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概要

In this research, the recognition performance for non-native English speech with different 

kinds of acoustic models is investigated. The AMs examined are speaker independent native 

models, speaker-dependent models, AMs built from speech data of non-native accent 

groups and AMs built from data of speaker clusters. Speaker clusters are derived by 

k-means clustering in speaker Eigenspace. Oracle experiments and experiments with 

parallel decoding and hypothesis selection are carried out for performance evaluation. 
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Chapter 1 

Preface 

This technical report is based on the paper draft for the 8th International Conference on Spoken 

Language Processing (ICSLP) 2004. A software manual and more detailed experimental results 
are included in this technical report. Additionally, a short survey on acoustic model adaptation 

will be given in the last chapter. In the last section of that chapter some references to approaches 
for non-native speech recognition are included. 

Work for this technical report, including the collection of speech data from more than 70 non-
native speakers, was carried out by Tobias Cincarek and supervised by Rainer Gruhn and Satoshi 
Nakamura. The author would like to thank Konstantin Markov, for all valuable advice and the 

provision of a crossword triphone AM for experiments. Further acknowledgments go to Seiichi 
Yamamoto and Satoshi Nakamura, who made the stay of the author at ATR possible, and all 
researchers of ATR who helped me with their valuable advice during progress meetings, especially 

Frank K. Soong. 

May 7, 2004, Tobias Cincarek 
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Chapter 2 

An Approach for Non-native ASR 

2.1 Abstract 

In this research, the recognition performance for non-native English speech with two different kinds 
of speaker-group-dependent acoustic models is investigated. The approaches for creating speaker 
groups include knowledge-based grouping of non-native speakers by their first language, and the 

automatic clustering of speakers. Clustering is based on speaker-dependent acoustic models in 
speaker Eigenspace. The acoustic model for each speaker group is obtained by bootstrapping 
with pre-segmented speech data or adaptation of a speaker-independent native baseline model. 
For the decoding of a non-native speaker's utterance not seen during the training or adaptation 

phase, the selection of a model suitable to cope with the accent characteristics of that speaker 
is necessary. Here, ideal selection via an oracle and parallel decoding are examined. Evaluation 
is conducted in a hotel reservation task for five major accent groups, including German, French, 

Indonesian, Chinese and Japanese speakers. Recognition results with speaker-dependent and an 
accent-independent non-native model will also be reported. 

2.2 Introduction 

Approaches for the recognition of non-native speech found in literature can be classified into 

three major classes: pronunciation modeling by altering word baseforms, acoustic modeling, and 

combinations of both. Pronunciation modeling can boost speech recognition performance for 
a certain foreign accent of the target language, e.g., by adding pronunciation variants to the 
dictionary, or better applying confusion rules to the phoneme or word lattice during decoding 

[5] [44]. Such an approach requires either in-depth knowledge of the target language and the 

first language of the non-native speaker to be able to design pronunciation variants manually, or 

large amounts of labeled speech data to extract them automatically. Furthermore, that approach 

covers only deletions, insertions and substitutions of target language phones. To account also for 
substitutions of target language phones with phones of the non-native speaker's first language, 

each word in the dictionary can be represented as a sequence of target language phones and a 

sequence of the non-native speaker's first language phones to form quasi-bilingual models [35] at 

the same time. An approach for several accents with multi-lingual acoustic models for recognizing 
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digit strings by combining the phone sets and speech data of several native languages was shown 
to work better than MLLR adaptation of monoling叫 modelswith accented speech data [17]. The 

advantage of bi-and multi-lingual models is the availability of training data from native speech 
corpora without the need for collecting large amounts of accented data. 

However, recent investigations of Flege et al. [19] suggest that non-native speakers may produce 

speech sounds which are either part of their first language or which were established by merging 
characteristics of a first language with a target language speech sound. These observations lead 

to the conclusion that adaptation of each acoustic-phonetic unit model is necessary and that 
pronunciation modeling with native phone models alone may not be the silver bullet to improve 
recognition performance for non-native speakers of any accent group. 

Approaches which incorporate this phenomenon are the adaptation of a speaker-independent 

baseline model of the target language [49] or training from scratch with accented speech data [45], 
the merging of native models [50], and interpolation between native and non-native models [49] 

or only native models [50]. All these methods lead to a remarkable improvement in recognition 
performance of foreign accented speech. 

Other than the method based on multi-lingual models, the methods summarized here were 

applied separately for each non-native accent group. To decode an unseen test utterance, the first 
language of the test speaker needs to be known in order to select an appropriate acoustic model. 
This step can in principle be carried out by an accent classification system, e.g., realized by an 

approach based on ergodic HMMs [42], which achieved an accuracy of 65% for six accent groups. 
Here we will present a practical system for the recognition of continuous non-native speech 

of multiple accent groups. For acoustic model selection, parallel decoding with speaker-group-
dependent models is employed. Investigation is conducted to determine whether models built 

with speech data from speakers of knowledge-based speaker groups or models trained with data 
from data-drivenly created speaker groups are more suitable for recognition. To take account 
of Flege et al.'s findings, acoustic models are constructed by bootstrapping with pre-segmented 

non-native speech data. With this approach non-native phones and pronunciation can be learned 
automatically and coded statistically as HMM mixture distributions. 

2.3 Overall approach 

The proposed approach consists of an off-line step for the construction of speaker-group-dependent 

acoustic models and an on-line step for model selection and test utterance decoding. Figures 2.1 
and 2.2 illustrate the processing of both steps. 

Speaker group formation is necessary for the off-line step. Two methods are investigated: 

a straightforward knowledge-based approach by grouping the non-native speakers by their first 

language to build accent-dependent models, and an automatic approach by clustering the speakers 
in speaker Eigenspace to build cluster-dependent models. 

2.4 Speaker clustering 

A clustering method in speaker Eigenspace-based on Eigenvoices was introduced in [16] and ap-

plied to cluster native speakers. Here the clustering scheme is applied to non-native speakers. 
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Figure 2.1: Off-line step: Construction of speaker-group-dependent acoustic models. The non-

native speech data is partitioned into several training data sets by taking together all the training 

data from the speakers of each group. From each data set one acoustic model is constructed. 
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Figure 2.2: On-line step: Decoding of a test utterance. Top: A test utterance is decoded in parallel 

with each acoustic model available. The hypothesis with maximum likelihood is selected as the final 

hypothesis. Bottom: Assuming that a perfect speaker group classification or speaker identification 

system is available, oracle-based acoustic model selection is simulated to get a reference value for 

maximum possible performance. 

Eigenspace-based methods have the advantage, that complex representations can be transformed 

into simpler ones with few parameters while retaining most of the original information. 

Speaker-dependent (SD) models were constructed by MAP adaptation of mean vectors of 

a single mixture speaker-independent monophone model. This adaptation procedure has the 

advantage, compared with training from scratch, that all remaining model parameters remain the 

same. Only the mean vectors need to be considered in further processing. 

The mean vectors of each SD model were extracted and concatenated to a high-dimensional (39 

features * 44 models * 3 states) supervector. Constructing these vectors from GMMs or multiple 

mixture HMMs would pose some difficulty of alignment between the mixture components of each 

speaker's model. The correspondence is already given implicitly for single mixture HMMs by 

model names and state topology. 

Principal Component Analysis (PCA) based on the correlation matrix was applied to the su-

pervectors to obtain a basis for an Eigenspace covering most of the sample variance. Finally, the 

supervectors were projected into this Eigenspace in order to obtain a low-dimensional representa-



tive for each speaker, which is suitable for clustering. 
As clustering algorithms, k-means and agglomerative hierarchical clustering with four different 

kinds of inter-cluster distance measures as described in [12] were examined. Inter-vector distances 
were measured by the Euclidean distance. For the k-means algorithm, each cluster was initialized 
with the speakers of each first language group. 

2.5 Non-native speech database 

Read speech data of about 100 non-native English speakers was collected at ATR. It is clean speech 
recorded at 16-kHz sampling frequency and 16-bit precision. The data consists of 48 phonetically 

balanced sentences of the TIMIT set and six hotel reservation dialogs. To be able to abstract 
from variability introduced by gender, only the data of 75 non-native male speakers was actually 

used. The speaker set utilized for experiments consists of 15 Japanese, 15 Chinese, 15 French, 
15 German and 15 Indonesian natives. All speakers utter the same sentences. The training and 
adaptation data set comprises 88 utterances (会j10 minutes), the validation data set ten utterances 
(;:::::; 1 minute) and the test data set 23 utterances (;:::::; 3 minutes) per speaker. 

For comparison of recognition performance of natives vs. non-natives, speech data of six native 
English speakers uttering the same test sentences as the non-native speakers was used. 

2.6 Baseline system 

HTK was employed for training and adaptation of all acoustic models, building of the language 

model and decoding in all evaluation experiments. The configuration of the baseline system is as 
follows: 

2.6.1 Acoustic model 

More than 60 hours (37,413 utterances) of speech data from the LDC Wall Street Journal cor-
pus (WSJ) were used to build three speaker-independent native English acoustics with different 

complexity: 

1. 44 Monophone 3-state HMMs with 16 mixtures 

2. State-clustered biphone model with about 3,000 states and 10 mixtures 

3. State-clustered crossword triphone model with about 9,600 states and 12 mixtures 

39 acoustic features, 12 MFCC coefficients and energy with first and second derivation, were 
extracted every 10 ms. The word accuracy of these three acoustic models on the Hub2 5K 

evaluation task was 80.8% for the monophone, 86.8% for the biphone and 93.6% for the triphone 

model. 
Since only speech data from male non-native speakers are considered in this research a gender-

dependent monophone model was built by MAP adaptation of the SI baseline AM with the speech 

data of all male speakers from WSJ. 



2.6.2 Language model 

The n-gram probabilities were estimated from a database with 235 dialogs in the hotel reservation 
domain comprising 6,460 utterances with 65,893 words in total. The lexicon contained about 8,800 
entries for about 7,300 words including compounds. The perplexity for the 344-word evaluation 

task, two dialogs with 23 utterances in total, was 32. 

2.7 Results 

For evaluation, 75-fold leave-one-speaker-out cross validation was carried out for all experiments 

with speaker-group-dependent models in order to obtain a realistic estimate of performance. 
Speaker-group-dependent models consist of 42 HMMs with ten mixtures. In each table the aver-

age word accuracy for each speaker group is shown. Initially three approaches for construction of 
the accent-dependent models were examined. Performance was best for bootstrapping the models 
with pre-segmented non-native speech data obtained by forced-alignment with the monophone SI 

native baseline model. Results were slightly lower for training the models from scratch, followed 
by MAP adaptation of the native monophone SI baseline. 

