
Internal Use Only (非公開）

TR-SLT-0065

Clustering of Backchannels

in Japanese Spontaneous Speech

Wenzel Svojanovsky, Rainer Gruhn

March 30, 2004

概要

Human language, especially spontaneous speech, carries more information than just

spoken words. This research analyzes prosodic features of the backchannel "うん＂

based on FO, duration, and energy of the signal.

Training and test data are subsets extracted from a 150 hour corpus of spontaneous

conversational speech from one Japanese female collected in the ESP project. The data

is partially labeled with 8 types of intentional labels by human experts.

The"うん"segments are automatically clustered and classified into one of several

speech act classes.

（株）国際電気通信基礎技術研究所

音声言語コミュニケーション研究所

〒619-0288「けいはんな学研都市」光台二丁目 2番地 2TEL: 0774-95-1301

Advanced Telecommunication Research Institute International
Spoken Language Translation Research Laboratories
2-2-2 Hikaridai "Keihanna Science City" 619-0288,Japan

Telephone:+81・774・95・1301
Fax :+81・774・95・1308

c2004 (株）国際電気通信基礎技術研究所

c2004 Advanced Telecommunication Research Institute International

Contents

1 Introduction

1.1 Motivation

3

3

1.2 Theory . 4

1.2.1 What Is Prosody . 4

1.2.2 Prosodic Features 5

2 Experiments 6

2.1 Data . 6

2.2 Configuration

，

2.3 Experimental Setup . 11

2.3.1 Clustering Methods 11

2.3.2 Cluster Distance . 12

2.3.3 Vector Distance 13

2.3.4 Number Of Clusters 13

2.4 Sub clustering 13

2.5 Classification And Classifier Generation 13

3 Conclusions 15

4 Software Documentation 17

4 1 . Overview . 1 7

4.2 pros.py Application . 17

ー

4.2.1 Prosodic Features Extraction 18

4.2.2 The GUI ... ．． 18

4.2.3 Setup Of The pros.py Application 21

4.3 File Format 24

4.3.1 Vector Files ... ．． 24

4.3.2 Classifier File . 25

4.4 DataVector.py Module ．．．．． 28

4.5 Cluster.py Module 30

4.5.1 Clusters 31

4.5.2 Cluster Manager 33

4.5.3 DistMatrix . 43

4.6 Subcluster.py ．． 46

4. 7 Code Examples ．． 49

4.7.1 Top Down ．．．．．．． ．． 49

4.7.2 Bottom Up 50

4.7.3 K-Means . 51

4. 7.4 Create A Classiサer........... 52

4.7.5 Load A Classier And Classify A Vector 53

2

Chapter 1

Introduction

1.1 Motivation

Spontaneous speech is more difficult to understand than read speech. This

applies both to humans and machines. Indeed, the performance of automatic

speech recognition drops substantially, when analyzing spontaneous speech.

Today speech recognizers are powerful enough to recognize the words in a
dialog. But still the meaning can not be "understood".

Indeed, a transcription of a spontaneous dialog give hardly enough informa-

tion of the complete meaning. Humans use backchannels, such as "mhm"

and "hm" to control the dialog flow. What they say, is not important at this

time, it depends on how they say it.

Those backchannels can have several meanings. In case of "un" in Japanese

spontaneous speech, can have either have the meaning of "disagree'.'and

"agree". It also can just give a signal of listing.

Only from the transcription, a meaning is hardly to understand. This is why

speech recognizers should be able not just to understand the word "un" it

should get an idea of the meaning.

A Japanese female was wearing a portable MiniDisk recorder and a headset

and recorded her speech all day. This approach deals with an excerpt of this

data, containing 2649 token of the utterance "un". 482 token are labeled to

3

one of the groups "listen", "understand", "interest", "agree", "agree over-

all", "call back", "understand but disagree", and "emotion".

1.2 Theory

1.2.1 What Is Prosody

Prosody is (according to) both the phenomena, that involve the acoustic

parameters of pitch, duration and intensity, and the phenomena, that involve

the phonological organization at levels above the segment. A appropriate

definition is

Prosody is a systematic organization of various linguistic units

into an utterance or a coherent group of utterances in the pro-

cess of speech production. Its realization involves both segmental

features of speech, and serves to convey not only linguistic infor-

mation, but also paralinguistic and non-linguistic information.

Input Information Rules of
Grammar

Rules of Physiological Physical
Prosody Constraints C onstramts

Linguistic

Segmental and
Suprasegmental
Features of
Speech

Para-
Linguistic

Non-
Linguistic

Figure 1.1: Processes by which various types of information are manifested

in the segmental and suprasegmental features of speech

The process of speech sound production generates individual characteris-

tics of speech. Figure 1.1 displays this multi-stage process and explains the

difficulty of finding clear and unique correspondence between physically ob-

servable characteristics of speech and the underlying prosodic organization

of an utterance.

4

1.2.2 Prosodic Features

In this approach, the following prosodic features of the categories duration,

pitch, energy and glottal characteristics are excerpted from the data and

stared in prosodic feature vectors.

dur: the duration of the token

pmean: the mean power during the backchannel

pmm: the minimum power in the backchannel

pmax: the maximum power in the backchannel

ppos: the position of the maximum power relative to the duration of the

backchannel

fmean: the mean pitch during the backchannel

fmin: the minimum pitch in the backchannel

fmax: the maximum pitch in the backchannel

fpos: the position of the maximum pitch relative to the duration of the
backchannel

fvcd: the occurrence of voiced pitch relative to the duration of the

backchannel

fgrad: the the gradient from the position of the minimum and the position

of the maximum of the pitch, relative to the duration

．．
adduction quotient (Hl-H2): the difference between the first and the

second harmonic indicates a vowel. The value changes when the open

quotient rises. Researchers use (H1-H2} as an indication of open or
adduction quotient.

spectral tilt (Hl-A3): the amplitude of the third formant relative to the

first harmonic {H1-A3) is an evidence for spectral tilt and displays the
abruptness of the cut off of the airflow.

5

Chapter 2

Experiments

2.1 Data

The data for the experiments consists of 2649 token of "un". 484 of these

tokens are labeled to one out of eight the classes.
The prosodic feature vectors are extracted from the signal by the pros.py

application.

For the experimental configuration, the vector set needs to be divided into

three subsets:

training set: This set consists of the unlabeled tokens. It forms the set

which is used for clustering.

development set: This set consists of about 50% of the labeled set and is

used to assign labels to the clusters and build a classifier.

test set: The rem叫ninglabeled vectors for testing the performance of the

classifier.

Table 2.1 shows the frequency of the tokens per class and how they are

segmented over the two labeled sets.

6

FO-Mean

□ training-data

胃1+2 listen

璽 3 interest

箆 4+5 agree

□ 6 call back

惑 7+8 disagree

Duration

Figure 2.1: Visualization of training and development set. Class 1 +2 covers

a large part of the space, while class 3 is scattered. Class 6 consists of only

one vector. Class 7 +8 distinguish from other classes but 1 + 2.

Observations of the data came to the conclusion that the classes 1 and 2,

4 and 5, and 7 and 8 can be merged. They sound similar, and they are

hardly separable. Also the meaning of the speech act is related. Figure 2.1

illustrates the distribution of the classes in the feature space, reduced to the

dimension FOmean and Dur.

7

number speech act quantity dev test

1 listen 377 1so I 1ss
2 understand 46 23 23

3 interest 19 10 9

4 affirm I 14 7 7

5 affirm overall 5 2 3

6 callback 1 1

゜7 disagree 15 7 8

8 emotion 5 3 2

Table 2.1: Label number and according speech act and the frequency in the

development set (dev) and the test set (test)

8

2.2 Configuration

t

三ロ
D

Classifier
Evaluation

Score

data clusters labeled clusters

Figure 2.2: The configuration of the clustering algorithm

The figure 2.2 shows the configuration of the setup. The python module

Cluster.py clusters the training set into a given amount of clusters. Several

different experimental setups are tested in this approach.

