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Introduction 

Over the years, research and performance in the field of speech recognition has greatly 
evolved and improved : new systems are developed that achieve better and better results 
and spawn numerous user-friendly applications in mobile telecommunication systems, 
human-machine interfaces, or real time word processing software . However one point 
remains to be greatly improved : the robustness of such recognition . 
Excellent recognition rates are achieved for what we refer as "clean"/ideal conditions, 
that is "laboratory" conditions of clean data, the absence of surrounding noise and a 
stable environment . In everyday life these conditions are never met : there is always 
noise (other interfering dialogues, reverberation of the speaker's voice, natural 
background noise), and in spontaneous speech speakers tend to introduce hesitations, or 
different stress patterns to what they say ; those elements should not be considered as 
useful information by the ASR system . 
The main point to focus on in modem speech recognition nowadays is therefore that of 
robustness . There are two main paths to follow for the researcher : focus on the 
recognition itself (pre-processing and processing), that is noise adaptation, compensation, 
improving acoustic models, or on the post-processing of this part, focusing on language 
models to re-estimate the reliability of the results , and using more sophisticated models 
or confidence measures. 
During my internship in ATR I have explored the first path, using a sub-band approach in 
an attempt to detect noisy bands and therefore eliminate noisy data, i.e. corrupted feature 
vectors. Sub-band techniques have already been widely used for speech recognition [] . 
These techniques aim at extracting useful information from different bands in order to 
produce "good" information to the recognizer, which implies various ways selecting, 
combining, correcting. A pre-requisite for these methods is a good detection of noisy 
speech. For this matter, here I will investigate the use of a hybrid Hidden Markov Model 
(HMM) I Bayesian Network (BN) framework. The advantage of this framework is that 
while it may continue to benefit from existing and efficient HMM principles, we can use 
a Bayesian Network to characterize speech frames as they come, and orient recognition 
with this new knowledge by discarding noisy frames or using a noisy-trained model 
instead 
I will first present further background on the research topic, then the objectives and 
approaches that were fixed at the beginning of the internship . Then at each step I will go 
into more detail concerning the methods that were developed, along with experimental 
results to validate/confirm such methods. Finally I will reflect on the overall achievement 
of my research compared to the objective chosen at the beginning and on personal 
assessments. 
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Noise Detection and Speech Recognition using a Hybrid 
HMM / Bayesian Network Framework in a sub-band 
approach 

Objective and global approach 

The objective here is obviously to get better recognition rates using our new hybrid 
HMM/BN sub-band system than with using standard full band features with HMM. In the 
process of building and testing such system we will go through the following steps : 

Implementing Sub-band feature extraction 

After designing and benchmarking a standard full-band baseline, it will be interesting to 
alter feature extraction and processing for a certain variety of band configurations. Such 
configurations and experimental setup is best described in [1] as we will see further 

Producing a 5-band hybrid model and artificial testing data 

The next step will then be to merge in certain sub-band configurations a clean-trained and 
a noisy-trained model, in order to detect noise according to our Bayesian relationship. For 
this matter it will also be interesting to produce artificially corrupted/noisy data, be it 
locally or widely. 

Building & Benchmarking the hybrid system 

The final step will then be to build a recognizer capable of taking into account our new 
framework: after this is done we can begin to refine the noise detection using artifi~ially 
corrupted data, and then to benchmark our system and its several refinements usmg a 
variety of artificial, then standard "natural" test data. Here we will use the English 
AURORA 2.0 database (noisy TIDigits database) 
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Baseline system 

The first step before implementing any new method was to get some baseline system 
running in order to improve its results. Through the whole process I used a specific 
software package designed to build hidden Markov models (HMM), called HTK for 
HMM Tool Kit. Such tool kit includes tools for generating and training HMMs given 
some specific training data, and recognizing tools to test these HMMs according to some 

test data. 

The experimental setup used is as follows : 

• 20 dimensional feature vectors including 10 Mel-scale Frequency Cepstrum 
Coefficients (MFCCs), and their 10 first order derivatives (commonly referred to 
as MFCC plus delta). For more information on MFCCs, please refer to appendix I. 