2. 7.1 Speaker-independent models 

Recognition accuracy with the speaker-independent baseline system as described in section 2.6 
varies remarkably for each acoustic model and speaker group. For native speakers there was an 

increase, or at least no decrease in accuracy on average when decoding with the biphone and the 
triphone model in comparison to the monophone model. However, for non-native speech severe 
degradations can be observed (see Table 2.1). While the relative drop in accuracy was rather 

low for German speakers with about 8%, error rates almost doubled for Japanese speakers. This 
may be due to phonetic errors and different coarticulation of speech sounds especially for speakers 

whose first language is Japanese and Chinese, who have fewer speech sounds in common with 
the English language than German, French or Indonesian. A comparison of IPA-based [1] phone 

sets revealed that German has at least 28, Indonesian 26, French 25, Mandarin Chinese 21 and 
Japanese 19 phones in common with American English. In further experiments monophone models 

are employed, because they are more robust to accent variability and require less data for training 
and adaptation than context-dependent models. 

Table 2.1: Recognition performance with the speaker-independent (SI) native English baseline 
acoustic models. 
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2. 7.2 Speaker clustering 

Several clustering methods with different distance measures were examined. Hierarchical clustering 
produced rather balanced clusters for the furthest neighbor distance but rather sparse clusters for 

the centroid distance and average inter-vector distance, and very sparse clusters for the nearest 
neighbor metric. The tendency of producing sparse clusters also increased with the dimension 

of the Eigenspace. Since clusters generated by the k-means algorithm were more balanced, even 
when setting the Eigenspace dimension to 20, being equivalent to capturing nearly 95% of sample 

variance, their speaker configurations were used for building the cluster-dependent models. The 
distribution of speakers'first languages in each cluster is shown in table 2.2. 

Table 2.2: Distribution of non-native speakers in clusters created by k-means clustering in a 20-
dimensional Eigenspace. 

Cluster 1 2 3 4 5 
Chinese 4 2 5 4 

French 7 5 3 
German 3 8 1 3 

Indonesian 2 3 10 
Japanese 13 1 1 

2.7.3 Oracle experiments 

Knowing the first language, cluster membership or identity of the test speaker, several oracle-based 

experiments for obtaining reference values for maximum recognition performance can be carried 
out. Results are summarized in Table 2.3. 

An estimate of maximum possible performance for each non-native speaker can be obtained 

by decoding with speaker-dependent (SD) models. There is a remarkable increase in accuracy for 
all non-native speakers in comparison to the gender-dependent baseline model. The performance 

with SD models for six native English speakers was 92.6%, indicating that non-native speech is 
indeed more variable than native speech. 

The performance with accent-dependent (AD) models is also high, suggesting that the accent 
characteristics of speakers having the first language in common are similar. The difference in 

accuracy between SD and AD models is largest for the Chinese speaker group, which・can be 

explained by the fact that this group consists of speakers from several areas of China, also including 
some speakers whose first language is Cantonese. 

Recognition with cluster-dependent (CLD) models still leads to good performance, but is 
slightly lower than that with accent-dependent models. 

2.7.4 Parallel decoding 

In order to build a practical ASR system for non-native speech recognition, parallel decoding with 

the accent-dependent or the cluster-dependent models was employed. This procedure yields one 



Table 2.3: Recognition performance with the gender-dependent (GD) native baseline monophone 
model, the speaker-dependent, the accent-dependent and the cluster-dependent models. 

I Model II Ger I Fre I Ind I Jap I Chi I 

GD baseline 75.7 73.8 71.9 55.6 63.7 

Cluster-dep. 80.1 82.8 82.9 82.1 75.5 

Accent-dep. 82.7 84.4 85.4 82.2 77.3 

Speaker-dep. 87.2 87.5 87.7 84.6 82.8 

Table 2.4: Non-native speech recognition performance by parallel decoding with accent-dependent 

(AD) or cluster-dependent (GLD) models. 

三
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recognition hypothesis from each acoustic model for an unseen utterance. The hypothesis with 

maximum acoustic likelihood was selected as the final recognition result. 
The results for parallel decoding are summarized in Table 2.4. There is a small drop in recog-

nition accuracy in comparison to the oracle experiment of section 2. 7.3 for the accent-dependent 
models, but no performance decrease for the cluster-dependent models. Furthermore, both model 

types yield better results than the GD baseline. The difference in accuracy between AD and CLD 

models is significant for the Japanese speaker group only. 
While the cluster classification accuracy (64.6%) was higher than the accent classification ac-

curacy (52.5%), parallel decoding with CLD models may in practice perform better than decoding 
with AD models if data of more speakers become available. The results for each speaker group 

are summarized in Figure 2.3. 

2.7.5 Non-native model 

To investigate whether the pronunciation variations of all speakers from the considered five accent 

groups can be captured by only one monophone acoustic model, the data of 50 non-native speakers, 
10 from each accent group, were used to train one 16 mixture non-native monophone model (NN). 

Evaluation was carried out with the remaining 25 speakers, doing 3-fold cross-validation. The 
speakers for each training and test set were randomly selected, taking care that the first languages 

of speakers in training and test sets were distributed uniformly. 

Table 2.5: Performance with a non-native monophone model. 

I Model II Ger I Fre I Ind I Jap I Chi I 

I SINN II 80.5 I 83.1 I 83.2 I 79.7 I 79.8 I 

As Table 2.5 illustrates, the performance is almost equal to parallel decoding with AD or CLD 

models, except for the rather accent-inhomogeneous Chinese speaker group, which may be due 
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Figure 2.3: Comparison of experimental results. 

to the higher robustness of the non-native model, which was trained with 50 speakers, than the 
AD and CLD models, for which data of only 15 speakers were available. Since accuracy with AD 
models in the oracle experiments of section 2. 7.3 is still significantly higher than that with the 

NN model, accent-dependent models may in principle perform better than accent-independent 
models, whenever an accent classification system with high accuracy is available. 

2.8 Conclusion 

A practical approach for non-native ASR was introduced. It is based on parallel decoding with 

several speaker-group-dependent monophone acoustic models and maximum likelihood hypothesis 
selection. Good accuracy with accent-dependent models was achieved for five non-native accents 

groups with a relative improvement of 6% up to 44% on average to a GD native baseline depending 

on the speaker group. 
The maximum recognition performance with monophone models is limited. However, as long as 

large corpora of non-native speech are not available, training of robust context-dependent acoustic 

models is infeasible. Assuming rather consistent pronunciation variations of non-native speakers 
within each accent group, higher accuracy may be possible with accent-and context-dependent 

models. 



Chapter 3 

Software 

This chapter explains the software which was written for carrying out the experiments in this 

research. Tools and scripts for acoustic model training and adaptation with HTK, training and 
test data partitioning, parameter extraction from HTK AM files, Eigenvoice computation, speaker 
clustering, reading and writing HTK MLF files, etc. will be described. The scripts are programmed 

in and were tested for RUBY Vl.6.8 (.rb extension), PYTHON V2.3.2 (.py extension) or PERL 
V5.6.1 (.pl extension). There is a short help message for most scripts, when it is executed on 
the command line without any options. Almost every script uses publicly available libraries and 
libraries written by the author. These libraries are summarized in Table 3.1. Examples for how 

to use many of the scripts described here, can be found in chapter 4. Even more examples are 
available in the scripts directories of each experiment. 

Table 3.1: RUBY and PYTHON software libraries. 

団 Lib-Name I Author/Status I Purpose 

11 uci.rb Command line parsing 
12 misc.rb Miscellanenous functions 
L3 htk2.rb T.Cincarek HTK tools interface 
L4 matvec.rb Matrix and vector functions; i-face to 16 
15 log.rb Simple logging facility 

16 matrix-algebra.rb S.Hara Matrix algebra 
17 numarray. py Open Source Matrix algebra V0.7 

18 vq.py Vector quantization / Clustering 
19 stats.py Mean, Co-Variance, Correlation, … 
110 pca.py T.Cincarek PCA based on L 7 and 19 
Lll misc.py Miscellaneous functions 
L12 spkdata.rb SLT Non-native DB speaker information 

12 



3.1 HTK Training and Adaptation 

The Hidden Markov Model Toolkit (HTK) provides tools for acoustic model training and adap-

tation. The procedure for training and adaptation follows the descriptions given in the HTK 
handbook. Several scripts employing HTK tools were written: 

団 Script ] Purpose 

1 htk-buildmonophAM.rb Monophone AM training from scratch 

2 htk-bootstrapmonophAM .rb Monophone AM training with pre-segmented data 

3 htk-buildbiphoneAM.rb Biphone AM training, begin with 1-mix monophone AM 
4 htk-makelm.rb Build language model 

5 htk-adapt.rb MLLR and/ or MAP AM adaptation 

6 htk-fex.rb acoustic feature extraction 

7 htk-genproto.rb Generate HMM prototype 

8 htk-genproto2.rb Generate HMM prototype ， htk-cloneproto.rb Clone prototype HMM for each phoneme 

10 htk-fixsilence.rb Fix silence/pause HMM 

Script (1) uses scripts 7,9,10, script (2) uses scripts 7,8,10. Scripts 1,2,3 use functions especially 
from library (13). All scripts should work for HTK versions 2.2, 3.0, 3.1 and 3.2. 

3.2 Training, Validation and Test Data Set Partitioning 

The script listsets. rb can be used for splitting up the non-native speech data into (speaker-
disjoint) training and test data sets. Separate file lists (train, vali, test) can be generated for 
each group of non-native speakers, i.e. first language groups or speaker clusters. There must be a 

<source> directory containing the <spkid>. {adapt, eval, vali}. rnf cc files. These file extensions 
can be changed by editing the script itself. For example, a typical command line call looks like 

this: 

listsets.rb -c -d -1 <langlist> -t <target> -b <source> -s <spklist> 
listsets.rb -c -d -1 C,F,G,I,J -t targetdir -b lists -s M001 

This call 

• -c deletes any list.* file in -t <target> directory 

• -d generates speaker-disjoint training and test data sets 

• concatenates all the files <spk>. adapt .mf cc from -b <source> directory to 

list. train. <lang> and all the files <spk>. vali .mfcc to list. vali. <lang> of any 
speaker, whose first language is in -1 <langlist>; 

• the same is done with all <spk>. eval .mfcc in order to generate file list. test. <lang>, 

excluding the files of speakers whose ID is in -s <spklist>. 



The information about each speaker's first language (of the ATR SLT non-native English 
DB) is stored in the RUBY library file spkdata.rb. For using different speaker information, an 
appropriate file can be specified with option -g <spkinfo>. Instead of language information, 
speaker cluster information can be included. A speaker information file has one line per speaker. 

