mainichi Shimbun corpus. 
The trigger pairs were extracted by using two different methods: a method 
based on the term frequency /inverse document frequency (TF /IDF) measure 
[4] and another based on log likelihood ratios [5]. We used the former for 
preliminary experimentation because of its simplicity, while the latter was used 
due to its powerfulness. 
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2.1.1 TF /IDF 

The TF /IDF value of a term互 ina document Di is computed as follows: 

tf叫og(N/叫
Vik= 
直：い(tい）打log(N/叫 ]2

(1) 

where t.fik is the frequency of occurrence of Tk in Di, N is the total number of 
documents, nk is the number of documents that contain Tk, and tis the number 
of terms in Di・
For each utterance of the corpus, we took the base forms and parts of speech 
(POS) of the two words w1 and叩 withthe highest TF /IDF value above a 
threshold, using the utterance as the document unit. We used POS-based 
filtering to discard function words, as well as a stop list to ignore high fre-
quency words. Then, for every w1 and w2, we constructed the pairs (w1, w叫
and (w2, w1). The threshold was chosen to be 0.2 so that the coverage in the 
BTEC evaluation corpus of the trigger pairs created with only the POS-based 
filtering were 62%. 

2.1.2 Log likelihood ratios 

Given a contingency table with the frequency of the following co-occurrence 
pairs: 

a) A+B 

b) A+,B 

c) ,A+ B 

d) ,A+ ,B 

where A+  ,B represents the two pairs (A, ,B), (,B, A) formed by A and any 
word that is not B, the log likelihood ratio (LLR) of the pair (A, B) is calculated 
as follows: 

-2 log a = 2 [ a log a + blog b + clog c + d log d 

-(a+ b) log(a + b) -(a+ c) log(a + c) 

-(b+d)log(b+d)-(c+d)log(c+d) 

+ (a + b + c + d) log(a + b + c + d)] 

(2) 

For each utterance of the corpus, we first created all possible pairs from 
all words in the utterance. Again, POS-based filtering and a stop list were 
used to remove function words and high frequency words, respectively. Then, 
we computed the LLR for each pair and chose the trigger pairs with a ratio 
greater than a threshold. This threshold was initially chosen to be 10 based 
on a subjective judgment of the goodness of the pairs from a sample taken at 
random, and it was later tuned during the parameter optimization stage. The 
coverage in the evaluation corpus of the trigger pairs created by using only the 
POS-based filtering was 58%. 
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2.2 Calculation of likelihoods 

The likelihoods of the trigger pairs were computed from the Mainichi Shim-
bun text corpus. This corpus consists of five years (1991-1995) of this general 
Japanese newspaper, and it comprises 130 million words. 
We created ANS files from this corpus in order to have a common represen-
tation for both the BTEC and the Mainichi Shimbun corpus. 
In order to compute the likelihoods of the pairs, we used a text window to 
calculate the co-occurrence frequency of the pairs inside it. This text window 
consisted of the previous and next 10 words to the one being processed, excluding 
the previous and next 2 words because we are trying to model long-distance 
dependencies that are not modeled by the trigram (3-gram) language model. 
The likelihood of each trigger pair (w1, w砂wascomputed as follows: 

Lrp(w叶w1)= 
N(w1,w2) 

N(w1) x K 
(3) 

where N(w1, w砂denotesthe number of times the words w1 and w2 co-occur 
within the text window, N(w1) is the number of times w1 occurs in the corpus, 
and K is the window size, in this case 16. When N(w1) was less than 10, the 
corresponding likelihood was set to 0. 

2.3 Language model 

The likelihoods of the trigger pairs were interpolated with the baseline n-gram 
model, so that both long and short-range dependencies could be captured, to 
create a new language model. We tried three different interpolation schemes: 
word linear interpolation (WLI), sentence linear interpolation (SLI), and log 
linear interpolation (LLI). 
In the WLI scheme, the total score of the new language model for a sentence 
HI= w1, w2, ... , Wm  was computed in the following way: 

SLM(W) = 10 log1.0001 (且（入SNc(wi)+ (1 —入）均p(w.;))) (4) 

where 10 is the language model scaling factor, 入isthe interpolation weight, SNa 
is the score of then-gram component, and Srp is the score of the trigger-based 
component, which can be calculated as follows: 

Srp(wilH) = L Lrp(叫h)
hEH 

(5) 

where H is the word history and Lrp is the likelihood of each trigger pair, 
defined in equation 3. 
In SLI, the total language model score for a sentence W was computed as 
follows: 

m 

SLM(W) = l0log1.0001 (直量(wi)+ (1-入)Il叩（い） (6) 
i=l 
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where Srp was calculated as: 

年 (wilH)= { E 応 (w叶h)=O,'vhEH
江 EHL ( T p Wi I h) otherwise 

(7) 

and E was a value close to O and less than the smallest likelihood found in the 

set of trigger pairs. 
Finally, in LLI, the total language model score for W was calculated in the 
following way: 

m m 

SLM(W) = l0log1,0001 (IJ麟 (wリ）＋入logi,0001(IT叩 (w;)) (8) 
,i =1 i=l 

where Srp was computed using equation 7. 

