
Internal Use Only (非公開）

TR-SLT-0072

Speech Recognition for

Multiple Non-Native Accent Groups with

Speaker-Group Dependent Acoustic Models

Tobias Cincarek, Rainer Gruhn

2004/05/07

概要

In this research, the recognition performance for non-native English speech with different

kinds of acoustic models is investigated. The AMs examined are speaker independent native

models, speaker-dependent models, AMs built from speech data of non-native accent

groups and AMs built from data of speaker clusters. Speaker clusters are derived by

k-means clustering in speaker Eigenspace. Oracle experiments and experiments with

parallel decoding and hypothesis selection are carried out for performance evaluation.

（株）国際電気通信基礎技術研究所

音声言語コミュニケーション研究所

〒619-0288「けいはんな学研都市」光台二丁目 2番地 2TEL: 0774-95-1301

Advanced Telecommunication Research Institute International
Spoken Language Translation Research Laboratories
2-2-2 Hikaridai "Keihanna Science City" 619-0288,Japan

Telephone:+81・774-95-1301
Fax :+81・774-95-1308

c2004 (株）国際重気通信址礎技術研究所

c2004 Advanced Telecommunication Research Institute International

Contents

1 Preface 3

．
2 An Approach for Non-native ASR 4

2.1 Abstract . 4

2.2 Introduction . 4

2.3 Overall approach . 5
2.4 Speaker clustering . 5
2.5 N on-native speech database . 7
2.6 Baseline system . 7

2.6.1 Acoustic model . 7
2.6.2 Language model . 8

2. 7 Results . 8
2.7.1 Speaker-independent models . 8
2.7.2 Speaker clustering. 9
2.7.3 Oracle experiments . 9
2.7.4 Parallel decoding。. • • 9
2.7.5 Non-native model . 10

2.8 C onclus10n 11

3 Software 12
3.1 HTK Training and Adaptation . 13
3.2 Training, Validation and Test Data Set Partitioning 13
3.3 HTK AM Parameter Extraction ．．． 14
3.4 Eigenvoice Computation . 14
3.5 Speaker Clustering in Eigenspace 15

3.6 HTK MLF Input/Output . 16
3. 7 HTK MLF Processing . 17
3.8 Miscellaneous Scripts . 18
3.9 HTK Configuration . 19
3.10 Environment Variables . 19
3.11 Speaker Information File . 20

4 Detailed results 21
4.1 Data sets . 21
4.2 Language model . 22

1

4.3 Native SI AM experiments

4.4 Native GD AM experiment (baseline)
4.5 Speaker-dependent AM experiment

4.6 Speaker clustermg ... ．．．．
4.6.1 Examples of cluster configurations .

4. 7 Accent-dependent models
4.8 Cluster-dependent models

4.9 Non-native models
4.10 Parallel decoding

5 Survey of AM adaptation methods
5.1 Introduction . . .

5.2 General remarks on adaptation . .
5.3 Methods for large amounts of adaptation data

5.3.1 Maximum a posteriori (MAP) .. .

5.3.2 Linear Regression (LR)
5.4 Methods for sparse amounts of adaptation data

5.4.1 . E1genvo1ce . .

5.4.2 Subspace-based methods ..
5.4.3 Speaker Clustering

5.5 Miscellaneous adaptation methods .
5.5.1 Adaptive Training
5.5.2 Genetic Algorithms

5.6 Approaches to non-native speech recognition

2
2
2
4
2
4
2
5
2
6
2
8
2
9
3
0
3
0
3
4
3
4
3
5
3
7
3
7
3
8
3
9
3
9
4
0
4
1
4
2
4
2
4
2
4
2

Chapter 1

Preface

This technical report is based on the paper draft for the 8th International Conference on Spoken

Language Processing (ICSLP) 2004. A software manual and more detailed experimental results
are included in this technical report. Additionally, a short survey on acoustic model adaptation

will be given in the last chapter. In the last section of that chapter some references to approaches
for non-native speech recognition are included.

Work for this technical report, including the collection of speech data from more than 70 non-
native speakers, was carried out by Tobias Cincarek and supervised by Rainer Gruhn and Satoshi
Nakamura. The author would like to thank Konstantin Markov, for all valuable advice and the

provision of a crossword triphone AM for experiments. Further acknowledgments go to Seiichi
Yamamoto and Satoshi Nakamura, who made the stay of the author at ATR possible, and all
researchers of ATR who helped me with their valuable advice during progress meetings, especially

Frank K. Soong.

May 7, 2004, Tobias Cincarek

3

Chapter 2

An Approach for Non-native ASR

2.1 Abstract

In this research, the recognition performance for non-native English speech with two different kinds
of speaker-group-dependent acoustic models is investigated. The approaches for creating speaker
groups include knowledge-based grouping of non-native speakers by their first language, and the

automatic clustering of speakers. Clustering is based on speaker-dependent acoustic models in
speaker Eigenspace. The acoustic model for each speaker group is obtained by bootstrapping
with pre-segmented speech data or adaptation of a speaker-independent native baseline model.
For the decoding of a non-native speaker's utterance not seen during the training or adaptation

phase, the selection of a model suitable to cope with the accent characteristics of that speaker
is necessary. Here, ideal selection via an oracle and parallel decoding are examined. Evaluation
is conducted in a hotel reservation task for five major accent groups, including German, French,

Indonesian, Chinese and Japanese speakers. Recognition results with speaker-dependent and an
accent-independent non-native model will also be reported.

2.2 Introduction

Approaches for the recognition of non-native speech found in literature can be classified into

three major classes: pronunciation modeling by altering word baseforms, acoustic modeling, and

combinations of both. Pronunciation modeling can boost speech recognition performance for
a certain foreign accent of the target language, e.g., by adding pronunciation variants to the
dictionary, or better applying confusion rules to the phoneme or word lattice during decoding

[5] [44]. Such an approach requires either in-depth knowledge of the target language and the

first language of the non-native speaker to be able to design pronunciation variants manually, or

large amounts of labeled speech data to extract them automatically. Furthermore, that approach

covers only deletions, insertions and substitutions of target language phones. To account also for
substitutions of target language phones with phones of the non-native speaker's first language,

each word in the dictionary can be represented as a sequence of target language phones and a

sequence of the non-native speaker's first language phones to form quasi-bilingual models [35] at

the same time. An approach for several accents with multi-lingual acoustic models for recognizing

4

digit strings by combining the phone sets and speech data of several native languages was shown
to work better than MLLR adaptation of monoling叫 modelswith accented speech data [17]. The

advantage of bi-and multi-lingual models is the availability of training data from native speech
corpora without the need for collecting large amounts of accented data.

However, recent investigations of Flege et al. [19] suggest that non-native speakers may produce

speech sounds which are either part of their first language or which were established by merging
characteristics of a first language with a target language speech sound. These observations lead

to the conclusion that adaptation of each acoustic-phonetic unit model is necessary and that
pronunciation modeling with native phone models alone may not be the silver bullet to improve
recognition performance for non-native speakers of any accent group.

Approaches which incorporate this phenomenon are the adaptation of a speaker-independent

baseline model of the target language [49] or training from scratch with accented speech data [45],
the merging of native models [50], and interpolation between native and non-native models [49]

or only native models [50]. All these methods lead to a remarkable improvement in recognition
performance of foreign accented speech.

Other than the method based on multi-lingual models, the methods summarized here were

applied separately for each non-native accent group. To decode an unseen test utterance, the first
language of the test speaker needs to be known in order to select an appropriate acoustic model.
This step can in principle be carried out by an accent classification system, e.g., realized by an

approach based on ergodic HMMs [42], which achieved an accuracy of 65% for six accent groups.
Here we will present a practical system for the recognition of continuous non-native speech

of multiple accent groups. For acoustic model selection, parallel decoding with speaker-group-
dependent models is employed. Investigation is conducted to determine whether models built

with speech data from speakers of knowledge-based speaker groups or models trained with data
from data-drivenly created speaker groups are more suitable for recognition. To take account
of Flege et al.'s findings, acoustic models are constructed by bootstrapping with pre-segmented

non-native speech data. With this approach non-native phones and pronunciation can be learned
automatically and coded statistically as HMM mixture distributions.

2.3 Overall approach

The proposed approach consists of an off-line step for the construction of speaker-group-dependent

acoustic models and an on-line step for model selection and test utterance decoding. Figures 2.1
and 2.2 illustrate the processing of both steps.

Speaker group formation is necessary for the off-line step. Two methods are investigated:

a straightforward knowledge-based approach by grouping the non-native speakers by their first

language to build accent-dependent models, and an automatic approach by clustering the speakers
in speaker Eigenspace to build cluster-dependent models.

2.4 Speaker clustering

A clustering method in speaker Eigenspace-based on Eigenvoices was introduced in [16] and ap-

plied to cluster native speakers. Here the clustering scheme is applied to non-native speakers.

speaker group
information

partitioning
non-native
speech data

acoustic
model

construction

Figure 2.1: Off-line step: Construction of speaker-group-dependent acoustic models. The non-

native speech data is partitioned into several training data sets by taking together all the training

data from the speakers of each group. From each data set one acoustic model is constructed.

test
utterance

test
utterance

Model Selection
(Oracle)

hypothesisー1
hypothesis-2

hypothesis-N

final
hypothesis

final
hypothesis

Figure 2.2: On-line step: Decoding of a test utterance. Top: A test utterance is decoded in parallel

with each acoustic model available. The hypothesis with maximum likelihood is selected as the final

hypothesis. Bottom: Assuming that a perfect speaker group classification or speaker identification

system is available, oracle-based acoustic model selection is simulated to get a reference value for

maximum possible performance.

Eigenspace-based methods have the advantage, that complex representations can be transformed

into simpler ones with few parameters while retaining most of the original information.

Speaker-dependent (SD) models were constructed by MAP adaptation of mean vectors of

a single mixture speaker-independent monophone model. This adaptation procedure has the

advantage, compared with training from scratch, that all remaining model parameters remain the

same. Only the mean vectors need to be considered in further processing.

The mean vectors of each SD model were extracted and concatenated to a high-dimensional (39

features * 44 models * 3 states) supervector. Constructing these vectors from GMMs or multiple

mixture HMMs would pose some difficulty of alignment between the mixture components of each

speaker's model. The correspondence is already given implicitly for single mixture HMMs by

model names and state topology.

Principal Component Analysis (PCA) based on the correlation matrix was applied to the su-

pervectors to obtain a basis for an Eigenspace covering most of the sample variance. Finally, the

supervectors were projected into this Eigenspace in order to obtain a low-dimensional representa-

tive for each speaker, which is suitable for clustering.
As clustering algorithms, k-means and agglomerative hierarchical clustering with four different

kinds of inter-cluster distance measures as described in [12] were examined. Inter-vector distances
were measured by the Euclidean distance. For the k-means algorithm, each cluster was initialized
with the speakers of each first language group.

2.5 Non-native speech database

Read speech data of about 100 non-native English speakers was collected at ATR. It is clean speech
recorded at 16-kHz sampling frequency and 16-bit precision. The data consists of 48 phonetically

balanced sentences of the TIMIT set and six hotel reservation dialogs. To be able to abstract
from variability introduced by gender, only the data of 75 non-native male speakers was actually

used. The speaker set utilized for experiments consists of 15 Japanese, 15 Chinese, 15 French,
15 German and 15 Indonesian natives. All speakers utter the same sentences. The training and
adaptation data set comprises 88 utterances (会j10 minutes), the validation data set ten utterances
(;:::::; 1 minute) and the test data set 23 utterances (;:::::; 3 minutes) per speaker.

For comparison of recognition performance of natives vs. non-natives, speech data of six native
English speakers uttering the same test sentences as the non-native speakers was used.