Each line contains the speaker ID, the speaker's first language (or cluster or group ID), the 

speaker's age and the speaker's score separated by white space. However, only the information 
about each speaker's first language, group or cluster is used by this and most other scripts. 

3.3 HTK AM  Parameter Extraction 

The script htk-extractvoices. rb can be used to extract acoustic model parameters, i.e. mixture 
mean vectors, mixture variance vectors, g-constant and mixture weights, from an HTK macro file. 

The macro file must be in ASCII format. Furthermore, any model with tied parameters must first 
be converted into an untied model before using this script. Usage example: 

htk-extractvoices.rb -h <hmmfile> -p <hmmlist> -s <statelist> 
htk-extractvoices.rb -h hmm.mono -p ax,axr,aw,ao -s 2,3 

This call extract the parameters of the states two and three of the HMMs "ax", "axr", "aw" 

and "ao". If no list of states of no list of HMMs is given, the parameters of all states and all 
models are extracted respectively. Output is in ASCII and has the following format: 

<HMM-Name> <State-Name> <Num-Mixes> <Num-Feats> 

wts <weights> 
gc <gconstant 1> 
mean <mean-vector 1> 
var <variance-vector 1> 

gc <gconstant 2> 
mean <mean-vector 2> 

var <variance-vector 2> 

<HMM-Name> <State-Name> <Nurn-Mixes> <Nurn-Feats> 

This ASCII output can be converted into binary format with modasc2bin.py. Conversion 
from binary to ASCII is possible with modbin2asc. py. See script implementation for details of 

the binary format. The binary I/0 is based on the PYTHON library numarray. These two 
conversion scripts read input from STDIN and write output STDOUT. 

3.4 Eigenvoice Computation 

Eigenvoices can be calculated with the script eigenvoices. py. Before using this script, HMM 

parameters have to be extracted with htk-extractvoices. rb and converted to binary format with 

modas c2bin. py. This has to be carried out for every speaker. One parameter file for each speaker 



with the filename <spkid> _<name>. par ams (containing the supervectors) must be generated and 
copied to the same directory <dir>. Finally, Eigenvoices can be computed by executing 

eigenvoices.py -i <spklist> -p <name> -s <dir> -t <target> 
eigenvoices.py -i spklist -pall -s paramdir -t evdir 

The file <spklist> must contain the speaker IDs (one per line) for all speakers'models' 
parameters which should be included in the Eigenvoice computation. The script eigenvoices. py 

only makes use of the mean vectors. Further parameters, i.e. variance vectors and mixture weights 
could be included by editing this script. The script produces the files eigenvalues_ <name>, 

eigenvectors_ <name> and eigenmodels_ <name> (Eigenvoices) in the <target> directory. All 
output files are in ASCII. The files eigenmodels_ <name> and eigenvectors_ <name> have the 

following format: 

<Nurnber_Eigenvoices> <Eigenvoice_Dirnension> 

<Eigenvoice-Vector 1> 

<Eigenvoice-Vector 2> 

The file eigenvalues_ <name> contains one Eigenvalue per line in descending order (of magni-
tude). If the number of input vectors to the script is N, the eigenvectors_ <name> file contains 
N+ 1 vectors, i.e. the mean vector of all original supervectors且andthe first N Eigenvectors. 
The file eigenmodels_ <name> contains N "model vectors". These model vectors were obtained by 
subtracting the mean vectorμfrom the ?riginal supervector叩 ofspeaker j and then projecting it 

into the Eigenspace. Each component cf of the resulting model vectors is calculated via Equation 

3.1. 

ct =叶（即ー且） (3.1) 

蔚 is the Eigenvector of the i-th largest Eigenvalue. Eigenvector computation in 
eigenvoices. rb is based on the correlation matrix of the supervectors叩.Computation based 

on the covariance matrix is possible by using pea. pea_eov instead of pea. pea_cor of library 110. 

3.5 Speaker Clustering in Eigenspace 

Speaker clustering can be carried out with the script clusterspk. py. This script uses routines 

from the PYTHON libraries L8, L9 and Lll. Most important is L8 with the clustering algorithms. 
The k-means clustering algorithm and agglomerative hierarchical clustering with four kinds of 

inter-cluster distances are implemented. Inter-vector distances are computed by the Euclidean 

distance between sample vectors. Each speaker is expressed as one "model vector". The calculation 

of this vector was already described in the previous sections. The script clusterspk. py needs the 

file -m eigenmodels_ <name> from eigenvoices. py. That file contains the representative vector 
for each speaker. The information of all speakers must also be provided with option -s. The order 

of speakers in that file must be the same as in the model file. Consequently, the same speaker 

information file should be used for both scripts. 



K-means. The -a k-means algorithm is an unsupervised clustering algorithm. It is supposed 
to find a previously determined, fixed number of clusters. The number of clusters can be specified 

by option -c. The number of iterations can be is set by option -i. However, the k-means algorithm 
terminates, if the VQ-distortion between the last and the current iteration decreased less than 
thres = 0. 00001. Since the algorithm belongs to the EM (expectation maximization) family, 

initialization is necessary, i.e. initial clusters have to be set up before the clustering algorithm 
can be iterated. The default behavior of script clusterspk. py is to initialize each cluster with 

one sample, which is randomly selected from the whole sample set by picking each n/k-th sample, 
if there are n samples and k clusters. Knowledge-based initialization of clusters is possible with 
option -k. Each cluster is then initialized with the speakers of each speaker group. Speaker groups 

are defined in the -s <spkinfo> speaker information file. There must be more speaker groups 

than -c <clusters> if knowledge-based initialization is employed. 
Hierarchical clustering. Agglomerative hierarchical clustering with four different kinds of 

inter-cluster distances is implemented. It is a bottom-up clustering scheme, i.e. in the beginning 
there are as many clusters as samples. The two clusters, which are nearest to each other with 

respect to the inter-vector and inter-cluster distance measure are merged successively until the 
desired number of clusters is reached. The inter-cluster distance measure has to be selected by 
-a <algo> together with the algorithm ID. The <algo> IDs and the corresponding inter-cluster 

distances with their definitions are as follows: 

• nearest neighbor, option -a h-min 

• furthest neighbor, option -a h-max 

• average distance, option -a h-avg 

• mean distance, option -a h-mean 

d(A, B) = min lliJs - iJtllE 
sEA,tEB 

I d(A,B) = max lvs - iltllE 
sEA,tEB 

d(A, B) =亭 E I liJs - Vtl IE 
sEA,tEB 

d(A, B) = II向区凡—虚区 Vt[IE
sEA tEB 

The symbols A and B each represent a cluster, i.e. a set of speakers. All symbols ;J represent 

each speaker's representative vector. IAI means the number of vectors in cluster A. I la -b伽 is

the Euclidean distance between vectors a and b. 
It is expected, that speaker IDs begin with "M" or "F", indicating a speaker's gender. Then 

it is possible to select only all male or only all female speakers with option -t {M, F}. 

The component range of the "model vector" which should be used for distance computation 

during clustering can be specified by option -f <begin>, <end>. 

Results of clustering, i.e. the speaker cluster information, can be written to a separate speaker 
information file with option -g. Furthermore, the merging history for hierarchical clustering can 

be saved into a separate file with -h <hfile>. 

3.6 HTK MLF Input/Output 

Library 13 contains the class MLF for reading and writing HTK master label files (MLF). This 

I/0 interface is necessary for parallel decoding experiments, where the recognition output files for 



several acoustic models must be parsed to be able to select the appropriate recognition hypothesis. 
The selected hypothesis can again be written to a master label file. Important methods of the 
MLF class are summarized in Table 3.2. 

Table 3.2: Methods of the MLF class. 

Method Name Return value Arguments Function 

initialize object 1: filename Name of MLF file to open 

(constructor) 2: feature string Contents of MLF file, i.e. columns 

read data hash 1: utterance ID (sub)string of utterance IDs to read 
2: ID suffix suffixes of utterance IDs in MLF 

read_TW data hash 1: utterance ID Arguments are the same as for read(). 
2: ID suffix But only columns T,W are present in 

MLF. Moreover, T data is discarded. 
read_W data hash 1: utterance ID Arguments are the same as for read(). 

2: ID suffix However, only W column is present in 
the source MLF. 

write none 1: ID suffix ID suffixes in target file 
2: filename Name of target file to write 

geLdata utterance 1: utterance ID Get data of utterance, i.e. list of 
data (list) segment times, segment labels, … 

set_data none 1: utterance ID Set data of utterance in MLF object 
2: utterance data 

The "feature string" can be made up of the characters "T" (start and end time), "W" (word 
label), "P" (phone label) and "L" (likelihood score). The order of characters in this string define 
the order of columns in the label file to read. The keys of the "data hash" are the utterance IDs 
without suffix, e.g. ".rec" or ".lab". Each hash entry is either a list with the word or phonemes 
sequence of the utterance, or a list of lists, which each list containing the information of each 
utterance segment. The order of items in this list is the same as in the MLF. 

3. 7 HTK MLF Processing 

There are several scripts for converting MLFs or extracting information from MLFs. Table 3.4 
gives an overview. 

The three scripts {11,12,13} read input from STDIN and write results to STDOUT. Scripts 
{11,12} are straightforward to use. Further explanation will be given for scripts {13,14} only. 

The main script for computing AM and LM scores is mlf-score. rb. Input is an MLF with 

one or more utterances with segment start and end times, word or phoneme labels, and acoustic 
scores. A list of allowed phoneme or word tokens must also be specified with option -p. Output 

is one line per utterance with one AM, both AM and LM, or one combined AM and LM score. 
Two types of acoustic scores can be calculated: The total acoustic likelihood score -s, which 
is obtained by just summing up all segment scores, or the average segment score -m, which is 
obtained by dividing the total acoustic score with the number of phoneme or word segments in 



Table 3.3: RUBY scripts for MLF file processing. 

ID Script name Purpose 

Conversion of compound words with underscores and 

11 mlf-stripus.rb apostrophes into separate words, e.g., "PHONE_NUMBER" 

to "PHONE" and "NUMBER", or "I'M" to "I" and "M" 

12 mlf-strippath.rb Convert utterance ID with path in MLF to "* /filename" 
13 mlf-score.rb Extraction of the utterance-level AM scores from MLF and 

Combination with LM score, which can be calculated by script (14). 

14 htk-lmscore.rb Calculaton of LM score with HTK LM tools 

the utterance. The segment scores can additionally be normalized by the duration with option 
-n. Segment labels, whose scores should be ignored, can be specified by option -d. 

