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概要

This report includes three major parts. The first part is HMM-based segmentation by 

combining the minimum-segmentation-error based discriminative training and explicit 

duration modeling techniques. The second part is HMM-based prosody modeling for 

Chinese speech synthesis application. The contextual feature and the question set are 

designed according to the Chinese characteristics. Also, we improve the tree・based 

clustering by considering the space weight and the meaning of questions. The last part 

is automatic detection of Japanese vowel devoicing for corpus construction. The implied 

likelihood differences are extracted from the recognition process as the voicing measure. 

Also, we apply the discriminative training for voiced/devoiced HMM training, and 

incorporate the voicing features, including autocorrelation, energy and duration, to 

improve the detection performance. 
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Abstract 

My work includes three major parts. The first part is HMM-based segmentation by 

combining the minimum-segmentation-error based discriminative training and explicit 

duration modeling techniques. The second part is HMM-based prosody modeling for 

Chinese speech synthesis application. The contextual feature and the question set are 

designed according to the Chinese characteristics. Also, we improve the tree-based 

clustering by considering the space weight and the meaning of questions. The last part is 

automatic detection of Japanese vowel devoicing for corpus construction. The implied 

likelihood differences are extracted from the recognition process as the voicing measure. 

Also, we apply the discriminative training for voiced/devoiced HMM training, and 

incorporate the voicing features, including autocorrelation, energy and duration, to 

improve the detection performance. 
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I. HMM-based automatic segmentation 

1 Minimum segmentation error based discriminative training 

1.1 Background 

In the corpus-based speech synthesis, the HMM-based automatic segmentation method 

had been popularly used for corpus construction. The conventional HMM training is based 

on Maximum Likelihood Estimation (MLE) criteria (via a powerful training algorithm, 

Expectation Maximization algorithm). In other words, this training method links the 

segmentation task to the problem of distribution estimation, and the HMMs are built to 

identify the phonetic segments, not to detect the boundary between the phonetic segments. 

This kind of inconsistency between the training and the application of HMM limits the 

segmentation performance. 

In recent years, The discriminative training method and the criteria of Minimum 

Classification Error (MCE) based on the Generalized Probabilistic Descent (GPD) 

framework has been successful in training HMM for speech recognition [5][6], and to a 

certain extent segmentation can be regarded as a state recognition task with known 

transcription. This prompts us to apply the discriminative training method and the 

corresponding criteria for the segmentation task. Here, a new criteria, called minimum 

segmentation error (MSGE), is proposed to train the HMM under the GPD framework for 

the segmentation task. 

1.2 Generalized Probabilistic Descent 

Here is a brief introduction of the core part of GPD algorit血 Fora given loss function 

£(X,A), where X is a feature vector and A represents the system parameters, we want 

to optimize A to minimize the overall expectation loss: 

L(A) = E[f(X,A)] = f f(X,A)p(X)dX, (1-1) 

where p(X) is a priori distribution. Since we do not know the a priori distribution, we 

cannot evaluate the expected loss directly. The Generalized Probabilistic Descent (GPD) 

algorithm[ 4] is a very powerful algorithm that can be used to accomplish this task. In a 

GPD framework, the target loss function is minimized according to an iterative procedure 

At+! = At -ct US I!, (XI'A)/ A~A,' (I-2) 

where U1 is a positive defmite matrix, X1 is the tth training sample used in the 

sequential training process, and£1 is a sequence of positive numbers that satisfies the 

conditions: 

"' 
心 g→oo and ii)f叶<00. (1-3) 

t=I t=I 
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In the above, an infmite number of training samples is required for convergence. In 

practice, only a fmite number of samples are available. However, we can minimize the 

empirical loss 

l N 

L。(A)=ー Lf(X;,A)= f f(X,A)pN(X)dX 
N i=I 

(1-4) 

under the GPD framework. With sufficient training samples, the empirical loss converges 

to the actual expected loss. It should be noted that the GPD framework is a general 

framework for various definitions of loss function. A more detailed introduction and 

discussion ofGPD algorithm can be found in the literatures [4][6]. 

1.3 M easurement for segmentation error 

The conventional measurement of segmentation error is usually defmed as the time 

difference in boundary location between human labeling and automatic labeling, i.e. error 

length. According to this defmition, the segmentation errors are discrete (in frame scale) 

and not explicitly related to the parameters of the HMM. Therefore, the gradient-based 

optimization methods cannot be used to minimize the segmentation errors directly. We 

should fmd another suitable measurement for the segmentation errors. 

Usually, the HMM-based segmentation is a state alignment procedure performed by 

the Dynamic Programming algorithm (e.g. Viterbi). For simplification, we look into the 

segmentation procedure of a sample X that consists of two connected segment units X1 

and X2, i.e. X = {ふふ}• In the DP algorithm, the likelihood of the best state alignment 

is calculated by 

gb(X;A) = maxg(X,Q;A) = g(X, 豆；A), 
Q 

(1-5) 

where Qb is the optimal state sequence with maximum lilrnlihood, which is calculated as 

g(X厄；A)= logP(X,Q;A) = L[logaq1_1q, + logbq, (ふ）]+log冗q0, (I-6) 
t=I 

where a--and bq, (x1) are transition probability and output probability distribution, q,_1q, 
respectively. 

With the optimal state alig皿 ent,the corresponding phonetic boundary is labeled at 

time t', which satisfies the condition that qt'-I is the final state of frrst unit and qt'is 

the frrst state of the next unit. If the boundary is not the same as the humanly labeled 

boundary, i.e. the correct boundary, the optimal state alignment is regarded as "incorrect" 

state alignment. Also, the "correct" state alignment is defmed as the optimal state 

alignment with the correct phonetic boundary restriction, which satisfies 

gc(X;A) = gJXi, 豆；A)+恥 (X2,豆；A)= g(X, 豆；A) (I-7) 

where Q and Q c2 are respectively the optimal state sequences of X and X and 
2' 

Qc = {Qc1'Qc2}・ 

Accordingly, we defmed error degree as the difference in likelihood between the 

incorrect and the correct state sequence, i.e. 
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尾=gb (X,A)-gc (X,A). (1-8) 

where gb (X,A) and gc (X,A) are the likelihood of incorrect and correct state 

sequences, respectively. When the segmentat10n 1s correct, 1.e. Qb = Qc, Ed is equal to 0. 

If Ed is larger than 0, this indicates that the segmentation is incorrect and the value of 

Ed reflects how large the segmentation error is in some aspect. In order to fmd the 

meaning of error degree in depth, we analyzed the correlation between error degree and 

error length. 
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Figure I-1. Correlation between error degree and error length 

The HMMs trained by MLE criteria were used to segment the Japanese training data 

(the details of the data information can be found in section 4). The correlation between 

error degree and error length was analyzed from all segmentation errors, and the 

correlations of some typical boundaries are shown in Figure I-1. From the figure, error 

degree is nearly linear with error length, and for different boundary types, the slope is 

different, i.e. the correlation is context dependent. For the boundary between plosive and 

vowel, or fricative and vowel, the slope is relative large, i.e. error degree is sensitive to 

error length. For the boundary between vowel and vowel, or semivowel and vowel, the 

slope is relative small, i.e. error degree is less sensitive to error length. This characteristic 

is identical to the requirement of concatenative speech synthesis, which is quite sensitive 

to the segmentation accuracy of plosive segments, since a plosive segment with an 

imprecise boundary might result in two bursts or no burst in synthetic speech, and less 

sensitive to the accuracy of vowel segment. In this sense, error degree is a meaningful 

factor for measuring the segmentation error. Because of the correlation between error 

degree and error length, minimization of error degree is also related to minimizing error 

length. 



__________________________________________________________________________________ ? 

1.4 Loss function definition 

To consider both explicit error length and inherent error degree, we defmed the loss 

function as 

£(A)= E; 尾＝幻(gb(X,A)-gc(X,A)), (I-9) 

where Et is error length and a is a positive number. In this loss function, Ef is 

regarded as a constant number in the optimization procedure by the GPD algorit血 sothe 

loss function can be differentiated with respect to the parameters. The meaning of Ef 

can be explained as follows. 

On the one hand, it indicates the consideration of explicit error length. When a 1s 

larger than 0, the loss of the training data with large error length is large, and accordingly 

the model parameters are updated on a large scale, which means there is more focus on 

eliminating large errors. From this point of view, the loss function provides a flexible way 

to optimize the parameter for the different focus. On the other hand, Ef means the 

weight of the training data, i.e. the same performance can be achieved by repeating the 

training data Ef times when the loss function is defmed as Ed only. 

This defmition of loss function is much more meaningful, reflecting both the explicit 

error length and the inherent error degree. Moreover, by this defmition, the loss function is 

continuous, differentiable, and directly related to the parameters of HMM. By using the 

gradient-based optimization method (e.g. GPD), the loss function can be minimized, 

which relates to a minimization of the segmentation error. 

1.5 Parameter updating 

Next, we optimized the parameters under this loss function by the GPD algorithm. For a 

state j of HMM h which has M mixtures, the output probability distribution is 

M M 

bh,j(ふ） =Lら，j,mbh,j,m(xt) =こ：ら，J,,,,G[ふ；μh,j,m'Rh,j,m], (I-10) 
m=l m=l 

where bh,j,m (・） is the output probability of one mixture, G[-] is a normal Gaussian 

distribution and ch,j,m'A,J,m = [μ 九j,m,/此 andRh,j,m = [び］
D 

h,J,m,l l=I are m.1xture weights, 

mean vector and covariance matrix, respectively. 

