
Internal Use Only (非公開）

TR-SLT-0054

Implementation of EM-IS Algorithm
for Machine Translation

Vivien LE POUPON Taro Watanabe

December 18, 2003

We want to implement the EM-IS algorithm to build a lexicon model (and then try to

use it in conjunction with an IBM model). We followed a Maximum Entropy (ME)

approach, but expanded it to Latent ME (because normal ME is limited by scarcity of

empirical data). The principle consists in embedding the iterative scaling loop in an EM

procedure in order to determine the weighting paramaters associated with the different

features: we are then able to make these parameters naturally match the information

contained in the corpus. We developped this method using a corpus of English-Japanese

pair.

（株）国際電気通信基礎技術研究所

音声言語コミュニケーション研究所

〒619-0288「けいはんな学研都市」光台二丁目 2番地2TEL : 0774-95-1301

Advanced Telecommunication Research Institute International

Spoken Language Translation Research Laboratories
2-2-2 Hikaridai "Keihanna Science City" 619-0288,Japan

Telephone:+81・774・95・1301
Fax :+81・774-95-1308

c2003 (株）国際電気通信基礎技術研究所

c2003 Advanced Telecommunication Research Institute International

1. The ME method

The ME method allows to build probability models. The idea underlying this principle is

to make the model conform to some known facts, like statistics, whenever possible, and

otherwise to let it be uniform.

For instance, say we want to translate the English word please into Japanese. Then, if

we know that please can translate to either kudasai, onegaishimasu, or douzo, the

following applies:

p(kudasai)+ p(onegaishimasu)+ p(douzo)= 1

If in addition we know that the translation will be kudasai 60% of the time, the ME

principle provides us with the following distribution:

p(kudasai) = 0.6

p(onegaishimasu) = 0.2

p(douzo)= 0.2

Therefore, we are interested in extracting relevant statistics from our data, in order to

define the constraints that will shape our model. This is done with the help of feature

functions, or, more simply, features. They model an aspect of the context. Based on a

condition representing an information about the sample, with x the context, and y the

target word, a feature can be defined by

l
o

｛

＝

ヽ`＇ノy

，

x

（

f

if condition

otherwise

For example:

l

o

l
l

＝

、
‘
~

y

，

x

（

f

if y = douzo and a comma precedes please

otherwise

Features are the core of the model, so they have to be chosen with care.

How do we use them to compute the probabilities we need for our lexicon model?

To each feature corresponds a constraint (which is, as we explained previously, what we

are looking for). Indeed, the expected values from the model and the data should be the

same:

L p(x)p(y Ix)J(x, y) = L p(x, y)J(x, y)
x,y x,y

What we have to solve then, is a constrained optimization problem.

In the end, each feature£is associated with a weighting parameter Ai. Then, we can

express the probability for an event x as

Pえ(x) =町(x)・exp(~ 豆 (x)〕

,1. (x) is a normalizing factor. where①―

For a given set of features, we have to find the values of the different .J; that maximize

entropy. In order to do so, we use Improved Iterative Scaling (IIS), an algorithm

designed to complete this task.

We have just presented what is called the Maximum Entropy (ME) method.

However, constraints used in ME models are subject to errors due to the scarceness of

empirical data. Therefore, we will see how we want to try and find several possible

"solutions" (i.e. sets of values .J) in order to refine the model.

2. The EM-IS algorithm

As we have just explained, a set of valuesふobtainedthrough IIS algorithm might not

be accurate enough because empirical data would be very rough. Therefore, we are

going to rely on the knowledge provided by our model to compute expectation, the

constraint becoming

L p(x)p(y Ix)J(x, y) = L p(x, y)J(x, y)
x,y x,y

However, doing this, we have to "grope around" to make the model converge.

An idea is to restart the iterative procedure at different initial points, generating the

several feasible "candidates" we are looking for. By aiming at lowering perplexity each

time, we ascertain that the corresponding model should be conforming more and more

closely to the training data.

To implement this, we use the Expectation-Maximisation (EM) algorithm in conjunction

with the IIS algorithm.

The IS procedure is embedded in an EM loop, thus it is repeted over and over. And each

EM loop allows to reevaluate the expected values of the features according to the

training data.

EM-IS algorithm
Compute

expected values

of features

Estep

Mstep

り← Q+ロロ

3. Our development

FEATURES:

In order to define our features, we simply looked at which aspects of the context we

wanted to highlight. We work with English-Japanese pairs of sentences. Indeed, our

corpus has a list of couples: source sentence (English) -target sentence (Japanese), one

being the translation of the other.

The context we want to model consists of the two words we suppose are translation of

each other (E and J), plus the previous word in each sentence (E'and J').

Schematically:

English sentence:

Japanese sentence:

... Ei-2

... J;-2

We began by using two sets of features:

f(J,E):

瓦'-1=E' 瓦=E

Jj-1 = J'Jj= J

context

a given source word being translated into a given target word

• one feature for each possible pair of English-Japanese words

令 wecall this set trans

f(J}:

a given target word occuring

• one feature for each Japanese word

令 wecall this set targets

Then, we introduced two more sets, in this order:

f(J,EJ:

Ei+l…

J.;+1…

a given source word preceding the word actually translated into a given target word

• one feature for each possible pair of English-Japanese words

令 wecall this set prev

f(J:E):

a given source word being translated into a word following a given target word

• one feature for each possible pair of English-Japanese words

令 wecall this set zen

PROGRAMMATION:

The program is written using C++ language. Here is a short explanation of its structure.