For calculating LM scores, a bigram statistics file in ARPA/MIT-LL format must be provided 
with option -b. The weighting of the LM score against the AM score can be determined by option 
濯.If -w is not specified, AM and LM score will be output separately. The LM score computation 

is done by an internal call of script (14), which is based on the HTK LM tool LPlex. 
However, in order to obtain utterance-level acoustic likelihood and language model scores it is 

better to use the scores which are written to STDOUT by HVite during the decoding or alignment 

process. From this output stream AM and LM scores can be extracted by piping it through the 
script htk-vi testdoutparse. rb. 

3.8 Miscellaneous Scripts 

In Table 3.4 several important and often used scripts are explained briefly. Scripts {16,17,18,19} 
are designed to operate on text streams and are straightforward to use. Scripts {20,21} are for 

multi-column score streams from several classifiers. These two scripts determine for each score 
line read from STDIN the column with the smallest (mincol.pl) or the largest (maxcol.pl) score 
respectively and write the column index together with the input scores to STDOUT. 

Table 3.4: Miscellaneous scripts. 

ID Script name Purpose 

15 rectable.rb show recognition rates for each speaker group 

16 words.rb tokenize word strings 

17 stripnl.rb concatenate word strings 

18 upcase.rb capitalize letters in input stream 

19 downcase.rb convert capital to small letters 

20 maxcol.pl ar gmax-operator 

21 mincol.pl argmin-operator 

22 recrate.pl calculates and displays recognition rates 

for a score file or a result file 



The script rectable. rb is used calculate the mean word accuracy or correct rate together with 
its minimum, maximum and standard deviation for several speaker groups or speaker clusters. 
Input to the script is a -r <result> file with the following format: 

<SpkID 1>: [ <LangID/GroupID>] WORD: %Corr=##.##, Ace=##.## [H=###, ... , N=##:/t] 
<SpkID 2>: [ <LangID/GroupID>] WORD: %Corr=##.##, Ace=##.## [H=###, ... , N=###] 

Everything from string "WORD:" on can be obtained by executing the HTK recognition 
rate calculation tool "HResults" for a file which contains the recognition result for speaker with 

<SpkID>, and then grep the string "WORD:". If <LangID> or <GroupID> is registered is library 
spkdata. rb, it will be expanded, e.g. language name "German" for language ID "G". 

The script re crate. pl can be used to calculate the recognition rate for argmax or argmin 
classification of the score output of N classifiers for N classes, e.g. one GMM score or HMM score 
per class. A score file contains N scores per line, separated by white space. A result file additionally 
contains the class index corresponding to the row of the classifier with the highest /lowest score as 
the first entry. Rows are indexed with integers from 1 to N. 

<ClassID> <Score1> <Score2> 

<ClassID> <Score1> <Score2> 

<ScoreN> 
<ScoreN> 

For example, if the files scores. A and scores. B contain the scores for the classification of 

samples of classes A and B respectively with both classifier models A and B, the recognition rate 
(total and class average) can be calculated and displayed by calling recrate. pl with options 
-s scores, -r result and -1 A,B. 

3.9 HTK Configuration 

SOURCEFORMAT = HTK 
SOURCEKIND = MFCC_E_D_A_Z 

SOURCERATE = 100000 

WINDOWSIZE = 200000 
NUMCEPS = 12 

3.10 Environment Variables 

In order to use software libraries, which are installed locally or were written by the author, the 
following environment variables must be set to the path names in which the libraries reside. 

setenv RUBYLIB /home/xtcinca/mylib/ruby 

setenv PYTHONPATH /home/xtcinca/mylib/python:/home/xtcinca/lib/python 
setenv PERLLIB /home/xtcinca/mylib/perl 



3.11 Speaker Information File 

A speaker information file has one line per speaker. Each line must begin with a speaker's ID. 
Remaining contents may be customized in general. However, most scripts assume, that the first 

four tokens on each line contain the speaker's ID, group membership, age and score. The number 
and meanings of the remaining, extra tokens on each line is arbitrary, but should be uniform for 

each speaker entry. 

<SpkID 1> <Group> <Age> <Score> <Extra!> <Extra2> 
<SpkID 2> <Group> <Age> <Score> <Extra!> <Extra2> 

<Group> is either the group ID, e.g., Gl, the cluster, e.g., C3, or the first language of the 
speaker, e.g., J (= Japanese). See spkdata.rb for information on language symbols used. A 

speaker information file for known speakers can be generated, when passing a list of non-native 
speaker IDs registered in library spkdata. rb through script spkinf o. rb. 



Chapter 4 

Detailed results 

This chapter will give detailed information about experimental results. Scripts and script frag-
ments to reproduce some of the results together with important parameters are printed. 

4.1 Data sets 

Information about the training, validation and test data sets is shown in table 4.1. The 
number of words in each data set is determined after splitting compound words like 
"HOW_MAY_LHELP_YOU" into single word sequences, i.e. "HOW",・"MAY", "I", "HELP", 
"YOU", and splitting words with apostrophes like "I'M", into "I" and "M". However, the follow-
ing words were not split: "YOU'RE", "WOULDN'T", "WON'T", "WASN'T", "TRAVELER'S", 
"SHOULDN'T", "O'CLOCK", "MA'AM", "LORI'S", "LET'S", "ISN'T", "THAT'S", "IT'S", 
"HAVEN'T", "HASN'T", "DON'T", "DOESN'T", "DIDN'T", "COULDN'T" and "CAN'T". The 
set "train" was used for training of AMs from scratch or adaptation of a speaker-independent base-
line system. Only the set "test" was used in evaluation experiments. The set "vali" was employed 
in order to adjust decoder parameters, e.g., LM scale. Data partitioning diザerentfrom that shown 
in table 4.1 was not done. 

Table 4.1: Training, validation and test data sets for each speaker with contents, ID of utterance 
sets, number of words and sentences, and average duration in seconds. 

L Data Set II Utterance Set I Contents I# Words I# Utterances I Durati_o~ 
48 phonetically rich min: 185 

Train SX sentences from the 401 48 avg: 240 
TIMIT database max: 402 

TAC22012 Hotel reservation 252 19 min: 192 
Train TAS12008 dialogs (HotelDialog) 104 ， avg: 244 

TAS12010 144 12 max: 322 

Vali demo02 HotelDialog 70 10 avg: 40 

Test TAS22001 HotelDialog 162 10 min: 129 
TAS32002 182 13 max: 243 

21 



The speech data sets were almost completely available for 98 non-native speakers, whose IDs 
are: F002, F004, F009-F014, F018-F026, MOOl, M006, M010-M016, M021-M093. 

However, for experiments with non-natives only the data of the following male speakers was 
utilized: MOOl, M006, M010-M016, M021-M093. 

For decoding experiments with the SI native baseline, the test data of the following six native 
speakers was used: M002, M005, M048, M094, M095 and M096. Adaptation of the SI native 
baseline to obtain SD models was done for the following six native speakers: F002, F003, F004, 
F007, M005 and M048. These SD models were evaluated with the test data of the same six native 
speakers. 

4.2 Language model 

The language model was built with HTK LM tools. 235 dialogs from ITL Hotel reservation tasks 
comprising 6,460 utterances with 66k words were used to estimate a Good-Turing discounted 
bigram. No dialog transcripts of the test data were included in the training data. The dictionary 
contains 8,875 pronunciation variants of 7,311 words. The OOV rate for the test set is 1.0, the 
perplexity 32. 

Experiment directory: language_model 

4.3 Native SI AM  experiments 

In the beginning, a native AM with 37,413 utterances of the LDC WSJ corpus was trained. A 
monophone and a biphone AM were trained with scripts {1,2}. Furthermore, a crossword-triphone 
AM, which was built by K.Markov with HTK with the same data, was used. The HMMs of all 

AMs had three states. 
The beamsize for all recognition experiments was set to 200.0. The LM scale factor was 

determined with the validation data set. Figure 4.1 shows the word accuracy vs. LM scale plot 
when decoding the utterances of the validation data set. While performance for native speakers 
was uniform regardless of the LM scale factor, the performance for non-native speakers with 
rather low word accuracy increased with a higher scale factor. Since the performance for non-
native speakers with rather high word accuracy decreased for larger scale factors, the scale factor 
was set to 16.0. This setting is considered as a fair trade-off for all non-native speaker groups. 

The recognition accuracy for the test data of each non-native speaker group with the SI native 
models is shown in Tables 4.2, 4.3 and 4.4. For each speaker group, the number of speakers 
(#spk), the mean recognition rate (mean) together with its maximum (max), minimum (min) 
and standard deviation (stddev) is given. 

Experiment directories: 
baseline_mono, baseline_biph, 
adapted_mono, adapted_biph, adapted_triph 
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Figure 4.1: LM scale vs. performance for decoding with monophone SI baseline AM. 

WA II mean I stddev I min I max I #spk I 
English 82.4 5.3 76.5 89.5 6 

German 75.7 6.5 62.5 86.0 15 

French 71.9 8.3 50.0 80.8 15 

Indonesian 70.7 5.0 61.6 82.3 . 15 

Japanese 55.4 16.2 25.0 82.6 15 

Chinese 63.3 10.0 43.9 79.7 15 

Table 4.2: WA with monophone SI native AM. Mix= 16, Beam= 200.0, LM scale= 16.0 

WA II mean I stddev I min I max I #spk I 
English 82.5 5.0 75.0 88.4 6 

German 72.5 7.2 57.7 81.7 15 

French 66.9 8.2 51.6 75.6 15 

Indonesian 63.1 9.9 48.0 81.9 15 

Japanese 42.9 18.8 10.0 72.4 15 

Chinese 54.9 12.0 36.3 75.9 15 

Table 4.3: WA with biphone SI native AM. M紐=10, Beam = 200. 0, LM scale = 16. 0 

WA II mean I stddev j min I max I #spk I 
English 85.5 7.2 70.6 93 .. 0 6 

German 69.6 11.3 46.5 84.6 15 

French 62.1 10.0 43.3 76.5 15 

Indonesian 51.7- 13.4 23.3 80.5 15 

Japanese 31.4 21.9 1.2 65.4 15 

Chinese 39.0 19.3 13.9 73.8 15 

Table 4.4: WA with triphone SI native AM. Mix= 12, Beam = 200.0, LM scale = 15.0 



4.4 Native GD  AM  experiment (baseline) 

Since only male non-native speakers are utilized in further experiments, a gender-dependent (GD) 
native baseline AM was constructed for a fairer comparison of the baseline system with any of the 
proposed approaches. The GD model was obtained by MAP adaptation of the SI model with the 
speech data of all male speakers in the LDC WSJ corpus. The MAP adaptation parameter was 
set to 10.0. 

