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Chapter 1 

Introduction 

1.1 Background and Problem Definition 

Speech is the ordinary way for most people to communicate. Moreover, speech can convey 

other information such as emotion, attitude, and speaker individuality. Therefore, it is said 

that speech is the most natural, convenient, and useful means of communication. 

In recent years, computers have come into common use as computer technology advances. 

Therefore, it is important to realize a man-machine interface to facilitate communication 

between people and computers. Naturally, speech is focused on as a medium for such com-

munication. In general, two technologies for processing speech are needed. One is speech 

recognition, and the other is speech synthesis. Speech recognition is a technique for infor-

mation input. Necessary information, e.g. message information, is extracted from input 

speech that includes diverse information. Thus, it is important to find a method to extract 

only useful information. On the other hand, speech synthesis is a technique for information 

output. This procedure is the reverse of speech recognition. Output speech includes various 

types of infonnation, e.g. sound information and prosodic information, and is generated from 

input information. Moreover, other information such as speaker individuality and emotion is 

needed in order to realize smoother communication. Thus, it is important to find a method 

to generate the various types of paralinguistic information that are not processed in speech 

recognition. 

Text-to-Speech (TTS) is one of the speech synthesis technologies. TTS is a technique to 

convert any text into a speech signal [60], and it is very useful in many practical applications, 

e.g. car navigation, announcements in railway stations, response services in telecommunica-

tions, e-mail reading. Therefore, it is desirable to realize TTS that can synthesize natural 

and intelligible speech, and research and development on TTS has been progressing. 

The current trend in TTS is based on a large amount of speech data and statistical 

processing. This type of TTS is generally called corpus-based TTS. This approach makes 

it possible to dramatically improve the naturalness of synthetic speech compared with the 

early TTS. Corpus-based TTS can be used for practical purposes under limited conditions 

[12]. However, no general-purpose TTS has been developed that can synthesize sufficient 

natural speech consistently for any input text. Therefore, it is necessary to improve the 

performance of corpus-based TTS. 

1.2 Report Scope 

In this report, we improve the naturalness of synthetic speech in corpus-based TTS. 

ー
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In corpus-based TTS, three main factors determine the naturalness of synthetic speech: 

(1) a speech corpus, (2) an algorithm for selecting the most appropriate synthesis units from 

the speech corpus, and (3) an evaluation measure to select the synthesis units. We focus on 

the latter two factors. 

In a speech synthesis procedure, the optimum set of waveform segments, i.e. portions of 

speech utterances included in the corpus, are selected, and the synthetic speech is generated 

by concatenating the selected waveform segments. This selection is performed based on 

synthesis units. Various units, phonemes, ふphones,syllables, and so on have been proposed. 

In .Japanese speech synthesis, syllable units are often used since the number of .Japanese 
syllables is small and transition in the syllables is important for intelligibility. However, 

s~llable units cannot avoid vowel-to-vowel concatenation, which often produces auditory 
chscontinuity, because various vowel sequences appear frequently in .Japanese. In order to 

alleviate this discontinuity, we propose a novel selection algorithm based on two synthesis 

unit definitions. 

Moreover, in order to realize high and consistent quality of synthetic speech, it is important 

to use an evaluation measure that corresponds to perceptual characteristics in the selection 

?f the most suitable waveform segments. Although a measure based on acoustic measures 

1s often used, the correspondence of such a measure to the perceptual characteristics is 

indistinct. Therefore, we clarify the correspondence of the measure utilized in our TTS by 

perforni.ing perceptual experiments on the naturalness of synthetic speech. Moreover, we 

improve this measure based on the results of these experiments. 

1.3 Report Overview 

The report is organized as follows. 

In Chapter 2, a corpus-based TTS system is described. We describe the basic structure 

of the corpus-based TTS system. Then some techniques in each module are reviewed, and 

we briefly introduce the techniques applied to the TTS system under development in ATR 
Spoken Language Translation Research Laboratories. 