2.6 Baseline system

HTK was employed for training and adaptation of all acoustic models, building of the language

model and decoding in all evaluation experiments. The configuration of the baseline system is as
follows:

2.6.1 Acoustic model

More than 60 hours (37,413 utterances) of speech data from the LDC Wall Street Journal cor-
pus (WSJ) were used to build three speaker-independent native English acoustics with different

complexity:

1. 44 Monophone 3-state HMMs with 16 mixtures

2. State-clustered biphone model with about 3,000 states and 10 mixtures

3. State-clustered crossword triphone model with about 9,600 states and 12 mixtures

39 acoustic features, 12 MFCC coefficients and energy with first and second derivation, were
extracted every 10 ms. The word accuracy of these three acoustic models on the Hub2 5K

evaluation task was 80.8% for the monophone, 86.8% for the biphone and 93.6% for the triphone

model.
Since only speech data from male non-native speakers are considered in this research a gender-

dependent monophone model was built by MAP adaptation of the SI baseline AM with the speech

data of all male speakers from WSJ.

2.6.2 Language model

The n-gram probabilities were estimated from a database with 235 dialogs in the hotel reservation
domain comprising 6,460 utterances with 65,893 words in total. The lexicon contained about 8,800
entries for about 7,300 words including compounds. The perplexity for the 344-word evaluation

task, two dialogs with 23 utterances in total, was 32.

2.7 Results

For evaluation, 75-fold leave-one-speaker-out cross validation was carried out for all experiments

with speaker-group-dependent models in order to obtain a realistic estimate of performance.
Speaker-group-dependent models consist of 42 HMMs with ten mixtures. In each table the aver-

age word accuracy for each speaker group is shown. Initially three approaches for construction of
the accent-dependent models were examined. Performance was best for bootstrapping the models
with pre-segmented non-native speech data obtained by forced-alignment with the monophone SI

native baseline model. Results were slightly lower for training the models from scratch, followed
by MAP adaptation of the native monophone SI baseline.

2. 7.1 Speaker-independent models

Recognition accuracy with the speaker-independent baseline system as described in section 2.6
varies remarkably for each acoustic model and speaker group. For native speakers there was an

increase, or at least no decrease in accuracy on average when decoding with the biphone and the
triphone model in comparison to the monophone model. However, for non-native speech severe
degradations can be observed (see Table 2.1). While the relative drop in accuracy was rather

low for German speakers with about 8%, error rates almost doubled for Japanese speakers. This
may be due to phonetic errors and different coarticulation of speech sounds especially for speakers

whose first language is Japanese and Chinese, who have fewer speech sounds in common with
the English language than German, French or Indonesian. A comparison of IPA-based [1] phone

sets revealed that German has at least 28, Indonesian 26, French 25, Mandarin Chinese 21 and
Japanese 19 phones in common with American English. In further experiments monophone models

are employed, because they are more robust to accent variability and require less data for training
and adaptation than context-dependent models.

Table 2.1: Recognition performance with the speaker-independent (SI) native English baseline
acoustic models.

いodel
．

SI mono

SI biph

SI triph

II Eng I Ger I Fre

冒 喜
信
7

6

5

Jap戸而］

尺

2. 7.2 Speaker clustering

Several clustering methods with different distance measures were examined. Hierarchical clustering
produced rather balanced clusters for the furthest neighbor distance but rather sparse clusters for

the centroid distance and average inter-vector distance, and very sparse clusters for the nearest
neighbor metric. The tendency of producing sparse clusters also increased with the dimension

of the Eigenspace. Since clusters generated by the k-means algorithm were more balanced, even
when setting the Eigenspace dimension to 20, being equivalent to capturing nearly 95% of sample

variance, their speaker configurations were used for building the cluster-dependent models. The
distribution of speakers'first languages in each cluster is shown in table 2.2.

Table 2.2: Distribution of non-native speakers in clusters created by k-means clustering in a 20-
dimensional Eigenspace.

Cluster 1 2 3 4 5
Chinese 4 2 5 4

French 7 5 3
German 3 8 1 3

Indonesian 2 3 10
Japanese 13 1 1

2.7.3 Oracle experiments

Knowing the first language, cluster membership or identity of the test speaker, several oracle-based

experiments for obtaining reference values for maximum recognition performance can be carried
out. Results are summarized in Table 2.3.

An estimate of maximum possible performance for each non-native speaker can be obtained

by decoding with speaker-dependent (SD) models. There is a remarkable increase in accuracy for
all non-native speakers in comparison to the gender-dependent baseline model. The performance

with SD models for six native English speakers was 92.6%, indicating that non-native speech is
indeed more variable than native speech.

The performance with accent-dependent (AD) models is also high, suggesting that the accent
characteristics of speakers having the first language in common are similar. The difference in

accuracy between SD and AD models is largest for the Chinese speaker group, which・can be

explained by the fact that this group consists of speakers from several areas of China, also including
some speakers whose first language is Cantonese.

Recognition with cluster-dependent (CLD) models still leads to good performance, but is
slightly lower than that with accent-dependent models.

2.7.4 Parallel decoding

In order to build a practical ASR system for non-native speech recognition, parallel decoding with

the accent-dependent or the cluster-dependent models was employed. This procedure yields one

Table 2.3: Recognition performance with the gender-dependent (GD) native baseline monophone
model, the speaker-dependent, the accent-dependent and the cluster-dependent models.

I Model II Ger I Fre I Ind I Jap I Chi I

GD baseline 75.7 73.8 71.9 55.6 63.7

Cluster-dep. 80.1 82.8 82.9 82.1 75.5

Accent-dep. 82.7 84.4 85.4 82.2 77.3

Speaker-dep. 87.2 87.5 87.7 84.6 82.8

Table 2.4: Non-native speech recognition performance by parallel decoding with accent-dependent

(AD) or cluster-dependent (GLD) models.

三
' AD parallel

CLD parallel

Fre I Ind I Jap I Chi I

80.6183.6183.0 180.4175.5
80.1 82.8 82.9 82.0 75.5

recognition hypothesis from each acoustic model for an unseen utterance. The hypothesis with

maximum acoustic likelihood was selected as the final recognition result.
The results for parallel decoding are summarized in Table 2.4. There is a small drop in recog-

nition accuracy in comparison to the oracle experiment of section 2. 7.3 for the accent-dependent
models, but no performance decrease for the cluster-dependent models. Furthermore, both model

types yield better results than the GD baseline. The difference in accuracy between AD and CLD

models is significant for the Japanese speaker group only.
While the cluster classification accuracy (64.6%) was higher than the accent classification ac-

curacy (52.5%), parallel decoding with CLD models may in practice perform better than decoding
with AD models if data of more speakers become available. The results for each speaker group

are summarized in Figure 2.3.

2.7.5 Non-native model

To investigate whether the pronunciation variations of all speakers from the considered five accent

groups can be captured by only one monophone acoustic model, the data of 50 non-native speakers,
10 from each accent group, were used to train one 16 mixture non-native monophone model (NN).

Evaluation was carried out with the remaining 25 speakers, doing 3-fold cross-validation. The
speakers for each training and test set were randomly selected, taking care that the first languages

of speakers in training and test sets were distributed uniformly.

Table 2.5: Performance with a non-native monophone model.

I Model II Ger I Fre I Ind I Jap I Chi I

I SINN II 80.5 I 83.1 I 83.2 I 79.7 I 79.8 I

As Table 2.5 illustrates, the performance is almost equal to parallel decoding with AD or CLD

models, except for the rather accent-inhomogeneous Chinese speaker group, which may be due

95

90

85

>
 ::mm:i:iv p
J
O
M

80

75

70

65

60

55

SD-Model~ ヽヽヽ 1
AD-Oracle V/.i /各
AD-Parallel~Iヽ\\ll\111

GLD-Parallel名rnt1TtT71

GD-Baseline I I

German Indonesian French Chinese Japanese

Figure 2.3: Comparison of experimental results.

to the higher robustness of the non-native model, which was trained with 50 speakers, than the
AD and CLD models, for which data of only 15 speakers were available. Since accuracy with AD
models in the oracle experiments of section 2. 7.3 is still significantly higher than that with the

NN model, accent-dependent models may in principle perform better than accent-independent
models, whenever an accent classification system with high accuracy is available.

2.8 Conclusion

A practical approach for non-native ASR was introduced. It is based on parallel decoding with

several speaker-group-dependent monophone acoustic models and maximum likelihood hypothesis
selection. Good accuracy with accent-dependent models was achieved for five non-native accents

groups with a relative improvement of 6% up to 44% on average to a GD native baseline depending

on the speaker group.
The maximum recognition performance with monophone models is limited. However, as long as

large corpora of non-native speech are not available, training of robust context-dependent acoustic

models is infeasible. Assuming rather consistent pronunciation variations of non-native speakers
within each accent group, higher accuracy may be possible with accent-and context-dependent

models.

Chapter 3

Software

This chapter explains the software which was written for carrying out the experiments in this

research. Tools and scripts for acoustic model training and adaptation with HTK, training and
test data partitioning, parameter extraction from HTK AM files, Eigenvoice computation, speaker
clustering, reading and writing HTK MLF files, etc. will be described. The scripts are programmed

in and were tested for RUBY Vl.6.8 (.rb extension), PYTHON V2.3.2 (.py extension) or PERL
V5.6.1 (.pl extension). There is a short help message for most scripts, when it is executed on
the command line without any options. Almost every script uses publicly available libraries and
libraries written by the author. These libraries are summarized in Table 3.1. Examples for how

to use many of the scripts described here, can be found in chapter 4. Even more examples are
available in the scripts directories of each experiment.

Table 3.1: RUBY and PYTHON software libraries.

団 Lib-Name I Author/Status I Purpose

11 uci.rb Command line parsing
12 misc.rb Miscellanenous functions
L3 htk2.rb T.Cincarek HTK tools interface
L4 matvec.rb Matrix and vector functions; i-face to 16
15 log.rb Simple logging facility

16 matrix-algebra.rb S.Hara Matrix algebra
17 numarray. py Open Source Matrix algebra V0.7

18 vq.py Vector quantization / Clustering
19 stats.py Mean, Co-Variance, Correlation, …
110 pca.py T.Cincarek PCA based on L 7 and 19
Lll misc.py Miscellaneous functions
L12 spkdata.rb SLT Non-native DB speaker information

12

3.1 HTK Training and Adaptation

The Hidden Markov Model Toolkit (HTK) provides tools for acoustic model training and adap-

tation. The procedure for training and adaptation follows the descriptions given in the HTK
handbook. Several scripts employing HTK tools were written:

団 Script] Purpose

1 htk-buildmonophAM.rb Monophone AM training from scratch

2 htk-bootstrapmonophAM .rb Monophone AM training with pre-segmented data

3 htk-buildbiphoneAM.rb Biphone AM training, begin with 1-mix monophone AM
4 htk-makelm.rb Build language model

5 htk-adapt.rb MLLR and/ or MAP AM adaptation

6 htk-fex.rb acoustic feature extraction

7 htk-genproto.rb Generate HMM prototype

8 htk-genproto2.rb Generate HMM prototype ， htk-cloneproto.rb Clone prototype HMM for each phoneme

10 htk-fixsilence.rb Fix silence/pause HMM

Script (1) uses scripts 7,9,10, script (2) uses scripts 7,8,10. Scripts 1,2,3 use functions especially
from library (13). All scripts should work for HTK versions 2.2, 3.0, 3.1 and 3.2.

3.2 Training, Validation and Test Data Set Partitioning

The script listsets. rb can be used for splitting up the non-native speech data into (speaker-
disjoint) training and test data sets. Separate file lists (train, vali, test) can be generated for
each group of non-native speakers, i.e. first language groups or speaker clusters. There must be a

<source> directory containing the <spkid>. {adapt, eval, vali}. rnf cc files. These file extensions
can be changed by editing the script itself. For example, a typical command line call looks like

this:

listsets.rb -c -d -1 <langlist> -t <target> -b <source> -s <spklist>
listsets.rb -c -d -1 C,F,G,I,J -t targetdir -b lists -s M001

This call

• -c deletes any list.* file in -t <target> directory

• -d generates speaker-disjoint training and test data sets

• concatenates all the files <spk>. adapt .mf cc from -b <source> directory to

list. train. <lang> and all the files <spk>. vali .mfcc to list. vali. <lang> of any
speaker, whose first language is in -1 <langlist>;

• the same is done with all <spk>. eval .mfcc in order to generate file list. test. <lang>,

excluding the files of speakers whose ID is in -s <spklist>.