Table 4.5: WA with monophone GD native AM. Mix= 16, Beam= 200.0, LM scale= 16.0 

WA II mean I st心竺いninI max I #spk I 
English 81.5 6.5 73.5 88.4 6 
German 75.7 5.6 65.4 84.0 15 
French 73.8 6.3 57.3 81.4 15 

Indonesian 71.9 5.2 63.1 86.0 15 

Japanese 55.6 16.1 28.8 82.6 15 

Chinese 63.7 10.4 46.2 80.2 15 

Experiment directories: baseline_mono_male, adapted_mono 

4.5 Speaker-dependent AM  experiment 

A reference value for maximum possible performance can be obtained by decoding with speaker-
dependent models. The SD model for each speaker was constructed by adaptation of the SI 
monophone AM with the "train" data set. The MAP adaptation parameter was set to 1.0, since 
in preliminary decoding experiments with the "vali" set it was found out, that the performance 
descreased for higher values. 

Table 4.6: WA with monophone SD AM. Mix= 16, Beam= 200.0, LM scale= 16.0 

WA [Lm呼□互td伽vI min I max I #spk I 
English 92.6 2.4 88.7 95.3 6 

German 87.2 4.2 79.7 93.6 15 
French 87.5 2.6 82.6 91.3 15 

Indonesian 87.7 2.8 82.8 93.6 15 

Japanese 84.6 5.7 74.1 93.6 15 
Chinese 82.8 5.3 72.1 90.7 15 

Experiment directory: adapted_mono 



4.6 Speaker clustering 

The following sections explain the steps necessary to do clustering in Eigenspace together with 

script fragments. 
Step 1: Construction of SD models. The single-mixture SI monophone AM trained with 

all the data of LDC WSJ is adapted with the training data of each non-native speaker in order to 
obtain one SD model for each speaker. MAP adaptation with adaptation parameter T = l.O was 
applied. 

maps cf = 1. 0 

mixes 

regcls = 32 
statfile = 11basemodels/stats.mono.mix#{mixes}11 

modelfile = 11basemodels/hmm.mono.mix#{mixes}11 
phonelist = 11basemodels/monophones11 

for spk in $spklist 
targetdir = 11speakers/#{spk}11 

targetfile = 11hmm.mono.mix#{mixes}.sd.map#{mapscf}11 
labelfile = 11#{spk}.adapt.aligned.phone.mlf11 
if File: :exists? (11#{targetdir}/#{labelfile}11) 
and not File: :exists? (11#{targetdir}/#{targetfile}11) then 

if not File::exists? (targetdir) then 
my_system ("mkdir #{targetdir}") 

end 
my_system ("htk-adapt.rb -a 0lists/#{spk}.adapt.mfcc -h #{modelfile} 

-d speakers/#{spk} -i adapt -1 #{targetdir}/#{labelfile} 

end 
end 

-p #{phonelist} -s #{statfile} -r #{regcls} -j #{mapscf} 
-d #{targetdir} -o #{targetfile}") 

Step 2: Eigenspace computation. In the foreach loop of the following script, the model 

parameters, i.e. mean vector, covariance matrix, etc. are extracted from each SD model. After 
that, script eigenvoice. py computes the basis of the Eigenspace, projects each model into the 

Eigenspace and writes the representative vector of all speakers to a single file. Furthermore, files 

with Eigenvalues, Eigenvectors, Eigenvalue ratio and accumulated Eigenvalue ratio are written. 

set spklst ='cat spklist I stripnl2.rb' 
mkdir sdmodelparams 
foreach spk (${spklst}) 

htk-extractvoices.rb -h speakers/${spk}/hmm.mono.mix1.sd.map1 

I modasc2bin.py > sdmodelparams/${spk}_all.params 
end 
mkdir eigenparams 

eigenvoices.py -s sdmodelparams -t eigenparams -i spklist -pall 



Step3: Clustering. The following script shows an example for how to do clustering with all 
implemented clustering algorithms. The last call to clusterspk. py does k-means clustering with 

knowledge-based initialization. clusterdata. * are speaker information files, which contains the 
cluster index for each speaker. The cluster configuration in that file will be used later in section 
4.8 for building cluster-dependent acoustic models. 

set algos = (k-means h-min h-max h-mean h-avg) 

set basename = clusterdata 
set minfeat = 1 

set maxfeat = 20 
set spkinfo = 11spkinfo11 

set emodels = 11eigenparams/eigenmodels_all" 

set k = 5 

set iters = 10 

foreach algo ($algos) 
set cdata = $basename.cl_$k.$algo.$minfeat-$maxfeat 
clusterspk.py -a $algo -c $k -m $emodels -s $spkinfo 

-f $minfeat,$maxfeat-g $cdata -i $iters 

end 
set cdata = clusterdata.cl_$k.k-means.$minfeat-$maxfeat.kb_init 
clusterspk.py -g $cdata -a k-means -c $k -m $emodels 

-s $spkinfo -f $minfeat,$maxfeat -i $iters -k 

4.6.1 Examples of cluster configurations 

In this section, the results of speaker clustering in Eigenspace with different parameters and 
algorithms are summarized. Table 4. 7 shows the result of clustering 7 4 non-native speakers1. rk 

is the accumulated Eigenvalue ratio, if only the first k Eigenvectors belonging to the k largest 
Eigenvalues of a maximal n-dimensional Eigenspace are used. 入iis the i-th largest Eigenvalue. 

Among the hierarchical clustering algorithms, only "h-max" produced balanced clusters, even 

if the dimension of the Eigenspace was large. The k-means algorithm produced balanced clusters 
regardless of the Eigenspace's dimension. The cluster configuration generated by "k-means" with 

knowledge-based initialization was utilized for building cluster-dependent acoustic models. 

Experiment directory: sd_mono_mixi_map 

1 Indonesian native M087 learned English in Hungary, so he was excluded during clustering 



Algorithm MinDim MaxDim ー I:7=1入i
rk -~n_, ふ Clusters Distribution 

1 0.788 16 10 21 ， 18 
2 0.817 16 20 8 20 10 

k-means 3 0.844 7 14 8 27 18 

(random 1 4 0.860 5 4 20 11 15 24 

init) 5 0.871 6 15 6 31 16 
10 0.907 6 17 6 28 17 
20 0.941 5 19 4 21 25 

1 16 18 13 ， 18 
k-means 2 18 11 17 13 15 

(know- 3 20 18 15 6 15 

ledge 1 4 dto. 5 18 22 10 12 12 

based 5 13 21 13 13 14 

init) 10 10 21 11 11 21 

20 10 19 15 13 17 

1 66 3 2 1 2 
2 70 1 1 1 1 
3 70 1 1 1 1 

h-min 1 4 dto. 5 70 1 1 1 1 

5 69 2 1 1 1 
10 69 1 2 1 1 
20 1 70 1 1 1 
1 20 12 13 24 5 
2 15 8 31 10 10 
3 39 10 14 ， 2 

h-max 1 4 dto. 5 4 17 14 33 6 
5 5 23 28 14 4 
10 16 21 29 5 3 
20 5 13 29 23 4 

1 15 36 13 ， 1 
2 25 8 17 22 2 
3 56 8 3 4 3 

h-avg 1 4 dto. 5 4 12 43 12 3 
5 4 58 7 2 3 
10 5 63 3 2 1 
20 4 64 4 1 1 

1 15 36 13 ， 1 
2 24 8 34 6 2 
3 46 14 8 4 2 

h-mean 1 4 dto. 5 4 15 1 51 3 

5 64 1 2 3 4 
10 69 1 2 1 1 
20 4 66 2 1 1 

Table 4.7: Distribution of non-native speakers in each cluster for each clustering algorithm. 



4. 7 Accent-dependent models 

In the beginning, three methods for building accent-dependent acoustic models were examined: 

1. MAP adaptation of the native SI monophone AM described in section 4.3 

2. training of AMs from scratch 

3. training of AMs with speech data which was pre-segmented by a forced-alignment with the 

native SI monophone AM 

The recognition performance with these three model types is summarized in Tables 4.8, 4.9 

and 4.10. No cross-validation was carried out for these three decoding experiments. The models 

built with method (1) had 16 mixtures, models built with methods (2) and (3) 10 mixtures. The 
complexity of the remaining model characteristics (three states, diagonal covariance matrix) was 

uniform. 
The results show, that models built by methods (2) and (3) perform better (higher mean 

WA, smaller standard deviation of WA for most accent groups) than models built by method (1). 
Performance for models built with method (2) and (3) is almost equal. Despite the difference is 
not significant, models built with method (3) may perform better in reality. Consequently, method 
(3) was employed for AM construction in further experiments. 

Table 4.8: Results for AD AMs built by MAP adaptation of SI monophone baseline AM (1). 

WA ~ean I stddev I min I max 1尭叩い
German 83.0 5.0 74.4 91.3 15 

French 83.3 4.2 72.4 88.4 15 

Indonesian 84.5 3.6 79.7 92.2 14 

Japanese 78.2 7.0 63.7 91.0 15 

Chinese 76.9 6.0 63.7 88.4 15 

Table 4.9: Results for AD AMs built by training from scratch (2). 

WA 11 mean I stddev I min I max I #spk I 

German 85.0 5.1 73.3 92.2 15 

French 86.2 2.9 81.1 92.2 15 

Indonesian 87.3 3.9 80.5 94.5 14 

Japanese 83.9 3.9 78.4 90.7 15 

Chinese 80.9 4.7 73.3 88.7 15 

Table 4.11 shows the result for AMs built with method (3) with cross-validation.2 The number 

of mixtures is 10. Recognition performance with accent-dependent models is significantly better 

than with the native GD baseline AM for all non-native speaker groups. 

2Speaker M087 is included in the Indonesian speaker group only for evaluation 



Table 4.10: Results for AD AMs built by bootstrapping with pre-segmented speech data obtained by 

force-alignment with native SI monophone baseline AM  (3). 

WA 11 mean I stddev I min I max I #spk I 

German 85.4 4.4 77.9 93.6 15 

French 86.7 3.5 79.9 93.0 15 

Indonesian 86.9 3.0 82.6 94.5 14 

Japanese 84.8 3.2 79.1 90.7 15 

Chinese 81.3 3.6 75.9 87.2 15 

Table 4.11: Results for AD AMs built with method (3) and leave-one-speaker-out cross-validation. 

WA 

German 

French 

Indonesian 

Japanese 

Chinese 

Experiment directories: 

ad_mono_adapt_map 

ad_mono_train_scratch 

ad_mono_train_sialign 

11 mean I stddev I min I max I #spk I 

82.7 5.3 72.1 91.3 15 

84.4 3.7 77.9 91.3 15 

85.4 4.2 77.0 92.2 15 

82.2 3.8 74.4 89.0 15 

77.3 5.6 66.3 88.4 15 

4.8 Cluster-dependent models 

Decoding with cluster-dependent models was also significantly better than with the native GD 

baseline AM 3. The number of mixtures is 10. However, the performance was slightly lower 

than with accent-dependent models, except the Chinese speaker group. This phenomenon can 

be explained by the fact, that the speakers in the non-native database were from several areas of 

mainland China, also including speakers from Hong Kong and Taiwan. 