• The acoustic model consists of 3 mixtures of gaussians per state models. 
• The training data used was the clean training data from the AURORA 2.0 
database as described more thoroughly in [6], and consists in 8440 utterances 
from the TIDigits database by 55 male and 55 female adults. These signals are 
filtered with the G.712 filter to consider the realistic frequency characteristics of 
terminals and equipment in the telecommunications area . 

• The testing data is also form the AURORA 2.0 database. It consists of the two 
first subsets included (there are three in total). 4004 utterances from the TIDigits 
database are split into 4 subsets of 1001 utterances each. Recording of all speakers 
are present in the two subsets. One noise signal is added to each subset of 1001 
utterances at the different SNRs of 20dB, 15dB, lOdB, 5dB, OdB, and -5dB. Also, 
the clean case without added noise is taken as seventh condition. Again, speech 
and noise are filtered with the G.712 filter characteristic before adding. Test set a 

includes suburban train, babble, car and exhibition hall noises, whereas test set b 
includes restaurant, street, airport and train station noises. 

The results are shown in table 1. Those are word accuracies given in percent (%) 
according to the following computation : 

N-S-1-D 
WordAcc = 

N 

where W ordAcc is the word accuracy, N the total number of emitted words, S the number 
of substitution errors, I the number of insertion errors and D the number of deletion errors. 
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A word on sub-band methods in ASR 

The first step in most of the current automatic speech recognizers (ASR) is to convert the 
incoming speech signal into series of short-term vectors (feature vectors). Each vector 
represents a short segment of the signal (also called "frame" or "observation"). Each 
element of the vector describes some part of the information carried by the signal; for 
example each element of the feature vector represents energy of the speech signal in a 
given frequency range. 
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It is argued in [ 4] that human auditory perception works differently than the current ASR. 
More specifically, it is suggested that the linguistic message gets decoded independently 
in different frequency sub bands and the final decoding decision is based on merging the 
decisions from the sub-bands. 

One interpretation is that as soon as any sub-band combination yields sufficient 
information, the information from the remaining (possibly corrupted) sub-bands does not 
have to be used for subsequent decoding of the message, and can therefore be 
marginalized. It is this approach that will be used in the following work. 
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Sub-band feature extraction 

In this part we will alter the way features are extracted from raw data : commonly we use 
cepstral parameters called MFCCs for Mel-Frequency Cepstral Coefficients and 
calculated from the log filter bank amplitudes using discrete cosine transform (DCT). The 
mel-scale is logarithmic as argued in [8], empirical evidence has shown that the human 
ear resolves frequencies non-linearly, and that the use of such scale gives better 
recognition results. 

Futher details about Filterbank analysis can be found in appendix I 

恥q

MEL8PE:C 

Figure 3 Mel-Scale Filter Bank 

In a fullband approach MFCCs are calculated from the log filter bank amplitudes using 
the Discrete Cosine Transform : 

c, =塁；m1 co{塁(j-0.5)〕
where N is the number of filter bank channels. This produces the following acoustic 
vector (here we take our baseline example of 20 dimension vector -10 ceps plus 10 
delta) : 

ロ Cw~D, I Drn 
Figure 4 20-dimensional acoustic vector (MFCC plus delta) -full-band 
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Let's now consider sub-band feature extraction : we will here take the example of a 
2band system. The first half of the filters will contribute to calculate the first series of 
MFCCs plus delta (band one), the other half will contribute to calculate the ones of band 
two, according to the following pattern: 

c., ~ 旱言m1co{i(j-0.5)Jand c,, =げ芦叫Nco{王(j-0.5)J 

Where N1 =N2 
N N+l N-1 
=-if N is even and N =-N = 2 if N is odds. This 
2 2 2 

therefore outputs the following acoustic vector : 

c,, I c,, I c,. 口 Er:] ロFigure 5 20-dimensional acoustic vector (MFCC plus delta) -2bands case 

I therefore modified and compiled the HTK sources (The feature extraction tool in HTK 
is called HCopy) in order to implement feature extraction for 2,3,5 and 7 band systems. 
Number of filter banks and desired MFCCs were specified in an external configuration 
file, and automatically computed. 