It should be noted that the HMM as a probability measure has some original 

constraints, such as: 1) the function is positive; 2)こc = 1 for all h, j, and 3) m h,j,m 

びh,J,m,l> 0 . In order to maintain these constraints during parameter adaptation, we should 

take some parameter transformations as follows: 
～ 

~ exp(ch 
C → c where c = 

, j,m) 
h,j,m h,j,m h,j,m Lexp(c,,,j,m) 

k 

μh,j,m→凡，j,m=μ ぃぶ，~,m

～ 
Rh,j,m→ Rh,j,m = Iog(Rh,j,m) 

(I-11) 

(I-12) 

(I-13) 
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The transformation in (12) is important for designing the step size for convergence. More 

discussion about the parameter transformation can be found in [ 6]. 

For a sample X11 in the training set, the adaptation of the parameter is 

where 

祝（ふ；A) 
Ah,j,m (n + 1) = Ah,j,m (n)-8 A=A,' 

8A h,j,m 

祝(X;A) 8(gb(X,A)-gc(X,A)) 
=E; 

8A h,j,m 8A h,j,m 

T 

=E;L(和(qbt-j)ー J(qct-j))b;~(xJ' 
況，1(x1)

t=l aAh,j,m 

(1-14) 

(I-15) 

where SO denotes the Kronecher delta function. For mean vector, the updating rule is 

Finally, 

匹 (x1)

腐，J,m
=c幻，m仇，m(xJR;,~,m (xt―μh,J,m)' 

A,J,m (n + 1) =凡，1,111(n+l)R九j,m.

Similarly, for the covariance matrix Rh,J,m, the updating rule is 

(I-16) 

(I-17) 

呵，J(xt)
～ 

BR 
= ch,j,mbh,j,m に）・ (R;,~,m炭，m(xt ― µh,j,m)(xt ―µ九},ml -JD), (I-18) 

h,j,m 

where Im is a identity matrix. Finally, 

Rh,J,m (n + 1) = exp {及，111(n+l)}.

Also, the mixture weight is updated as 

両，/x1)
= bh,j,m (xt)ch,j,m (I-ch,j,m) 

筏：h,j,m 

Finally 

ch,J,m (n + 1) = 
exp(ch,J,m (n + 1)) 

L exp(ch,j,n,(n + 1)). 
k 

(1-19) 

(1-20) 

(I-21) 

The meaning of the updating rule can be explained as follows. In equation (15), 

J(qbt -j)-J(qct―j) is equal to zero when qbt = qct'or equal to 1 when qbt -:f::. qc1 and 

q ht = j , or equal to -1 when q ht -:f::. q ct and q ct = j , which indicates, for an input vector, if 

the best state alignment differs with the correct state alignment, the updating rule is to 

move the parameters of the incorrect state model far away仕omthe vector and to move the 

parameters of the correct state model close to the vector. 
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2 Explicit duration modeling for automatic segmentation 

2.1 Motivation 

After applying the discriminative training method, the performance of HMM-based 

segmentation was quite impressive with small average of total segmentation errors, but it 

is not perfect due to the inevitability of large segmentation errors, which would largely 

decrease the quality of synthetic speech. 

Commonly, the segmentation e汀oris defmed as the location difference of the 

boundary between humanly labeled and automatically labeled. By examining the 

segmentation result, we found that the phonemes with large segmentation errors often 

have implausible duration, which is rather longer or smaller than the natural duration. This 

phenomenon promotes to consider the adoption of explicit duration model to avoid this 

kind of errors. Ip conventional HMM, the duration model does not explicitly exist, only 

implied by the transition probability, which assume the duration probability distribution of 

each state as a geometric distribution [9]. In deed, this distribution is usually inappropriate. 

Instead, several approaches to duration modeling have been proposed to for speech 

recognition and improve the performance in a certain extent [10][11][12]. Due to the 

difference between speech recognition task and AS task, we should fmd appropriate 

duration modeling for AS. 

2.2 Explicit duration modeling 

In conventional HMM, the duration model is implied by the transition probability, 

assuming the duration probability distribution of each state as a geometric distribution, i.e. 

P;(r) =外―1(1-au), where i is the state, P; (T) is the state duration, and pじ） is the 

state self transition probability [9]. In deed, the exponential distribution is usually 

inappropriate to the actual duration distribution [ 11]. Due to this, the large error with 

abnormal duration can occur in HMM-based automatic segmentation. In order to solve this 

problem, it is necessary to combine explicit duration model with acoustic model. 

Let us see the segmentation procedure of an input vector sequence X with N 

segments. For a state alignment q = {qi,q2, …，qN} , where each state sequence q, 

corresponds to one segment, the vector sequence is accordingly divided to 

X=(Xi, 凡，…，XN). Without explicit duration model, the conventional likelihood is 

calculated by: 

N 

Lc011(X,q;A) = Llog(だ(X;,q八））
i=l 

(1-22) 

where P/(X;,q;;A』 isthe output probability of acoustic model. The transition 

probability is included in the acoustic model. Combined the acoustic model with the 

duration model, the new lilcelihood is calculated by: 

LEDM(X,q;A) =言Vog(だ(Xi'qi;A』)＋叩log(.?;勺；ふ））） (1-23) 
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where P, パT,;Ad)and研 arethe output probability of duration model and weight of 

duration model, and T, is the length of q;, i.e. the length of each segment. Under the 

new defmition of likelihood calculation, the segmentation procedure is to fmd the optimal 

state alignment, which satisfies: 

り=maxLEnM(X,q;A) 

N 

=maxI(Iog(だ(X;,q;;Aa))+w{log(だ（たい）），
q,,T, ;~1 

(I-24) 

where q is the best state sequence. 
For duration model, one important thing is to choose the carrier of duration model, 

which might be state, phone, or syllable etc. In order to directly relate to the aim of 

segmentation, the duration model is based on the basic segment, i.e. if the basic segment is 

phone, the duration model is phone duration model, etc. In segmentation, the duration can 

be regarded as either discrete variance in frame scale or continuous variance in time scale. 

Accordingly, the probability distribution of duration model can be Garnmar or Gaussian 

distribution [11]. Here, we adopt the Gaussion distribution, i.e. 

P" (T ;A,)~ ぶ,exp[—; [ T~;n'J] (1-25) 

where md and vd are respectively the mean and variance of duration model. 

2.3 Two-step based segmentation method 

One reason that explicit duration model was not adopted in conventional HMM is the 

problem of computational complexity. If we directly search the optimal state alignment 

based on equation (3), the computational cost of segmentation is excessive large. To 

reduce the computational cost to endurable degree, many methods have been proposed for 

speech recognition [12][13], where the temporal constraint and path pruning were used. 

As these methods are not designed for segmentation, here, we proposed a two-step-based 

method to perform the segmentation with duration model, where the duration model is 

incorporated in a postprocessor procedure. The detailed procedure is described as follows. 

I). First step 

In frrst step, the explicit duration model is not taken account into segmentation. 

Without duration model, the DP algorithm can be performed with high efficiency, which is 

similar to conventional method. 

2). Second step 

Based on the segmentation result of first step, combining duration model, we use 

heuristic technique to search the optimal path by iterative procedure. It performed as: 

a) From the first boundary to the last of the sentence, search the optimal position by 

following operation. 

b) Shift the boundary to the left and calculate the new likelihood combined with 

duration model. If the likelihood increased, perform b) again; else go to c). 

c) Shift the boundary to the right and calculate the new likelihood combined with 
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duration model. If the likelihood increased, perform c) again; else go to d). 

d) If there is no allowable shift performed in whole sentence, the procedure fmished. 

Otherwise, go back to a). 

Please notice that the new likelihood is calculated only with the segment inside the 

window centered at the boundary, which means the boundary is optimized locally in each 

step. After several iterations of the local optimization, the result will be convergent and 

close to the global optimum. The preliminary experiments showed that the optimization 

result with different window sizes have a little difference. However, it also showed that 

the difference could be compensated by the appropriate weights. For high efficiency, the 

window size adopted in the later experiments is fJXed to 2. 

Compared to the conventional computational cost of segmentation, the extra cost of 

this method is the cost of second step. In the second step, the computational cost of one 

loop is comparable to the conventional cost. Commonly, it take about 2 ~ 5 iterations to 

converge to the optimum result. Then, the total computational cost of this method is just 

several times of conversional cost, which is endurable for segmentation as it is an off-line 

task. 

2.4 Weight optimization 

From the result of former experiment, the effect of duration model critically depends on 

aptness of the weight coefficient. And for different phonemes, the effect of duration model 

is different. Hence, it is very important to optimize the weight coefficient for each 

phoneme. As the duration model is incorporated as a postprocessor and the segmentation 

is based on local optimization, the conventional gradient-based optimization methods are 

not suitable for this task. Here, we adopted the hill-climbing algorithm to optimize the 

weight coefficients of duration model. The detail is as follows. 

a) Decrease or increase the weight coefficient of one phoneme in a certain strategy 

until the segmentation accuracy has no more improvement. 

b) Perform a) for each phoneme. 

c) If there is no allowable modification on the weight coefficients for all phonemes, 

then stop. Otherwise, perform b) again. 

As we expected, the weights of duration model for each phoneme are different after 

optimization. 

3 Experiments 

3.1 Experimental condition 

Here, we examine the effect of discriminative training and the explicit duration modeling. The 

experiments were performed both on Chinese and Japanese data. The details information of 

training and testing are as follows: 

1) Chinese: The training and testing data consists of 1000 and 680 sentences, 

including 27312 and 15872 phones respectively, and all the data had been 

hand-labeled. The phone set has 60 phonemes, including 21 initials, 37 fmals, 
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pause and silence. Monophone HMMs are adopted and the number of state is three 

for initials, pause and silence, and five for fmals, and the number of mixture set to 

five for each phonemes. The acoustic feature is 16 orders MFCC and energy, and 

the delta coefficients. The analysis window size and shift are 20ms and 5ms 

respectively. 