Table 4.12: Results for CD AMs built with method (3) and leave-one-speaker-out cross-validation. 

WA II mean I stddev I min I max I #spk I 

German 80.1 5.6 68.3 88.7 15 

French 82.8 3.6 76.5 86.6 15 

Indonesian 82.9 4.6 76.5 90.7 15 

Japanese 82.1 3.3 75.4 87.5 15 

Chinese 75.5 6.3 62.8 85.8 15 

3Speaker M087 is included in cluster C4 only for evaluation to make comparisons easy 



Experiment directory: cd_rnono_train_sialign 

4.9 Non-native models 

Recognition results with a speaker-independent accent-independent non-native monophone acous-

tic model are shown in Table 4.13. 3-fold cross-validation was carried out, i.e. 50 speakers for 
training and 25 for evaluation. To get a model which can cope with non-native speech of all five 

accent groups, the speech data of ten speakers of each group was included in the training data 
set. The same was done for the test data, i.e. five speakers from each accent group. The number 

of mixtures per state was increased until 16. 

Table 4.13: Results for NN AMs built with method (3) and 3-fold cross-validation. 

WA~ean _j_stddev I min I max I #spk I 
German 80.5 6.7 67.7 90.4 15 

French 83.1 4.3 72.1 89.0 15 

Indonesian 83.2 2.9 77.0 87.2 15 

Japanese 79.7 4.6 72.4 87.8 15 

Chinese 79.8 4.7 69.5 88.1 15 

Experiment directory: nn_mono_train_sialign 

4.10 Parallel decoding 

In the following, two script fragments are printed. The first is for doing parallel decoding with all 

accent-dependent models. The second is for AM score extraction and selection of the hypothesis 

with maximum AM score. The selection can also be based on the combined AM plus LM score, but 
selection by considering only the acoustic likelihood was more promising. The script for parallel 

decoding with cluster-dependent models is the same but with different paths and group symbols 

instead of language symbols. 

＃ 

# Script for parallel decoding 

＃ 

lexikon 

wordnet 

phonelist 

targetdir 

mixes 

lmweight 

beam 

= 11lexikon/hotel_8k_sp_sil.lex11 

= 11lm/hotel_big.wordnet11 
= 11monophones11 
= 11recout_lm8k_AD11 

= 10 

= 16.0 

= 200.0 



＃ 

# decoding with each AD model 

＃ 

for spk in spklist 

(natlang, age, score) = getspkinfo (spk) 
for lang in [11C11, 11J11, 11I11, 11G11, 11F11] 

if lang == natlang then 

model= "speakers_AD/#{spk}/models.#{lang}.4.mix#{mixes}/hmm.trained" 

else 

model= 11ad_models/hmm.mono.mix#{mixes}.#{lang}11 

end 

flist = "lists/#{spk}. eval.mfcc" 

targetfile = 11#{targetdir}/#{lang}/#{spk}. eval. recout .mlf 11 

stdoutlog = 11#{targetdir}/#{lang}/#{spk}.eval.stdout11 

my_system ("HVite -i #{targetfile} -H #{model} -S #{flist} -p 0.0 

-s #{lmweight} -t #{beam} -w #{wordnet} 

#{lexikon} #{phonelist} I tee #{stdoutlog}") 
end 

end 

＃ 

# Script for hypothesis selection 

＃ 

targetdir = 11recout_lm8k_AD11 

scorebase = 11scores_AD11 

resultbase = 11result_AD11 

flistbase = 11flist_AD11 

htkresult = "result_AD_parallel" 

reflabels = 11labels/all.mlf11 

＃ 

# extract acoustic scores 

＃ 

for spk in spklist 

(natlang, age, score) = getspkinfo (spk) 

scorefile = scorebase+11. 11+natlang 

list = [] 
for lang in [11c11,11J11,11r11,11G11,11F11J 

targetfile = 11#{targetdir}/#{lang}/#{spk}. eval. recout .mlf 11 

stdoutlog = 11#{targetdir}/#{lang}/#{spk}.eval.stdout11 

my_system (11cat #{stdoutlog} I htk-vitestdoutparse.rb 
-c > #{tmpfile}.#{lang}11) 

list くく 11#{tmpfile}. #{lang}11 



end 
my_system ("paste "+list.join(" 11)+11 >> #{scorefile}11) 
my_system ("rm -f "+list.join(" 11)) 

my _system ("cat lists/#{spk}. eval.mfcc >> #{flistbase}. #{natlang}11) 
end 

＃ 

# hypothesis selection 

＃ 

# implicit argmax (in script recrate.pl) 

my_system (11recrate.pl -1 #{langstr} -s #{scorebase} -r #{resultbase}11) 

# read selected hypothesis from MLF files and write them to a new MLF file 

for spk in spklist 

next if spk [O .. OJ == 11f11 

(natlang, age, score) = getspkinfo (spk) 

next if not langs.member? (natlang) 

my_system ("paste #{flistbase}.#{natlang} #{resultbase}.#{natlang} 

I awk'{ print $1, $2; }'I grep #{spk} > #{ tmpf ile} 11) 
mlf = {} 
for lang in [11C11,11J11,11I11,11G11,11F11] 

sourcefile = 11#{targetdir}/#{lang}/#{spk}. eval. recout .mlf 11 

mlf [lang] = MLF. new (sourcefile, 11T直＂）
mlf [lang] . read (nil, 11rec11) 

end 

targetfile = 11#{targetdir}/#{spk}.eval.recout.mlf11 

targetmlf = MLF .new (targetfile, 11T訊L")

fd = open (tmpfile) 

while line= fd.gets 

tokens= line.chomp.split (11 11) 

ident = tokens [OJ. sub(/features¥//, 1111). sub(/¥ .mfcc/, 1111) 

index = tokens[1] .to_i -1 

targetmlf.seに data(ident, mlf [langs [index]] . get_data(ident)) 

end 
targetmlf.write (11rec11) 

end 

Detailed results for the parallel decoding experiments are shown in Tables 4.14 and 4.15. 

Experiment directory: parallel_decoding_ALL 



Table 4.14: 
validation. 

Table 4.15: 
validation. 

Results for parallel decoding 

Results for parallel decoding 

German 80.1 5.6 68.3 88.7 15 

French 82.8 3.6 76.5 86.6 15 

Indonesian 82.9 4.5 76.5 90.7 15 

Japanese 82.0 3.6 73.3 87.5 15 

Chinese 75.5 6.3 62.8 85.8 15 

II mean I stddev I min I max I #spk I 
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Chapter 5 

Survey of AM  adaptation methods 

This chapter gives a survey of techniques for model-based speaker adaptation. Frequently applied 

adaptation methods like MAP, MLLR and Eigenvoice are described. Since the focus of this thesis 
are subspace-based adaptation schemes, eigenspace-based adaptation methods and adaptation 
methods employing speaker clustering are covered in more detail. Finally, some important results 
from publications on non-native speech recognition are cited. 

For the basic theory of Hidden Markov Models (HMM), especially how HMM parameters can be 
estimated iteratively with the Baum-Welch Algorithm, which belongs to the class of Expectation-
Maximization (EM) algorithms, see for example [39]. 

5.1 Introduction 

It is well known, that performance of an automatic speech recognition (ASR) system drops sub-
stantially, if there is a mismatch between training data and test data set conditions. Speaker-

dependent (SD) systems perform better than speaker-independent (SI) systems if speech of the 
speaker the system was trained on is to be recognized. In telephone-based or terminal-based ap-

plications for speech recognition, i.e. dialog systems, the recognizer should work well for every 
speaker who is expected to encounter the system. Usually there are several groups of potential 
users with each group having different speech characteristics, comprising aspects like gender, age, 

dialect or foreign accent. The result is poor recognition performance for a speaker group which 
was not seen during the training phase of the recognizer. One possible approach would be to 

collect enough data for each relevant speaker group, build one recognizer from that data for each 

group and build a classifier which can differentiate among groups to select the most suitable rec-
ognizer for incoming speech data. However, this approach is not feasible in practice, since there 

are too many possible speaker groups to be covered and building reliable classificators to identify 

the correct speaker group is difficult. 
Popular approaches to cope with inter-speaker variability are techniques for speaker adapta-

tion. There exist feature-based and model-based acoustic adaptation techniques. In feature-based 

adaptation, also called normalization, only the speech features are modified to alleviate variability. 

One example is Vocal Tract Length Normalization (VTLN) for reducing effects on speech sound 

introduced by gender (male vs. female speakers) or age (children vs. adults) of speakers. However, 
normalization techniques alone do not suffice to model inter-speaker variability due to foreign ac-

34 
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Figure 5.1: General architecture of a speech recognizer for LVCSR 

cent or dialect. Beside doing pronunciation modeling, i.e. finding appropriate phone strings for 

each word, many researches propose methods for adaptation of the acoustic model parameters of 
the speech recognizer. State of the art speech recognition systems use Hidden Markov Models 
(HMMs) for acoustic modeling. In this context adaptation means that all or some parameters of 

the HMMs (e.g. parameters of mixture distributions or HMM probabilities) are altered so that 
recognition performance improves for a certain speaker or speaker group. 

The most cited methods for adaptation of acoustic models are Maximum a posteriori (MAP) 

adaptation, Maximum Likelihood Linear・Regression (MLLR) and Eigenvoice. If there is only 
little adaptation data available, robust adaptation by MAP or MLLR is impossible, because the 

number of parameters to be estimated is too large. In contrast to MAP and MLLR, the Eigenvoice 
approach improves recognition performance even if there are only a few seconds of adaptation data 

available. 
Similar to the Eigenvoice approach are adaptation methods, which cluster training speakers 

into groups with common characteristics and then selecting the speaker group or the speakers, 
which are acoustically closest to the speaker the acoustic model has to be adapted to. Finally, 

recognition is done with the acoustic model derived from the selected speakers. 