Furthermore the aim was to process these new acoustic vectors using the streams feature 
in HTK, which allows one to split an acoustic vector into a separate number of data 
streams to be computed separately. I therefore built a tool to analyze a MFCC file 
(observation file), such as the one regrouping several dozens of feature vectors like the 
one above in the following manner : 

Streaml 5MFCC+5Delta Stream2 5MFCC+5Delta 

CH I □ D,, Be,, □□ 口
Figure 6 "swapped" 20-dimensional acoustic vector (MFCC plus delta) -2bands case 

This tool performed automatically, reading HTK headers and configuration file, 
reassigning filter banks to streams by itself. Along with this tool I had to create a batch 
processing means (this swap was to be performed on several thousand utterances as we 
have previously seen). 
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When this was done, all data both training and test was processed for the following 
experimental conditions: 

Sub-band Filter Filters/Sub- Mfcc/Sub All Mfcc (Delta) 
configurations banks band band 

2 30 15 7 14 (28) 

3 30 10 5 15 (30) 

5 30 6 3 15 (30) 

7 28 4 2 14 (28) 

1 (full band) 20 20 10 10 (20) 

Table 2 : Sub band extraction experimental conditions 

This concludes the phase of sub band extraction and data preparation. 
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Producing a 5-band hybrid model and artificial testing data 

As in [ 1], we will consider a 5 bands approach that appears to be a better choice in terms 
of the balance between the noise localization and phonetic discrimination. However, to 
comfort this opinion it was interesting to build 2,3, and 7 bands systems to compare with. 

The results are shown in the figure below : word accuracy here is shown as an average of 
the 8 different noise conditions from AURORA 2.0 given a common SNR. 

Comparative Word Accuracy for several sub-band systems 
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Figure 7 Comparative word accuracy for a choice of sub-band systems 

Indeed the 5 sub-bands system appears to be the most efficient : in the following study 
we will therefore concentrate on a hybrid based on this more efficient 5 bands model. 

The next step is training both a "clean" and "noisy" model to combine into one. The 
clean model is fed clean data according to the baseline system experimental building 
protocol, the noisy model is fed with the same set of training data, however a stationary 
white noise of SNR 1 OdB has been added to all utterances. 

For this matter a tool had to be built/modified (this was to be of use when creating sets of 
artificial test data) that could "add" two waveforms according to a specified SNR. 
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After doing so, the clean 5 bands-model was benchmarked using the same experimental 
conditions as the baseline; the noisy model was benchmarked using a clean test data set 
corrupted once again with white noise of SNR 1 OdB. The results are shown in table 3 and 
4. To have a means of comparison for the 5 bands noisy model, 2 3 and 7 band models 
were also created/benched following the same principle below. 
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Table 3 : 5bands recognition results for clean training 

Table 4: recognition results for noisy training for a choice of sub-band models 
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Of course we observe here that the performance of the 5 bands system is a little lower 
than that of the baseline performance depicted in the baseline section of this report. Effort 
will now be made to improve the performance of the 5 bands system so that it 
outperforms the baseline. For this matter we will make use of the Bayesian Network 
framework further explained in the next section. 
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Hybrid HMMIBN Framework 

In our hybrid HMM/BN framework, each acoustic model is a hidden Markov model 
(HMM) . The advantage is that on one hand all current HMM algorithms on speech 
recognition can still be used, and on the other hand the Bayesian networks allows us to 
incorporate an exterior, acoustic dependent information: here, whether the speech frame 
is considered noisy or not. We illustrate this below. From now on, circles denote 
continuous nodes, squares denote discrete nodes, clear means hidden, shaded means 
observed [5]. 

□

]

 

Figure 8 A Bayesian network relationship between observation x, state q, and noise 
factor n. 

The noise factor, n1, is a discrete quantity describing the noise conditions, for instance in 

a simple way n1 = 0 for clean or n1 = 1 for noisy . 