2) Japanese: The training and testing data consists of 2263 and 501 phonetically 

balanced sentences, including 185404 and 30706 phones respectively. The phone 

set used here includes 60 phonemes. Also monophone HMMs are used, and the 

number of state and mixture are respectively three and five for each phoneme. The 

configuration of acoustic feature analysis is the same to that on Chinese data. 

3.2 Effect of MS GE-based discriminative training 

We trained the HMMs by using MLE and MSGE criterion and then compared the 

segmentation accuracies of these two methods. The MLE-based HMM training is 

performed by the HTK tools.[8] In MSGE-based training, the HMMs are initialized by the 

results of MLE-based training. The performance was evaluated on both Chinese and 

Japanese data. 

3.2.1 Effect on Chinese data 

From the result of close and open test in Figure I-2(a), the MSGE-based discriminative 

training is convergent after 10-20 iterations. As can be seen in Table I-1, the accuracy of 

segmentation improved after MSGE-based training, especially for the errors less than 5ms. 

We also examined the effect of error length on loss function by training with different a 

values. When a increases from Oto 1, which means we have more focus on larger errors, 

the percentage of the errors less than 30 ms increased 0.13 %, whereas the percentage of 

error less than 5ms decreased 0.83%. 
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Figure I-2. Convergence ofMSGE-based discriminative training 

The details on accuracy with different phonetic boundaries are shown in Table I-2. 

After MSGE-based training, the average error of the CV-boundary decreased from 4.51 ms 

to 3.60 ms, i.e. a reduction of 19.7%, whereas that of the VY-boundary decreased 9.6%. 
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Since we noted that concatenative speech synthesis is much more sensitive to the accuracy 

of the CV-boundary and insensitive to the VY-boundary, this improvement appears to be 

reasonable for speech synthesis. 

Table 1-1. Segmentation accuracy for Chinese 

Percentage of the accuracy (%) Aver 

:-:;5ms :s;lOms ::;20rns :s;30ms (ms) 

MLE 70.44 86.89 95.58 97.75 6.856 

MSGE(a=O) 76.01 88.70 95.74 97.85 6.112 

MSGE(a=l) 75.18 88.65 95.81 97.98 6.174 

Table 1-2. Accuracy with different phonetic boundaries (Chinese) 

Average error (ms) 

cc CV vc VV 

MLE X 4.51 5.69 11.99 

MSGE(a=O) X 3.60 5.37 10.83 

Table I-3. Segmentation accuracy for Japanese 

Percentage of the accuracy(%) Aver 

::;5ms ~!Oms ~20ms ~30ms (ms) 

MLE 60.84 79.64 92.07 96.31 8.666 

MSGE(a=O) 70.15 84.46 94.00 97.29 7.035 

MSGE(a=l) 69.68 84.40 94.24 97.43 7.084 

Table I-4. Accuracy with different phonetic boundaries (Japanese) 

Average error (ms) 

cc CV vc VV 

MLE 5.18 7.85 7.16 11.31 

MSGE(a=O) 4.64 4.84 6.45 9.59 

3.2.2 Effect on Japanese data 

The convergence ofMSGE-based discriminative training on Japanese data can be found in 

Figure I-2(b). From Table I-3, the segmentation accuracy for Japanese was improved after 

MSGE-based training, and theeげectof Ep with different a values is similar to that for 

Chinese. In Table I-4, the largest improvement also occurred in the accuracy of the 

CV-boundary, where the average error reduced from 7.85 ms to 4.84 ms, i.e. a reduction of 

38%. 

Comparing the results for Japanese and Chinese data, we found that the improvement 

for Japanese is much larger than that for Chinese. One reason is that the HMM modeling 

in Japanese is not optimized, that is, it simply uses 3-state model for all phonemes. 

Therefore, the segmentation accuracy of the baseline trained by MLE criteria for Japanese 

is much worse than that for Chinese. Nevertheless, the difference in accuracy between 

Japanese and Chinese data is reduced after MSGE-training. This indicates that the 

MSGE-based training method can work well even when the HMM modeling is not 
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optimized. Furthermore, it can compensate for the inaccuracy of the HMM modeling to a 

certain extent. 

3.3 Effect of explicit duration modeling 

3.3.1 Preliminary experiments 

Here, the effect of explicit duration model on segmentation was investigated by applying 

different weight coefficients. For simplification, the weights of all phonemes are set to the 

same coefficients. The mean and variance of duration model for each phoneme are 

initialized with the statistical parameters calculated from the training data. Also, we 

investigated the effect both on Chinese and Japanese data to examine the language 

dependency of duration model. It should be noted that the model without duration model, 

i.e. with acoustic model only, is regarded as the baseline model, and the acoustic HMMs 

are trained by HTK tools [8]. 
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Figure 1-3: segmentatmn accuracy on Chinese data 
(a) The error average of the best(*) percent of boundary; 
(b) The error average of the worst(*) percent ofboundary 

(c) The percentage of boundary whose error length less than (*) ms 

3.3.1.1 Effect on Chinese data 

The effect of duration model on Chinese data is obviously shown with different aspects in 

Figure 1-3. Please note that the value shown in the figure is the difference of the 
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segmentation accuracy between the current model and the baseline model. After combined 

with the duration model, the average of the best 80%~100% segmentation errors decreased 

when the weight increase from Oto 10, and increased when the weight increase from 10 to 

50 in Figure I-3(a). The average of the worst 5% and 10% segmentation errors are shown 

in Figure I-3(b). From this figure, the tendency of the improvement is similar to Figure 

I-3(a), except that the average error still decreased when the weight increased from 10 to 

20. And the other difference is that the improvement in Figure I-3(b) is much larger than 

Figure I-3(a). The same phenomena can also be found in Figure I-3(c), where the 

percentage of the segmentation error less than 5, 10 or 15ms decrease when the weight 

increases from 10 to 20, whereas the percentage of the segmentation error less than 20, 25 

or 30ms still increase. As we expected, these showed the duration model has more effect 

on improving the large segmentation errors. 
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Figure I-4: segmentation accuracy on Japanese data 
(a) The error average of the best(*) percent of boundary; 
(b) The error average of the worst(*) percent of boundary 

(c) The percentage of boundary whose error length less than (*) ms 

3.3.1.2 Effect on Japanese data 

20 50 

(b) 

20 50 

The effect of duration model on Japanese data is shown in Figure 1-4, which is similar to 

that on Chinese data. Also the duration model has more effect on improving the large 

errors, especially the average of the worst 5% segmentation errors reduced nearly lOms 

when the weight is 20. The only difference is that the effect of duration model on Japanese 
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is much larger than that on Chinese. The reason is that the phoneme duration in Japanese 

is more stable than Chinese. 

From the result both on Chinese and Japanese data, we can find the accuracy of 

segmentation was improved after combined with the explicit duration model with 

appropriate weights. And the effect of duration model is language dependant. If the 

phoneme duration in the language is much stable, the duration model has much effect, and 

vise verse. Nevertheless, the duration model has much effect on improving the 

segmentation errors, especially eliminating the large errors. 

3.3.2 Results after weights optimization 

Finally, we performed the weight optimization both on Chinese and Japanese model and 

the results are shown in Table I-5 and Table I-6 respectively. From the results, the error 

average of worst 5% was reduced 4.95ms and the number of the errors larger than 30ms 

was reduced 27% on Chinese. Also, the error average of worst 5% was reduced 9.88ms 

and the number of the errors larger than 30ms was reduced 47% on Japanese. These 

indicate the segmentation accuracy was improved after combining the optimized duration 

model, especially the large errors was largely eliminated. 

Table I-5. The segmentation result on Chinese data 

Error aver (ms) Error percent (%) 

Best 95% Worst 5% >20ms >30ms 

Baseline 5.26 36.58 4.42 2.25 

EDM 4.85 31.63 3.58 1.63 

Table I-6. The segmentation result on Japanese data 

Error aver (ms) Error percent (%) 

Best 95% Worst 5% >20ms >30ms 

Baseline 6.86 42.31 7.92 3.69 

EDM 5.85 32.43 4.74 1.75 

Table I-7. Final segmentation accuracy (MSGE & EDM) 

Error aver (ms) Error percent (%) 

Total Worst 5% >lOms >20ms >30ms 

Chinese 5.79 31.78 10.72 3.64 1.68 

Japanese 6.61 32.48 14.75 4.70 1.73 

Table I-8. Final accuracy on different phonetic boundary 

Error average (ms) 

cc CV vc VV 

Chinese X 3.63 4.99 9.89 

Japanese 4.34 4.47 6.12 8.57 
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3.4 Combination of two techniques 

From the evaluation results of MS GE-based training and explicit duration modeling, these 

two teclmiques can improve the segmentation accuracy with different focus, where the 

MSGE-based training focus on improve the accuracy of the sensitive boundary, e.g. the 

boundary between the plosive and vowel, and the explicit duration modeling focus on 

eliminating the large errors. Finally, we applied both two teclmiques to improve the 

HMM-based segmentation accuracy. The results are shown in Table 1-7 and Table 1-8. 

By comparing the results with that of previous experiments, we can fmd that the fmal 

results have both advantage of MSGE-based training and explicit duration modeling, i.e. 

the segmentation accuracy of sensitive boundary had much improvement and the number 

of large errors was largely decreased. The fmal average errors of segmentation on Chinese 

and Japanese are 5.79ms and 6.61ms respectively, which is much better than that of the 

baseline. 