The file train.cc contains the general procedure. It creates a model, and then calls the

main functions for the training of the model, following the EM-IS algorithm: initialize,

expectation, maximization, …
These key functions are found in the files train_modelX.h. X currently ranges from 1 to

3, and accounts for the version of the model. The main difference between each of these

versions is the number of sets of features used: model 1 has only trans and targets,

while prev was included in model 2, and model 3 boasts zen in addition to these three

sets.

The code in the latter files comprises calls to functions implemented in the group of files

MEModelX.h, one for each type of model again. These are the base computation

functions, like prob_of(which returns the probability of a translation, given its context)

or sum_o幻oint.These files also contain the declarations for most of the structures

required to build the model: the sets of features of course, but some cache tables and

buffers used in our computations as well.

TRYING TO DECREASE RUNNING TIME:

After adding the last set of features, it became obvious that the program could not be

used yet to train a model: to hope to do so, several weeks running on a powerful machine

would be needed.

Consequently, some ways to reduce this time were required. The ones that we

investigated are: draw aside some of the features to lower their number; in our

computations, ignore values of limited significance; use alternate algorithmic methods

to realize these computations。

We are going to present these ideas and their results.

Selection of features:

If less features are used, the time involved to build a model will eventually decrease,

since most of the computations lie on iterating over the whole different sets of features.

Therefore, we want to use only features that are "relevant", and erase those that do not

hold enough importance in regard to our model.

How do we estimate this "relevance" of a given feature? The solution to which we have

access consists of erasing features that have a low count according to the training data.

We define a threshold for each set. After initialization, we delete each feature whose

count is less than the threshold fixed for its set.

However, this proved to be a rough way of selection, as discarding anv feature from the

sets trans and rev results in a deficient model (a decent perplexity cannot be obtained).

It is still possible to apply this selection to targets and zen without altering sensibly the

quality or behavior of the model. For these sets, we affected values of 2 and 5 to the

thresholds on the count. This caused to dismiss respectively more than 40% and 80% of

the features originally collected from our data.

We cannot precisely estimate the gain in running time provided by this method, but,

operating over a subset of our training data, it nearly divides this time by three, without

inducing a loss in the model's efficiency.

Use of approx1mat10n:

Another idea was to limit our computations to significant values. Two different

techniques were tested, both trying to ease the computation of sum_of_joint, which was

very costly in its "original" form.

The first technique consisted in ignoring some groups of contexts (one being represented

by two source words and two targets words), based upon the maximum values of

lambdas for the corresponding groups of features. An approximate value would then be

added.

The second technique involved using sortable containers to store the lambdas, in order

to compute only the significant portion of each sub-sum.

The fact is that neither of these techniques allowed to greatly decreasing the running

time. That's why we tried to use alternate methods of computation instead.

Alternate methods of computation:

Here again, we considered modifying sum_ol}oint.

We can express the return value of this function by factorizing the sum of products in it:

Ie幻＋五，J+AE,,J+心，J'=
E ,J ,E',J'

L (eえJeAE,J+ら，J'eA,E',J)
E,J,E',J『

~ ~[e''(fj e'''"'')(~e''')]

~ ~e"'[~le伍竺"'JJ戻,,J
(3)

It is thus possible to compute the sub-sums in this expression ((1) over E', (2) over J', and

then (3) over E) beforehand for each source word J. Then, the only computation

remaining is a sum over all these possible J.

Such a trick makes the time required to compute sum_o口'oint virtually negligible.

Nevertheless, this solves only half of the problem, as we still need to find a way to

improve the computation of the maximization loops (the iterative scaling procedure).

Our investigation of this matter has led to no positive result yet. The structure of the

loops makes it difficult to apply a strategy similar to what we tried for sum_o幻oint.

MEMORY ISSUES:

In addition, we are faced with another obstacle: after running for a long time, the

program might crash because of a lack of memory.

It is probable that finding a way to decrease the running time to a reasonable figure

would cause this issue to vanish. However, if such problems are still occuring, it might

be useful to consider dropping some of the caches which have been set up.

4. Results

As the procedure for training takes too long a time when we use the model with four

sets of features, we could not issue any result for it.

However, we managed to train a model using three sets of features (namely trans,

targets, and prev). This model was trained using the file train.eプ'.snt,while the test file

was valid.eisnt (they were located in lhome/pxs130/twatana/CJKE/corpus when I used

them). After three iterative scaling procedures, the model yielded the following

perplexities:

over the training file:

over the test file:

44. 766 (viterbi: 65.0918)

86.432 (viterbi: 125.166)

References

A. Berger, S. Della Pietra, V Della Pietra; "A Maximum Entropy Approach to Natural

Language Processing", 1996

P. Brown, S. Della Pietra, V. Della Pietra, J. Lai, R. Mercer; "An Estimate of an Upper

Bound fro the Entropy of English", 1992

P. Brown, S. Della Pietra, V. Della Pietra, R. Mercer; "The Mathematics of Machine

Translation: Parameter Estimation", 1993

R. Rosenfeld; "The EMAlgorithm", 1997

S. Wang, D. Schuurmans, F. Peng; "Latent Maximum Entropy Approach for Semantic

N-gram Language Modeling", 2002