2.4 N -best rescormg 

The new language model was used to rescore the N-best hypotheses output 
by an ASR system. This system provided us with acoustic and n-gram scores 
for each of the words in every hypothesis, as well as total scores for the each 
hypothesis. 
Words in each hypothesis were added in order to a word history buffer, which 
was cleared when the hypothesis processing was over. The score of the trigger-
based component was calculated by using the history buffer to find trigger pairs 
containing the word being processed, taking their previously computed likeli-
hoods, and using eq叫 ion5 for the WLI scheme and equation 7 for the SLI and 
LLI schemes. The new language model score for a hypothesis was computed by 
using equations 4, 6, and 8 for the WLI, SLI and LLI interpolation schemes, 
respectively. Finally, the total score for one hypothesis was the sum of the log 
acoustic score of the hypothesis and its new language model score. The hypoth-
esis with the highest new total score became the candidate for the new 1-best 
sentence. 
For each utterance, both the original and the candidate I-best sentences were 
considered. If the number of trigger pairs found in the original I-best hypothesis 
was greater or equal to the number of pairs found in the candidate I-best, the 
original hypothesis prevailed; otherwise, the candidate sentence became the new 
1-best. This makes sense because if the same trigger pairs are present in both 
the original and candidate hypotheses, there are no errors that can be corrected 
with the information provided by these pairs, so there is no need for changing 
the original hypothesis. 

3 Experiments 

3.1 Baseline experiments 

The ASR system ATRIUMS 2.2 [6] was used to output the N-best lists. This 
system normally uses a bigram model in a first stage and a trigram afterwards, 
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in an optional rescoring stage. We created a word bigram and a word trigram 
from the BTEC training corpus, as well as a word trigram from the Mainichi 
Shimbun corpus. The BTEC bigram was used in the first recognition stage, 
and a linear interpolation between the BTEC and Mainichi trigrams, with in-
terpolation weights of 0.99 and 0.01, respectively, was used for the second stage. 
The test set consisted of 1524 utterances (11K words) taken from the BTEC 
evaluation corpus (sets 1, 2 and 3), the number of output hypotheses N was 
100, and the size of the vocabulary, extracted from the BTEC, was 36K words. 
We obtained an average word recognition accuracy of 87.25% for this base— 

line language model, 87.64% when using the insertion penalty optimized in the 
parameter optimization stage, and the maximum average recognition accuracy 
that could be attained by choosing the best hypothesis from the N-best each 
time was 94.53%. 

3.2 Parameter optim1zat10n 

Next, we performed speech recognition experiments similar to the ones in the 
previous section, this time with a held-out data set from the BTEC evaluation 
corpus (set 5), consisting of 466 utterances. This provided us with N-best 
lists that were rescored with the proposed language model, assigning different 
values to the system parameters in order to optimize them. In particular, the 
interpolation weight入， theinsertion penalty, and the threshold for the LLRs 
of the trigger pairs were tuned. The highest recognition accuracy was achieved 
when入was0.37 and the threshold for the LLRs was 15. 

3.3 Experimental results 

We then carried out rescoring experiments with the output of the baseline exper-
iments of section 3.1 and with the parameters optimized in the previous section. 
We compared the word recognition accuracy of the model with the trigger pairs 
constructed using the method based on the TF /IDF measure with that of the 
model with the trigger pairs that used the LLRs. For each of these models, we 
also compared different thresholds for the frequency of the words in the stop 
list: 500, 1000, 2000, 3000 and 5000. The number of extracted pairs ranged 
from 104,134 to 195,265 for the method based on the TF /IDF measure, and 
from 143,928 to 219,001 for the method based on the LLRs. 
Finally, in order to prove the usefulness of using two different corpora, all 
these experiments were repeated using either only the BTEC or the Mainichi 
Shlmbun corpus, both to extract the trigger pairs and to calculate their likeli-
hoods. When we used only the BTEC, the number of trigger pairs ranged from 
92,479 to 193,969 for the TF/IDF-based pairs, and from 124,042 to 205,806 for 
the LLR-based ones. When we used only the Mainichi Shimbun corpus, three 
different thresholds for the stop list were used: 10000, 30000 and 50000. This 
time, the number of extracted trigger pairs ranged from 4,560,156 to 5,131,819 
for the TF/IDF-based pairs, and from 23,747,412 to 29,655,833 for the LLR-
based pairs. 

6
 



88.0, 
TF/IDF (BTEC + Mainicliil ） --e-

零~87.9 I TF/IF D(F M(aBinTiEc C -—• ---
TF/1D hi・・・ 〉・
Baseline 

>゚. ~ 87.8 

コu 品 87.7 

五ocこ： 87.6 
C 

江。o 足： 87.5 

87.4 

87.3 
10 15 20 25 30 35 40 45 50 55 

Coverage of trigger pairs (%) 

Figure 1: Speech recognition accuracy for differe叫 setsof trigger pairs based on 
the TF/IDF measure. 