4 Summary 

From the results, MSGE-based training and explicit duration modeling can improve the 

segmentation accuracy with different focus, where the MSGE-based training focus on 

improve the accuracy of the sensitive boundary, and the explicit duration modeling focus 

on eliminating the large errors. After combining these two techniques, it has both 

advantages and the segmentation accuracy was largely improved. However, the 

segmentation・accuracy is not perfect compared to the human labeling. Even though the 

explicit duration model was applied, there are still some inevitable large errors. 
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II. HMM-based Chinese prosody modeling 

1 Background 

The HMM is a widely used statistic model, and has been successful on speech recognition. 

In recent years, the HMMs have been applied to speech synthesis, and several 

HMM-based speech synthesis methods had been proposed [14][15][16]. In our method, 

the synthetic speech is generated from HMM themselves by using a speech parameter 

generation algorithm[18], which is performed with the dynamic feature constraints. One of 

the advantage of this HMM-based method is that the voice characteristic of synthetic 

speech can be changed by transforming the HMM parameters appropriately. Also a 

simultaneous modeling for the spectrum, pitch and duration was introduced [17], where 

the feature is composed of the spectrum and the pitch, and the HMM based on multi-space 

probability distribution (MSD-HMM) was proposed for pitch pattern modeling [21][22]. 

This HMM-based method had been applied for Japanese prosody modeling, and the 

results were quite impressive. Here we want to apply this method for Chinese prosody 

modeling. 

2 Techniques 

2.1 MSD-HMM based pitch modeling 

Here is a brief introduction ofMSD-HMM. In the MSD-HMM[21], a sample space Q 1s 

considered, which consists of G spaces: 

G 

n = z:ng, (II-1) 
g=l 

where Qg is an ng dimensional real space R11", specified by space index g. For each 

space Q g , it has a probability w g , i.e. space weight. If n g > 0 , each space has a pdf 

function Pg (x), x E Rn" . We assume that Qg contains only one sample point if 

n =0. 

The observation feature is represented by a random vector o, which consists of a set 

of space indexes X and a continuous random variable x E Rn, i.e. o = (X, x). For a 

N-state MSD-HMM, the state output probably distribution is defmed as B = {b;(-)}~1, 
where 

b;(o) = LW;g凡(V(a)),
gES(o) 

and 

S(o)=X, V(o)=x. 

It is noted that we defme Pg (x)三 1for n g =0. 

(II-2) 

(II-3) 
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As the observation of FO has a continuous value in the voiced region, where exist no 

values for the unvoiced region. We applied the MSD-HMM for FO modeling, assuming 

that the observed FO value occurs from one-dimensional spaces and the "unvoiced" 

symbol occurs from the zero-dimensional space. By setting ng = 0 (g = 1,2, …，G-1), 

n0 = 0 and 

S(o,)~{ {1,2, …，G-1), 

{G}, 

(voiced) 

(unvoiced) 
(11-4) 

the MSD-HMM can cope with FO patterns including the unvoiced region without heuristic 

assumptions. In this case, the observed FO value is assumed to be drawn from a continuous 

(G-1)-mixture pdf More details about the MSD-HMM for pitch modeling can be found 

in [21][22]. 

2.2 HMM training procedure 

The HMM training is performed using the HTS toolkit, which is the modified version of 

HTK toolkit. The procedure is shown in Figure II-1. 

Training 
data 

Vari ance f I oar 
esti暉 tion

fl.'bnophone f-Mv1 
training 

Tri phone f-fVM 
training 

Tree-based 
clustering 

Cl ust er ed HVM 
training 

D.Jrat ion 
nIDdel i ng 

Contextual 
feature set 

Q.Jesti on 
set 

Figure II-1. HMM training procedure 

a. Variance floor estimation: In order to prevent the variance parameter of HMMs 

恥 mnear to zero when there is few training data, which is common for the full 

context HMM training, we should set corresponding floor values for them. As the 

spectrum and fD parameters with the delta coefficients are used to construct the 



18 

MSD-HMM, we should estimate different variance floor for different parameters. 

Here, the HComp V tool is used to perform this task. 

b. Monophone HMM training: This step is performed in the common way by using 

HRest tool. 

c. Full context HMM training: This step is performed in the common way by using 

HERest tool. As we adopted many contextual features, which result in a larger 

number of the full context models, it should be noted that there is only few 

training sample for each model. 

d. Tree-based clustering: As there is only one or two training samples for each full 

context model, the HMM parameter is overfit to the training data. Then the 

tree-based clustering procedure is very important to improve the robustness of the 

HMMs and balance the model complexity and the training data. And my work 

focused on this process. 

e. Clustered HMM training: This step is performed using HERest tool. At the same 

time, the statistic information about the occupancy count of each state is output for 

duration modeling. 

f Duration modeling: With the statistic information of the occupancy count, we 

construct the duration model using the tree-based clustering technique. 

2.3 Parameter generation algorithm 

With the trained HMM, the next work is to to generate the parameters. Let 

0 = {or,o2, …，or} be the vector sequence and q = {qr, q 2, …,qけ bethe state sequence. 

Here, the vector 01 consists of the static feature vector c1 and the dynamic feature 

vector Llc1 , that is o 1 = { c1, Llc1} . Then the problem is to dermine the parameter sequence 

c={ C1,C2, …, er} , which maximizes 

P[O[え]=LP[q,O[;L] (11-5) 
all q 

To solve this problem, first consider maximizing P[q,O I ,-1,J for a given state 

sequence q with respect to c . Then the probability P[ q, 0 I A] can be written as 

P[q,O I A]= P[q I A]・P[O I q, え］ (II-6) 

where 

P[O I q,,-1,J = bqq (01)位(02)... 位(or) (II-7) 

and 

九(01)= N(c1;μ1, い）-N('1c1; i1μ1,i1U1) (II-8) 

where N(-) is the Gaussian distribution, μ1 and U1 are the mean and variance of the 

static features, andμ1 and U1 are the mean and variance of the dynamic features. 

Then an approximation solution for this problem is given in [14]. By using the 

dynamic features, it performed in an iterative way with high efficiency. The details of this 

solution can be found in [14]. 
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3 Application for Chinese prosody modeling 

Here, we applied the HMM-based method for the Chinese prosody modeling. Based on the 

Chinese characteristic, we designed corresponding contextual features and question set. 

Also we improved the tree-based clustering procedure by considering the space weight 

and the meaning of questions. 

3.1 Contextual features 

In Chinese speech synthesis, the basic unit is the half-syllable, i.e. initial and fmal. The 

prosodic levels are classified as half-syllable, syllable, word, phrase and sentence level. 

And we design the contextual features and questions for each prosodic level. Here is brief 

introduction of the contextual features. The details can be found in [30](ATR Technique 

Report, TR-SLT-0032, Heiga Zen etc). 

3.1.1 Initial and final 

The classification of the initial and fmal are shown in Table II-1 and Table II-2. 

Table II-I. Classification of initials 

Stops b,d,g 

Aspirated stops p, t, k 

Affricatives z, zh,j 

Aspirated affricatives c, ch,q 

Nasals m, n 

Fricatives f, s, sh, r, x,h 

Laterals I 

Table II-2. Classification of fmals 

Mono finals a, o, e, 1, u, v, 11．． , 111, er 

Compound fmals 
ai, ei, ao, ou, ia, ie, ua, uo, ve, iao, iou, 

uai, ue1 

Nasal finals 
an, en, in, vn, ang, eng, ing, ong, ian, 

uan, van, uen, iang, uang, ueng, iong 

Based on the class1flcation we have three features: 

a. Current half-syllable type 

b. Previous half-syllable type 

c. Next half-syllable type 

3.1.2 Syllable 

The tone type related to syllable has an important role in Chinese spoken language. The 

tone has five types: high, low, rise, false and light. And it should be noted that one tone 
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can change to another tone type, i.e. new tone, in a certain environment. Thus we have two 

features related to tone type: dictionary tone type and new tone type.・The contextual 

features related to syllable are designed as follows: 

a. Previous tone type 

b. Previous new tone type 

c. Current tone type 

d. Current new tone type 

e. Next tone type 

f Next new tone type 

g. Position of current syllable in the word 

3.1.3 Word 

In Chinese, the word is the basic carrier for the part-of-speech (POS). The classification of 

POS is shown in Table 11-3. (Different from the classification in [30]) 

Table 11-3. Classification of POS for Chinese 

Numeral Neqa,Neqb,Neu 

Real 
Measure Nf 

Pronoun Nh,Nep 

Content 
Noun Na,Nl,Ni,Nd,Nc,Nb,Ncd 

Adjective A,Nes 

Virtual 
Adverb D,Da,Dfa,Dfb,Di,Dk 

Verb 
SHI,VA,VAC,VB,VC,VCL,VC,VE, 

VF,VG,VH,VHC,VI,VJ,VK,VL,V 2 

Function 
Conjunction Caa,Cab,Cba,Cbb, P 

Auxiliary DE,Ng,I,T 

Other Special symbol BOS,EOS,FW 

Based on the class1ficatlon the features related to word level are as follows: 

a. POS type of previous word 

b. POS type of current word 

c. POS type of next word 

d. Syllable number in previous word 

e. Syllable number in current word 

f Syllable number in next word 

g. Position of current word in the phrase by { syllable, word} interval 

3.1.4 Phrase 

The contextual features related to phrase level are as follows: 

a. {Syllable, Word} number in previous phrase 

b. {Syllable, Word} number in current phrase 

c. {Syllable, Word} number in next phrase 
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d. {Syllable, Word} number in previous phrase 

e. Position of current phrase in the sentence by { syllable, word, phrase} interval 

3.1.5 Sentence 

The contextual features related to sentence level are: 

a. {Syllable, Word, Phrase} number in the sentence 

b. Sentence type: question, statement 

3.2 Question set 

Based on these contextual features, the question set used for tree-based clustering was 

designed. The full list of the questions is shown below. It is similar to the question list in 

[30](ATR Technique Report, TR-SLT-0032, Heiga Zen etc). 