．
゜

~ ◎

0 •

゜inhomogeneous cluster subclus七ers

Figure 2.3: Inhomogeneous dusters are subdustered

After the clustering labels are assigned to the clusters. Each cluster is rep-

resented by each centroid. The vectors of the development set are assigned

，

to the clusters using the nearest neighbor method.

According to the labeled vectors in the clusters, a label is assigned to the

clusters. Since the labels are spread inhomogeneously over the clusters, some

clusters are sub clustered. The process of sub clustering is displayed in Figure

2.3. After the subclustering the clusters can remain inhomogeneous.

After the labels are assigned to the clusters resp. subclusters, the classifier

can be generated and is test on the test set.

10

2.3 Experimental Setup

In total 72 different experimental setups are tested during this approach.

These setups different in the clustering method, the clusters distance, the

number of clusters and the vector distance measure.

2.3.1 Clustering Methods

The following cluster methods are tested during the experiments.

Bottom Up: This method starts with as many clusters as vectors in the

set. Each vector belongs to its own cluster. The two nearest clusters

are merged. This step continues until the number of clusters is reduced
to a specific value. The distance of the clusters is declared separately.

Top Down: In this method all vectors are initially gathered in one big clus-

ter. Then this cluster is split into two new clusters. Any vectors in this

cluster are assigned to one of two new clusters which are represented

by two vectors from this cluster. These two vectors can be the two

furthest neighbors in the old cluster. Since the calculation of the fur-

thest neighbors cost time, an improved algorithm termed as fast split

is established. In latter one, the furthest vector to the average center

is calculated. This vector is the first representative of the new cluster,

the second one is the furthest neighbor to the first.

k-Means: The k-Means algorithm classifies all data to a given number

of clusters. The representatives of the clusters are recalculated and

the clusters are emptied. Then the data is classified again. With each

step, the shape of the clusters become clearer. The algorithm stops

after a specific number of steps or a special criteria. The q叫 ityof the

cluster strongly depends on the initial clusters. In this approach the

initial clusters where represented by arbitrarily chosen vectors from

the training data set. Three different initial vectors are tested. The

algorithm runs 5 times.

Split & Merge: This method is a combination of the bottom up and top

down approach. The widest cluster is split into two new clusters until

a certain number of clusters is produced. Then the nearest clusters are

merged again. The number to clusters to produce changes with every

single step.

11

Bottom up + k-Means: In this method the clusters will be produced
with the bottom up method expl叫nedabove. But during the cluster-

ing process after a frequently number of merging steps, the k-Means

algorithm based on the already existing clusters runs. Then the bottom

up continues.

Split & Merge + k-Means: This a extended version of split侶 merge

algorithm. Every time the algorithm swaps from merge mode to split

mode and from split mode to merge mode the k-Means algorithm runs

to reshape the produced clusters.

2.3.2 Cluster Distance

Four types of distance measure are used used to identify a pair of clusters

for merging, so it plays a major role during a bottom up related clustering.

Center Distance: The average center vector of the cluster is calculated.

This center is an artificial vector and does not refer to an audio signal.

This kind of cluster distance uses the distance between the center

vectors.

Representative Distance: Different to the center is the representative

data vector of the cluster. After the calculation of the cluster center,

the nearest vector in the cluster to the center becomes the representa-

tive vector. The use of the representative is less accurate, especially in

clusters with a low number of vectors, but its advantage is the high ac-

celeration of the clustering by the use of a recalculated distance matrix

and the referring to an audio signal.

Average Vector Distance: In this method the average distance value is

the mean distance of all vector pairs between both dusters.

Furthest Neighbor: This method measures the distance between the fur-

thest vectors from both clusters, which is the maximum distance of all

vector pairs between both dusters.

12

2.3.3 Vector Distance

The Euclidean distance between two vectors is used in this approach. To

emphasize some prosodic features, a weighting factor during the distance

calculation is added to scale the significance of a single feature.

In total eight different weightings are tested. Therefore a Split秒 Merge+

k-Means algorithm tested all combinations of features weightings using the

factor O and 1. Only weighting are regarded, which operated in a 3 or higher

dimensional feature space. These 8100 combinations are tested to approach

an optimal weighting.

2.3.4 Number Of Clusters

During this approach the data are clustered into 20 or 40 clusters. 20 and 40

are rather arbitrarily chosen numbers. 20 seems to be a reasonable number,
because the visualization of the tokens indicated, that one cluster per class

will be insufficient, especially for the widely spread classes 1+2 ("listen")

and 3 ("interest").

If the number of clusters is increased further, e.g. to 40, the clusters become

too specialized. A very high number would probably cause a very good

performance on the development set, but a poor performance on the test

set.

2.4 Subclustering

If there are more than 20 vector assigned to one cluster and the labels are

inhomogeneous, this cluster gets subclustered.

The subclusters are generated by a k-Means algorithm with random initial-

ization.

2.5 Classification And Classifier Generation

The classifier is generated from the dusters and the development set. The

vectors in the development set are assigned to the single clusters and a

meaning is extracted from the labeled vectors in the clusters.

If the labels are too scattered in one cluster, the cluster is subclustered.

13

If a feature vector is classified, the Classifier looks up the nearest cluster

from a list of the cluster centroids. If this centroid is bound to a label, the

classifier will return the label of that centroid, else this cluster is sub clustered

and the nearest subcluster centroid is looked up.

This is a 2-level classifier, because the information of the sub clustering is not

used on the first level. Adding the sub cluster centroids to the other centroids

would influence the shape of the neighboring clusters.

The schematic structure of the classifier is explained in Figure 2.4.

j 1. level of classifier

I 2. level of classifier

Figure 2.4: Schematic illustration of the 2-level classifier. A feature vector

is assigned to a cluster on the first level. If this cluster is subclustered, the

vector is assigned to one of the subclusters.

14

Chapter 3

Conclusions

A bottom up clustering method and the furthest neighbor achieved the best
results at the evaluation. This algorithm performed an averaged class recog-

nition rate of 64.5%. This classifier classifies 80.5% of the vectors in the test

data correctly.

Some prosodic features seem to be more significant than others. So duration

and pitch features are more important for a reasonable classifier than energy

features and glottal characteristics.

The confusion matrix of the best performed classifier is given in 3.1. A clear

separation of the classes "disagree" and "agree" seem to be possible, while

"backchannels" like "listen" and "understand" hardly stand out from the

other classes. A clear classification of "interest" also seems to be difficult.

The portability of this approach to another backchannel "honma" is tested

but need to be investigated further.

15

classified as

j I class I # 1+I 2 % J I # I 3 % I # 4I +5 % I # 7I +8 %

I 1+2 j 181 I 85.8 I s I 2.4 I 9 I 4.3 J 16 I 1.6 I

I 3 I 3 1 33.3 1 4 I 44.4 I 2 I 22.2 I o I o.o I

4+5 2 20.0 1 1.0 7 70.0

゜
0.0

7+8 4 40.0

゜
0.0

゜
0.0 6 60.0

Table 3 .1: Confusion matrix on test set using a weighted 2-level classification.

Absolute number (#) and percentage of vectors in each class is given. An

averaged class recognition of 65.1% and a token recognition rate of 82.5%

(198/240) is performed.

16

Chapter 4

Software Documentation

4.1
．

Overview

This chapter will familiarize the software which is used during this approach.

Figure 4.1 shows the flowchart of the whole experiment. The audio files

are stored in a list file. The pros.py application will extract the prosodic

feature vectors and save them as "ndv" file. These normalized data vectors

can be loaded by the Cluster.py python module. A meaning is assigned to

the resulting clusters and a classifier is generated with the SubCluster.py

module.

4.2 pros.py Application

This application calculates prosodic features from a short signal and allows

a convenient and useful visualization of this tokens.