The information about each speaker's first language (of the ATR SLT non-native English
DB) is stored in the RUBY library file spkdata.rb. For using different speaker information, an
appropriate file can be specified with option -g <spkinfo>. Instead of language information,
speaker cluster information can be included. A speaker information file has one line per speaker.

Each line contains the speaker ID, the speaker's first language (or cluster or group ID), the

speaker's age and the speaker's score separated by white space. However, only the information
about each speaker's first language, group or cluster is used by this and most other scripts.

3.3 HTK AM Parameter Extraction

The script htk-extractvoices. rb can be used to extract acoustic model parameters, i.e. mixture
mean vectors, mixture variance vectors, g-constant and mixture weights, from an HTK macro file.

The macro file must be in ASCII format. Furthermore, any model with tied parameters must first
be converted into an untied model before using this script. Usage example:

htk-extractvoices.rb -h <hmmfile> -p <hmmlist> -s <statelist>
htk-extractvoices.rb -h hmm.mono -p ax,axr,aw,ao -s 2,3

This call extract the parameters of the states two and three of the HMMs "ax", "axr", "aw"

and "ao". If no list of states of no list of HMMs is given, the parameters of all states and all
models are extracted respectively. Output is in ASCII and has the following format:

<HMM-Name> <State-Name> <Num-Mixes> <Num-Feats>

wts <weights>
gc <gconstant 1>
mean <mean-vector 1>
var <variance-vector 1>

gc <gconstant 2>
mean <mean-vector 2>

var <variance-vector 2>

<HMM-Name> <State-Name> <Nurn-Mixes> <Nurn-Feats>

This ASCII output can be converted into binary format with modasc2bin.py. Conversion
from binary to ASCII is possible with modbin2asc. py. See script implementation for details of

the binary format. The binary I/0 is based on the PYTHON library numarray. These two
conversion scripts read input from STDIN and write output STDOUT.

3.4 Eigenvoice Computation

Eigenvoices can be calculated with the script eigenvoices. py. Before using this script, HMM

parameters have to be extracted with htk-extractvoices. rb and converted to binary format with

modas c2bin. py. This has to be carried out for every speaker. One parameter file for each speaker

with the filename <spkid> _<name>. par ams (containing the supervectors) must be generated and
copied to the same directory <dir>. Finally, Eigenvoices can be computed by executing

eigenvoices.py -i <spklist> -p <name> -s <dir> -t <target>
eigenvoices.py -i spklist -pall -s paramdir -t evdir

The file <spklist> must contain the speaker IDs (one per line) for all speakers'models'
parameters which should be included in the Eigenvoice computation. The script eigenvoices. py

only makes use of the mean vectors. Further parameters, i.e. variance vectors and mixture weights
could be included by editing this script. The script produces the files eigenvalues_ <name>,

eigenvectors_ <name> and eigenmodels_ <name> (Eigenvoices) in the <target> directory. All
output files are in ASCII. The files eigenmodels_ <name> and eigenvectors_ <name> have the

following format:

<Nurnber_Eigenvoices> <Eigenvoice_Dirnension>

<Eigenvoice-Vector 1>

<Eigenvoice-Vector 2>

The file eigenvalues_ <name> contains one Eigenvalue per line in descending order (of magni-
tude). If the number of input vectors to the script is N, the eigenvectors_ <name> file contains
N+ 1 vectors, i.e. the mean vector of all original supervectors且andthe first N Eigenvectors.
The file eigenmodels_ <name> contains N "model vectors". These model vectors were obtained by
subtracting the mean vectorμfrom the ?riginal supervector叩 ofspeaker j and then projecting it

into the Eigenspace. Each component cf of the resulting model vectors is calculated via Equation

3.1.

ct =叶（即ー且） (3.1)

蔚 is the Eigenvector of the i-th largest Eigenvalue. Eigenvector computation in
eigenvoices. rb is based on the correlation matrix of the supervectors叩.Computation based

on the covariance matrix is possible by using pea. pea_eov instead of pea. pea_cor of library 110.

3.5 Speaker Clustering in Eigenspace

Speaker clustering can be carried out with the script clusterspk. py. This script uses routines

from the PYTHON libraries L8, L9 and Lll. Most important is L8 with the clustering algorithms.
The k-means clustering algorithm and agglomerative hierarchical clustering with four kinds of

inter-cluster distances are implemented. Inter-vector distances are computed by the Euclidean

distance between sample vectors. Each speaker is expressed as one "model vector". The calculation

of this vector was already described in the previous sections. The script clusterspk. py needs the

file -m eigenmodels_ <name> from eigenvoices. py. That file contains the representative vector
for each speaker. The information of all speakers must also be provided with option -s. The order

of speakers in that file must be the same as in the model file. Consequently, the same speaker

information file should be used for both scripts.

K-means. The -a k-means algorithm is an unsupervised clustering algorithm. It is supposed
to find a previously determined, fixed number of clusters. The number of clusters can be specified

by option -c. The number of iterations can be is set by option -i. However, the k-means algorithm
terminates, if the VQ-distortion between the last and the current iteration decreased less than
thres = 0. 00001. Since the algorithm belongs to the EM (expectation maximization) family,

initialization is necessary, i.e. initial clusters have to be set up before the clustering algorithm
can be iterated. The default behavior of script clusterspk. py is to initialize each cluster with

one sample, which is randomly selected from the whole sample set by picking each n/k-th sample,
if there are n samples and k clusters. Knowledge-based initialization of clusters is possible with
option -k. Each cluster is then initialized with the speakers of each speaker group. Speaker groups

are defined in the -s <spkinfo> speaker information file. There must be more speaker groups

than -c <clusters> if knowledge-based initialization is employed.
Hierarchical clustering. Agglomerative hierarchical clustering with four different kinds of

inter-cluster distances is implemented. It is a bottom-up clustering scheme, i.e. in the beginning
there are as many clusters as samples. The two clusters, which are nearest to each other with

respect to the inter-vector and inter-cluster distance measure are merged successively until the
desired number of clusters is reached. The inter-cluster distance measure has to be selected by
-a <algo> together with the algorithm ID. The <algo> IDs and the corresponding inter-cluster

distances with their definitions are as follows:

• nearest neighbor, option -a h-min

• furthest neighbor, option -a h-max

• average distance, option -a h-avg

• mean distance, option -a h-mean

d(A, B) = min lliJs - iJtllE
sEA,tEB

I d(A,B) = max lvs - iltllE
sEA,tEB

d(A, B) =亭 E I liJs - Vtl IE
sEA,tEB

d(A, B) = II向区凡—虚区 Vt[IE
sEA tEB

The symbols A and B each represent a cluster, i.e. a set of speakers. All symbols ;J represent

each speaker's representative vector. IAI means the number of vectors in cluster A. I la -b伽 is

the Euclidean distance between vectors a and b.
It is expected, that speaker IDs begin with "M" or "F", indicating a speaker's gender. Then

it is possible to select only all male or only all female speakers with option -t {M, F}.

The component range of the "model vector" which should be used for distance computation

during clustering can be specified by option -f <begin>, <end>.

Results of clustering, i.e. the speaker cluster information, can be written to a separate speaker
information file with option -g. Furthermore, the merging history for hierarchical clustering can

be saved into a separate file with -h <hfile>.

3.6 HTK MLF Input/Output

Library 13 contains the class MLF for reading and writing HTK master label files (MLF). This

I/0 interface is necessary for parallel decoding experiments, where the recognition output files for

several acoustic models must be parsed to be able to select the appropriate recognition hypothesis.
The selected hypothesis can again be written to a master label file. Important methods of the
MLF class are summarized in Table 3.2.

Table 3.2: Methods of the MLF class.

Method Name Return value Arguments Function

initialize object 1: filename Name of MLF file to open

(constructor) 2: feature string Contents of MLF file, i.e. columns

read data hash 1: utterance ID (sub)string of utterance IDs to read
2: ID suffix suffixes of utterance IDs in MLF

read_TW data hash 1: utterance ID Arguments are the same as for read().
2: ID suffix But only columns T,W are present in

MLF. Moreover, T data is discarded.
read_W data hash 1: utterance ID Arguments are the same as for read().

2: ID suffix However, only W column is present in
the source MLF.

write none 1: ID suffix ID suffixes in target file
2: filename Name of target file to write

geLdata utterance 1: utterance ID Get data of utterance, i.e. list of
data (list) segment times, segment labels, …

set_data none 1: utterance ID Set data of utterance in MLF object
2: utterance data

The "feature string" can be made up of the characters "T" (start and end time), "W" (word
label), "P" (phone label) and "L" (likelihood score). The order of characters in this string define
the order of columns in the label file to read. The keys of the "data hash" are the utterance IDs
without suffix, e.g. ".rec" or ".lab". Each hash entry is either a list with the word or phonemes
sequence of the utterance, or a list of lists, which each list containing the information of each
utterance segment. The order of items in this list is the same as in the MLF.

3. 7 HTK MLF Processing

There are several scripts for converting MLFs or extracting information from MLFs. Table 3.4
gives an overview.

The three scripts {11,12,13} read input from STDIN and write results to STDOUT. Scripts
{11,12} are straightforward to use. Further explanation will be given for scripts {13,14} only.

The main script for computing AM and LM scores is mlf-score. rb. Input is an MLF with

one or more utterances with segment start and end times, word or phoneme labels, and acoustic
scores. A list of allowed phoneme or word tokens must also be specified with option -p. Output

is one line per utterance with one AM, both AM and LM, or one combined AM and LM score.
Two types of acoustic scores can be calculated: The total acoustic likelihood score -s, which
is obtained by just summing up all segment scores, or the average segment score -m, which is
obtained by dividing the total acoustic score with the number of phoneme or word segments in

Table 3.3: RUBY scripts for MLF file processing.

ID Script name Purpose

Conversion of compound words with underscores and

11 mlf-stripus.rb apostrophes into separate words, e.g., "PHONE_NUMBER"

to "PHONE" and "NUMBER", or "I'M" to "I" and "M"

12 mlf-strippath.rb Convert utterance ID with path in MLF to "* /filename"
13 mlf-score.rb Extraction of the utterance-level AM scores from MLF and

Combination with LM score, which can be calculated by script (14).

14 htk-lmscore.rb Calculaton of LM score with HTK LM tools

the utterance. The segment scores can additionally be normalized by the duration with option
-n. Segment labels, whose scores should be ignored, can be specified by option -d.

For calculating LM scores, a bigram statistics file in ARPA/MIT-LL format must be provided
with option -b. The weighting of the LM score against the AM score can be determined by option
濯.If -w is not specified, AM and LM score will be output separately. The LM score computation

is done by an internal call of script (14), which is based on the HTK LM tool LPlex.
However, in order to obtain utterance-level acoustic likelihood and language model scores it is

better to use the scores which are written to STDOUT by HVite during the decoding or alignment

process. From this output stream AM and LM scores can be extracted by piping it through the
script htk-vi testdoutparse. rb.

3.8 Miscellaneous Scripts

In Table 3.4 several important and often used scripts are explained briefly. Scripts {16,17,18,19}
are designed to operate on text streams and are straightforward to use. Scripts {20,21} are for

multi-column score streams from several classifiers. These two scripts determine for each score
line read from STDIN the column with the smallest (mincol.pl) or the largest (maxcol.pl) score
respectively and write the column index together with the input scores to STDOUT.

Table 3.4: Miscellaneous scripts.