In Chapter 3, we propose a novel segment selection algorithm for Japanese speech synthe-

sis. Not only the segment selection algorithms but also our measure for selection of optimum 

segments are described. Results of perceptual experiments show that the proposed algorithm 

can synthesize speech more naturally than conventional algorithms. 

In Chapter 4, the measure is evaluated based on perceptual characteristics. We clar-

ify corre叩ondenceof the measure to the perceptual scores determined from the results of 

perceptual experiments. Moreover, we find a novel measure having better correspondence 

and investigate the effect of using this measure for segment selection. We also show the 

effectiveness of :increasing the size of a sp釦 chcorpus. 

In Chapter 5, we summarize the contributions of this report and offer suggestions fo:r 

future work. 



Chapter 2 

Corpus-Based Text-to-Speech 

Corpus-based TTS is the main current direction in work on TTS. The naturalness of syn-

thetic speech has been improved dramatically by the transition from the early rule-based TTS 

to corpus-based TTS. In this section, we describe the basic structure of corpus-based TTS 

and the various techniques used in each module. 

2.1 Introduction 

The early TTS was constructed based on rules that researchers deten直nedfrom their ob-

jective decisions and experience [60]. In general, this type of TTS is called rule-based TTS. 

The researcher extracts the rules for speech production by the Analysis-by-Synthesis (A-b-S) 

method [3]. In the A-b-S method, parameters characterizing a speech production model are 

adjusted by performing iterative feedback control so that the error between the observed 

value and that produced by the model is mininuzed. Such rule detennination needs pro-

fessional expertise since it is difficult to extract consistent and reasonable rules. Therefore, 

the rule-based TTS systems developed by researchers usually have different performances. 

Moreover, synthetic speech by rule-based TTS has an unnatural quality because a speech 

waveform is generated by a speech production model, e.g. terminal analog speech synthe-

sizer, which generally needs some approximations in order to model the complex human 

vocal mechanism [60]. 
On the other hand, the current TTS is constructed based on a large amo叫 ofdata and a 

statistical process [38} [70]. In general, this type of TTS is called corpus-based TTS in contrast 

with rule-based TTS. This approach has been developed through the dramatic improvements 

in computer performance. In corpus-based TTS, a large amount of speech data are stored 

as a speech corpus. In synthesis, optimum speech units are selected from the speech corpus. 

An output speech waveform is synthesized by concatenating the selected units and then 

modifying their prosody. Corpus-based TTS can synthesize speech more naturally than rule-

based TTS because the degradation of naturalness in synthetic speech can be alleviated by 

selecting units satisfying certain factors, e.g. a mismatch of phonetic environments, difference 

in prosodic information, and discontinuity produced by concatenating units. If the selected 
units need little modification, natural speech can be synthesized by concatenating speech 

waveform segments directly. Furthermore, since the corpus-based approach has hardly any 

dependency on the type of language, we can apply the approach to other languages more 

easily than the rule-based approach. 

3
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Text 
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Text analysis 
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Unit selection 
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Synthetic speech Waveform synthesis 

Figure 2.1: Structure of corpus-based TTS. 

2.2 Structure of Corpus-Based TTS 

In general, corpus-based TTS is comprised of five modules: text analysis, prosody generation, 
unit selection, waveform synthesis, and speech corpus. The structure of corpus-based TTS 

is shown in Figure 2.1. 

2.2.1 Text analysis 

In the text analysis, an input text is converted into contextual information, i.e. pronunci-

ation, accent type, part-of-speech, and so on, by natural language processing [72][76]. The 
contextual information plays an important role in the quality and intelligibility of synthetic 

speech because prediction accuracy on this information affects all of the subsequent proce-
<lures. 

First, various obstacles, such as unreadable marks like HTML tags and e-mail headings, 

are removed if the input text includes these obstacles. This processing is called text normal-

ization. 