3.2.1 Questions related to half-syllable 

{Previous, Current, Next} half-syllable is voiced? 

{Previous, Current, Next} half-syllable is final? 

{Previous, Current, Next} half-syllable is mono-final? 

{Previous, Current, Next} half-syllable is bi-final? 

{Previous, Current, Next} half-syllable is tri-fmal? 

{Previous, Current, Next} half-syllable is compound fmal? 

{Previous, Current, Next} half-syllable is nasal fmal? 

{Previous, Current, Next} half-syllable is front fmal? 

{Previous, Current, Next} half-syllable is back fmal? 

{Previous, Current, Next} half-syllable is middle final? 

{Previous, Current, Next} half-syllable is open fmal? 

{Previous, Current, Next} half-syllable is i-class final? 

{Previous, Current, Next} half-syllable is close fmal? 

{Previous, Current, Next} half-syllable is front lingual fmal? 

{Previous, Current, Next} half-syllable is back lingual fmal? 

{Previous, Current, Next} half-syllable is middle lingual fmal? 

{Previous, Current, Next} half-syllable is lingual apical fmal? 

{Previous, Current, Next} half-syllable is gutturalize? 

{Previous, Current, Next} half-syllable is fricative? 

{Previous, Current, Next} half-syllable is plosive? 

{Previous, Current, Next} half-syllable is affricative? 

{Previous, Current, Next} half-syllable is nasal? 

{Previous, Current, Next} half-syllable is liquid? 

{Previous, Current, Next} half-syllable is labial? 

{Previous, Current, Next} half-syllable is labiodental? 

{Previous, Current, Next} half-syllable is dental? 

{Previous, Current, Next} half-syllable is apical inital 

{Previous, Current, Next} half-syllable is apical front? 
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{Previous, Current, Next} half-syllable is apical back? 

{Previous, Current, Next} half-syllable is velar? 

{Previous, Current, Next} half-syllable is unvoiced? 

{Previous, Current, Next} half-syllable is voiced fricative? 

{Previous, Current, Next} half-syllable is unvoiced fricative? 

{Previous, Current, Next} half-syllable is voiced plosive? 

{Previous, Current, Next} half-syllable is unvoiced plosive? 

{Previous, Current, Next} half-syllable is /a/? 

{Previous, Current, Next} half-syllable is /an/? 

{Previous, Current, Next} half-syllable is /ang/? 

{Previous, Current, Next} half-syllable is /ao/? 

{Previous, Current, Next} half-syllable is /bl? 

{Previous, Current, Next} half-syllable is /cl? 

{Previous, Current, Next} half-syllable is /ch/? 

{Previous, Current, Next} half-syllable is /di? 

{Previous, Current, Next} half-syllable is /el? 

{Previous, Current, Next} half-syllable is /ei/? 

{Previous, Current, Next} half-syllable is /en/? 

{Previous, Current, Next} half-syllable is Ieng/? 

{Previous, Current, Next} half-syllable is /er/? 

{Previous, Current, Next} half-syllable is /fi'? 

{Previous, Current, Next} half-syllable is /g/? 

{Previous, Current, Next} half-syllable is /h/? 

{Previous, Current, Next} half-syllable is /ii? 

{Previous, Current, Next} half-syllable is /ii/? 

{Previous, Current, Next} half-syllable is /iii/? 

{Previous, Current, Next} half-syllable is /ia/? 

{Previous, Current, Next} half-syllable is /ian/? 

{Previous, Current, Next} half-syllable is /iang/? 

{Previous, Current, Next} half-syllable is /iao/? 

{Previous, Current, Next} half-syllable is /ie/? 

{Previous, Current, Next} half-syllable is /in/? 

{Previous, Current, Next} half-syllable is ling/? 

{Previous, Current, Next} half-syllable is /iong/? 

{Previous, Current, Next} half-syllable is /iu/? 

{Previous, Current, Next} half-syllable is /j/? 

{Previous, Current, Next} half-syllable is /k/? 

{Previous, Current, Next} half-syllable is /1/? 

{Previous, Current, Next} half-syllable is /ml? 

{Previous, Current, Next} half-syllable is /n/? 

{Previous, Current, Next} half-syllable is /o/? 

{Previous, Current, Next} half-syllable is long/? 

{Previous, Current, Next} half-syllable is /ou/? 
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{Previous, Current, Next} half-syllable is /pl? 

{Previous, Current, Next} half-syllable is /pau/? 

{Previous, Current, Next} half-syllable is /qi? 

{Previous, Current, Next} half-syllable is /r/? 

{Previous, Current, Next} half-syllable is /s/? 

{Previous, Current, Next} half-syllable is /sh/? 

{Previous, Current, Next} half-syllable is /sill? 

{Previous, Current, Next} half-syllable is /sp/? 

{Previous, Current, Next} half-syllable is /ti? 

{Previous, Current, Next} half-syllable is /u/? 

{Previous, Current, Next} half-syllable is /ua/? 

{Previous, Current, Next} half-syllable is /uai/? 

{Previous, Current, Next} half-syllable is /uan/? 

{Previous, Current, Next} half-syllable is /uang/? 

{Previous, Current, Next} half-syllable is /ui/? 

{Previous, Current, Next} half-syllable is /uni? 

{Previous, Current, Next} half-syllable is /uo/? 

{Previous, Current, Next} half-syllable is /vi? 

{Previous, Current, Next} half-syllable is /van/? 

{Previous, Current, Next} half-syllable is /ve/? 

{Previous, Current, Next} half-syllable is /vn/? 

{Previous, Current, Next} half-syllable is /xi? 

{Previous, Current, Next} half-syllable is /z/? 

{Previous, Current, Next} half-syllable is /zh/? 

3.2.2 Questions related to syllable 

Tone of {previous, current, next} syllable == N? 

Tone of {previous, current, next} syllable <= N? 

Tone of {previous, cu汀ent,next} syllable is high? 

Tone of {previous, current, next} syllable is low? 

Position of current syllable in word from {head, tail} == N (in syllable interval)? 

Position of current syllable in word from {head, tail} <= N (in syllable interval)? 

Pause exist between current and {previous, next} syllable? 

3.2.3 Questions related to word 

{Previous, Current, Next} word is content word? 

{Previous, Current, Next} word is function word? 

{Previous, Current, Next} word is symbol? 

{Previous, Current, Next} word is real word? 

{Previous, Current, Next} word is virtual word? 
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{Previous, Current, Next} word is numeral word? 

{Previous, Current, Next} word is measure word? 

{Previous, Current, Next} word is noun word? 

{Previous, Current, Next} word is adjective word? 

{Previous, Current, Next} word is adverb word? 

{Previous, Current, Next} word is verb word? 

{Previous, Current, Next} word is conjunction word? 

{Previous, Current, Next} word is auxiliary word? 

POS of {previous, current, next} word is "Neqa"? 

POS of {previous, current, next} word is''Neqb"? 

POS of {previous, current, next} word is "Neu"? 

POS of {previous, current, next} word is "Nf'? 

POS of {previous, current, next} word is''Nh"? 

POS of {previous, current, next} word is "Nep"? 

POS of {previous, current, next} word is "Na"? 

POS of {previous, current, next} word is "NI"? 

POS of {previous, current, next} word is "Ni"? 

POS of {previous, current, next} word is''Nd"? 

POS of {previous, current, next} word is "Nc"? 

POS of {previous, current, next} word is "Nb"? 

POS of {previous, current, next} word is "Ncd"? 

POS of {previous, current, next} word is "A"? 

POS of {previous, current, next} word is''Nes"? 

POS of {previous, current, next} word is "D"? 

POS of {previous, current, next} word is "Da"? 

POS of {previous, current, next} word is "Dfa"? 

POS of {previous, current, next} word is "Dfb"? 

POS of {previous, current, next} word is "Di"? 

POS of {previous, current, next} word is "Dk"? 

POS of {previous, current, next} word is "SHI"? 

POS of {previous, current, next} word is "VA"? 

POS of {previous, current, next} word is "VAC"? 

POS of {previous, current, next} word is "VB"? 

POS of {previous, current, next} word is "VC"? 

POS of {previous, current, next} word is "VCL"? 

POS of {previous, current, next} word is "VE"? 

POS of {previous, current, next} word is "VF"? 

POS of {previous, current, next} word is "VG"? 

POS of {previous, current, next} word is "VH"? 

POS of {previous, current, next} word is "VHC? 

POS of {previous, current, next} word is "VI"? 

POS of {previous, current, next} word is "VJ"? 

POS of {previous, current, next} word is "VK"? 
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POS of {previous, current, next} word is "VL"? 

POS of {previous, current, next} word is "V _ 2"? 

POS of {previous, current, next} word is "Caa"? 

POS of {previous, cu汀ent,next} word is "Cab"? 

POS of {previous, cu汀ent,next} word is "Cha"? 

POS of {previous, cu汀ent,next} word is "Cbb"? 

POS of'{previous, current, next} word is "P"? 

POS of {previous, current, next} word is "DE"? 

POS of {previous, current, next} word is "Ng"? 

POS of {previous, current, next} word is "I"? 

POS of {previous, current, next} word is "T"? 

POS of {previous, current, next} word is "BOS"? 

POS of {previous, cu汀ent,next} word is "EOS"? 

POS of {previous, current, next} word is "FW"? 

Length of {previous, current, next} word== N (in syllable interval)? 

Length of {previous, current, next} word<= N (in syllable interval)? 

Position of current word in phrase from {head, tail} == N (in syllable interval)? 

Position of current word in phrase from {head, tail} <= N (in syllable interval)? 

Position of current word in phrase from {head, tail} == N (in word interval)? 