This GUI is written for "Python 2.3" and the "The Snack Sound Toolkit

2.2.3". The installation of both programs will not be discussed in this man-

ual. This software may also run on other Python and Snack versions, but it

has not been tested.

17

4.2.1 Prosodic Features Extraction

When the GUI is started, the empty field is shown. File -> Load opens a

small dialog to load data. Several file types can be chosen here. The option

"Filename --Label File" will load a file, which contains the filenames of

the audio signals and the labels, which this file gets. All other calculations

will be done automatically then.

It is important to type the complete filename including the file extension.
Latter one is usually added automatically, but not in this case.

The structure of the different file formats are discussed in section 4.3.2.

Each line of the file contains the filename and the label, separated

with a ",", like in the example. Example to calculate prosodic features:
filename01. wav, label1

filename02. 可av,label2

filename03. wav, label3

The program will extract the prosodic features from "filenameOl.wav", ere-
ate a sound object and add the label "labell" to this sound object. Then

the extraction of the features from "filename02.wav" with the label "label2",

and so on.

After these calculations the save dialog will open to get sure, that the cal—

culated data does not get lost.

After saving the data, the main :field in the GUI shows several white circle.

Each circle represents a sound token.

4.2.2 The GUI

On the picture 4.2 shows the GUI of the pros.py application. The main

canvas illustrates the circles which represent the single prosodic objects.

When the mouse points on one of these circles, the object will appear with

a yellow circle around it. The token is active then. The meters on the right

display the different prosodic features. Pressing the "L" button, the yellow

circle will jump to the directly former object. Pressing the "L" button again,

the activation will :return to the first object. This functionality makes the

comparing of two objects with each other very easy!

In the file menu reveals four option: Save, Load, Import, and Quit.

18

Save: All tokens, independent if visible, hidden, selected, ... are saved to a

file. The file format can be chosen from the option menu. The extension

will be added to the filename in the entry.

Load: New vectors can be added by loading them from a file. This dialog

offers five file types. The "lst"-file format loads clusters created with

the Cluster.py module. The option "Filename -Label File" will cal-

culate the prosodic features from a signal. This process is expl叫ned

above.

The other file formats are discussed in section 4.3.2.

Import: From older approaches, the resulting vectors can be imported.

This function is not needed anymore. These vectors did not use the

gradient of the pitch.

Quit: Quit the application.

The pros.py application allows several functionalities to handle the tokens.

One token is always active. It is marked with a yellow circle around is. The

prosodic features of this token are displayed in the meters on the right.

A token can be in several states. In can be visible, selected, and hidden. If a

token is hidden it cannot be selected. A hidden token can never be selected.

A hidden token is also not visible.

A selected token can be visible and invisible. In both states it can be moved

in the canvas, be added to a group or a cluster, deleted, A click with

the left mouse button (1MB) will select this token and unselect all other

selected tokens. If the Crtl-key pressed during the click, the other tokens

will not be unselected. The token will chance the state of selection. So a

single token can also be unselected with Ctrl+LMB. A token is visible, if

the constraints from the meters are fulfilled. It it possible to change the

meters "viewport", which de恥 esconstraints to the canvas. A token is not

visible then, if is is outside of the viewport of the meters. But it still can be

selected, so moving, deleting, grouping, ... effect this token, if it is selected.

A hidden token is also not visible, but since it cannot be selected, no action

effects the object.

The Select menu offers two options to hide and unhide token. "Hide Selected"

will set the selected token to hidden state and t1,nselect them. "U nhide All"

will set all hidden tokens to not hidden. Since then, they can be selected

19

and effected again.

The meters 011 the right side of the GUI show a thin white line on the

top and bottom. Keeping the 1MB pressed and drag along the meter,

will change the meter's viewport. Only tokens, whose value of that fea-

ture is in this viewport are visible. The meters'viewport can be reset with

Select -> Reset meters.

The coordinates of the canvas can be selected freely. Therefore next to each

coordinate axis an option menu can determ the prosodic feature, which

shall be displays in the canvas. In total there are three axis. Two for the

main canvas and a third for another small canvas, which displays a third

dimension.

Additional to the prosodic features three extra features can be displayed,

the X} Y and Zfeature. The value will be Oat initialization. A moving of the

tokens in this axis will be saved in the datavector of the "adi"-file format.

All events which change the state of the canvas causes a redraw. This redraw

can also be called by pressing the "R"-key. The redraw causes all tokens to

return to its origi叫 placein the canvas. The position in the X, Y, and Z
feature will not change.

These eve11ts that cause the redraw is the loading of new vectors, the ma-

11ipulation of the viewport and a change i11 the axis.

A token can belong to one or several groups. If a token belong to a group,
the upper part of the circle will appear in the specific group color. A token

can belong to more than one group, in the case the color if the first group

will be displayed.

It can also belong to a cluster, which is changes the color of the lower half of

the token. The group names and group colors can be changed in the setup

file, which will be discussed soon.

A click on the right mouse button (RMB) will pop up a small menu, which

allows a playing of the audio, adding to a group, hide, and delete the token.

Play plays the "wav"-file which is assigned to that token. Ctrl+LMB will

also plays the audio without popping up this menu.

Add to Group shows all groups and allow to add this the selected tokens to

the group. The group name "no group" will delete the token from all groups

it belongs. The "Group menu" is not implemented yet. It should become

a menu where the group colors and group names can be changed. In the

moment this has to be done by the setup file.

20

Delete from Group is only active, if the token belongs to a group. It displays

all groups the token belongs and allow to delete the token from a specific

group.

Hide hides the token. It will become invisible, unselected and is not ef-

fected by any event anymore. But is is not deleted. It can be recovered by

Select -> Unhide All and is not hidden then anymore. When data is

saved to a file, also the hidden objects will be saved.

Draw Spectrum is not implemented in this version. It should draw the spec-

trum of this token.

D庫詑 deletesthe object. It will not be saved or can be recovered again.

Additional to the already explained features, the Select menu offers further

useful functions. All events caused by the select menu only effect the selected

token. So eventually the function Select All should be called first from that

menu. Select Visible will select all visible objects. All other previous selected

objects will get unselected. The use of Invert Selection selects all unselected

tokens and unselect all selected token.

Since the label of the tokens may be illustrated with a color, the select

menu offers the function Group by label, which adds all selected tokens to

the group which has the same name as the label.

Select Group will invert the selection of all tokens which belong to that

specific group (this does not mean the :first group). So a selection of all tokens

but the token from a specific group can be selected by Select All +
Select Group.

4.2.3 Setup Of The pros.py Application

When the pros.py application is started, it tries to execute the file

"pros.setup". This file makes a redefinition of some global variables pos-

sible. If the file does not exist, the default values will started, which are

optimized for the "un" data.

For example in this file the floor and ceiling values of the meters, the group

names, and the group colors.

21

001.wav,labX
002. wav, labY
003.wav,labX

墨晨
[O. 223,

[O .144,

[O. 643,

[O. 492,

audio signal

file list

pros.py

ndv file

Cluster.py

SubCluster.py

Classifier

Figure 4.1: Flowchart of the experiment

22

Figure 4.2: Vis叫 izationGUI pros.py application

23

4.3 File Format

4.3.1 Vector Files

The classifier in this approach accepts only the "ndv" format, which stands

for normalized data vector. To create this file, the "pros.py" application is

able to export the data in this file format. The application handles five kinds

of files.

adi (All Data Information): This file saves all information of the sound

objects, which can be given added with pros.py. All objects are repre-

sented by a list of data. The list is similar to the one which is used in

the dvc file. In this case, additional information is appended to that

list. The special coordinates X, Y, and Z, which can be chosen in the

"pros.py" application is saved, also a list of the groups the objects

belongs and the number of the cluster. The first line in this file is a

header, which explains the order of the features.

dvc (Data VeCtor): In this file all relevant prosodic information is stored.