ID Script name Purpose

15 rectable.rb show recognition rates for each speaker group

16 words.rb tokenize word strings

17 stripnl.rb concatenate word strings

18 upcase.rb capitalize letters in input stream

19 downcase.rb convert capital to small letters

20 maxcol.pl ar gmax-operator

21 mincol.pl argmin-operator

22 recrate.pl calculates and displays recognition rates

for a score file or a result file

The script rectable. rb is used calculate the mean word accuracy or correct rate together with
its minimum, maximum and standard deviation for several speaker groups or speaker clusters.
Input to the script is a -r <result> file with the following format:

<SpkID 1>: [<LangID/GroupID>] WORD: %Corr=##.##, Ace=##.## [H=###, ... , N=##:/t]
<SpkID 2>: [<LangID/GroupID>] WORD: %Corr=##.##, Ace=##.## [H=###, ... , N=###]

Everything from string "WORD:" on can be obtained by executing the HTK recognition
rate calculation tool "HResults" for a file which contains the recognition result for speaker with

<SpkID>, and then grep the string "WORD:". If <LangID> or <GroupID> is registered is library
spkdata. rb, it will be expanded, e.g. language name "German" for language ID "G".

The script re crate. pl can be used to calculate the recognition rate for argmax or argmin
classification of the score output of N classifiers for N classes, e.g. one GMM score or HMM score
per class. A score file contains N scores per line, separated by white space. A result file additionally
contains the class index corresponding to the row of the classifier with the highest /lowest score as
the first entry. Rows are indexed with integers from 1 to N.

<ClassID> <Score1> <Score2>

<ClassID> <Score1> <Score2>

<ScoreN>
<ScoreN>

For example, if the files scores. A and scores. B contain the scores for the classification of

samples of classes A and B respectively with both classifier models A and B, the recognition rate
(total and class average) can be calculated and displayed by calling recrate. pl with options
-s scores, -r result and -1 A,B.

3.9 HTK Configuration

SOURCEFORMAT = HTK
SOURCEKIND = MFCC_E_D_A_Z

SOURCERATE = 100000

WINDOWSIZE = 200000
NUMCEPS = 12

3.10 Environment Variables

In order to use software libraries, which are installed locally or were written by the author, the
following environment variables must be set to the path names in which the libraries reside.

setenv RUBYLIB /home/xtcinca/mylib/ruby

setenv PYTHONPATH /home/xtcinca/mylib/python:/home/xtcinca/lib/python
setenv PERLLIB /home/xtcinca/mylib/perl

3.11 Speaker Information File

A speaker information file has one line per speaker. Each line must begin with a speaker's ID.
Remaining contents may be customized in general. However, most scripts assume, that the first

four tokens on each line contain the speaker's ID, group membership, age and score. The number
and meanings of the remaining, extra tokens on each line is arbitrary, but should be uniform for

each speaker entry.

<SpkID 1> <Group> <Age> <Score> <Extra!> <Extra2>
<SpkID 2> <Group> <Age> <Score> <Extra!> <Extra2>

<Group> is either the group ID, e.g., Gl, the cluster, e.g., C3, or the first language of the
speaker, e.g., J (= Japanese). See spkdata.rb for information on language symbols used. A

speaker information file for known speakers can be generated, when passing a list of non-native
speaker IDs registered in library spkdata. rb through script spkinf o. rb.

Chapter 4

Detailed results

This chapter will give detailed information about experimental results. Scripts and script frag-
ments to reproduce some of the results together with important parameters are printed.

4.1 Data sets

Information about the training, validation and test data sets is shown in table 4.1. The
number of words in each data set is determined after splitting compound words like
"HOW_MAY_LHELP_YOU" into single word sequences, i.e. "HOW",・"MAY", "I", "HELP",
"YOU", and splitting words with apostrophes like "I'M", into "I" and "M". However, the follow-
ing words were not split: "YOU'RE", "WOULDN'T", "WON'T", "WASN'T", "TRAVELER'S",
"SHOULDN'T", "O'CLOCK", "MA'AM", "LORI'S", "LET'S", "ISN'T", "THAT'S", "IT'S",
"HAVEN'T", "HASN'T", "DON'T", "DOESN'T", "DIDN'T", "COULDN'T" and "CAN'T". The
set "train" was used for training of AMs from scratch or adaptation of a speaker-independent base-
line system. Only the set "test" was used in evaluation experiments. The set "vali" was employed
in order to adjust decoder parameters, e.g., LM scale. Data partitioning diザerentfrom that shown
in table 4.1 was not done.

Table 4.1: Training, validation and test data sets for each speaker with contents, ID of utterance
sets, number of words and sentences, and average duration in seconds.

L Data Set II Utterance Set I Contents I# Words I# Utterances I Durati_o~
48 phonetically rich min: 185

Train SX sentences from the 401 48 avg: 240
TIMIT database max: 402

TAC22012 Hotel reservation 252 19 min: 192
Train TAS12008 dialogs (HotelDialog) 104 ， avg: 244

TAS12010 144 12 max: 322

Vali demo02 HotelDialog 70 10 avg: 40

Test TAS22001 HotelDialog 162 10 min: 129
TAS32002 182 13 max: 243

21

The speech data sets were almost completely available for 98 non-native speakers, whose IDs
are: F002, F004, F009-F014, F018-F026, MOOl, M006, M010-M016, M021-M093.

However, for experiments with non-natives only the data of the following male speakers was
utilized: MOOl, M006, M010-M016, M021-M093.

For decoding experiments with the SI native baseline, the test data of the following six native
speakers was used: M002, M005, M048, M094, M095 and M096. Adaptation of the SI native
baseline to obtain SD models was done for the following six native speakers: F002, F003, F004,
F007, M005 and M048. These SD models were evaluated with the test data of the same six native
speakers.

4.2 Language model

The language model was built with HTK LM tools. 235 dialogs from ITL Hotel reservation tasks
comprising 6,460 utterances with 66k words were used to estimate a Good-Turing discounted
bigram. No dialog transcripts of the test data were included in the training data. The dictionary
contains 8,875 pronunciation variants of 7,311 words. The OOV rate for the test set is 1.0, the
perplexity 32.

Experiment directory: language_model

4.3 Native SI AM experiments

In the beginning, a native AM with 37,413 utterances of the LDC WSJ corpus was trained. A
monophone and a biphone AM were trained with scripts {1,2}. Furthermore, a crossword-triphone
AM, which was built by K.Markov with HTK with the same data, was used. The HMMs of all

AMs had three states.
The beamsize for all recognition experiments was set to 200.0. The LM scale factor was

determined with the validation data set. Figure 4.1 shows the word accuracy vs. LM scale plot
when decoding the utterances of the validation data set. While performance for native speakers
was uniform regardless of the LM scale factor, the performance for non-native speakers with
rather low word accuracy increased with a higher scale factor. Since the performance for non-
native speakers with rather high word accuracy decreased for larger scale factors, the scale factor
was set to 16.0. This setting is considered as a fair trade-off for all non-native speaker groups.

The recognition accuracy for the test data of each non-native speaker group with the SI native
models is shown in Tables 4.2, 4.3 and 4.4. For each speaker group, the number of speakers
(#spk), the mean recognition rate (mean) together with its maximum (max), minimum (min)
and standard deviation (stddev) is given.

Experiment directories:
baseline_mono, baseline_biph,
adapted_mono, adapted_biph, adapted_triph

100

90

g
包

u
o
m
u
B0
 08
>
J

80

70

60

50

X・・ ● ・・・・・・・・・・
····•··········· ・・・・,.,....... . ..• , ヤ・・・・- -：↓

,',~',~',

~99i,',

0
6

0
0

7
3
7

o
h
じ
n⑮

selischansiasiaseve

芦

Engrenermoneane
呻

G
d
a
p斤

F

n

o

c

n

1

J

x

ふ

------聾-----
ー・-----~-•: 心：・ゴ,-

-・------------------- -------・ —• ---
ーキ＇

倉-------

ぷ--

，ノ/ 曹＇

-------- ,/ .. ,///'.'.

/ .
+ •

10 15 20

Parameter

25 30

Figure 4.1: LM scale vs. performance for decoding with monophone SI baseline AM.

WA II mean I stddev I min I max I #spk I
English 82.4 5.3 76.5 89.5 6

German 75.7 6.5 62.5 86.0 15

French 71.9 8.3 50.0 80.8 15

Indonesian 70.7 5.0 61.6 82.3 . 15

Japanese 55.4 16.2 25.0 82.6 15

Chinese 63.3 10.0 43.9 79.7 15

Table 4.2: WA with monophone SI native AM. Mix= 16, Beam= 200.0, LM scale= 16.0

WA II mean I stddev I min I max I #spk I
English 82.5 5.0 75.0 88.4 6

German 72.5 7.2 57.7 81.7 15

French 66.9 8.2 51.6 75.6 15

Indonesian 63.1 9.9 48.0 81.9 15

Japanese 42.9 18.8 10.0 72.4 15

Chinese 54.9 12.0 36.3 75.9 15

Table 4.3: WA with biphone SI native AM. M紐=10, Beam = 200. 0, LM scale = 16. 0

WA II mean I stddev j min I max I #spk I
English 85.5 7.2 70.6 93 .. 0 6

German 69.6 11.3 46.5 84.6 15

French 62.1 10.0 43.3 76.5 15

Indonesian 51.7- 13.4 23.3 80.5 15

Japanese 31.4 21.9 1.2 65.4 15

Chinese 39.0 19.3 13.9 73.8 15

Table 4.4: WA with triphone SI native AM. Mix= 12, Beam = 200.0, LM scale = 15.0

4.4 Native GD AM experiment (baseline)

Since only male non-native speakers are utilized in further experiments, a gender-dependent (GD)
native baseline AM was constructed for a fairer comparison of the baseline system with any of the
proposed approaches. The GD model was obtained by MAP adaptation of the SI model with the
speech data of all male speakers in the LDC WSJ corpus. The MAP adaptation parameter was
set to 10.0.

Table 4.5: WA with monophone GD native AM. Mix= 16, Beam= 200.0, LM scale= 16.0

WA II mean I st心竺いninI max I #spk I
English 81.5 6.5 73.5 88.4 6
German 75.7 5.6 65.4 84.0 15
French 73.8 6.3 57.3 81.4 15

Indonesian 71.9 5.2 63.1 86.0 15

Japanese 55.6 16.1 28.8 82.6 15

Chinese 63.7 10.4 46.2 80.2 15

Experiment directories: baseline_mono_male, adapted_mono

4.5 Speaker-dependent AM experiment

A reference value for maximum possible performance can be obtained by decoding with speaker-
dependent models. The SD model for each speaker was constructed by adaptation of the SI
monophone AM with the "train" data set. The MAP adaptation parameter was set to 1.0, since
in preliminary decoding experiments with the "vali" set it was found out, that the performance
descreased for higher values.