Position of current word in phrase from {head, tail} <= N (in word interval)? 

3.2.4 Questions related to phrase 

Length of {previous, current, next} phrase== N (in syllable interval)? 

Length of {previous, current, next} phrase <= N (in syllable interval)? 

Length of {previous, current, next} phrase== N (in word interval)? 

Length of {previous, current, next} phrase <= N (in word interval)? 

Position of current phrase in sentence from {head, tail} == N (in syllable interval)? 

Position of current phrase in sentence from {head, tail} <= N (in syllable interval)? 

Position of current phrase in sentence from {head, tail} == N (in word interval)? 

Position of current phrase in sentence from {head, tail} <= N (in word interval)? 

{Previous, Current, Next} phrase is question? 

3.2.5 Questions related to sentence 

Sentence length in { syllable, word, phrase} interval == N? 

Sentence length in { syllable, word, phrase} interval < = N? 

Sentence type is question? 

Sentence type is statement? 
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3.3 Role of space weight in MSD-HMM 

In the MSD-HMM, the FO is modeled as two-space variable, where one space represents 

the observed FO value and another is the''unvoiced" symbol. It is obvious that the space 

weight is much important which indicates the voiced degree of the model, where the 

G-1 

voiced space weight尻 =I氾 representsthe voiced probability and the unvoiced 
i=I 

space weight肌=w0 represents the unvoiced probability. As the space weight is not 

taken into account in the conventional HMM, some techniques used in the training and 

synthesis, are not suitable for the MSD-HMM. Due to this, we should modify them by 

considering the space weight. 

3.3.1 Considering space weight for tree-based clustering 

Although the large number of the contextual HMMs can help to capture the variable in 

speech data, it results in too many free parameters and low robustness of the models. Due 

to this, the decision tree-based contextual clustering technique has been applied to improve 

the robustness[23]. Several criteria, including Maximum Likelihood (ML) and Minimum 

Description Length (MDL) criterion[24], have been proposed to construct the decision tree. 

However, these criteria are not suitable for current use because of the difference between 

the MSD-HMM and the conventional HMM. 

In ML or MDL criterion, the splitting score is calculated as the increase of the 

lilcelihood. For an attempted question, the node N。issplit as two child nodes N1 and 

N2 , and each node has a related HMM, which is estimated from the data in the node. The 

splitting score, i.e. the increase of the likelihood, is calculated as: 

S = f1L = LI + L2 -L。, (II-9) 

where L。,L1 and L2 are respectively the total likelihood of N。,N1 and N2・

In the MSD-HMM, for a random vector a= (X, x), the likelihood is calculated as: 

R(o)~Iog(b(o))~lo{ l:WgPg(V(o))} (11-10) 
gES(o) 

In this equation, the effect of the space weight on likelihood calculation is not clear. Lets 

see a simple case. When the observed FO value is modeled as single-mixture pdf, i.e. 

G = 2 , we can rewrite the equation (5) as: 

£(a)~{1ogW, + log~(V(o)), 
log W,,, 

(voiced) 

(unvoiced) 

Accordingly, the total lilcelihood L; (i = O,I,2) is calculated as: 

L; = Lf.(o) = Llog~(V(o))+LS;, 
oEN・ oENv,; 

where Nv,i is the voiced vectors in the node N; and 

(II-11) 

(Il-12) 
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LS; = Mv,i log w;,,; + M,,,; log W, 四' (II-13) 

where Mv,i and Mu,; is the number of the voiced vectors and unvoiced vectors in the 

node N;. By substituting equation (8) and (9) into (5), we get the splitting score 

S=M=Cv+Cu+Q(o), (11-14) 

where 

CV= MV,。logwv,O -Mv,1 log wv,1 -M v,2 log wv,2, (11-15) 

and 

cu = Mu,O log W,,,o -M,,,1 log W,,,1 -M,,,2 log wu,2・ (11-16) 

It can be seen that the variation of the component Cv + Cu is small, i.e. it is trivial for the 

splitting score calculation. This means the space weight has little effect on the tree-based 

clustering. However, as we mentioned above, the space weight is much important for 

voiced or unvoiced decision. Accordingly, it should have more effect on the splitting score 

calculation. 

Here, w;,,1 and Wv,2 was denoted as the voiced space weight of the node N1 and 

N2 , and w;,,1~w;,,2 . By incorporating the space weight, the new splitting score is 

calculated as: 

S'= M_, * cp (Wv,2) * Cd (Wv,1'wv,2) (II-17) 

where 

cp (W) = e(W-Tuv)*a'if w < Tuv (II-18) 

and 

Cd(~, W2) = e/J(Wi-W2l' (II-19) 

where a and /3 are the canst coefficients, and Tuv is the threshold of unvoiced/voiced. 

In this equation, CP(w) means the penalty score for the''unvoiced node", which prevent 

the node with low voiced space weight from splitting. Another component Cd(w1, w2) 

indicates the effect of the difference of the voiced space weight between N1 and N2. By 

usingら(wi,w2), we prefer to remove the unvoiced data from the node at frrst. 

3.3.2 Considering space weight for pitch generation 

For a synthetic state with the duration De (in frames), we denote the voiced space weight 

as We. The threshold of UV decision is defined as几.The original strategy of the UV 

decision in the pitch generation can be described as following rules. 

a. If We汀几， allthe frames in current state is judged as voiced. 

b. If崖<Tuv, all the frames in current state is judged as unvoiced. 

From the rules, the unvoiced/voiced (UV) decision is made in a hard way by 

comparing the voiced space weight and the UV threshold. Due to this, there are some 

inconsistency between the generated spectrum and pitch. Especially when the spectrum 
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with the voiced characteristic is related to the unvoiced pitch, the quality of the speech 

synthesized by filter is too bad. 

We modified the strategy of the UV decision to a smooth way. WP and W, denote 

that of preceding and succeeding state, respectively. Then the new strategy of the UV 

decision is: 

a. If We 2 Tuv, all the frames in current state are judged as voiced. 

b. If附＜几 and WP+~2 l, then the first Dc * (Wc + WP―1) frames are judged 

as voiced. 

C. If附 <T and Ws +~ 叫， thenthe last Dc * (Wc + W, -1) frames are judged 

as voiced. 

d. The other frames are judged as unvoiced. 

By considering the space weight for pitch generation, it is consistent with the tree-based 

clustering procedure. 

3.4 Tree-based clustering 

3.4.1 Meaning of questions 

In the tree-based clustering process, the tree node was split by the best question regarding 

to the score. Sometimes, there are several questions with the same best score, especially 

for the low-level tree node, which due to the limited training data compared to the 

implausible combination number of the contextual features. For example: 

N_PhraseLen<40 vs. N_Phrase==XX 

The frrst question is whether the syllable number of next phrase is less than 40. The 

second question is whether there is no next phrase. When the syllable number of the next 

phrase is always less than 40 in the training data of current tree node, these two questions 

have the same score. In fact, only the second question is the best question, which has the 

general meaning for any data, whereas the first question is only fit for current training data. 

If the first question was selected to split the tree node, the decision tree will make wrong 

decision when the next phrase of the testing data has more than 40 syllables, which will be 

regarded as no next phrase. We should fmd a way to judge which question is more suitable 

or meaningful. 

As the current tree-based clustering is a full statistic procedure, there is no parameter 

represent the meaning of the questions. Also it is very difficult to add some 

knowledge-based strategy under the current framework. Taking account the influence of 

this problem, here we only focus to solve some special case related to silence, pause and 

the boundaries, which will result in fatal errors. Usually, the questions related silence, 

pause and boundary have exact and general meaning for close and open data. Since the 

names of the questions were designed in regular, the practical solution for this special case 

is very simple, just to match the key words in the question names. For example, when 

several questions have the same score, we search the key words in the names of these 

questions. If there is matched question, we select it as the best question to split the tree 

node. 
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It should be noted that we didn't really solve the problem. We just deal with some 

special case to avoid the fatal errors. We need more efforts to solve the problem. 

3.4.2 Threshold for splitting 

There are several threshold adopted for splitting the tree node. One is the threshold of the 

score to split the tree node. In minimum description length (MDL) criterion, it was 

calculated automatically from the training data, which is one of the advantage of MDL 

criterion compared to the ML criterion, where it is set by hand in a heuristic way. Another 

threshold is the minimum number of training data in the leaf node. In the original 

clustering algorithm, this threshold was adopted in frame scale. In practical application, 

we found there are few training samples in some leaf node. By analysis, it is caused by the 

frame number of some data is quite large. Therefore, we adopted the minimum number of 

the training samples as the thresholds. 

3.5 Duration modeling 

3.5.1 HRest for HMM training 

In the HMM training procedure, the embedded training was applied for full context HMM 

and clustered HMM training using HERest tool. In the embedded training, only the 

transcription is used, which means the t血ealignment labeled by hand have no direct 

effect on the duration modeling. 

Here, we apply the HRest instead of HERest tool for full context HMM and clustered 

HMM training. As the difference between the HRest and HERest is just the hard/soft 

boundary used for path searching in the parameter re-estimation, in practical application 

we use the HERest tool with the pre-segmented data to realize the function ofHRest. 

3.5.2 Two-level pause 

In the original prosody modeling, the pause has only one level. After applying the model 

to speech synthesis system, we found the synthetic duration for some small pause is too 

long, which result in uncomfortable in perception. To avoid this matter, we classified the 

pause to two levels for duration modeling. For the training data, the pauses were split to 

two levels regarding to the duration: 

Level 1: 80ms ~ 200ms 

Level 2: 200ms ~ 
Also, we add the corresponding questions for tree-based clustering. 