The first line is a header, which illustrates the order of the features

in the feature vectors. Each line of the file contains a list, which can

easily be loaded on python. This list contains all the information of

the feature vector. The single coefficients are not normalized. It is the

exact prosodic feature value, which is extracted from the audio file.

ndv (Normalized Data Vector): This is the file which is handles by the

classifier and the clustering program. The design of the file is the same

like in the dvc file format. But in this case, all coefficients are normal-

ized. This Normalization is done by the "pros.py" application. The

floor and ceiling value for the single feature group can be declared in

the "pros.setup" file.

1st (List): This :file does not use a header. It contains a list of ndv files,

which are created by the duster application. This way a complete list

of clusters can be loaded. Each file represents its own cluster. The

number of the cluster is the order the filenames.

24

Filename -Label File: To calculate prosodic features from audio files, a

list of these files and their labels can be loaded in "pros.py" application

and the feature vectors will be calculated automatically. The label and

the filename are separated with a comma. A file can look like this:

fileOl.wav,backchannel

file02.wav ,happy

file03.wav,backchannel

file04. wav, understand

When a file is loaded, the header is ignored. Changing the order of the

features in the header will not effect the vectors.

The following code shows an example, how a list can be loaded in python:

open the file

file = open ('vectors .ndv','r')

read file content

content = file.readlines()

close file

file.close()

content is a list of strings

compile

c = compile ('vec ='+content [4] ,'loading','exec')

execute compiled line

exec c

vec is no可 alist of the fourth vector

in'vector.ndv'The first line (content[O])

is the header of the nvd-file

4.3.2 Classifier File

The classifier in this approach works on voronoi regions. Each cluster is rep-

resented by one vector and the a token is classified to the cluster with the

nearest feature vector.

The classifier uses some additional information when a vector is assigned to

a cluster. This information is the distance modifier dictionary and the class

merge list. Both are saved in the first six lines of the classifier header. If

25

both are not used, they should be at least in the file as empty list or empty

dictionary.

The third line cont叫nsthe distance modifying dictionary and the fifth line

cont叫nsthe merge list. The first, second, forth, and sixth line can be ig-

nored. They give information to a human reader of the file, no information

for the classifier.

The following lines are the representative vectors of the clusters. The label of

these feature vectors may not the original labels. In this case, they represent

the meaning of this cluster.

If a cluster is subclsutered, the label is not a class, it will look like "subclus-

ters+5+". The number (here 5) is the number of the cluster.

After all representatives of the main clusters the sub clusters are listed. Each

subclustered cluster begins the a headline, like the "label" is had before. In

this case it would be "subclusters+5+". The representative vectors with the

meaning of the clusters as label follow.

Short cutout of classifier file. This classifier consists of 11 main clusters.

Cluster 5 is subclustered into 3 subclusters, cluster 10 into 5

classifier file

dictionary for weightings=

{'H1H2': 1.0,'pwrMax': 0.0,'pwrMin': 0.0, ... }

representatives of clusters

merge list=

[['listen','understand','backchannel'], ...]

representatives of clusters

［＇胃 av/FAN008_09-281.019.wav','backchannel',...]

['wav/FAN008_17-417 .043. 訂av','backchannel',...]

［＇訂 av/FAN007 _12-830. 037. wav','back channel', ...]

［＇可 av/FAN004_01-46.47.wav','agree',...]

['wav/FAN007_11-456.373. 岡av','backchannel',...]

['窟av/FAN002_10-25.945.wav','subclusters+5+',...]

［＇岡av/FAN009_01-569.564.岡av','backchannel',... J
['wav/FAN008_12-664.372. 可av','backchannel', ... J
［＇胃av/FAN003_07-930.096.四av','agree',...]

['wav/FAN002_10-44.364. 胃av','backchannel',...]

['胃av/FAN002_10-28.898.wav','subclusters+10+',...]

subclusters+5+

['可av/FAN008_16-190.473. wav','backchannel', ...]

26

['研av/FAN007 _12-491. 674. wav','back channel', ...]

['wav/FANOO生 07-35.783.wav','agree',...]

subclusters+10+

［＇可 av/FAN011_01-181.341.wav','backchannel',...]

['wav/FANOO生 07-559.622.wav','disagree',...]

['wav/FAN010_10-322.286. 訂av','backchannel', ... J
［＇四 av/FAN010_01-583.731.可av','disagree',...]

['wav/FAN003_10-54.609. 訂av','agree',...]

27

4.4 DataVector.py Module

This documentation explains the functionality of the Data Vector module for

python. The feature vectors in this approach are represented by objects of

the class Data Vector.

In principle all kind of data vectors can be clustered with "Cluster.py" as

long the Data Vector module is reimplemented correctly.

First of all, this module is described like is is now. Then is explained, how

it may be changed.

The DataVector module MUST contain the following three functions:

getDistance(vecl, vec2): to calculate the distance between two vectors.

loadFromString(string): to load a Data Vector object from a string

calcCentroid([vectors):] to calculate the centroid of vector given in a list

Also the class called "Data Vector" with the method "get String". The objects

of the class have to have at least the attribute "cluster" and "rnatrixindex".

Both attributes are integers and first one should be initi叫 zedwith O and

latter one with -1.

First of all, the Data Vector module declares a class called "Data Vector".

The objects in this approach have an attribute for each prosodic feature.

Additio叫 lythe filename of the features. The constructor''__ ini t __''

reads the demands the :filename of the vector and its label.

_sub:

_add: These are special methods to define the call of the operator meth-

ods. Since in this approach these are static 13 dimensional vectors, the

adding and subtracting is the standard operation.

getNorm(): This method returns the Euclidean norm of the Data Vector

object. The significance of the feature space can be modified with the

"modiFactor" dictionary.

28

getString(): To save the vectors to a file, this method returns a string,

from which the vector can be loaded again.

getList(): This method saves the features of the vector to a list. This

method is used in getString to save the vectors to a file.

loadFromList(): To get the feature data from a list, which can be loaded

from a file, this method recreates the feature coefficients of the

DataVector object from the list.

The following functions are implemented in the module but do not belong

to the the class Data Vector itself.

calcCentroid([Data Vector):] This functions calculates the centroid of

the Data Vector objects, which are in the stored in the list given by

the parameter. This function is called when a cluster is updated and

the new representative of the cluster is calculated.

loadFromString(string): To load a Data Vector object from a file, this

function constructs an instance of Data Vector and restores the fea-

tures, which are saved in the string. In this implementation, load-

FromString creates a new list and calls loadFromList to fix the new

instance.

getDistance(Data Vectorl, Data Vector2): During the clustering pro-

cess the distance between two Data Vector objects is measured by the

c叫1if this function.

In this implementation it calculates the Euclidean distance between

the vectors. This distance can be modified by the factors stored in

the modiFactor dictionary. This makes a scaling of the single features

possible.

29

4.5 Cluster.py Module

This is a documentation for the Cluster.py Module for Python. It shall

help to cluster and save Data Vector objects, de恥 edin DataVector.py. The

Clusters created with module can be saved and loaded in "pros.py" for

visualization.

Importing this module is easy. Just type:

import Cluster

or in combination with other modules:

import sys, os, Cluster, string

Cluster.py defines a class called "Cluster" which offers several methods to

handle clusters, such as merging, splitting, or deleting. The class "Cluster"

can and should be used as a cluster manager. The static functions are suffi-

cient to handle Clustering algorithms and to load and save the clusters.

After the module is loaded, the script gain access to the class

"cluster" by typing Cluster. Cluster. The first "Cluster" identi-

fies the module, the second to identify the class. The code line

Cluster .Cluster. create("hello cluster") will create a new cluster and

add the information to the cluster manager.

Annotation:

Since it is a lot of effort always to type Cluster.Cluster, in front of a

method, the trick of defining a pointer to the class can save time, bytes, and

nerves.