Table 4.6: WA with monophone SD AM. Mix= 16, Beam= 200.0, LM scale= 16.0

WA [Lm呼□互td伽vI min I max I #spk I
English 92.6 2.4 88.7 95.3 6

German 87.2 4.2 79.7 93.6 15
French 87.5 2.6 82.6 91.3 15

Indonesian 87.7 2.8 82.8 93.6 15

Japanese 84.6 5.7 74.1 93.6 15
Chinese 82.8 5.3 72.1 90.7 15

Experiment directory: adapted_mono

4.6 Speaker clustering

The following sections explain the steps necessary to do clustering in Eigenspace together with

script fragments.
Step 1: Construction of SD models. The single-mixture SI monophone AM trained with

all the data of LDC WSJ is adapted with the training data of each non-native speaker in order to
obtain one SD model for each speaker. MAP adaptation with adaptation parameter T = l.O was
applied.

maps cf = 1. 0

mixes

regcls = 32
statfile = 11basemodels/stats.mono.mix#{mixes}11

modelfile = 11basemodels/hmm.mono.mix#{mixes}11
phonelist = 11basemodels/monophones11

for spk in $spklist
targetdir = 11speakers/#{spk}11

targetfile = 11hmm.mono.mix#{mixes}.sd.map#{mapscf}11
labelfile = 11#{spk}.adapt.aligned.phone.mlf11
if File: :exists? (11#{targetdir}/#{labelfile}11)
and not File: :exists? (11#{targetdir}/#{targetfile}11) then

if not File::exists? (targetdir) then
my_system ("mkdir #{targetdir}")

end
my_system ("htk-adapt.rb -a 0lists/#{spk}.adapt.mfcc -h #{modelfile}

-d speakers/#{spk} -i adapt -1 #{targetdir}/#{labelfile}

end
end

-p #{phonelist} -s #{statfile} -r #{regcls} -j #{mapscf}
-d #{targetdir} -o #{targetfile}")

Step 2: Eigenspace computation. In the foreach loop of the following script, the model

parameters, i.e. mean vector, covariance matrix, etc. are extracted from each SD model. After
that, script eigenvoice. py computes the basis of the Eigenspace, projects each model into the

Eigenspace and writes the representative vector of all speakers to a single file. Furthermore, files

with Eigenvalues, Eigenvectors, Eigenvalue ratio and accumulated Eigenvalue ratio are written.

set spklst ='cat spklist I stripnl2.rb'
mkdir sdmodelparams
foreach spk (${spklst})

htk-extractvoices.rb -h speakers/${spk}/hmm.mono.mix1.sd.map1

I modasc2bin.py > sdmodelparams/${spk}_all.params
end
mkdir eigenparams

eigenvoices.py -s sdmodelparams -t eigenparams -i spklist -pall

Step3: Clustering. The following script shows an example for how to do clustering with all
implemented clustering algorithms. The last call to clusterspk. py does k-means clustering with

knowledge-based initialization. clusterdata. * are speaker information files, which contains the
cluster index for each speaker. The cluster configuration in that file will be used later in section
4.8 for building cluster-dependent acoustic models.

set algos = (k-means h-min h-max h-mean h-avg)

set basename = clusterdata
set minfeat = 1

set maxfeat = 20
set spkinfo = 11spkinfo11

set emodels = 11eigenparams/eigenmodels_all"

set k = 5

set iters = 10

foreach algo ($algos)
set cdata = $basename.cl_$k.$algo.$minfeat-$maxfeat
clusterspk.py -a $algo -c $k -m $emodels -s $spkinfo

-f $minfeat,$maxfeat-g $cdata -i $iters

end
set cdata = clusterdata.cl_$k.k-means.$minfeat-$maxfeat.kb_init
clusterspk.py -g $cdata -a k-means -c $k -m $emodels

-s $spkinfo -f $minfeat,$maxfeat -i $iters -k

4.6.1 Examples of cluster configurations

In this section, the results of speaker clustering in Eigenspace with different parameters and
algorithms are summarized. Table 4. 7 shows the result of clustering 7 4 non-native speakers1. rk

is the accumulated Eigenvalue ratio, if only the first k Eigenvectors belonging to the k largest
Eigenvalues of a maximal n-dimensional Eigenspace are used. 入iis the i-th largest Eigenvalue.

Among the hierarchical clustering algorithms, only "h-max" produced balanced clusters, even

if the dimension of the Eigenspace was large. The k-means algorithm produced balanced clusters
regardless of the Eigenspace's dimension. The cluster configuration generated by "k-means" with

knowledge-based initialization was utilized for building cluster-dependent acoustic models.

Experiment directory: sd_mono_mixi_map

1 Indonesian native M087 learned English in Hungary, so he was excluded during clustering

Algorithm MinDim MaxDim ー I:7=1入i
rk -~n_, ふ Clusters Distribution

1 0.788 16 10 21 ， 18
2 0.817 16 20 8 20 10

k-means 3 0.844 7 14 8 27 18

(random 1 4 0.860 5 4 20 11 15 24

init) 5 0.871 6 15 6 31 16
10 0.907 6 17 6 28 17
20 0.941 5 19 4 21 25

1 16 18 13 ， 18
k-means 2 18 11 17 13 15

(know- 3 20 18 15 6 15

ledge 1 4 dto. 5 18 22 10 12 12

based 5 13 21 13 13 14

init) 10 10 21 11 11 21

20 10 19 15 13 17

1 66 3 2 1 2
2 70 1 1 1 1
3 70 1 1 1 1

h-min 1 4 dto. 5 70 1 1 1 1

5 69 2 1 1 1
10 69 1 2 1 1
20 1 70 1 1 1
1 20 12 13 24 5
2 15 8 31 10 10
3 39 10 14 ， 2

h-max 1 4 dto. 5 4 17 14 33 6
5 5 23 28 14 4
10 16 21 29 5 3
20 5 13 29 23 4

1 15 36 13 ， 1
2 25 8 17 22 2
3 56 8 3 4 3

h-avg 1 4 dto. 5 4 12 43 12 3
5 4 58 7 2 3
10 5 63 3 2 1
20 4 64 4 1 1

1 15 36 13 ， 1
2 24 8 34 6 2
3 46 14 8 4 2

h-mean 1 4 dto. 5 4 15 1 51 3

5 64 1 2 3 4
10 69 1 2 1 1
20 4 66 2 1 1

Table 4.7: Distribution of non-native speakers in each cluster for each clustering algorithm.

4. 7 Accent-dependent models

In the beginning, three methods for building accent-dependent acoustic models were examined:

1. MAP adaptation of the native SI monophone AM described in section 4.3

2. training of AMs from scratch

3. training of AMs with speech data which was pre-segmented by a forced-alignment with the

native SI monophone AM

The recognition performance with these three model types is summarized in Tables 4.8, 4.9

and 4.10. No cross-validation was carried out for these three decoding experiments. The models

built with method (1) had 16 mixtures, models built with methods (2) and (3) 10 mixtures. The
complexity of the remaining model characteristics (three states, diagonal covariance matrix) was

uniform.
The results show, that models built by methods (2) and (3) perform better (higher mean

WA, smaller standard deviation of WA for most accent groups) than models built by method (1).
Performance for models built with method (2) and (3) is almost equal. Despite the difference is
not significant, models built with method (3) may perform better in reality. Consequently, method
(3) was employed for AM construction in further experiments.

Table 4.8: Results for AD AMs built by MAP adaptation of SI monophone baseline AM (1).

WA ~ean I stddev I min I max 1尭叩い
German 83.0 5.0 74.4 91.3 15

French 83.3 4.2 72.4 88.4 15

Indonesian 84.5 3.6 79.7 92.2 14

Japanese 78.2 7.0 63.7 91.0 15

Chinese 76.9 6.0 63.7 88.4 15

Table 4.9: Results for AD AMs built by training from scratch (2).

WA 11 mean I stddev I min I max I #spk I

German 85.0 5.1 73.3 92.2 15

French 86.2 2.9 81.1 92.2 15

Indonesian 87.3 3.9 80.5 94.5 14

Japanese 83.9 3.9 78.4 90.7 15

Chinese 80.9 4.7 73.3 88.7 15

Table 4.11 shows the result for AMs built with method (3) with cross-validation.2 The number

of mixtures is 10. Recognition performance with accent-dependent models is significantly better

than with the native GD baseline AM for all non-native speaker groups.

2Speaker M087 is included in the Indonesian speaker group only for evaluation

Table 4.10: Results for AD AMs built by bootstrapping with pre-segmented speech data obtained by

force-alignment with native SI monophone baseline AM (3).

WA 11 mean I stddev I min I max I #spk I

German 85.4 4.4 77.9 93.6 15

French 86.7 3.5 79.9 93.0 15

Indonesian 86.9 3.0 82.6 94.5 14

Japanese 84.8 3.2 79.1 90.7 15

Chinese 81.3 3.6 75.9 87.2 15

Table 4.11: Results for AD AMs built with method (3) and leave-one-speaker-out cross-validation.

WA

German

French

Indonesian

Japanese

Chinese

Experiment directories:

ad_mono_adapt_map

ad_mono_train_scratch

ad_mono_train_sialign

11 mean I stddev I min I max I #spk I

82.7 5.3 72.1 91.3 15

84.4 3.7 77.9 91.3 15

85.4 4.2 77.0 92.2 15

82.2 3.8 74.4 89.0 15

77.3 5.6 66.3 88.4 15

4.8 Cluster-dependent models

Decoding with cluster-dependent models was also significantly better than with the native GD

baseline AM 3. The number of mixtures is 10. However, the performance was slightly lower

than with accent-dependent models, except the Chinese speaker group. This phenomenon can

be explained by the fact, that the speakers in the non-native database were from several areas of

mainland China, also including speakers from Hong Kong and Taiwan.

Table 4.12: Results for CD AMs built with method (3) and leave-one-speaker-out cross-validation.

WA II mean I stddev I min I max I #spk I

German 80.1 5.6 68.3 88.7 15

French 82.8 3.6 76.5 86.6 15

Indonesian 82.9 4.6 76.5 90.7 15

Japanese 82.1 3.3 75.4 87.5 15

Chinese 75.5 6.3 62.8 85.8 15

3Speaker M087 is included in cluster C4 only for evaluation to make comparisons easy

Experiment directory: cd_rnono_train_sialign

4.9 Non-native models

Recognition results with a speaker-independent accent-independent non-native monophone acous-

tic model are shown in Table 4.13. 3-fold cross-validation was carried out, i.e. 50 speakers for
training and 25 for evaluation. To get a model which can cope with non-native speech of all five

accent groups, the speech data of ten speakers of each group was included in the training data
set. The same was done for the test data, i.e. five speakers from each accent group. The number

of mixtures per state was increased until 16.

Table 4.13: Results for NN AMs built with method (3) and 3-fold cross-validation.

WA~ean _j_stddev I min I max I #spk I
German 80.5 6.7 67.7 90.4 15

French 83.1 4.3 72.1 89.0 15

Indonesian 83.2 2.9 77.0 87.2 15

Japanese 79.7 4.6 72.4 87.8 15

Chinese 79.8 4.7 69.5 88.1 15

Experiment directory: nn_mono_train_sialign

4.10 Parallel decoding

In the following, two script fragments are printed. The first is for doing parallel decoding with all

accent-dependent models. The second is for AM score extraction and selection of the hypothesis

with maximum AM score. The selection can also be based on the combined AM plus LM score, but
selection by considering only the acoustic likelihood was more promising. The script for parallel

decoding with cluster-dependent models is the same but with different paths and group symbols

instead of language symbols.

＃

Script for parallel decoding

＃

lexikon

wordnet

phonelist

targetdir

mixes

lmweight

beam

= 11lexikon/hotel_8k_sp_sil.lex11

= 11lm/hotel_big.wordnet11
= 11monophones11
= 11recout_lm8k_AD11

= 10

= 16.0

= 200.0

＃

decoding with each AD model

＃

for spk in spklist

(natlang, age, score) = getspkinfo (spk)
for lang in [11C11, 11J11, 11I11, 11G11, 11F11]

if lang == natlang then

model= "speakers_AD/#{spk}/models.#{lang}.4.mix#{mixes}/hmm.trained"

else

model= 11ad_models/hmm.mono.mix#{mixes}.#{lang}11

end

flist = "lists/#{spk}. eval.mfcc"

targetfile = 11#{targetdir}/#{lang}/#{spk}. eval. recout .mlf 11

stdoutlog = 11#{targetdir}/#{lang}/#{spk}.eval.stdout11

my_system ("HVite -i #{targetfile} -H #{model} -S #{flist} -p 0.0

-s #{lmweight} -t #{beam} -w #{wordnet}

#{lexikon} #{phonelist} I tee #{stdoutlog}")
end

end

＃

Script for hypothesis selection

＃

targetdir = 11recout_lm8k_AD11

scorebase = 11scores_AD11

resultbase = 11result_AD11

flistbase = 11flist_AD11

htkresult = "result_AD_parallel"

reflabels = 11labels/all.mlf11

＃

extract acoustic scores

＃

for spk in spklist

(natlang, age, score) = getspkinfo (spk)

scorefile = scorebase+11. 11+natlang

list = []
for lang in [11c11,11J11,11r11,11G11,11F11J

targetfile = 11#{targetdir}/#{lang}/#{spk}. eval. recout .mlf 11

stdoutlog = 11#{targetdir}/#{lang}/#{spk}.eval.stdout11

my_system (11cat #{stdoutlog} I htk-vitestdoutparse.rb
-c > #{tmpfile}.#{lang}11)

list くく 11#{tmpfile}. #{lang}11

end
my_system ("paste "+list.join(" 11)+11 >> #{scorefile}11)
my_system ("rm -f "+list.join(" 11))

my _system ("cat lists/#{spk}. eval.mfcc >> #{flistbase}. #{natlang}11)
end

＃

hypothesis selection

＃

implicit argmax (in script recrate.pl)

my_system (11recrate.pl -1 #{langstr} -s #{scorebase} -r #{resultbase}11)

read selected hypothesis from MLF files and write them to a new MLF file

for spk in spklist

next if spk [O .. OJ == 11f11

(natlang, age, score) = getspkinfo (spk)

next if not langs.member? (natlang)

my_system ("paste #{flistbase}.#{natlang} #{resultbase}.#{natlang}

I awk'{ print $1, $2; }'I grep #{spk} > #{ tmpf ile} 11)
mlf = {}
for lang in [11C11,11J11,11I11,11G11,11F11]

sourcefile = 11#{targetdir}/#{lang}/#{spk}. eval. recout .mlf 11

mlf [lang] = MLF. new (sourcefile, 11T直＂）
mlf [lang] . read (nil, 11rec11)

end

targetfile = 11#{targetdir}/#{spk}.eval.recout.mlf11

targetmlf = MLF .new (targetfile, 11T訊L")

fd = open (tmpfile)

while line= fd.gets

tokens= line.chomp.split (11 11)

ident = tokens [OJ. sub(/features¥//, 1111). sub(/¥ .mfcc/, 1111)

index = tokens[1] .to_i -1

targetmlf.seに data(ident, mlf [langs [index]] . get_data(ident))

end
targetmlf.write (11rec11)

end

Detailed results for the parallel decoding experiments are shown in Tables 4.14 and 4.15.