A note on Dynamic Bayesian Networks (DBNs) also referred to as Temporal Bayesian 
Networks : DBNs are directed graphical models of stochastic processes. They generalize 
hidden Markov models (HMMs) by representing the hidden (and observed) state in terms 
of state variables, which can have complex interdependencies. The graphical structure 
provides an easy way to specify these conditional independencies, and hence to provide a 
compact parameterization of the model. 

The simplest kind of DBN is a Hidden Markov Model (HMM), which has one discrete 
hidden node and one discrete or continuous observed node per slice. For instance, for a 
sequence of three states we would have : 
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---—五〕 ---• 

Figure 9 Classic 3-state HMM sequence of gaussian output. 

In our hybrid HMM/BN framework, the general scheme will therefore be : 

Figure 10 A 3-state hybrid HMMIBN 

The presence of a noise factor n1 can be detected by computing the posterior probability 

of n1 for an observation x1 ; the probability of a frame being noisy or not is therefore: 

P(n1 =klxJ= 
P(n1 = k, ふ）

P(x1) 

L P(n1 =k,q凸）
q,EQ 

P(x1) 
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However, according to the dependencies in the Bayesian network described in Fig. X, the 

joint probability 

P(n1 = k,q1, ふ） = P(q1)P(n1 = k I q1)P(x1 I qi,n1 = k) 

can be reduced to 

P(n1 = k,qt'x1) = P(q1)P(n1 = k)P(x1 I qt'n1 = k) 

Therefore we can express : 

L P(x1仇=k,qi)P(q1)P(n1 = k) 
P(n1 = k I x1) = qEQ, 

P(x1) 

At this point it will be interesting to evaluate P(n1 = k I x1) progressively, as we will 
develop further on, when we tamper with the way the recognizer deals with calculating 
the probability that such frame (observation) sub band be noisy or not. 
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Building the hybrid system 

At first we will begin by assuming that the knowledge of L P(x1 I n1 = k,q1) is enough 
qEQ, 

to let us decide if such frame (observation) sub band is noisy or not. 

1st Comparison: I P(x1 I n1 = O,q1) and I P(x1 I n1 = I,q1) 
qEQ1 qEQ1 

The channel considered noisy will therefore be marginalized for the selected frame 
(observation vector), that is, its computational weight will be set to O : 

VP(x1 I q;) 

qi EQ 

(For each sub band) 

'i!P(x1団=l,q;),q; E Q 

VP(x1 I n1 = O,q;),q; E Q 

Figure 11 Assigning channel (sub band) weights 

Then to improve our results and reduce the False Acceptance / False Rejection 

percentage we will include the information of P(qi) based on our knowledge of the 

previous frame (observation) : 

1 
P(q1) = P(qH I xH) =――  P(x1 1 I qt 1) 

IP(xH I qH) 
(with P(q1) =一

Q 
qEQ, 

Therefore we now have : 

20 

for the first frame ） 



2nd Comparison: I P(ふ仇=O,q1) 
P(x1-1 I q1-1) 

鴫 IP(xHI qt」)
qEQ, 

L P(x1仇=l,q1) 
P(x1-1 I qH) 

qEQ, IP(x← 1 lq1-1) 
qEQ, 

and 

Lastly we will include the information of P(n1 = k) : 

P(n1 =k)= 
P(n1 =klxt-1) 

LP(n1 
(with P(n1 = k) =0.5 for the first frame) 

=klx1」)
keN 

Therefore we now have : 

3rd Comparison: L P(x1 I n1 = O,q1) 
P(xt-1 I q← i) P(n1 =Olx1」)
LP(x11 

and 
qEQ, - lq1-1) LP(nt =klx1-1) 

qEQ, kEN 

L P(x1仇=l,q1) 
P(x1_1 I qt-1) P(n1 = 11 xt-1) 

鴫 LP(x1-1I qt」)LP(n1 = k I x1-1) 
qEQ, kEN 

Thresholds have to be set in order to equalize the False Acceptance / False Rejection 
percentages : the following graphical method is used, data consisting of 5 male voice 
utterances and 5 female voice utterances in clean speech for the false rejection rate, and 
the same data corrupted with white noise SNR 1 OdB for the false acceptance rate. 