CC= Cluster.Cluster

CC.create("hello cluster")

CC.create("a ne百 cluster")

It shortens the code and makes it more clearly. This kind of shortcut will be

used in this documentation.

30

4.5.1 Clusters

The following attributes are defined in each cluster.

name

number identifier for the cluster

A cluster has carries several information, which are necessary to handle

it efficiently. Each cluster has an individual number, given by the cluster

manager. The cluster can be identified by the number. The cluster also has

an individual name, which can be given by the user. It is possible to identify

the cluster by the name. Merging and splitting will change the name of the

cluster, so it is not a reliable identifier. Merging or splitting causes a deletion

of one cluster which also deletes the name and the number.

index number in cluster list

The index is the most important identifier in the manager. It is the number

in the cluster list and allows direct manipulation of the attributes or calling

non-static methods. Both is not recommended. This is the job of the cluster

manager and should only be used, if the manager itself is insufficient for

your problem. Cluster. Cluster. clusters [3] .number = 12 could cause

trouble, because the number of a cluster is changes here without changing

the number dictionary or the consistence of the cluster identifiers. The index

can be get from a dictionary.

idx1 = Cluster.Cluster.getlndexNumber(12)

idx2 = Cluster.Cluster.getlndexName("hello cluster")

For shorter code, use:

CC= Cluster.Cluster

idx1 = CC.getlndexNumber(12)

idx2 = CC. getlndexName ("hello cluster")

31

This annotation will be used through the documentation and will not be

explained further in this and the following chapter.

The static methods "getlndexNumber" and "getlndexName" look up the

index in the static dictionary "numberindexDict" resp. "nameindexDict".

"idxl" carries now the index of the cluster with the number 12 and "idx2"

of the cluster with the name "hello cluster"! Both can be the same. If the

number or the name does not exist in the dictionary -1 will be returned.

vectors list of data vectors in the cluster

vectorCount number of vectors in the cluster

changed counting for changes in the cluster

Each duster contains a specific number of vectors. The number is counted

and saved in "vectorCount". "vectors" is a list which saves the pointers to

the Data Vector objects. If vectors are deleted or added to a duster this could

change the width, or other values in the cluster. This is why the changes are

counted in "changed".

center center of cluster

representative representative of cluster

furthest furthest vector to the center in the cluster

meanDist mean distance of all vectors to the center

To duster data, the information "how the cluster looks" is important. "cen-

ter", "representative", and "furthest" are Data Vector objects which are c祉

culated after the call of the the "update" method.

"center" is the mean center of all vectors in the cluster.

"representative" is a pointer to the vector with the shortest distance to the

"center" vector. The advantage of the "representative" is, that it is a vec-

tor loaded like叫1other vectors. So it can be used for precalculation and

points to a "wav"-file to make a listening to the cluster possible. The clear

disadvantage is, that it could be relatively far from the center, especially in

clusters with a small number of vectors.

32

"furthest" is the furthest vector to the center. "furthest" is used in fast split-

ting the cluster.

"meanDist" is the average distance to the center of the cluster and represents

in some way the width of the cluster.

4.5.2 Cluster Manager

The cluster manager is the center of this clustering module. New clusters

can be created and are stored in static lists and are automatically included

in algorithms. As long as possible, only the manager with the following

methods should be used. In the following examples the shortcut "CC" will be
used instead of "Cluster. Cluster". This shortcut can also be implemented

in the python code using "CC = Cluster. Cluster"

Following static attributes uses the cluster manager:

vector Data a list to store all vectors for clustering

clusters a list where all "Cluster" objects are saved

namelndexDict a dictionary to get the index of a cluster in "clusters"

．
numberlndexD1ct a dictionary to get the index of a cluster in "clusters"

distMatrix a matrix where all distances between the vectors a saved

newClusterNumber a counter for the cluster numbers

The following static methods handle the vector and cluster management.

create (string)

clusterNumber = CC.create("hello cluster11)

This method creates a new duster with the name given in the parameter

string. The new duster is automatically added to the duster list of the dus-

ter manager. "create" returns the individual number of the duster.

getindexName(string)
getindexNumber(integer)

33

index1 = CC.getindexName("hello cluster")

index2 = CC.getindexNumber(12)

Returns the actual index of a cluster identified by the name or number of the

cluster. The index is important for the most methods of the cluster manager.

The index may change during clustering, because of merging or deleting or

splitting clusters. So it is important to get the actual index.

loadVectors(filename, index= -1)

number1 = CC.create(11cluster for vectorfile111)

create new cluster

number2 = CC.create(11cluster for vectorfile211)

create new cluster

index1 = CC.getindexNumber(number1)

get index of ne可 cluster

index2 = CC.getindexNumber(~umber2)
get index of ne可 cluster

cc. loadVectors (11vectorfile1 .ndv11, index1)
load vectors and add to cluster

CC. loadVectors (11vectorfile2 .ndv11, index2)

load vectors and add to cluster

CC. loadVectors ('1vectordata_remain. ndv11) ## load vectors

"loadVectors" will load a "ndv"且le,which can be created with the pros.py

application. The vectors in the file will be all appended to "vector Data" and

if the index (second parameter) is set, the new vectors will also be added to

the cluster with the index in manager cluster list.

The code above creates two new clusters with individual names. The num-

ber of these new clusters are saved in "numberl" and "number2". Then the

index of these clusters are saved in "indexl" and "index2". The manager

starts loading "vectorfilel.ndv" and append the vectors in this file to "vec-

tordata" and also add to the duster with the name "cluster for vectorfilel".

The same happens with the vectors in "vectorfile2.ndv", but they are added

to the cluster named "duster for vector:file2".

The vectors in "vectordata_rem叫n.ndv"are only loaded and appended to

"vector Data".

34

loadVectorsToClusters(filename)

CC.loadVectorsToClusters("vectors.ndv")

"loadVectorsToClusters" will load all vectors from the "ndv"-file and ap-

pend to "vector Data". It will also create a new cluster for each vector. This

is the way a Bottom up algorithm can be initialized.

loadRepresentatives(filename)

CC.loadRepresentatives("cluster.crp")

"loadRepresentatives" loads a "crp"-file which contains both the center vec-

tor and the representative vector of a cluster. For each pair of vectors a

cluster is created and the "representative" and "center" vector objects are

set. The vector in the "crp" file are not appended to "vector Data".

loadClusters(filename)

CC.loadClusters("clusters.lst")

"loadClusters" reloads the clusters from the "1st" file, created with

"saveClusters". All vectors will be appended to "vector Data" and new clus-

ters are created, containing the vectors before saving.

calcDistMatrix

CC. calcDistMatrixO

The distance matrix is of the type DistMatrix, a class which is also defined

in the Cluster.py module. This method will calculate the distance matrix for

all vectors loaded to "vector Data". The call of this method is only needed

once. Since it takes time (depending on the number of vectors in "vector-

Data"), it is not calculated automatically. Some methods need to look up

the distance in this matrix, because the looking up is quiet more faster than

35

calculating the distance again.

getDistanceFurthest(idx1, idx2)
getDistanceRep (idx1, idx2)
getDistanceCenter(idx1, idx2)
getDistanceAverage(idx1, idx2)

CC. calcDistMatrix ()

idx1 = CC.getindexNumber(42)

idx2 = CC.getindexNumber(23)

name1 = CC.clusters[idx1] .name

name2 = CC.clusters[idx2].name

print "distance between "+name1+"

print "distance of centers

print "distance of representatives

print "distance of furthest pair

print "average distance of vectors

and "+name2" : 11

: ", CC.getDistanceCenter(idx1, idx2)

: ", CC.getDistanceRep(idx1, idx2)

: ", CC.getDistanceFurthest(idx1, idx2)

: ", CC.getDistanceAverage(idx1, idx2)

Once both indices are given, "getDistance???" will calculate the distance

between both clusters. There are several ways to calculate the distance be-

tween clusters. One way is to calculate the center of the clusters and use

this distance of these vectors.