Experiment directory: parallel_decoding_ALL

Table 4.14:
validation.

Table 4.15:
validation.

Results for parallel decoding

Results for parallel decoding

German 80.1 5.6 68.3 88.7 15

French 82.8 3.6 76.5 86.6 15

Indonesian 82.9 4.5 76.5 90.7 15

Japanese 82.0 3.6 73.3 87.5 15

Chinese 75.5 6.3 62.8 85.8 15

II mean I stddev I min I max I #spk I

95

90

85

>
 :JBm 8'J'¥;f
P
J
O
M

80

75

70

65

60

55

叫thAD

with CD

models

models

and leave-one-speaker-out

いeanI std伽vI min I maxj免叩し
German 80.6 7.1 63.7 90.4 15

French 83.6 3.5 78.2 90.7 15

Indonesian 83.0 7.4 65.4 90.7 15

Japanese 80.4 5.0 71.8 89.0 15

Chinese 75.5 6.2 61.3 87.5 15

and leave-one-speaker-out

German Indonesian French Chinese

SD-Model 1, ＇ヽヽ¥ 1
AD-Oracle v /ゞ/~
AD-Parallel 1111¥¥¥¥¥11

CLO-Parallel ,11111111刈
GD-Baseline I I

Japanese

Figure 4.2: Summary of experimental results.

cross-

cross-

Chapter 5

Survey of AM adaptation methods

This chapter gives a survey of techniques for model-based speaker adaptation. Frequently applied

adaptation methods like MAP, MLLR and Eigenvoice are described. Since the focus of this thesis
are subspace-based adaptation schemes, eigenspace-based adaptation methods and adaptation
methods employing speaker clustering are covered in more detail. Finally, some important results
from publications on non-native speech recognition are cited.

For the basic theory of Hidden Markov Models (HMM), especially how HMM parameters can be
estimated iteratively with the Baum-Welch Algorithm, which belongs to the class of Expectation-
Maximization (EM) algorithms, see for example [39].

5.1 Introduction

It is well known, that performance of an automatic speech recognition (ASR) system drops sub-
stantially, if there is a mismatch between training data and test data set conditions. Speaker-

dependent (SD) systems perform better than speaker-independent (SI) systems if speech of the
speaker the system was trained on is to be recognized. In telephone-based or terminal-based ap-

plications for speech recognition, i.e. dialog systems, the recognizer should work well for every
speaker who is expected to encounter the system. Usually there are several groups of potential
users with each group having different speech characteristics, comprising aspects like gender, age,

dialect or foreign accent. The result is poor recognition performance for a speaker group which
was not seen during the training phase of the recognizer. One possible approach would be to

collect enough data for each relevant speaker group, build one recognizer from that data for each

group and build a classifier which can differentiate among groups to select the most suitable rec-
ognizer for incoming speech data. However, this approach is not feasible in practice, since there

are too many possible speaker groups to be covered and building reliable classificators to identify

the correct speaker group is difficult.
Popular approaches to cope with inter-speaker variability are techniques for speaker adapta-

tion. There exist feature-based and model-based acoustic adaptation techniques. In feature-based

adaptation, also called normalization, only the speech features are modified to alleviate variability.

One example is Vocal Tract Length Normalization (VTLN) for reducing effects on speech sound

introduced by gender (male vs. female speakers) or age (children vs. adults) of speakers. However,
normalization techniques alone do not suffice to model inter-speaker variability due to foreign ac-

34

speech

signal

pronounciation

lexicon

language

model

decoder

set of

acoustic models

hypothesis for

spoken text

Figure 5.1: General architecture of a speech recognizer for LVCSR

cent or dialect. Beside doing pronunciation modeling, i.e. finding appropriate phone strings for

each word, many researches propose methods for adaptation of the acoustic model parameters of
the speech recognizer. State of the art speech recognition systems use Hidden Markov Models
(HMMs) for acoustic modeling. In this context adaptation means that all or some parameters of

the HMMs (e.g. parameters of mixture distributions or HMM probabilities) are altered so that
recognition performance improves for a certain speaker or speaker group.

The most cited methods for adaptation of acoustic models are Maximum a posteriori (MAP)

adaptation, Maximum Likelihood Linear・Regression (MLLR) and Eigenvoice. If there is only
little adaptation data available, robust adaptation by MAP or MLLR is impossible, because the

number of parameters to be estimated is too large. In contrast to MAP and MLLR, the Eigenvoice
approach improves recognition performance even if there are only a few seconds of adaptation data

available.
Similar to the Eigenvoice approach are adaptation methods, which cluster training speakers

into groups with common characteristics and then selecting the speaker group or the speakers,
which are acoustically closest to the speaker the acoustic model has to be adapted to. Finally,

recognition is done with the acoustic model derived from the selected speakers.

5.2 General remarks on adaptation

The general architecture of a speech recognizer for large vocabulary continuous speech recognition
(LVCSR) is shown in figure 5.1. The main parts are the pronunciation dictionary, which defines

the mapping of words to subwords units, the language model by which the probability of a word

sequence can be calculated, the acoustic models for the subword units, usually represented by a
large set of HMMs, and the decoder, which combines the information of the three former modules

to extract a hypothesis for the spoken text from the feature vector sequence of the speech signal.
There are several important aspects of adaptation in general by which speaker adaptation

techniques can be classified. These are summarized in table 5.2, since they frequently appear

in publications on speaker adaptation. Feature-based adaptation accomplish adaptation only by

transformations of the feature space. These adaptation methods will not be described further,

since this thesis concentrates on model-based adaptation techniques.
The starting point for model-based adaptation is usually a well-trained speaker-independent

(SI) acoustic model. In the focus of model-based adaptation techniques are the parameters of

[Aspect] Meaning I Example

Feature-based Adaptation by transforming the feature space VTLN [31]
Model-based Adaptation by transforming acoustic model parameters MLLR [33]

Selection or interpolation of the best fitting models

Supervised Transcription of adaptation data is known

Unsupervised Transcription of adaptation data is unknown
Adaptation data must be decoded before adaptation

Static, Offiine Adaptation data is available a priori dictation
Adaptation is done in advance only once system

Dynamic, Online Adaptation data is obtained at run time dialog
Adaptation is done incrementally system

Rapid Only a small amount of adaptation is available Eigenvoice
Low computational cost of adaptation process [28]

Structural Organization of parameters in a hierarchical tree SMAP [40]
Control adaptation by amount of adaptation data

Table 5.1: Classification of adaptation methods

speaker-independent (SI)

acoustic model

parameters

adaptation

adapted

parameters

adapted

acoustic model

Figure 5.2: Outline of speaker adaptation

the acoustic models. These are usually the initial state, state transition and state occupancy
probabilities of the HMMs, together with mixture weighting coefficients, mean vectors and co-
variance matrices of Gaussian mixtures for the output probability densities of each HMM state.
For reliable estimation of the parameters tens of hours of speech data are necessary. Provided
a certain amount of adaptation speech data, the task is to modify the parameters in order to
enhance the performance of the speech recognizer on test data, which has similar characteristics
as the adaptation data. Figure 5.2 briefly sketches the idea of model-based speaker adaptation.

The choice of the appropriate adaptation method depends critically on the amount of adap-
tation data available and for which purpose adaptation has to be applied. If a dictation system
has to be adapted to a specific user, it is possible to provide much adaptation data and to adapt
the system even it takes some resources, especially computational power and users time, because

adaptation can be carried out offiine. But if a telephone-based dialog system has to be adapted
online to the current caller, it is not reasonable to let the user wait for a long time or ask him to
provide large amounts of adaptation data. ・

The following section briefly dwells on MAP and MLLR, two adaption methods which can only
be applied effectively, if a large amount of adaptation data is available. The Eigenvoice approach

[A叫加tlTask/DB I~chnique I Outline of approach

[22] RM MAP り＝且+b
[33] WSJ MLLR j1 = Ajl + b

K

[29] Isolet Eigenvoice il=且＋区aぷ
i-1

[24] RM SCW,RSW Weighting of speaker-or cluster-dependent models

[11] WSJ PCA,MLLR Constrain MLLR transformations to eigenspace

[3] WSJ SAT Adaptation of speakers before model training

[21] Dictation CAT Weighting of partitions of cluster means

Table 5.2: List of important publications regarding acoustic model adaptation

which addresses the problem of rapid speaker adaptation will be introduced in section 5.4. A
short overview to important publications regarding speaker adaptation methods of acoustic model
parameters is assembled in table 5.2.

5.3 Methods for large amounts of adaptation data

5.3.1 Maximum a posteriori (MAP)

When estimating unknown parameters of a probability density function an optimization crite-
rion has to be defined first. Frequently applied estimation techniques are (ML) estimation and
maximum a posteriori (MAP) estimation. The latter is also called Bayesian estimation.

ML estimation tries to maximize the likelihood P of a training data set X. If 8 is the
parameter of a tuple of parameters to be estimated, the optimization criterion of ML estimation
can be expressed as follows:

8* = argmax訳 (Xl8) (5.1)

In MAP estimation prior densities for the unknown parameters 0 are assumed. The optimization
criterion is then altered to

ふ=argmax0P(X厄）P(8) = argmax訳(8ば） (5.2)

With the Baum-Welch Algorithm ML estimates for HMM parameters are obtained. In [22] a
scheme for MAP estimation of HMM parameters is derived. The authors assume the Dirichlet
density for mixture weights and HMM probabilities (initial, state occupancy and state transition).
Normal-Wishart probability density function is assumed as prior for means and covariances of
Gaussian mixture components.

The MAP estimati_on scheme for HMM parameters can be used if not enough training data for
reliable ML estimation of HMM parameters is available. The importance of MAP for this thesis
is its applicability to speaker adaptation.

For speaker adaptation the parameters of robustly trained HMMs are employed as a priori
information. First, the adaptation data is decoded with the existing model in order to assign
each feature vector to mixture density components and to obtain statistics on state transition and

state occupancies. The assigned data and statistics are used for reestimation of HMM parameters.
The MAP reestimation formulas are very similar to Baum-Welch estimation formulas except that
each formula consists of a weighted sum of prior information and adaptation data. Not all HMM
parameters have to be adapted. Most effective is an adaptation of means of Gaussian mixture
densities. The reestimation formula for the mean vector of a mixture density of an HMM is as

follows:

→
μk =

T

Tふ＋区 CktYt
t=l

T

'Tk十 I:Ckt
t=l

(5.3)

凡isthe prior value of the mean vector of the k-th mixture component, Yt represents the adaptation
data and Ckt is the posterior probability of Yt being produced by the k-th mixture component.
冗 weightsprior information against adaptation data. If Tk = 0 the prior information can be
canceled and the formula reduces to the conventional ML estimate for mean vector凡inBaum-
Welch formulas.