5.2 General remarks on adaptation 

The general architecture of a speech recognizer for large vocabulary continuous speech recognition 
(LVCSR) is shown in figure 5.1. The main parts are the pronunciation dictionary, which defines 

the mapping of words to subwords units, the language model by which the probability of a word 

sequence can be calculated, the acoustic models for the subword units, usually represented by a 
large set of HMMs, and the decoder, which combines the information of the three former modules 

to extract a hypothesis for the spoken text from the feature vector sequence of the speech signal. 
There are several important aspects of adaptation in general by which speaker adaptation 

techniques can be classified. These are summarized in table 5.2, since they frequently appear 

in publications on speaker adaptation. Feature-based adaptation accomplish adaptation only by 

transformations of the feature space. These adaptation methods will not be described further, 

since this thesis concentrates on model-based adaptation techniques. 
The starting point for model-based adaptation is usually a well-trained speaker-independent 

(SI) acoustic model. In the focus of model-based adaptation techniques are the parameters of 



[ Aspect ] Meaning I Example 

Feature-based Adaptation by transforming the feature space VTLN [31] 
Model-based Adaptation by transforming acoustic model parameters MLLR [33] 

Selection or interpolation of the best fitting models 

Supervised Transcription of adaptation data is known 

Unsupervised Transcription of adaptation data is unknown 
Adaptation data must be decoded before adaptation 

Static, Offiine Adaptation data is available a priori dictation 
Adaptation is done in advance only once system 

Dynamic, Online Adaptation data is obtained at run time dialog 
Adaptation is done incrementally system 

Rapid Only a small amount of adaptation is available Eigenvoice 
Low computational cost of adaptation process [28] 

Structural Organization of parameters in a hierarchical tree SMAP [40] 
Control adaptation by amount of adaptation data 

Table 5.1: Classification of adaptation methods 

speaker-independent (SI) 

acoustic model 

parameters 

adaptation 

adapted 

parameters 

adapted 

acoustic model 

Figure 5.2: Outline of speaker adaptation 

the acoustic models. These are usually the initial state, state transition and state occupancy 
probabilities of the HMMs, together with mixture weighting coefficients, mean vectors and co-
variance matrices of Gaussian mixtures for the output probability densities of each HMM state. 
For reliable estimation of the parameters tens of hours of speech data are necessary. Provided 
a certain amount of adaptation speech data, the task is to modify the parameters in order to 
enhance the performance of the speech recognizer on test data, which has similar characteristics 
as the adaptation data. Figure 5.2 briefly sketches the idea of model-based speaker adaptation. 

The choice of the appropriate adaptation method depends critically on the amount of adap-
tation data available and for which purpose adaptation has to be applied. If a dictation system 
has to be adapted to a specific user, it is possible to provide much adaptation data and to adapt 
the system even it takes some resources, especially computational power and users time, because 

adaptation can be carried out offiine. But if a telephone-based dialog system has to be adapted 
online to the current caller, it is not reasonable to let the user wait for a long time or ask him to 
provide large amounts of adaptation data. ・ 

The following section briefly dwells on MAP and MLLR, two adaption methods which can only 
be applied effectively, if a large amount of adaptation data is available. The Eigenvoice approach 



[A叫加tlTask/DB I~chnique I Outline of approach 

[22] RM MAP り＝且+b
[33] WSJ MLLR j1 = Ajl + b 

K 

[29] Isolet Eigenvoice il=且＋区aぷ
i-1 

[24] RM SCW,RSW Weighting of speaker-or cluster-dependent models 

[11] WSJ PCA,MLLR Constrain MLLR transformations to eigenspace 

[3] WSJ SAT Adaptation of speakers before model training 

[21] Dictation CAT Weighting of partitions of cluster means 

Table 5.2: List of important publications regarding acoustic model adaptation 

which addresses the problem of rapid speaker adaptation will be introduced in section 5.4. A 
short overview to important publications regarding speaker adaptation methods of acoustic model 
parameters is assembled in table 5.2. 

5.3 Methods for large amounts of adaptation data 

5.3.1 Maximum a posteriori (MAP) 

When estimating unknown parameters of a probability density function an optimization crite-
rion has to be defined first. Frequently applied estimation techniques are (ML) estimation and 
maximum a posteriori (MAP) estimation. The latter is also called Bayesian estimation. 

ML estimation tries to maximize the likelihood P of a training data set X. If 8 is the 
parameter of a tuple of parameters to be estimated, the optimization criterion of ML estimation 
can be expressed as follows: 

8* = argmax訳 (Xl8) (5.1) 

In MAP estimation prior densities for the unknown parameters 0 are assumed. The optimization 
criterion is then altered to 

ふ=argmax0P(X厄）P(8) = argmax訳(8ば） (5.2) 

With the Baum-Welch Algorithm ML estimates for HMM parameters are obtained. In [22] a 
scheme for MAP estimation of HMM parameters is derived. The authors assume the Dirichlet 
density for mixture weights and HMM probabilities (initial, state occupancy and state transition). 
Normal-Wishart probability density function is assumed as prior for means and covariances of 
Gaussian mixture components. 

The MAP estimati_on scheme for HMM parameters can be used if not enough training data for 
reliable ML estimation of HMM parameters is available. The importance of MAP for this thesis 
is its applicability to speaker adaptation. 

For speaker adaptation the parameters of robustly trained HMMs are employed as a priori 
information. First, the adaptation data is decoded with the existing model in order to assign 
each feature vector to mixture density components and to obtain statistics on state transition and 



state occupancies. The assigned data and statistics are used for reestimation of HMM parameters. 
The MAP reestimation formulas are very similar to Baum-Welch estimation formulas except that 
each formula consists of a weighted sum of prior information and adaptation data. Not all HMM 
parameters have to be adapted. Most effective is an adaptation of means of Gaussian mixture 
densities. The reestimation formula for the mean vector of a mixture density of an HMM is as 

follows: 

→ 
μk = 

T 

Tふ＋区 CktYt
t=l 

T 

'Tk十 I:Ckt 
t=l 

(5.3) 

凡isthe prior value of the mean vector of the k-th mixture component, Yt represents the adaptation 
data and Ckt is the posterior probability of Yt being produced by the k-th mixture component. 
冗 weightsprior information against adaptation data. If Tk = 0 the prior information can be 
canceled and the formula reduces to the conventional ML estimate for mean vector凡inBaum-
Welch formulas. 

To alleviate the disadvantage of MAP, that it can only be applied successfully if much adap-
tation data is available, a structural version of the MAP adaptation scheme was proposed in 

[40]. 
Structural adaptation methods organize the acoustic model parameters in a hierarchical tree. 

The amount of adaptation data available controls at which nodes at which tree levels_ adaptation 
should be carried out first. Adaptation of a parent node affects adaptation of its child nodes. 
For example, if there is much adaptation data, which can be asso'ciated with certain leaf nodes, 
parameters of these leaf nodes can be adapted independently from others. Otherwise, parameter 
adaptation (e.g. transformation or shift of Gaussian mean vector) of the corresponding parent 

node is adopted. 
Some evaluation results for MAP adaptation can be found in [22] [49] [43] [51]. Results 

presented in [51] show that adaptation of means is more effective than adaptation of covariances 
and adaptation of covariances is more effective than adaptation of mixture weights. 

5.3.2 Linear Regression (LR) 

An approach to speaker adaptation using linear regression was first proposed in [32] by Leggetter 
et al. and later improved in [33]. 

The idea is to transform the mean vectors of the Gaussian mixture components by a linear 

transformation. 
ら→ → 

肛 =Ak凡+bk (5.4) 

Index k indicates, that each mean vector is transformed individually. In [32] it is mentioned that 
this would lead to a complete reestimation of the all acoustic models. On the other hand, using 
only one global transformation for all mean vectors would lead to too poor adaptation results as 
more adaptation data becomes available. 

To make appropriate use of the adaptation data available, Leggetter et al. employed the idea 
of grouping mixtures or mixture components into regression classes, which are similar in terms of a 
distance measure. Depending on the amount of adaptation data available the number of regression 



classes and the grouping of mean vectors is determined and one linear transformation for each 
regression class is obtained. The parameters of the linear transformation A and bare estimated by 

the maximum likelihood (ML) criterion. This explains the approach is called maximum likelihood 

linear regression (MLLR). 
Instead of maximum likelihood (ML), Bayesian estimation of the transformation parameters 

is also possible. This approach is named MAPLR and was presented in [9]. Like in the MAP 
adaptation scheme mentioned in subsection 5.3.1 a constraint for the transformation parameters 

is introduced by a probability density function. 
In [47] estimation of transformation parameters was carried out by employing maximum mutual 

information (MMI) criterion. The approach was named MMILR accordingly. 

5.4 Methods for sparse amounts of adaptation data 

5.4.1 Eigenvo1ce 

Inspired by the Eigenface approach for face recognition, Kuhn et al. developed a technique for 
rapid speaker adaptation based on Eigenvoices [28] [29]. 

The Eigenvoice approach can be summarized as follows: Given a large training data set with 

many (n) speakers and sufficient data for each speaker, the acoustic models for each speaker are 
constructed. The parameters of each speaker-dependent model are combined to a high-dimensio叫

large supervector. If there are 50000 mixture components and the dimension of the feature space 
is 39, the dimension of the supervector is 39 * 50000~2.0 * 10りSimilarto MAP, adaptation can 
be restricted to the means of the mixture components. Principal component analysis (PCA) is 
applied to the set of n supervectors. The eigenvalue-ordered orthogonal vectors derived by PCA 
are called Eigenvoices. For adaptation it is assumed, that the parameters of the adapted acoustic 

models, combined in supervector m, can be expressed as a linear combination of the Eigenvoices, 
taking only the first k principal components名，．．．，ぞkof the Eigenvoice space. 

↓
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(5.5) 

With equation 5.5 only k parameters have to be estimated for adaptation compared with at least 
炉 +d parameters for adaptation with a global MLLR transformation, where d is the dimension of 

the feature space. The justification for this procedure is that the whole space of acoustic models 

can be approximated by the first k Eigenvoices in the mean square error sense. 
ML estimation of the weighting coefficients ai is possible with only a few seconds of adap-

tation data. The estimation process was named Maximum Likelihood Eigenvoice Decomposition 

(MLED). Experimental results presented in [28] are promising with the limitation that only a very 

small scale recognition task, letters recognition, was evaluated. 
In [6] the Eigenvoice approach is applied to a heterogeneous large speech database with data 

from 300 speakers, 100 from a proprietary database and 200 from WSJ1, leading to significant 

improvements in recognition rate with only three seconds of adaptation data per speaker. 

1 Wall Street Journal 



There are several recent publications on extensions and improvements of Kuhn's original ap-
proach. One drawback of the Eigenvoice approach is that it is difficult to apply to large vocabulary 

continuous speech recognition (LVCSR) where the number of Gaussian components is very high, 

because of the computational cost for PCA calculation. In [36] and [46] solutions to alleviate this 

problem are proposed. 
Instead of applying PCA to the supervectors of all acoustic models, in [46] the supervectors 

were first split up into subvectors and Eigenvoices were extracted for each type of subvector. Two 

settings for subvector construction were suggested: 

• mixture-based: first cluster Gaussian mixtures based on the Bhattacharyya distance, then 

combine parameters of each cluster to one subvector 

• feature-based: combine acoustic model parameters of each feature group (e.g energy, MFCC, 
△ MFCC, △△ MFCC) to one subvector 

The proposed approach was evaluated on a Mandarin speech dictation task, leading to better 

results than Kuhn's original approach [28]. 
Similar to the mixture-based approach in [46], hierarchical Eigenvoices are proposed in [36]. 