4 Experiments and performance 

4.1 Experimental condition 

The training and testing data consists of 1596 and 84 sentences, and all the data had been 

hand-labeled. The features used to construct the HMM are including spectrum, fD and their 
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delta coefficients. All HMMs were left-to-right models with no skip. Each state was 

modeled by a single Gaussian distribution with diagonal covariance. The number of state 

set to 5. 

4.2 Performance 

4.2.1 Variance floor estimation 

In the previous training procedure, the variance floors are set to the same for each 

parameter. Here, we applied the variance floor estimation for each parameter, and the 

results are shown in Table 11-4 and Table 11-5. 

Table 11-4. Number of the leaf node in the decision tree of each state model 

Baseline HCornpV 

S2 190 0.6% 189 

S3 428 1.3% 486 

Cepstrum S4 444 1.3% 460 

S5 334 1.0% 346 

S6 203 0.6% 200 

S2 346 1.0% 278 

S3 1100 3.3% 336 

FO S4 1387 4.1% 307 

S5 1042 3.1% 380 

S6 728 2.2% 613 

Duration 1059 3.2% 817 

Table II-5. Objective evaluation results for FO and duration model 

Baseline HCompV 

FO (Hz) 
Abs. Mean error 22.69 23.56 

RMSE 27.48 27.64 

Duration (ms) Abs. Mean error 33.87 32.85 

As can be seen in Table 11-4, the number of the leaf node in the FO decision tree 

became more reasonable regarding the number of the training data. Furthermore, the 

generated pitch contour was improved from the subject perception. Almost all of the 

obvious pitch errors have been eliminated. However, we can not fmd the improvement 

from the objective evaluation results of FO values, but a little bit deterioration. In this point 

of view, the objective evaluation is not suitable for prosody modeling. In the next 

experiments, we focused on the perception results. 

4.2.2 Considering space weight 

Firstly, we consider the space weight for tree-based clustering. Different combination of 

the values of a, /3 and T,_1v have been tested, and a, /3 and T,_1v set to 4, 1 and 0.5 

finally. From the generated decision tree, the first question to split the root node change to 
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"C _ Voiced", which means whether current half-syllable is voiced. Also, we can find other 

similar question in the high level of the FO decision tree. From this point of view, the 

generated decision tree is more reasonable. Also the generated FO was improved from the 

perception results. The major improvement is on the head and tail of the voiced unit, 

where the spectrum and the FO are more consistent. 

Next, we consider the space weight for pitch generation algorithm. To be consistent 

with the tree-based clustering, Tuv set to the same value -0.5. From the perception result, 

the speech errors due to the inconsistency between generated spectrum and FO are almost 

eliminated. 

4.2.3 HRest for HMM training 

Using HRest instead ofHERest for full context and clustered HMM training. The results 

of generated duration (not including pause and silence) are shown in Table 11-6. 

Table 11-6. Effect of training strategy on duration modeling 

HERest 

HRest 

Meane汀or

-12.88 

-12.22 

Abs. Mean error 

32.85 

28.16 

From the table, the absolute mean errors between the generated duration and the original 

duration were reduced. But, there is no any improvement on perception, but a little bit 

deterioration. So we didn't adopt this training strategy in the fmal prosody modeling. 

4.2.4 Meaning of questions 

In our system, the key words used to choose the best question from the questions with the 

same best score are including "XX", "Sil" and "Pau". After applying key-word-matching 

strategy, most questions used to split the tree node have the correct and general meaning, 

especially at the high level of the decision tree. However, the problem is not completely 

solved. We found another phenomenon, which is that the score of the real best question is 

a little bit lower than the "best" question. By analysis, the difference between these two 

questions is only one or two related data. Therefore, we modified the strategy to multiply a 

certain weight to the score of the question with key word matching. The weight adopted 

here is 1.05. Finally, almost all the questions on the high level of the decision tree have the 

correct and general meaning. 

4.2.5 Final performance 

In the fmal system, we applied the above techniques, including variance floor estimation, 

considering space weight for clustering and pitch generation, and considering the meaning 

of question by key word matching. Also, we used the threshold of the training sample in 

the leaf node as stopping criterion, and set it to 15. For duration modeling, the two-level 

pause was used. From the perception results of the fmal system, it sounds quite natural. 
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5 Summary 

We applied the HMM-based prosody modeling for Chinese application. The contextual 

feature and the question set were designed by considering the Chinese characteristics. Also, 

we improved the tree-based clustering technique by considering the space weight and the 

real meaning of the question to calculate the splitting score. From the perception results of 

the final system, the synthetic prosody sounds quite natural. 
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III. Automatic detection of Japanese vowel devoicing 

1 Background 

Corpus-based speech synthesis has been popularly used due to its high quality, which 

critically depends on the accuracy and the quality of the speech corpus. In corpus 

construction [25], phonetic transcription is generally performed according to a 

pronunciation dictionary. However, the high vowels in Japanese, especially in the Tolcyo 

dialect, are often but not always devoiced in real speech when they are in some particular 

phonetic environments. This phenomenon is customarily referred to as high vowel 

devoicing, and considered as a vowel deletion in perception. Many researchers with 

phonological or phonetics backgrounds have analyzed this phenomenon from different 

perspectives [26][27][28]. In addition to the phonetic environment, vowel devoicing is 

also affected by some other factors, including position in the utterance, pitch accent 

location, rate of speech, etc [27]. As vowel devoicing can not be exactly judged from text 

by using rules, we should detect it according to the characteristics of the speech data. 

In this paper, the detection of vowel devoicing can be regarded as a recognition task, 

simply classifying the high vowel unit as a voiced or devoiced unit. Due to this, the 

conventional HMM-based method is applied, and two kinds of likelihood differences are 

adopted as voicing measures for different focuses. As the discriminative training method 

has been successful on speech recognition [5][6], we apply it to voiced/devoiced HMMs 

training to improve performance. Usually, the acoustic features that are used to construct 

the HMM includes spectrum and energy. Taking into account the dimension of the 

parameters, the energy parameter has a very limited effect compared to the spectrum 

parameter. In fact, it should have more effect on the detection of the devoiced units. Also, 

there are some other features that can discriminate voiced/ devoiced units, including 

autocorrelation (AC) and duration. Due to this, we also try to incorporate these voicing 

features in order to improve the detection accuracy. 

The rest is organized as follows. In section 2, we introduce the HMM-based method, 

where two likelihood differences were adopted as voicing measure for different detection 

focuses, and the discriminative training method is applied to voiced/devoiced HMM 

training. In section 3, we incorporate the voicing features, including duration, energy and 

autocorrelation (AC), and combine them with the likelihood differences in several 

different ways. Finally, the experiments are performed in section 4 to examine the effect of 

discriminative training and the voicing features, and a discussion is presented in section 5. 

2 HMM-based method 

Since the detection of vowel devoicing can be regarded as a recognition task, simply 

classifying the high vowel unit as a voiced or devoiced unit, the HMM-based method was 

applied to this task. For each high vowel, two HMMs, a voiced and a devoiced HMM, are 
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constructed, and trained with human-labeled data. In the recognition process, it is 

performed to construct the recognition network by fixing all the units except for the high 

vowel unit in the original transcription, and search for the optimal path with the maximum 

likelihood. 

2.1 Two likelihood differences 

In the real task, we have different detection focuses for different applications, e.g. focus on 

removing the devoiced unit from the corpus. However, the current HMM-based 

framework does not provide a mechanism to detect the devoicing unit for different focuses. 

Therefore, we tried to extract the implied voicing measures from the recognition process. 

For a high vowel unit in an utterance, let's consider the likelihood of three typical 

transcriptions. The frrst one is the transcription where the high vowel unit is transcribed as 

a voiced unit. Accordingly, the second one is the transcription with a devoiced unit. The 

last one is the transcription where the vowel unit is deleted. We then get two likelihood 

differences as follows: 

M =L -L norm d・d evozce vozced' 

M,tee = Ldeleted -Lvoiced' 

(111-1) 

(111-2) 

where L L devoiced'voiced and L deleted are the lilcelihood of the utterance where the high 

vowel unit is transcribed as a devoiced, voiced or deleted vowel unit, respectively. With 

these two likelihood differences, it is obvious that the current HMM-based method can be 

represented as the following rules: 

RI.For a normal HMM, the unit is detected as a devoiced unit when位。rm> 0' 

otherwise it is detected as a voiced unit. 

R2.For a tee-model HMM, the unit is detected as a devoiced unit when位。rm< 0 or 

叫ee< 0, otherwise it is detected as a voiced unit. 

In fact, these two lilcelihood differences are more general than current HMM-based 

framework. We can design the rules as follows: 

R3.When M >L norm thr' the unit 1s detected as a devoiced unit otherwise it is detected 

as a voiced unit. 

R4.When位。rm< Lthr or Mtee < Lthr'the unit is detected as a devoiced unit, 

otherwise it is detected as the voiced unit. 

where Lthr is the threshold. These rules show that the current HMM-based framework is 

just a special case with the threshold equal to zero. In rule R3 or R4, the unit is detected as 

a devoiced unit if the related likelihood difference is larger than the threshold, otherwise it 

is detected as a voiced unit. From this point of view, the likelihood difference can be 

regarded as a voicing measure. Moreover, we can set different thresholds in the rules for 

different detection focuses. For example, if we want to place a greater focus on removing 

the devoiced unit from the corpus, we can set the threshold to less than zero. 

In addition, we examined the effect of these two likelihood differences by other rules, 

which are as following: 

RS.When M >L tee thr' the umt 1s detected as a devoiced unit otherwise it is detected 
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as a voiced unit. 

R6.When w *M +w *M norm norm tee tee >L thr, a umt 1s detected as the devoiced unit, 

otherwise it is detected as the voiced unit. 

where wnorm and wtee are the related weights. 