ゞ
'Y:J'f/
as1 ctlLL 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

20 40 60 80 100 

False Rej % 

21 



Figure 12 Threshold setting method 

The improvements from stage to stage are listed in the following table : 

Table 5: False Acc./False Rej. rates (in %) through the different system evolutions 
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Tests on artificial data 

As a means of testing we now find it useful to construct some artificial testing data : we 
will use as described in [1] some clean speech data along with additive white-noise 
passed through a band-pass filter with a 3dB cutoff-bandwidth (stationary band-selective 
noise) and a varying central frequency. We will therefore use 4 sets of relevant data : 

• Clean data 
• 1 band corrupted (central frequency 600 Hz) 
• 2 bands co corrupted (central frequency 600 &1200 Hz) 
• 3 bands corrupted (central frequency 600, 1200 & 2000 Hz) 

600Hz ； Hz ゜゚12; 
z
 

h
 ゜゚20; (Sub band) 1 2

 
3
 

4
 

5
 

Figure 13 artificial data spectral corruption 

Furthermore, I implemented an algorithm to reject only the 3 bands considered most 
noisy : this is in case that 4 bands or more over the 5 are considered noisy, and to 
therefore avoid the total lack of information to reach the recognizer. 
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Table 6: Test on artificial data 

It appears here that the good results from the 5 bands "oracle" (i.e. we know which band 
is corrupted or not prior to the weighting of the bands) are far from being reached when 
band-selection is supposed to be automatic, although a significant improvement is 
noticeable in the case of 1 band corruption over the full band baseline. Further 
experiments have also shown that the more corrupted the band is (i.e. with a more than 
lOOHz 3dB cutoff frequency) the more accurate the detection, and therefore the more 
improvement we get (from 50% to 80% Word Accuracy for single band corruption, 
depending on which band is corrupted). 

23 



Tests on real data 

Tests were conducted as previously mentioned on AURORA 2.0 standard test sets a and 
b. As a means of comparison we have included previous results from the 2 and 5 sub-
band systems. 

The results are shown in the figure below. Detailed result charts are included in Appendix 
IL 

Word accuracy for AURORA 2.0 data 
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Figure 14Comparative Word Accuracy for "real" data testing 

As we can observe, the 5 band hybrid never surpasses the baseline system: it appears that 
band selection accuracy is not high enough to allow accurate selection of which channel 
contains valuable information, and which one does not: False Acceptance/ False 
Rejection rates are still too high to operate properly on real data, even though to some 
extent results were acceptable in the case of "ideal" artificial corruption. 
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Further Improvements 

Several improvements over the current methods should be considered for future work, 
both in the fields of feature extraction and noise detection. 

Concerning feature (MFCC) extraction, it has been suggested to make use of sub-band 
overlapping. The composite spectrum of all filters (filter bank of triangular filters) should 
be more or less flat. However, instead of assigning such series of filters to a band and 
then the following filters to the next band without overlapping (what we have done here) , 
allow some filters at the border of each contiguous band to be part of both bands. For 
instance, instead of having a 30 filter bank , 5 bands system assigned as 6/6/6/6/6, we 
could allow more than 6 filters to each band given the composite spectrum remains flat. 
In any case, cepstral coefficients always do the overlapping/smoothing of the spectrum 

Concerning noise detection, in my opinion extensive study has to be conducted on which 
noisy trained model to use in order to achieve more accurate results, that is on the nature 
of the noise used to train the noisy model. While using stationary SNRl OdB white noise 
seemed the most obvious option, tests have shown that detection rates tend to be go down 
even though same SNR evenly distributed noise is still the source of corruption, although 
on a tighter band. The "tolerance" of noise type variation definitely needs improvement 
over the present state to lower false acceptance/rejection rates (around 30% is just too 
much). 
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Global Conclusion 

As a conclusion, I would say that the work conducted here was quite useful not in the fact 
that it shows any improvement over the present method overall (because in fact, it does 
not), but because it pin points more precisely what efforts and improvements have to 
made in the field of noise detection to achieve greater robustness of the overall system. 
The hybrid HMM/Bayesian network method/framework is correct and shows great 
promise given these problems can be even partly solved ; this is comforted by the fact 
that on ideal noise detection (band marginalization), results are very good. Therefore, one 
should not consider that lack of WA  improvement in automatic speech recognition 
research is "waste of time". This challenging research topic opens the door to a lot of 
future investigations on noise detection. 