"getDistanceCenter" does it this way. The disadvantage is, that this method

is very slow. No precalculation is possible and the center must be recalcu-

lated after every change in the cluster. This takes time and a bottom-up

method using this cluster distance is probably the slowest.

Similar to the distance measure of the center, the representative of the clus-

ters can be used. "getDistanceRep" calculates the distance between both

representatives and returns the value. Due to precalculation with "calcDist-

Matrix" the value can be read quickly. If the distance matrix is not calcu-
lated, the value will be calculated like in "getDistanceCenter" and has no

speed advantages.

"getDistanceFurthest" calculates the distance of the furthest vector pair be-

tween both dusters. Therefore several distances have to checked. This is why

the distance matrix has to be calculated with "calcDistMatrix".

"getDistanceA verage" calculates the average distance of each vector pair

from both clusters. This method also needs the distance matrix which is

calculated with "calcDistMatrix".

36

addVector(self, *vectors)

vec1 = Data Vector. DataVector("nofile", "dummy vector 1")

vec2 = Data Vector .DataVector("nofile", "dummy vector 2")

vec3 = Data Vector .DataVector("nofile", "dummy vector 311)

idx = CC.getindexNumber(42)

CC.clusters[idx] .addVector(vec1)

CC.clusters[idx] .addVector(vec2, vec3)

"addVector" is a non-static method, which is frequently used. It adds one

or more object of Data Vectors to a cluster. The cluster is often accessed

directly through the cluster list in the cluster manager. This example show,

how three vectors can be added to a cluster. The cluster information like

the mean distance or the center vector is not updated, due to the reason

of time. This can be done by the non-static method "update". The line

"CC.clusters[idx] .addVector(vec1, vec2, vec3)" would have added

all three vectors to the cluster and so displace the last two lines of the

example.

update(self, limit=O)

vec1 = Data Vector .DataVector("nofile", "dummy vector 1")

vec2 = Data Vector .DataVector("nofile", "dummy vector 2")

vec3 = Data Vector .DataVector("nofile", "dummy vector 3")

idx = CC.getindexNurnber(42)

CC.clusters[idx] .addVector(vec1, vec2, vec3)

CC.clusters[idx].update(2)

The "update" method is a method to (re-) calculate the main information

of a cluster. These information are:

center: a Data Vector object which points directly into the center of the

cluster

representative: the nearest Data Vector object to the center in the cluster

37

meanDist: the average distance from all vectors in the cluster to the center

furthest: the furthest vector from from the center in the cluster

Everytime a cluster experience a change like the adding of a vector or

merging of two clusters, ... the cluster internal variable "changed" is in-

creased. The update will only proceed, if the parameter "limit" is higher

than "changed". So "update(O)" resp. "update()" will start calculating, if

there was any change at the cluster.

classifyVectorNearestRep(vec)
classifyVectorNearestCenter(vec)

vec1 = Data Vector .Data Vector('1nofile'1,'1dummy vector 1'1)

vec2 = Data Vector .DataVector(11nofile'1,'1dummy vector 211)

idx1 = CC.classifyVectorNearestRep(vec1)

idx2 = CC.classifyVectorNearestCenter(vec2)

number1 = CC.clusters[idx1] .number

name2 = CC.clusters[idx2] .name

print'1first vector was put in cluster number : %i11 % number1

print "second vector was put in the cluster'11 + name2 +"'. 11

The "classifyVectorNearest'!'?'?" method searches the cluster, which has the

nearest center or representative to the given Data Vector object. The object

will be added to this cluster. The method returns the index of the cluster.

mergeClusters(idx1, idx2)
mergeClustersNumber(nb1, nb2)
mergeClustersName(nm1, run2)

idx1 = CC.getindexName("cluster 1")

idx2 = CC.getindexName("cluster 2")

CC.mergeClusters(idx1, idx2)

CC.mergeClustersN皿 ber(42,23)

CC.mergeClustersName("hello", "cluster")

"mergeClusters" merges two clusters to one and deletes the source clusters.

This may cause changes to the indices of the clusters, also the names or num-

bers of the deleted clusters ore deleted from the dictionary and the clusters

38

cannot be accessed this way anymore.

The clusters can also be identified by the name or the number of the clusters.

deleteCluster(index)

idx = CC.getindexNameC'cluster to delete")

CC.deleteCluster(idx)

The cluster with the given index will be deleted. A deletion will cause

changes to the indices of the clusters. Saves indices can be worthless. There-

fore, to access a specific cluster, use the name or the number of the clus-

ter and get the actual index of this cluster with "getindexN ame" resp.

"getindexN umber".

splitCluster(index)
splitClusterFurthest(index)

CC.splitCluster(23)

CC.splitClusterFurthest(42)

There are sever叫 waysto split a cluster. Two are implemented in this man-

ager. Both ways choose two vectors from the cluster and add each other

vector to the nearest new cluster.

The one way implemented in "split Cluster" is a fast way. During the update,

the furthest vector to the center is calculated. A second check of all vectors

in the cluster searches the vector which is the furthest vector to the furthest

vector from the center. The search of the two vectors is in O (n), while n is

the number of vectors in the cluster. The other way, which is implemented in

"splitClusterFurthest" searches the furthest neighbors in the clusters. This

method runs in 0(炉）．
This p叫rmay the the same like in the faster algorithm in some cases, how-

ever experiments proofed, that "splitClusterFurthest" perform better clus-

ters than the faster implementation.

findNearestClusters(type = "represent")

39

result = CC. f indNearestClusters C1represent11)

print 11nearest pair of representatives :'/.i and'/,i11 % (result[O], result[1])

print 11the distance is : %3. 2f 11 % result [2]

"findN earestClusters" searches the pair with the minimum distance. The

kind of distance can be chosen by the parameter. "represent", "center",

"average", and "furthest" are allowed. The method return a list with three

elements. The firth two are the indices of the cluster pair, the third one is

the distance between the clusters

f indWidestCluster ()

訂idthlndex= CC. findWidestCluster()

町idth= CC. clusters [岡idthlndex].meanDist

print "widest cluster has index %i" % widthlndex

print "the mean distance is %3.2f : "%訂idth

To get the index of the cluster with the widest mean distance of the vectors

in the cluster to the center, use "findWidestCluster". The index of the clus-

ter will be returned.

doKMeans(represent = "center")

CC.doKMeans("represent")

All clusters are updated first, so the clusters carry the information of the

center and representative vectors. Than all clusters are emptied; the cen-

ter and representative information is still av叫lable.All vectors loaded will

be classified and added to the clusters again. This shall cause a better dis-

tribution of the vectors. The classification to the clusters depends on the

parameter, where "represent" and "center" is valid.

doBottomUp(bound = 50, distBound = 100.0)

CC. loadVectors (loadFile)

CC. calcDistMatrix ()

CC.doBottomUp(20)

40

This static method is a special implementation for clustering. It uses the

cluster representative and the possibility to inactivate vectors in the Dist-

Matrix. This implementation is the fastest method for the Bottom Up clus-

tering. But the recognition performance of the clusters does not seem to

be a good solution for the given problem, but maybe for another. No clus-

ters should be initialized when starting this clustering method. The vectors

to cluster have to be loaded first. The parameter "bound" is the number

of clusters and the parameter "distBound" determines a cluster distance,

when all clusters have a distance more than "distBound" from each other,

the algorithm stops.

countLabels (self, labelList) : The method "countLabel" re-

turns a dictionary which contains the labels as keys and the number of labels

in this clusters. This method is used in "evaluate Clusters" and is probably

not needed separately.

resetClusters () To reset the cluster manager, this

method is needed. All vectors and clusters are deleted. So

clustering can start again.

evaluateClusters

(labelList, furtherlnf = "",

filename= "result.txt", mergeList = []):

CC.loadVectors(loadFile)

CC. loadRepresentat i ves (repFile)

for vec in CC.vectorData:

CC.classifyVectorNearestRep(vec)

labelList = ["lab1", "lab2", "lab3", "lab4"]

mergeList = [["lab1", "lab2"; "lab12"], ["lab3", "lab4", "lab34"]]

CC.evaluateClusters(labelList, 1111, "result.txt", mergeList)

The method evaluates the clusters. It is used to analyze the separabiI-

ity of the data. The result is saved in the file "result.txt". A header to

this result :file can be added with the string of given with the parameter

"furtherlnf". If a mergeList is given in the parameters, the evaluation will

41

start twice. The first. time the without merging the classes, the second time

with the merged classes. The mergeList is a list of small list of labels. The

first two elements in this "minilist" are the classes which are merged. The

third element is the new name of the class. The classes are merged from

left to right in the list. This way three or more classes can be merged

using a mergelist such as [["class1", "class2", "tempMerge"],

["tempMerge", "class3", "merge of class1, class2, and class3"]].

saveCluster (self, filename = "noname. ndv") A cluster

can be saved using this method. The first line is a short header then then

the vectors which are in that cluster are written. Usually single clusters are

not saved. This method is called from the static method "saveClusters".

saveClusters(filename = "clusters",
clusterFilename = "cluster"): This static method saves all
important cluster information. The first parameter is the filename for the

information of all clusters. The file ending "1st" and "crp" will be added.

The "crp"-file saves the pair of cluster representatives. The first vector is

the representative. The second vector is the cluster centroid. To evaluate the

clusters or to build the classifier, only the representatives have to be loaded.

The "lst"-file contains the filenames of the clusters.

42

4.5.3 DistMatrix

The class DistMatrix is implemented in "Cluster.py" It allows a precalcula-

tion of the distances between all or a specific number of Data Vector objects.

With its help the distance measure between two vectors can be looked up

quickly. Some algorithms during clustering need a DistanceMatrix, otherwise

they would run incredible slowly.

The implementation of this matrix is a 1-dimensional array. The distance

between two vectors is saved only once. So this array shapes a upper triangle

matrix and consists of n*(n-1)/2 elements.

The DistMatrix uses dictionaries for additio叫 data.So "indexDict" saves

the y index of the vector and "vectorDict" saves the pointer to the vector.

The index of the vectors in the matrix are also saved in the Data Vector

object in the attribute "matrixlndex".

To create a DistMatrix, the static method" create" should be used, NOT the

"_jniL_" standard constructor. A list of Data Vector objects has to be the

parameter for this method. It returns the pointer to the matrix. No vectors

can be added to the DistMatrix. So if it is needed to add new vectors to

this matrix, create a new matrix (takes time) or a new method has to be

implemented.

To get a value out of the DistMatrix object, the method "get" and the

indices of the vectors has to be used. Similar with the change of a value, in

this case use "set". If the indices are not known, they can be looked up in
"indexDict".

Example:

...
some code可hichcreates three Data Vector objects

named vec1, vec2, vec3.

matrix = DistMatrix. create([vec1, vec2, vec3]) ## creates the matrix

idx1 = matrix.indexDict[vec1] ## get indeces

idx2 = matrix. indexDict [vec2]

dist1And2 = matrix. get (idx1, idx2)

matrix.set(idx1, idx2, 100.0)

get distance bet訂eenvec1 and vec2

the distance in the matrix bet訂een

and vec2 is changed to 100.0 ## vec1

43

To find the maximum or the minimum distance in the matrix, the command

"getMaximum" and "getMinimum" can be used. They are probably faster

than a implementation based on "get" and "indexDict". This method returns

a list. This list contains the two indices of the vector and the minimum value.

Example

result = matrix. getMinimum()

minindex1 = result [OJ ## get the indeces of the vectors

minindex2 = result [1]

minVector1 = matrix.vectorDict[minindex1] ## get vectors岡ithminimum distanc

minVector2 = matrix.vectorDict[minエndex2]

print "the mimimum value is %f" % result[2] ## print minimum value

Another advantage the "getMinimum" and "getMaximum" methods bring

is the possibility of deactivating and activating the vectors in the matrix.

Inactive vectors are not included in the minimum resp. maximum search.

Therefore the DistMatrix objects have an array named "active" which saves

1 for active and O for inactive. When the matrix is created, all the vectors are

initialized as active (1). The representative clustering method uses this flag

to enhance the speed of the algorithm and to make an easy implementation

possible.

None o really interest as long not manipulating the code. All the values are

saved in an array named "entry". The dimension is saved in the attribute

"dim". As additional information also an array "ylndex" exists. Those values

are for faster access to the values in "entry". The order in entry is like in

an upper right triangle matrix read from left to right, top to bottom. A

four-vector matrix or five-vector matrix would ordered like these

1 2 3 4

1

゜
1 2

2 3 4

3 5

4

1 2 3 4 5

1

゜
1 2 3

44

2

3

4

5

4

5

7

6

8

9

45

4.6 Subcluster.py

To create a classifier, the module "SubCluster.py" is needed. It is a cluster

manager like the "Cluster.py" module.

The main difference between both is, that this module handle the meaning

of clusters and is able to create subclusters, in case a cluster is too large. But

the clusters managed with "SubCluster.py" cannot be changed completely,

such as merging and splitting.

This manager offers the following static methods to handle the clusters and

the classifier.

init(clusterfilename, develop:filename) This method loads the clusters

from the clusterfilename which is the "lst"-file created with the "Clus-

ter.py" module. Also a set of Data Vector objects is loaded from the

"ndv"-file, which is given by the developfilename.

Latter set is to assign a meaning resp. a class to the clusters. In this

step, the "init" method assign the vectors in the development set to

the clusters. Depending on the number of vectors on one class and the
total number of vectors in this class, a ratio is calculated. The maxi-

mum ratio defines the class resp. meaning of this cluster.

mergeClasses(mergeList) Since several classes could be merged to one,

the mergeList gives the needed information. If this method is called,

叫Ilabels in the development set are updated and the meaning of the

clusters is rec叫culated.

The mergeList is from the same format like in the "Cluster.py" mod-

ule. It is a list of small lists consists of two or three string. The first

both strings are the classes to merge and the optional third string

defines the new name of the classes. [["classl", "class2", "classl+2"],

[" class5", "dass7", "class5+ 7"]}

createCiassifier(filename) This method saves the current state of the

subcluster manager as a classifier. Later modifications are not saved

until this method is not called again. To the filename no extension is

46

added. The structure of the classifier is discussed in the file format

section 4.3.2.

From this file, a classifier can be reloaded. The information which

vectors are in the clusters is not saved. This information is not needed

for classifying.

loadClassifier(filename) The file created with createClassifier can be

reloaded. The clusters and subclusters will be created and a mean-

ing is assigned to them, also the cluster representatives.

Now any Data Vector can be classified to a cluster and a meaning can

be estimated.

classify(vec) This method classifies a Data Vector object to a cluster. If

this cluster is subclustered, the meaning is calculated from the sub-
clusters. The class resp. meaning of the cluster or sub cluster this vector

is classified will be returned.

checkMeaning(vec) Since some classes may be merged, the "old" label

of a vector may not be correct anymore. This method reads the label

from a vector and returns the class name this vector belongs to.

putinConfus1onMatrix(vec) The "SubCluster.py" module is able to

save a confusion matrix. So if a classifier is loaded, a Data Vector object

can be put into this confusion matrix. The original class of this vector

and the class to which is is classified will be considered in this matrix.

e con us10n matnx on printConfus1onMatr1x() This method prints th f・

"stdout", calculates the averaged class recognition rate and the vector

misclassification rate.

This cluster manager does not offer a lot of instance methods. Only the
following two (and the constructor "_Jnit_") are implemented in this man-

ager. The constructor will not be discussed here, because the clusters should

be initialized by the use of the static "init" method, explained above.