Gaussian mixture components are clustered into a hierarchical tree with the k-means algorithm. 

Eigenvoices are calculated for the vector of means associated with each leaf node of the tree. Only 
the first principal components, whose sum of eigenvalues relative to the sum of all Eigenvoices is 

higher than a threshold, are kept to build the Eigenvoice space for each tree node. For the next 
higher level of the tree, model parameters are projected into each Eigenvoice subspace associated 
with each leaf node. The coefficients obtained by these projections are combined to one vector and 

again Eigenvoices are calculated for this type of vector. This procedure is continued bottom-up 
until the root node of the tree. 

The model space to Eigenvoice space transformation can be represented by one matrix by 
combining projections matrices of each node of a certain tree level and then multiplying (bottom-

up) these matrices together. In the adaptation phase, tree nodes with enough adaptation data 
associated are selected and weighting coefficients are estimated. Beside ML estimation of weighting 

coefficients (MLED), MAP estimation of weighting coefficients was proposed (MAP ED). 
An approach which combines the ideas of both MAP and Eigenvoice was presented in [7]. The 

Eigenvoices were incorporated as a priori knowledge into a Bayesian optimization criterion by 
defining an a priori probability density function with the Eigenvoices. 

5.4.2 Subspace-based methods 

The number of parameters in acoustic models for LVCSR is very high. To reliably estimate all 

these parameters for adaptation would require as much training data as is required for the complete 

estimation of the speaker-independent acoustic models. 
The core idea of the Eigenvoice approach was to reduce the number of parameters to be 

estimated to make rapid adaptation possible. This was achieved by constraining the whole space 

of acoustic model parameters to to a very low dimensional subspace. This space was derived 

by applying PCA to a set of speaker-dependent acoustic model parameters concatenated to one 

supervector. 



Instead of constraining the space of acoustic model parameters it is also possible to constrain 
the space of transformations of acoustic model parameters. This idea was applied to the space of 
MLLR transformation parameters in [8]. 

First the speaker-independent acoustic model is built, then MLLR is applied for each training 
speaker. Next, the parameters of the calculated MLLR transformations (ふb)are combined to 

one vector. Further steps of the procedure are analog to the Eigenvoice approach described in 
subsection 5.4.1. 

The advantage of constraining the transformation parameter space instead of the acoustic 
model parameter space is a far reduced memory requirement. Even if several MLLR transfor-
mations (one transformation per regression class) are used to adapt the acoustic models for one 

speaker, the number of parameters of these transformations is far less than the number of param-
eters of the acoustic models for LVCSR. 

A similar approach was presented in [11] by using principal component regression for con-
straining the dimension of the MLLR transformation parameter space. 

5.4.3 Speaker Clustering 

There are various adaptation methods in connection with the term speaker clustering. One class 

of such adaptation methods is similar to the Eigenvoice approach from section 5.4.1, which will 
be described first. 

In [38] and more detailed in [24] two approaches, reference speaker weighting and speaker 
cluster weighting, are proposed. The parameters of the adapted model are restricted to lie in a 
low-dimensio叫 subspacespanned by the acoustic models of a set of reference speakers or a set 

of speaker clusters. The clusters can be designed manually (e.g. clustering speakers by gender or 
age) or extracted automatically by agglomerating speakers with similar acoustic characteristics. 
Sufficient data for each each reference speaker or speaker cluster is required to reliably estimate 

the corresponding sets of acoustic models. In the adaptation phase, weighting coefficients of the 
reference models are obtained by ML criterion. The only difference to Eigenvoice approaches 

is, that the supervectors, which are formed by concatenation of acoustic model parameters of 
reference models are not orthogo叫 toeach other. 

Several other approaches carry out speaker clustering online during the adaptation phase. 

Starting with a set of speaker-dependent acoustic models or a set of speakers, the speakers or 
respectively their models, which are acoustically most similar to the adaptation data, are selected. 

Selection can based on the acoustic scores obtained for adaptation data during decoding [37]. 

Another possibility is the selection of speakers with a G MM  classifier [25]. With the speech data 
or acoustic models of the selected speakers a new acoustic model is constructed. 

An approach which tries to combine the power of speaker clustering and Eigenvoices was pre-

sented in [16]. After applying Kuhn's original Eigenvoice method [29], each speaker-dependent 
acoustic model is projected onto the reduced Eigenvoice space. After clustering speakers in Eigen-

voice space, one acoustic model for each cluster is built. Unseen speech is decoded with the 
acoustic model of the cluster with the highest recognition score. 



5.5 Miscellaneous adaptation methods 

5.5.1 Adaptive Training 

In adaptive training techniques adaptation is already employed during the training phase of the 
acoustic models. The idea is to build acoustic models which represent phonetic variation indepen-
dent from the inter-speaker variability between speakers in the training data set. 

One example is Speaker-Adaptive Training (SAT) [3], where speech data of each data speaker 
in the training set is normalized by an MLLR transformation in order to suppress inter-speaker 

variability. MLLR transformation parameters and acoustic model parameters are estimated by a 

joint optimization criterion. 
Before recognition the acoustic models have to be adapted to incoming speech data of an 

unknown speaker. Again an MLLR transformation has be calculated to adjust the acoustic models 

to the characteristics of a new speaker. Since a larger amount of speech data is required for robust 
estimation of MLLR transformation parameters, the approach is not suitable for rapid adaptation. 

Another adaptive training scheme is cluster adaptive training (CAT) developed by Gales [20] 
[21]. It is an rapid adaptation scheme and employs ideas similar to clustering and weighting in 
the adaptation methods based on speaker clustering and Eigenvoices. 

In the approach there is a set of model clusters. Means vary between different clusters, but 

variances, priors and other parameters are assumed to be equal for all clusters. The Gaussian mean 
components are partitioned into classes. The adapted model is built by weighting the means of 
all model clusters. An independent weight vector is employed for each class of means. 

5.5.2 Genetic Algorithms 

In [30] an approach for rapid speaker adaptation based on Genetic Algorithms (GA) is proposed. 
Each individual of the population is represented as a string of genes, which are the means of the 

Gaussian mixture components. This representation is equal to the supervectors employed in the 
Eigenvoice approach. The fitness of an individual is defined as the time-normalized likelihood of 
the adaptation data of its acoustic model relative to the sum of likelihoods of all other individuals 

in the current population. Crossover of individual is defined as interpolation of two parents by 
weighting their genes with compositional coefficients, i.e. their sum is constrained to be 1.0. 

5.6 App 
．． 

roaches to non-native speech recogn1t1on 

The publication of Compernolle [10] is a literature survey that discusses the results of approaches 

to speech recognition of native dialects and non-native accents of a certain language. Differences 
between these two types of accented speech are pointed out, explaining the inherent difficulties of 

non-native speech recognition. 
Two main categories of approaches to non-native speech recognition can be found in literature. 

These are: 

• Lexical modeling (pronunciation modeling) 

• Acoustic modeling (acoustic model adaptation) 



In lexical modeling pronunciation variants are added to the pronunciation dictionary. The 

underlying idea is, that the pronunciation of words uttered by non-native speakers deviates from 
standard pronunciation. The variants can be designed manually or generated automatically from 
knowledge (e.g. confusion rules) which can be acquired by inspection of corrected and canonical 

phone labels (e.g. cf. [23]) or by consulting an expert group (e.g. cf. [41]), which defines mappings 
for phonemes not appearing in the first language of the non-native speaker. Experimental results 

of several research groups showed, that lexical modeling can improve the recognition of certain 

frequently appearing variants of mispronounced words to some extent [10]. However, the approach 
only works for systematic alterations of word pronunciations. 

The two main problems with non-native speech are random pronunciation errors and the 

lack of a universal representative of the group of non-native speakers. The former phenomenon 
can be explained by the unfamiliarity of the non-native speaker with unknown words [10]. The 
reason for the latter is, that the effects on a second (non-native) language depend primarily on 

a speaker's first (native) language. For example, the results of a recent study carried out by 
Flege et al. [19], examining non-native English speech of Italian speakers, support the hypothesis, 

that the phonetic subsystems of the native and the non-native language interact through phonetic 
category assimilation and phonetic category dissimilation. Assimilation refers to the effect, that 
a speaker virtually merges speech sounds from his native language and the non-native languages, 

i.e. he cannot hear the differences between them and thus will not be able to reproduce the 
non-native sound correctly. Dissimilation means establishment of a new speech sound which has 
characteristics of a native language and a non-native language speech sound. In [10] the interaction 
of the native and the non-native language is described as the projection of pronunciation onto a 
lower dimensional, less discriminative space, which is defined by the intersection of the native 
language space and the non-native language space. Consequently, mispronunciations will vary 

between speakers of different nationalities. Both phenomenons, random and native language 
dependent pronunciation errors, restrict the applicability of pronunciation modeling. 

Encouraging results for non-native English speech recognition of a single speaker group, 

Japanese speakers of English, were presented in [35]. Lexical modeling alone and in combina-
tion with acoustic modeling were evaluated. The authors employed a second (non-native) dic-

tionary containing Japanese pronunciation variants of each word in the recognition vocabulary. 
Variants were constructed from typical Japanese accented pronunciation examples. The native 

and non-native dictionaries were used in parallel during recognition. Introduction of a penalty 
when changing dictionaries during decoding of an utterance resulted in even better performance. 
Additionally, adaptation of acoustic models of phonemes with MAP was also carried out, leading 

to further reductions of word error rate. MAP adaptation of acoustic models without pronuncia-

tion modeling leaded to significant improvements, but they were smaller than those achieved with 

lexical modeling. 
In [44] some lexical and acoustic modeling techniques for Japanese non-native English speech 

recognition were compared. Improvements were achieved with pronunciation variation as well as 

using MLLR for acoustic model adaptation. Additio叫 interpolationof native and non-native 

models led to a further increase in performance. 
Further results for pronunciation modeling and acoustic model adaption for recognition of 

non-native speech can be found in [34] [2]. 
There have been approaches to non-native speech recognition with multilingual acoustic models 



and multilingual phoneme sets respectively. For example, the results in [48] suggest, that adding 
data from different native languages to the training data, a recognizer with quite uniform perfor-

mance among different accents can be built. On the other hand, performance with accent specific 
models was higher than with multilingual models [10]. Further publications on the non-native 
speech recognition with multilingual acoustic models are [18] [17]. They report improvements 

with the multilingual approach on a small digit recognition task. 
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