On a personal point of view, this internship period at ATR was my first experience in the 
field of research. This allowed me to discover a whole new universe that was unknown to 
me before, to practice my academic skills as well as my few previous experiences 
practical engineering skills, but also to witness the fact that research is a great federative 
of human collaborations, cultures, languages from around the world. Moreover, this has 
given me the will to continue deeper studies in the field of Automatic Speech 
Translation/Recognition in the near future. 

Working in Japan was overall a great experience both professionally and personally: it is 
fascinating to see how one of the most advanced country in state of the art technologies 
manages to combine its own research power and knowledge with other countries own to 
advance even further. I look forward to coming back soon to work in Japan, and in ATR . 
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Appendix 1 : Me/-filterbank analysis 

The human ear resolves frequencies non-linearly across the audio spectrum and empirical 
evidence suggests that designing a front-end to operate in a similar non-linear manner 
improves recognition performance. A popular alternative to linear prediction based 
analysis is therefore filterbank analysis since this provides a much more straightforward 
route to obtaining the desired non-linear frequency resolution. 

However, the problem is to space the filters along the critical band in order to choose 
bands that give equal contribution to speech articulation. 

The Mel-scale is a variant of the critical band scale and is defined by: 

Mel(f) = 2595log10(1 + f 孤］
In order to implement this filterbank, the window of speech data is transformed using a 
Fourier transform and the magnitude is taken. The magnitude coefficients are then binned 
by correlating them with each triangular filter. Here binning means that each FFT 
magnitude coefficient is multiplied by the co汀espondingfilter gain and the results 
accumulated. 

I>f.BLSPEC 

Figure 15 Mel filterbank analysis 
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Appendix 2: AURORA 2.0 tests results 

• Baseline WA, full band 20 cepstral coefficients 

93.11 95.68 95.65 91.53 

88.12 88.58 88.40 86.71 

75.12 67.91 63.25 74.12 

50.39 33.55 30.64 49.22 

23.13 18.70 18.08 23.151 

• 2 bands system, 28 cepstral coefficients 
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• 3 bands system, 30 cepstral coefficients 

36.11 53.05 60.57 38.60 48.36 56.74 61.17 61.00 

33.96 43.17 48.34 32.71 39.09 49.06 52.91 

1( 

8.10 8.20 8.98 7.65 9.04 8.86 

60.57 38.60 48.36 56.74 61.17 

43.17 48.34 32.71 39.09 49.06 52.91 

32.44 34.18 28.32 29.60 40.72 39.401 
18.59 18.94 19.32 16.92 26.93 23.891 
10.79 10.92 11.67 10.22 13.94 13.27' 
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• 5 bands system, 30 cepstral coefficients 
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• 5 bands Hybrid system, 30 cepstral coefficients 
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一． 7 bands system, 28 cepstral coefficients 
88.15 87.91 86.85 87.50 88.15 87.91 86.851 

41.51 50.73 48.79 40.60 47.80 47.46 54.10 

36.48 40.05 41.04 31.13 35.25 38.66 42.41 

27.33 22.40 27.05 24.12 27.74 

15.29 8.62 8.71 4.5 9.49 12.02 

9.67 3.39 3.10 2.75 2.70 4.53 0.421 

5.80 3.36 4.44 3.09 1.38 3.48 0.30 

88.15 87.91 86.85 87.50 88.15 87.91 86.85 

41.51 50.73 48.79 40.60 47.80 47.46 54.10 
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