To alleviate the disadvantage of MAP, that it can only be applied successfully if much adap-
tation data is available, a structural version of the MAP adaptation scheme was proposed in

[40].
Structural adaptation methods organize the acoustic model parameters in a hierarchical tree.

The amount of adaptation data available controls at which nodes at which tree levels_ adaptation
should be carried out first. Adaptation of a parent node affects adaptation of its child nodes.
For example, if there is much adaptation data, which can be asso'ciated with certain leaf nodes,
parameters of these leaf nodes can be adapted independently from others. Otherwise, parameter
adaptation (e.g. transformation or shift of Gaussian mean vector) of the corresponding parent

node is adopted.
Some evaluation results for MAP adaptation can be found in [22] [49] [43] [51]. Results

presented in [51] show that adaptation of means is more effective than adaptation of covariances
and adaptation of covariances is more effective than adaptation of mixture weights.

5.3.2 Linear Regression (LR)

An approach to speaker adaptation using linear regression was first proposed in [32] by Leggetter
et al. and later improved in [33].

The idea is to transform the mean vectors of the Gaussian mixture components by a linear

transformation.
ら→ →

肛 =Ak凡+bk (5.4)

Index k indicates, that each mean vector is transformed individually. In [32] it is mentioned that
this would lead to a complete reestimation of the all acoustic models. On the other hand, using
only one global transformation for all mean vectors would lead to too poor adaptation results as
more adaptation data becomes available.

To make appropriate use of the adaptation data available, Leggetter et al. employed the idea
of grouping mixtures or mixture components into regression classes, which are similar in terms of a
distance measure. Depending on the amount of adaptation data available the number of regression

classes and the grouping of mean vectors is determined and one linear transformation for each
regression class is obtained. The parameters of the linear transformation A and bare estimated by

the maximum likelihood (ML) criterion. This explains the approach is called maximum likelihood

linear regression (MLLR).
Instead of maximum likelihood (ML), Bayesian estimation of the transformation parameters

is also possible. This approach is named MAPLR and was presented in [9]. Like in the MAP
adaptation scheme mentioned in subsection 5.3.1 a constraint for the transformation parameters

is introduced by a probability density function.
In [47] estimation of transformation parameters was carried out by employing maximum mutual

information (MMI) criterion. The approach was named MMILR accordingly.

5.4 Methods for sparse amounts of adaptation data

5.4.1 Eigenvo1ce

Inspired by the Eigenface approach for face recognition, Kuhn et al. developed a technique for
rapid speaker adaptation based on Eigenvoices [28] [29].

The Eigenvoice approach can be summarized as follows: Given a large training data set with

many (n) speakers and sufficient data for each speaker, the acoustic models for each speaker are
constructed. The parameters of each speaker-dependent model are combined to a high-dimensio叫

large supervector. If there are 50000 mixture components and the dimension of the feature space
is 39, the dimension of the supervector is 39 * 50000~2.0 * 10りSimilarto MAP, adaptation can
be restricted to the means of the mixture components. Principal component analysis (PCA) is
applied to the set of n supervectors. The eigenvalue-ordered orthogonal vectors derived by PCA
are called Eigenvoices. For adaptation it is assumed, that the parameters of the adapted acoustic

models, combined in supervector m, can be expressed as a linear combination of the Eigenvoices,
taking only the first k principal components名，．．．，ぞkof the Eigenvoice space.

↓
ei ai

k

▽
]
[

＝

↓
m

(5.5)

With equation 5.5 only k parameters have to be estimated for adaptation compared with at least
炉 +d parameters for adaptation with a global MLLR transformation, where d is the dimension of

the feature space. The justification for this procedure is that the whole space of acoustic models

can be approximated by the first k Eigenvoices in the mean square error sense.
ML estimation of the weighting coefficients ai is possible with only a few seconds of adap-

tation data. The estimation process was named Maximum Likelihood Eigenvoice Decomposition

(MLED). Experimental results presented in [28] are promising with the limitation that only a very

small scale recognition task, letters recognition, was evaluated.
In [6] the Eigenvoice approach is applied to a heterogeneous large speech database with data

from 300 speakers, 100 from a proprietary database and 200 from WSJ1, leading to significant

improvements in recognition rate with only three seconds of adaptation data per speaker.

1 Wall Street Journal

There are several recent publications on extensions and improvements of Kuhn's original ap-
proach. One drawback of the Eigenvoice approach is that it is difficult to apply to large vocabulary

continuous speech recognition (LVCSR) where the number of Gaussian components is very high,

because of the computational cost for PCA calculation. In [36] and [46] solutions to alleviate this

problem are proposed.
Instead of applying PCA to the supervectors of all acoustic models, in [46] the supervectors

were first split up into subvectors and Eigenvoices were extracted for each type of subvector. Two

settings for subvector construction were suggested:

• mixture-based: first cluster Gaussian mixtures based on the Bhattacharyya distance, then

combine parameters of each cluster to one subvector

• feature-based: combine acoustic model parameters of each feature group (e.g energy, MFCC,
△ MFCC, △△ MFCC) to one subvector

The proposed approach was evaluated on a Mandarin speech dictation task, leading to better

results than Kuhn's original approach [28].
Similar to the mixture-based approach in [46], hierarchical Eigenvoices are proposed in [36].

Gaussian mixture components are clustered into a hierarchical tree with the k-means algorithm.

Eigenvoices are calculated for the vector of means associated with each leaf node of the tree. Only
the first principal components, whose sum of eigenvalues relative to the sum of all Eigenvoices is

higher than a threshold, are kept to build the Eigenvoice space for each tree node. For the next
higher level of the tree, model parameters are projected into each Eigenvoice subspace associated
with each leaf node. The coefficients obtained by these projections are combined to one vector and

again Eigenvoices are calculated for this type of vector. This procedure is continued bottom-up
until the root node of the tree.

The model space to Eigenvoice space transformation can be represented by one matrix by
combining projections matrices of each node of a certain tree level and then multiplying (bottom-

up) these matrices together. In the adaptation phase, tree nodes with enough adaptation data
associated are selected and weighting coefficients are estimated. Beside ML estimation of weighting

coefficients (MLED), MAP estimation of weighting coefficients was proposed (MAP ED).
An approach which combines the ideas of both MAP and Eigenvoice was presented in [7]. The

Eigenvoices were incorporated as a priori knowledge into a Bayesian optimization criterion by
defining an a priori probability density function with the Eigenvoices.

5.4.2 Subspace-based methods

The number of parameters in acoustic models for LVCSR is very high. To reliably estimate all

these parameters for adaptation would require as much training data as is required for the complete

estimation of the speaker-independent acoustic models.
The core idea of the Eigenvoice approach was to reduce the number of parameters to be

estimated to make rapid adaptation possible. This was achieved by constraining the whole space

of acoustic model parameters to to a very low dimensional subspace. This space was derived

by applying PCA to a set of speaker-dependent acoustic model parameters concatenated to one

supervector.

Instead of constraining the space of acoustic model parameters it is also possible to constrain
the space of transformations of acoustic model parameters. This idea was applied to the space of
MLLR transformation parameters in [8].

First the speaker-independent acoustic model is built, then MLLR is applied for each training
speaker. Next, the parameters of the calculated MLLR transformations (ふb)are combined to

one vector. Further steps of the procedure are analog to the Eigenvoice approach described in
subsection 5.4.1.

The advantage of constraining the transformation parameter space instead of the acoustic
model parameter space is a far reduced memory requirement. Even if several MLLR transfor-
mations (one transformation per regression class) are used to adapt the acoustic models for one

speaker, the number of parameters of these transformations is far less than the number of param-
eters of the acoustic models for LVCSR.

A similar approach was presented in [11] by using principal component regression for con-
straining the dimension of the MLLR transformation parameter space.

5.4.3 Speaker Clustering

There are various adaptation methods in connection with the term speaker clustering. One class

of such adaptation methods is similar to the Eigenvoice approach from section 5.4.1, which will
be described first.

In [38] and more detailed in [24] two approaches, reference speaker weighting and speaker
cluster weighting, are proposed. The parameters of the adapted model are restricted to lie in a
low-dimensio叫 subspacespanned by the acoustic models of a set of reference speakers or a set

of speaker clusters. The clusters can be designed manually (e.g. clustering speakers by gender or
age) or extracted automatically by agglomerating speakers with similar acoustic characteristics.
Sufficient data for each each reference speaker or speaker cluster is required to reliably estimate

the corresponding sets of acoustic models. In the adaptation phase, weighting coefficients of the
reference models are obtained by ML criterion. The only difference to Eigenvoice approaches

is, that the supervectors, which are formed by concatenation of acoustic model parameters of
reference models are not orthogo叫 toeach other.

Several other approaches carry out speaker clustering online during the adaptation phase.

Starting with a set of speaker-dependent acoustic models or a set of speakers, the speakers or
respectively their models, which are acoustically most similar to the adaptation data, are selected.

Selection can based on the acoustic scores obtained for adaptation data during decoding [37].

Another possibility is the selection of speakers with a G MM classifier [25]. With the speech data
or acoustic models of the selected speakers a new acoustic model is constructed.

An approach which tries to combine the power of speaker clustering and Eigenvoices was pre-

sented in [16]. After applying Kuhn's original Eigenvoice method [29], each speaker-dependent
acoustic model is projected onto the reduced Eigenvoice space. After clustering speakers in Eigen-

voice space, one acoustic model for each cluster is built. Unseen speech is decoded with the
acoustic model of the cluster with the highest recognition score.

5.5 Miscellaneous adaptation methods

5.5.1 Adaptive Training

In adaptive training techniques adaptation is already employed during the training phase of the
acoustic models. The idea is to build acoustic models which represent phonetic variation indepen-
dent from the inter-speaker variability between speakers in the training data set.

One example is Speaker-Adaptive Training (SAT) [3], where speech data of each data speaker
in the training set is normalized by an MLLR transformation in order to suppress inter-speaker

variability. MLLR transformation parameters and acoustic model parameters are estimated by a

joint optimization criterion.
Before recognition the acoustic models have to be adapted to incoming speech data of an

unknown speaker. Again an MLLR transformation has be calculated to adjust the acoustic models

to the characteristics of a new speaker. Since a larger amount of speech data is required for robust
estimation of MLLR transformation parameters, the approach is not suitable for rapid adaptation.

Another adaptive training scheme is cluster adaptive training (CAT) developed by Gales [20]
[21]. It is an rapid adaptation scheme and employs ideas similar to clustering and weighting in
the adaptation methods based on speaker clustering and Eigenvoices.

In the approach there is a set of model clusters. Means vary between different clusters, but

variances, priors and other parameters are assumed to be equal for all clusters. The Gaussian mean
components are partitioned into classes. The adapted model is built by weighting the means of
all model clusters. An independent weight vector is employed for each class of means.

5.5.2 Genetic Algorithms

In [30] an approach for rapid speaker adaptation based on Genetic Algorithms (GA) is proposed.
Each individual of the population is represented as a string of genes, which are the means of the

Gaussian mixture components. This representation is equal to the supervectors employed in the
Eigenvoice approach. The fitness of an individual is defined as the time-normalized likelihood of
the adaptation data of its acoustic model relative to the sum of likelihoods of all other individuals

in the current population. Crossover of individual is defined as interpolation of two parents by
weighting their genes with compositional coefficients, i.e. their sum is constrained to be 1.0.

5.6 App
．．

roaches to non-native speech recogn1t1on

The publication of Compernolle [10] is a literature survey that discusses the results of approaches

to speech recognition of native dialects and non-native accents of a certain language. Differences
between these two types of accented speech are pointed out, explaining the inherent difficulties of

non-native speech recognition.
Two main categories of approaches to non-native speech recognition can be found in literature.