The clusters in this manager can be accessed with "SubClus-

ter .Su bCluster .sub clusters [index『'Theindex is the same index when the

"Cluster.py" manager is used.

calcMeaning() If any modifications such as the adding of more labeled

47

vectors happens to the cluster or subcluster, this method recalculates

the meaning to this cluster.

createSubclusters(n = 0) This is a very important method. It clusters

a cluster into several subclusters. The number of subclusters can be

chosen by the parameter n. If no parameter is given or it is set to 0,
the number of subclusters will be the logarithm dualis of the number

of development vectors in this cluster.

The subclusters are created with the k-Means algorithm with random

initialization.

48

4. 7 Code Examples

4.7.1 Top Down

The following code display how few code is needed to implement a Top Down

algorithm. The clusters will be split with the fast split method.

In this code, the DataVector objects saved in "data_train.ndv" are loaded

and put into one large start cluster. The widest cluster (the cluster with the

highest mean distance from the centroid) will be split into two new clusters,

until 20 clusters exist.

load the module 11Cluster.py11

import Cluster

create a shortcut

CC= Cluster.Cluster

To create a cluster for the beginning of the algorithm

save the number of this start cluster

clsNumber = CC.create(11startcluster11)

get the index of the start cluster

els Index = CC .numberindexDict [clsNumber]

load the DataVectors from 11data_train.ndv11 and

add all these vectors to the start cluster

CC. loadVectors (11data_ train .ndv11, clsindex)

The index of the start cluster will be 11011,

so this alternative shorter code would cause the same effect

CC.create(11startcluster11)

CC.loadVectors("data_train.ndv", 0)

＃＃岡hilethe number of cluster is smaller than 20

百hile(len(CC令 clusters)< 20):

get the Index of the widest clusters

idx = CC. findWidestCluster()

49

split this cluster into two new Clusters

CC.splitCluster(idx)

There are two岡aysto split a cluster

##''splitClusterFurthest''is a slower but

more accurate way to split the cluster

CC.splitClusterFurthest(idx)

this line saves the clusters.

It creates the files 11clusters.crp11 and "clusters.1st"

the the singe cluster-files "cluster1.ndv", 11cluster2.ndv11, ...

CC. saveClusters (11clusters11, 11cluster11)

4.7.2 Bottom Up

The following code display the implementation of a Bottom Up algorithm.

The two nearest clusters will be merged to one.

The Data Vector objects in "data_train.ndv" are loaded and each vector be-

comes a cluster. Then the nearest clusters are merged. This repeats until 20

clusters are left.、

load the module 11Cluster.py11

import Cluster

create a shortcut

CC= Cluster.Cluster

all DataVectorDbjects are loaded and

for each object a new cluster刃illbe created

CC.loadVectorsToClusters("data_train.ndv")

to accellerate the calculation of the distance

between two DataVector objects, a distance matrix

precalculates the results

this can take some minutes, depends on the amount of

data and the way of distance measure

CC. calcDistMatrix ()

50

＃＃可hilethe amount of clusters is greater than 20

while (len(CC. clusters) > 20):

find both nearest clusters

the way of distance measure between the clusters

is the furthest neighbor.''findNearestClusters''

returns a list containing both indeces of these

nearest neigbors and the distance

idxList = CC.findNearestClusters("furthest")

merge the nearest clusters. The indeces

are located on O and 1 in the list

CC.mergeClusters(idxList[O], idxList[1])

this line saves the clusters.

It creates the files 11clusters.crp11 and 11clusters.lst11

the the singe cluster-files 11cluster1 .ndv11, 11cluster2 .ndv11, ...

CC.saveClusters(11clusters11, 11cluster11)

4.7.3 K-Means

This example shows a way how to implement a k-Means algorithm with the

module "Cluster.py". The perfomrance of k-Means depends on the initial-

ization.

In this example, the algorithm is initiali~ed by the first 20 vectors. The vec-
tors are loaded and the clusters are initialized. The the k-Means run three

times.

This example itself will not perform well. Normally the k-Means have to

run several times and fulfill some conditions to stop. Also the initialization

may be completely inadequate.

load the module "Cluster.py"

import Cluster

create a shortcut

51

CC= Cluster.Cluster

this load the DataVectors objects to CC.vectorData

no clusters are created yet

CC.loadVectors(11data_train.ndv11)

take the first 20 Data Vector obej cts

create a new cluster without name and put

the object into the new cluster

for i in range(20):

clsNumber = CC.create("")

clsindex = CC .numberindexDict [clsNumber]

clsindex岡illbe i

CC.clusters[clsindex].addVector(CC.vectorData[i])

doKMeans calculates the centroid of the clusters (update)

free all vectors in the cluster and assign

all vectors in CC.vectorData to the clusters

CC.doKMeans("center")

CC.doKMeans("center")

CC. doKMeans ("center")

this line saves the clusters.

It creates the files "clusters.crp" and "clusters.1st"

the the singe cluster-files "cluster1.ndv", "cluster2.ndv", ...

CC.saveClusters("clusters", "cluster")

4. 7.4 Create A Classifier

After the clusters are saved to "1st"-and "crp"-files a classifier, can be ere-

ated. If no clusters need to be subclustered, the creation of a classifier is

very easy. The "SubCluster.py" module will handle the subclustering and

the creation of the classifier.

The following code loads the clusters which are stores in "clusters.1st" and

load the Data Vector objects from the "data_develop.ndv" file. "init" creates

the new clusters and try to assign a class to them. Then the class "listen" and

"understand" are merged to "backchannel". Cluster 5 will be sub clustered

into 10 smaller cluster. The meaning of the new clusters has to be recalcu-

52

lated. Then the classifier is created and saved to the file "classtest.clf"

import the DataVector and SubCluster module

import SubCluster, Data Vector

create a shortcut

SC= SubCluster.SubClusters

load the clusters and init the meaning of the

clusters with the labeled vector in 11datadevelop.ndv11

SC. init ("clusters.1st", "data_develop .ndv")

a short example for a mergeList. In this example

the classes 11listen11 and 11understand11 are merged

and have the new name 11backchannel11

mergeList = [[11listen11, 11understand11, 11backchannel11]]

load the mergeList to the SubClusters

SC.mergeClasses(mergeList)

sublcuster cluster 5 into 10 subclusters

SC.subclusters[5].createSubClusters(10)

calculate the ne問 meaningof the

clusters and its subclusters

SC.subclusters[5] .calcMeaning()

create a classifier and save it to the file

SC.createClassifier("classtest.clf")

4. 7 .5 Load A Classier And Classify A Vector

This code demonstrates, how a classifier is loaded and vectors are classified.

The classification will be printed on screen and a confusion matrix is calcu-

lated.

First the vectors are loaded from the "data_test.ndv" file. After this the clas-

sifier is loaded and the single vectors are classified. The "classify" method

does not influence the confusion matrix. So the vector is classified and the

53

result is print on screen. But if the data is labeled data, a confusion matrix

can be calculated.

import modules

import SubCluster, DataVector

create shortcut

SC= SubCluster.SubClusters

read the vector data, 岡hichshall be classified

open the vector file 11data_test.ndv11

file= open(11data_test.ndv11, 11r11)

read the data from the file

data = file. readlines ()

close file

file.close()

ignore header line

data[O] = 1111

create a list of the DataVecot objects

vectorList = []

read all strings in the file data

for sin data:

ignore empty lines in data

if ((s == 1111) or (s == "¥n")): continue

load object

obj = DataVector.loadFromString(s)

save object in list!

vectorList.append(obj)

load the former created classifier

54

from the 11classtest.clf11 file

SC.loadClassifier("classtest.clf")

take each vector in the test file

for vec in vectorList:

p

classify and add result to confusion matrix

SC.putlnConfusionMatrix(vec)

print result ob classification

print vec.label + 11 classified as II SC.classify(vec)

rint confusionrnatrix

SC.printConfusionMatrix()

55