We performed all these experiments using the three different interpolation 
schemes described in section 2.3. We found that for the SLI and LLI schemes, 
the speech recognition accuracy of the models that used the two corpora was 
always very similar to that of the models that used the BTEC only. However, 
for the WLI scheme, the recognition accuracy of the models based on the two 
corpora always outperformed the accuracy of the models constructed with only 
the BTEC. 
Figures 1 and 2 show the experiments that used the WLI interpolation 
scheme. The speech recognition accuracy is compared with the coverage in 
the evaluation corpus of all the different sets of trigger pairs. The horizontal 
line is the value of the average recognition accuracy of the baseline language 
model. 
The maximum recognition accuracy obtained was 87.71%, that is, we 
achieved a global 0.07% improvement when we used trigger pairs based on LLRs 
and a stop list threshold of 1000, and the likelihoods were computed from the 
Mainichi Shimbun corpus. On the contrary, using the BTEC to calculate the 
likelihoods resulted in accuracy degradation of 0.03% for the same case. As a 
matter of fact, we can see that in the cases where we used the two corpora, the 
recognition accuracy was always higher than in the cases where we used only 
one corpus, where the accuracy improved that of the baseline in just one case. 
We can also notice that the LLR-based trigger pairs performed generally better 

than the TF /IDF-based ones. 
In order to further evaluate the impact of the proposed model in the BTEC 
task, we discarded from the test set those sentences that did not contain any of 
our trigger pairs. The baseline recognition accuracy in this case was 88.02%, and 
the maximum attainable accuracy was 95.13%. We then repeated the previous 
experiments only for the case where the threshold of the stop list was 1000. We 
obtained a word recognition accuracy of 89.06% for the TF /IDF-based trigger 
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Figure 2: Speech recognition accuracy for different sets of trigger pairs based on 
log likelihood ratios. 

pairs, and an accuracy of 88.98% for the LLR-based pairs. For the first case, 
the global improvement over the baseline is of 0.31%, which represents a 4.36% 
of the total possible improvement. 

4 Discussion 

There can be several reasons for the small degree of irnprovernent obtained. The 
rnost likely cause is that the target task (BTEC) belongs to the conversational 
language domain, while the Mainichi Shirnbun corpus, frorn where the likeli-
hoods were computed, belongs to the written language domain instead. This 
domain mismatch might be the main problem, since the Mainichi Shimbun cor-
pus is probably unable to provide us with good estimates for the likelihoods 
of trigger pairs adapted to a conversatio叫 domain. We decided to use the 
Mainichi Shimbun corpus because large Japanese conversatio叫 corporaare 
not readily available, so we wanted to try it for preliminary experimentation. It 
would be possible to build a huge conversational corpus by gathering text data 
from the World Wide Web similar to the target domain in order to overcome 
this problem. 
Another possible factor that contributed to the small improvement is the 
fact that we used the simple linear interpolation scheme to combine the stan-
dard n-gram language model with our trigger-based language model. Linear 
interpolated models make suboptimal use of their components and are gener-
ally inconsistent with them [1]. Again, we decided to use linear interpolation as 
a quick means to test the proposed approach. We think that using a more ro-
bust method, such as the maximum entropy approach [1], would also contribute 
to improve recognition accuracy. 
Finally, in order to further increase accuracy, based on the hypothesis that 
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long words usually have a higher acoustic confidence than short words, we pro-
pose to use acoustic confidence scores derived from the generalized word poste— 

rior probability [7] as an additional parameter when calculating the score during 
the N-best rescoring. 

References 

[1] R. Rosenfeld, "A Maximum Entropy Approach to Adaptive Statistical Lan-
guage Modeling," Computer Speech and Language, vol. 10, pp. 187-228, 
1996. 

[2] T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, S. Yamamoto, "To-
ward a Broad-Coverage Bilingual Corpus for Speech Translation of Travel 
Conversations in the Real World," Proceedings LREC, vol. 1, pp. 147-152, 
2002. 

[3] Y. Matsumoto, A. Kitauchi, T. Yamashita, Y. Hirano, H. Matsuda, K. 
Takaoka, M. Asahara, "Morphological Analysis System ChaSen version 
2.2.1 Manual," http://chasen.aist-nara.ac.jp/ chasen/ doc/chasen-2.2.1.pdf, 
2000. 

[4] G. Salton, "Developments in Automatic Text Retrieval," Science, vol. 253, 
pp. 974-980, 1991. 

[5] T. Dunning, "Accurate Methods for the Statistics of Surprise and Coinci-
dence," Computational Linguistics, vol. 19, no. 1, pp. 61-74, 1993. 

[6] T. Shimizu, H. Yamamoto, H. Masataki, S. Matsunaga, Y. Sagisaka, "Spon-
taneous Dialogue Speech Recognition Using Cross-Word Context Con-
strained Word Graph," Proceedings ICASSP, vol. 1, pp. 145-148, 1996. 

[7] F. Soong, W. Lo, S. Nakamura, "Generalized Word Posterior Probabil-
ity (GWPP) for Measuring Reliability of Recognized Words," Proceedings 
SWIM, 2004. 

，
 