2.2 Discriminative training for voiced/devoiced HMM training 

The discriminative training method and the Minimum Classification Error (MCE) criteria 

based on the Generalized Probabilistic Descent (GPD) framework have been successful in 

training HMMs for speech recognition [6]. Since the HMM-based detection of vowel 

devoicing is a recognition task, we applied the discriminative training method for the 

voiced/devoiced HMM training. 

As the detection of devoicing unit can be regarded as a simply recognition task, the 

loss function is designed similarly. In this task, it only needs to discriminate the voiced and 

devoiced HMMs in this task, then the error measurement is simply defined as the 

likelihood difference between correct and incorrect transcription, that is 

d(X,A) = g; (X,A)-gJX,A), (111-3) 

,) are the likelihood of correct and mco汀ecttranscription, where gc(X,A) and g;(X A 

X is a feature vector and A represents the system parameters. Accordingly, the loss 

function is defmed as 

f(X,A) = 
1 

1 + exp(-rd)' 
(III-4) 

where r is a positive number. With the loss function defmition, the GPD algorithm was 

performed to minimize the overall expectation loss. The detail can be found in Section I. 

Here, the step size is defined as 

81 = 1 
a+ /Jt 

， (III-5) 

where a and /J are positive numbers, and t is the index of the training sample. 

Usually, a and /J are set to fixed values for all HMMs. However, the number of 

devoicing units is much less than the number of voicing units in speech corpus, which 

means the training data is unbalanced for the voicing and devoicing HMMs. To 

compensate for this unbalance, we designed different step sizes for the voicing and 

devoicing HMM training. Here, we define the ratio of the step size between voicing and 

devoicing HMMs as 

r; = ad I av= /Jd I f3v' (III-6) 

where ad, 凡 arerelated to the devoicing HMMs, and av, /Jv are related to the 

voicing HMMs. In our experiments, we examine the effect of discriminative training with 

different 17 values. 
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3 INCORPORATION OF VOICING FEATURES 

In conventional HMM-based methods, only the spectrum and the energy are used to 

construct the HMMs. Taking into account the dimension of the parameters, the energy 

parameter has a very limited effect compared to the spectrum parameter. In fact, it should 

have more effect on detection of devoiced units. Also, there are other features that can 

discriminate voiced/devoiced units, including duration and AC. Here, we try to incorporate 

them to improve the detection performance. 

3.1 Voicing features 

The AC had been used for voicing measure of speech [29], which represents the 

periodicity of the signal in time domain. For one frame of the signal x(t) with length T, 

the AC is calculated as 

1 T-t-1 
R(t) =一ー Lx(r)x(r + t). 

T -t r~o 
(III-7) 

Then the voicing measure fAc is defmed as the maximum value of the normalized 

autocorrelation in the interval of natural pitch periods [2. 5ms~ 12. 5ms]: 

fAc = max R(t) I R(O). 
2.5ms<t<12.5nis 

(111-8) 

When fAc is close or equal to 1, it indicates voiced frames. And values of fAc close to 

0 indicate the v01cedless frames. 

In addition to the AC, there are other features that reflect the voicedness of the high 

vowel unit. Usually, devoiced units have a very short duration even close to zero, whereas 

voiced units have a long duration. Also, a unit with very low energy can be regarded as a 

devoiced unit, even though it has a high AC value. As these features, including AC, 

duration and energy, reflect the voicedness of speech in certain aspects, here we call them 

voicing features. 

Equipped with these voicing features, the next question is how to incorporate them 

into the current framework. The simplest way is to combine these features with the 

spectrum parameters to construct the HMMs. From the results of preliminary experiments, 

that does not work. We thus need to fmd another suitable way to incorporate these 

features. 

3.2 Combining voicing features and likelihood differences 

Here, we incorporate the voicing features in a post-processing procedure. The whole 

procedure is perfom記das follows: 

a. The HMM-based method is used to perform devoicing detection, and the 

two likelihood differences are recorded. 

b. Based on the alignment of the first step, the voicing features are calculated 

for each high vowel unit. 

c. The voicing features and the likelihood differences are combined in a 

certain method to judge whether the high vowel unit is devoiced or voiced. 
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In this procedure, the key point is the method for combining the voicing features and the 

likelihood differences. Several different methods have been tested in our experiments. 

The first method is to directly sum them up by multiplying the corresponding weights, 

i.e., 

S = Wenerfener + Wdurfdur + Wacfac + W,wrmM_,norm + WteeM_,tee・ (111-9) 

where fener'fdur and lac are the energy, duration and AC, LiLnorm and Mtee are the 

likelihood differences, and w ener'w dur'w ac'w,wrm and wtee are the related weights. 

With the cumulated score, the rule similar to (R5) is adopted to detect the devoiced unit 

with certain threshold. 

In the second method, we frrst extracted statistical information, including mean and 

variance, for each voicing feature from the training data. With the statistical information, 

the voicing score for each feature f is calculated as: 

S = (f-mar /vdびー(/-mJcr Iv/, (III-10) 

where CT is a positive number, md and vd are the statistical mean and variance of the 

devoiced unit, and mv, vv are related to the voiced unit. Then these voicing score and 

the lilcelihood difference are cumulated with the related weights 

s = wener8ener + wdur8dur + wac8ac + wnormMnorm + wteeMtee. (III-11) 

The rule used for devoicing detection is similar to the frrst way. 

As the Classification and Regression Tree (CART) is an effective method for the 

classification problem, we use these voicing features and the likelihood difference to build 

a CART tree. By setting different weights for the voiced/devoiced training data, decision 

trees are built for different detection focuses. In the tree construction, the cross-validating 

technique was applied to build the right-size tree. 

4 Experiments 

4.1 Experimental condition 

The training data consisted of 2,263 phonetically balanced sentences, including 37,256 

voicing units and 3,357 devoicing units. The testing data consisted of 503 sentences, 

including 9,574 voicing units and devoicing units. All of the data had been hand-labeled. 

In the HMM-based method, monophone HMMs were used, and the numbers of states and 

mixture components were three and five for each phoneme, respectively. All HMMs were 

left-to-right models with no skips. The acoustic features were 16-order MFCC and energy 

with the delta coefficients. The analysis window size and shift were 20 ms and 5 ms, 

respectively. 

In Japanese, most devoicing phenomena occur in the vowels /j/ and /u/ (related 

devoiced vowels are transcribed as /I/ and /U/). Furthermore, the devoicing characteristic 

is vowel-dependent. Due to these factor, the effect of each technique was examined for /j/ 
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and /u/ respectively. In our experiments, receiver operating characteristic (ROC) curves 

are drawn to represent the evaluation results. See Figure 1 for a schematic representation 

of an ROC curve. ROC curves are always upward concave. The further the curve extends 

to upper left comer, the better the measure is for voicing. The definition of the hit and false 

alarm rate is shown in Table 111-1. 

Table III-I. Defmition of hit and false alarm rate 

Del::~:~ こ：ced I笠三三□Devoiced 

Voiced 

4.2 Likelihood difference for voicing measure 

The effect of the two likelihood differences was examined by testing these rules (R3, R4, 

R5 and R6), and the results for vowels /i/ and /u/ are shown in Figure III-1. Here, rule R3 

was regarded as the baseline. As can be seen from Figure III-l(a), the effect of each 

individual likelihood difference, i.e., rules R3 and R5, are not bad. After cumulating these 

two likelihood differences with equal weights, the performance of rule R6 is the best. But 

Figure III-l(b) shows that the cumulation of these two likel恥 oddifference is not the best 

voicing measure for vowel /u/, which is caused by the bad effect of the likelihood 

difference Mtee, whereas the baseline, i.e., rule R3, has the best performance. This 

phenomenon shows that the devoicing characteristic is vowel-dependent, and we need to 

adopt a suitable voicing measure for each vowel. 

4.3 Effect of d"・ 
．． 

1scnmmatlve trammg 

We examined the effect of discriminative training with different updating ratios (17=1, 5, 

15) between voiced and devoiced HMMs, and the results on vowels /i/ and /u/ are shown 

in Figure III-2. From Figure III-2(a), the performance of devoicing detection for vowel /i/ 

was improved to a certain degree after applying the discriminative training. But a different 

result can be found in Figure III-2(b), where the discriminative training had no effect on 

improving the detection accuracy of the devoiced unit for vowel /u/. We also see that the 

performances of the discriminative training with different 17 value are similar. 

4.4 Effect of voicing features 

Finally, we incorporated the voicing features and the likelihood differences in several 

methods, and the results for vowels /i/ and /u/ are shown in Figure III-3. Figure III-3(a) 

shows that the greatest improvement was achieved by cumulating the voicing features, or 

the scores of voicing features, and the likelihood differences with the optimized weights. 

The improvement by using CART tree to combine these features is very limited, which is 

not as we expected. In Figure III-3(b), the detection performance was improved by 

cumulating the voicing features and the lilcelihood differences, but the improvement is 

very limited. Also, it can be seen that there is no effect on the devoicing detection for the 
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vowel /u/ by using other two methods. 
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Figure 111-1. Effect of Likelihood difference 
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5 Discussion 

From these experiments, we can see that the same technique has a different effect on each 

high vowel. From this point of view, the devoicing characteristic is vowel-dependent, and 

a different strategy should be designed to detect the devoiced unit for each vowel. Also, 

the discriminative training has a certain effect on devoicing detection for the vowel /i/, and 

after incorporating the voicing features in an appropriate way, the. performance was 

improved for both vowels /i/ and /u/. However, there are still some errors, especially for 

vowel /u/. By analyzing the detection errors, we can see that many errors even cannot be 

co汀ectlyjudged by humans. In fact, there is no hard boundary between the devoiced unit 

and the voiced unit. Taking this into account, the current performance is quite reasonable. 
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