These are:

• Lexical modeling (pronunciation modeling)

• Acoustic modeling (acoustic model adaptation)

In lexical modeling pronunciation variants are added to the pronunciation dictionary. The

underlying idea is, that the pronunciation of words uttered by non-native speakers deviates from
standard pronunciation. The variants can be designed manually or generated automatically from
knowledge (e.g. confusion rules) which can be acquired by inspection of corrected and canonical

phone labels (e.g. cf. [23]) or by consulting an expert group (e.g. cf. [41]), which defines mappings
for phonemes not appearing in the first language of the non-native speaker. Experimental results

of several research groups showed, that lexical modeling can improve the recognition of certain

frequently appearing variants of mispronounced words to some extent [10]. However, the approach
only works for systematic alterations of word pronunciations.

The two main problems with non-native speech are random pronunciation errors and the

lack of a universal representative of the group of non-native speakers. The former phenomenon
can be explained by the unfamiliarity of the non-native speaker with unknown words [10]. The
reason for the latter is, that the effects on a second (non-native) language depend primarily on

a speaker's first (native) language. For example, the results of a recent study carried out by
Flege et al. [19], examining non-native English speech of Italian speakers, support the hypothesis,

that the phonetic subsystems of the native and the non-native language interact through phonetic
category assimilation and phonetic category dissimilation. Assimilation refers to the effect, that
a speaker virtually merges speech sounds from his native language and the non-native languages,

i.e. he cannot hear the differences between them and thus will not be able to reproduce the
non-native sound correctly. Dissimilation means establishment of a new speech sound which has
characteristics of a native language and a non-native language speech sound. In [10] the interaction
of the native and the non-native language is described as the projection of pronunciation onto a
lower dimensional, less discriminative space, which is defined by the intersection of the native
language space and the non-native language space. Consequently, mispronunciations will vary

between speakers of different nationalities. Both phenomenons, random and native language
dependent pronunciation errors, restrict the applicability of pronunciation modeling.

Encouraging results for non-native English speech recognition of a single speaker group,

Japanese speakers of English, were presented in [35]. Lexical modeling alone and in combina-
tion with acoustic modeling were evaluated. The authors employed a second (non-native) dic-

tionary containing Japanese pronunciation variants of each word in the recognition vocabulary.
Variants were constructed from typical Japanese accented pronunciation examples. The native

and non-native dictionaries were used in parallel during recognition. Introduction of a penalty
when changing dictionaries during decoding of an utterance resulted in even better performance.
Additionally, adaptation of acoustic models of phonemes with MAP was also carried out, leading

to further reductions of word error rate. MAP adaptation of acoustic models without pronuncia-

tion modeling leaded to significant improvements, but they were smaller than those achieved with

lexical modeling.
In [44] some lexical and acoustic modeling techniques for Japanese non-native English speech

recognition were compared. Improvements were achieved with pronunciation variation as well as

using MLLR for acoustic model adaptation. Additio叫 interpolationof native and non-native

models led to a further increase in performance.
Further results for pronunciation modeling and acoustic model adaption for recognition of

non-native speech can be found in [34] [2].
There have been approaches to non-native speech recognition with multilingual acoustic models

and multilingual phoneme sets respectively. For example, the results in [48] suggest, that adding
data from different native languages to the training data, a recognizer with quite uniform perfor-

mance among different accents can be built. On the other hand, performance with accent specific
models was higher than with multilingual models [10]. Further publications on the non-native
speech recognition with multilingual acoustic models are [18] [17]. They report improvements

with the multilingual approach on a small digit recognition task.

Bibliography

[1] Handbook of the International Phonetic Association. Cambridge University Press, 1999.

[2) Stefanie Aalburg and Harald Hoege. Approaches to foreign-accented speaker-independent
speech recognition. In EUROSPEECH 2003 [15], pages 1489-1492.

[3) Tasos Anastasakos, John McDonough, Richard Schwartz, and John Makhoul. A compact
model for speaker-adaptive training. In Proceedings of the International Conference on Spoken
Language Processing, volume 2, pages 1137-1140, 1996.

[4] IEEE Workshop on Automatic Speech Recognition and Understanding, 2001.

[5) Nobert Binder, Rainer Gruhn, and Satoshi Nakamura. Recognition of non-native speech
using dynamic phoneme lattice processing. In Proceedings of Acoustical Society of Japan,
pages 203-204, March 2002.

[6) Henrik Botterweck. Very fast adaptation for large vocabulary continuous speech recognition
using eigenvoices. In ICSLP 2000 [27], pages 354-357.

[7) Henrik Botterweck. Anisotropic MAP defined by eigenvoices for large vocabulary continuous
speech recognition. In ICASSP 2001 [26), pages 353-356.

[8) Kuan-ting Chen, Wen-wei Liau, Hsin-min Wang, and Lin-shan Lee. Fast speaker adaptation
using eigenspace-based maximum likelihood linear regression. In ICSLP 2000 [27).

[9) Cristina Chesta, Olivier Siohan, and Chin-Hui Lee. Maximum a posteriori linear regression
for hidden markov model adaptation. In EUROSPEECH 1999 [13), pages 211-214.

[10) Dirk Van Compernolle. Recognizing speech of goats, wolves, sheep and…non-natives. Speech
Communication, 35:71-79, 2001.

[11] Sam-Joo Doh and Richard M. Stern. Weighted principal component MLLR for speaker
adaption. In IEEE Workshop on Automatic Speech Recognition and Understanding, 1999.

[12) Richard 0. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley &
Sons, Inc., 2001.

[13) European Conference on Speech Communication and Technology, 1999.

[14) European Conference on Speech Communication and Technology, 2001.

45

[15] European Conference on Speech Communication and Technology, 2003.

[16] R. Faltlhauser and G. Ruske. Robust speaker clustering in eigenspace. In ASRU 2001 [4],
pages 57-60.

[17] V. Fischer, E. Janke, and S. Kunzmann. Recent progress in the decoding of non-native speech
with multilingual acoustic models. In EUROSPEECH 2003 [15], pages 3105-3108.

[18] V. Fischer, E. Janke, S. Kunzmann, and T. Ross. Multiling叫 acousticmodels for the
recognition of non-native speech. In ASRU 2001 [4], pages 331-334.

[19] James E. Flege, Carlo Schirru, and Ian R. A. MacKay. Interaction between the native and
second language phonetic subsystems. Speech Communication, 40:467-491, 2003.

[20] Mark J. F. Gales. Cluster adaptive training for speech recognition. In Proceedings of the
International Conference on Spoken Language Processing, pages 1783-1786, 1998.

[21] Mark J. F. Gales. Cluster adaptive training of hidden markov models. In IEEE Transactions
on Speech and Audio Processing, volume 8, pages 417-428, 2000.

[22] Jean-Luc Gauvain and Chin-Hui Lee. Maximum a posteriori estimation for multivariate
gaussian mixture observations of markov chains. In IEEE Transactions on Speech and Audio
Processing, volume 2, pages 291-298, 1994.

[23] Silke Goronzy, Marina Sahakyan, and Wolfgang Wokurek. Is non-native pronunciation mod-
elling necessary ? In EUROSPEECH 2001 [14].

[24] Timothy J. Hazen. A comparison of novel techniques for rapid speaker adaptation. Speech
Communication, 31:15-33, 2000.

[25] Chao Huang, Tao Chen, and Eric Chang. Adaptive model combination for dynamic speaker
selection training. In Proceedings of the International Conference on Spoken Language Pro-
cessing, volume 1, pages 65-68, 2002.

[26] International Conference on Acoustics, Speech, and Signal Processing, 2001.

[27] Proceedings of the International Conference on Spoken Language Processing, 2000.

[28] R. Kuhn, P. Nguyen, J.-C. Junqua, L. Goldwasser, N. Niedzielski, S. Fincke, K. Field, and
M. Contolini. Eigenvoices for speaker adaption. In International Conference on Acoustics,
Speech, and Signal Processing, volume 5, pages 1771-1774, 1998.

[29] Roland Kuhn, Jean-Claude Junqua, Patrick Nguyen, and Nancy Niedzielski. Rapid speaker
adaptation in eigenvoice space. In IEEE Transactions on Speech and Audio Processing, vol-
ume 8, pages 695-707, 2000.

[30] Fabrice Lauri, Irina Illina, Dominique Fohr, and Filipp Korkmazsky. Using genetic algorithms
for rapid speaker adaptation. In EUROSPEECH 2003 [15], pages 1497-1500.

[31] L. Lee and R. Rose. A frequency warping approach to speaker normalization. In IEEE
Transactions on Speech and Audio Processing, volume 6, pages 49-59, 1998.

[32] C. J. Leggetter and P. C. Woodland. Speaker adaptation of continious density HMMs using

multivariate linear regression. In Proceedings of the International Conference on Spoken
Language Processing, pages 451-454, 1994.

[33] C. J. Leggetter and P. C. Woodland. Flexible speaker adaptation using maximum likelihood
linear regression. In European Conference on Speech Communication and Technology, pages

1155-1158, 1995.

[34] Karen Livescu and James Glass. Lexical modeling of non-native speech for automatic speech
recognition. In International Conference on Acoustics, Speech, and Signal Processing, pages

1683-1686, 2000.

[35] S. Matsunaga, A. Ogawa, Y. Yamaguchi, and A. Imamura. Non-native english speech recog-
nition using bilingual english lexicon and acoustic models. In Proc. of ICASSP, volume 1,
pages 340-343, 2003.

[36] Yoshifumi Onishi and Kenichi Iso. Speaker adaptation by hierarchical eigenvoice. In Inter-

national Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 576-579,

2003.

[37] M. Padmanabahn, L. R. Bahl, D. Nahamoo, and M. A. Picheny. Speaker clustering and
transformation for speaker adapt~on in large-vocabulary speech recognition systems. In In-
ternational Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 701-704,

1996.

[38] Ernest J. Pusateri and Timothy J. Hazen. Rapid speaker adaptation using speaker clustering.

In International Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 61-

64, 2002.

[39] Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. In Proceedings of the IEEE, volume 77, pages 257-286, 1989.

[40] Koichi Shinoda and Chin-Hui Lee. A structural bayes appraoch to speaker adaptation. In
IEEE Transactions on Speech and Audio Processing, volume 9, pages 276-287, 2001.

[41] Georg Stemmer, Elmar Noeth, and Heinrich Niemann. Acoustic modeling of foreign words
in a german speech recognition system. In EUROSPEECH 2001 [14].

[42] Carlos Teixeira, Isabel Trancoso, and Antonio Serralheiro. Accent identification. In Proc. of
ICASSP, volume 3, pages 1784-1787, 1996.

[43] Frank Thiele and Rolf Bippus. A comparative study of model-based adaptation techniques

for a compact speech recognizer. In ASRU 2001 [4], pages 29-32.

[44] Laura Mayfield Tomokiyo. Lexical and acoustic modeling of non-native speech in LVCSR. In

Proc. of the ICSLP, pages 1619-1622, 2000.

[45] Laura Mayfield Tomokiyo and Alex Waibel. Adaptation methods for non-native speech. In
Proceedings of Multilinguality in Spoken Language Processing, 2001.

[46] Yu Tsao, Shang-Ming Lee, Fu-Chiang Chou, and Lin-Shan Lee. Segmental eigenvoice for
rapid speaker adaptation. In EUROSPEECH 2001 [14], pages 1269-1272.

[47] L. F. Uebel and P. C. Woodland. Improvements in linear transform based speaker adaptation.
In ICASSP 2001 [26], pages 49-52.

[48] Ulla Uebler and Manuela Boros. Recognition of non-native germt;tn speech with multiling叫

recognizers. In EUROSPEECH 1999 [13], pages 903-906.

[49] Zhirong Wang, Tanja Schultz, and Alex Waibel. Comparison of acoustic model adaptation
techniques on non-native speech. In Proc. of ICASSP, pages 540-543, 2003.

[50] Silke Witt and Steve Young. Off-line acoustic modelling of non-native accents. In EU-
ROSPEECH 1999 [13], pages 1367-1370.

[51] G. Zavaliagkos, R. Schwartz, and J. Makhoul. Batch, incremental and instantaneous adap-
tation techniques for speech recognition. In International Conference on Acoustics, Speech,
and Signal Processing, volume 1, pages 676-679, 1995.