The normalized text is then divided into morphemes, which are nunimum units of letter 
strings having linguistic meaning. These morphemes are tagged with their parts of speech, 

and a syntactic analysis is performed. Then, the module detern廿nesphoneme and prosodic 

symbols, e.g. accent nucleus, accentual phrases, boundaries of prosodic clauses, and syntactic 

structure. Reading rules and accentual rules for word concatenation are often applied to the 

determination of this information [621[69]. Especially in Japanese, the accent information is 

crucial to achieving high-quality synthetic speech. In some TTS systems, especially English 

TTS systems, ToBI (Tone and Break Indices) labels [77] or Tilt parameters [84] are predicted 

[14][33}. 
A schematic diagram of text analysis is shown in Figure 2.2. 

2 .2 .2 Prosody generation 

In the prosody generation, prosodic features such as F;。contour,power contour, and phoneme 

duration are predicted from the contextual information output from the text analysis. This 
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Accent generation 
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Contextual information 

Figure 2.2: Schematic diagram of text analysis. 

prosodic information is important for the intelligibility and naturalness of synthetic speech. 

Fujisaki's model has been proposed as one of the models that can represent the Fi。contour
effectively [34]. This model decomposes the Fi。contourinto two components, i.e. a phrase 
component that decreases gradually toward the end of a sentence and an accent component 

that increases and decreases rapidly at each accentual phrase. Fujisaki's model is often used 

to generate the F0 contour from the contextual information in rule-based TTS, particularly 

in Japanese TTS [40][54]. Then the rules arranged by experts are applied. In recent years, 

automatic extraction algorithms of control parameters and rules from a large amount of data 

with statistical methods have been proposed [36][叫
Many data-driven algorithms for prosody generat10n have been proposed. In the Fi。con-

tour control model proposed by Kagoshima et al. [50], an F,_。contourof a whole sentence is 

produced by concatenating segmental F,_。contours,which are generated by modifying vectors 

that are representative of typical F,_。contours.The representative vectors are selected from 

an F,_。contourcodebook with contextual information. The codebook is designed so that 

the approximation error between F,_。contoursgenerated by this model and real F,_。contours
extracted from a speech corpus is minimized. Isogai et al. proposed using not the repre-

sentative vectors but natural F,_。contoursselected from a speech corpus in order to generate 

an F,_。contourof a sentence [45]. In this algorithm, if there is an F,_。contourhaving equal 

contextual information to the predicted contextual information in the speech corpus, the 

F。contouris selected and used without modification. In all other cases, the F,_。contour

that most suits the predicted contextual information is selected and used with modification. 

Moreover, algorithms for predicting the F,_。contourfrom the ToBI labels or Tilt parameters 

have been proposed [10][32]. 

As a powerful data-driven algorithm, HMM-based (Hidden Markov model) speech synthe-

sis has been proposed by Tokuda et al. [85][86][90]. In this method, the F,_。contour,the 

mel-cepstrum sequence including the power contour, and phoneme duration are generated di-

rectly from HMMs trained by a decision-tree based on a context clustering technique. The F,_。
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Figure 2.3: Schematic diagram of HMM-based prosody generation. 

is modeled by multi-space probability distribution HMMs [85}, and the duration is modeled 

by multi-dimensional Gaussian distribution HMMs in which each dimension shows the du-

ration in each state of the HMM. The mel-cepstrum is modeled by either multi-dimensio叫

Gaussian distribution HMMs or multi-dimensional Gaussian mixture distribution HMMs. 

Decision-trees are constructed for each feature. The decision-tree for the F;。andthat for the 

mel-cepstrum are constructed in each state of the HMM. As for the duration, one decision-

tree is constructed. All training procedures are performed automatically. In synthesis, the 

smooth parameter contours, which are static features, are generated from the HMMs by 

maximizing the likelihood criterion while considering the dyn皿 icfeatures of speech [86}. 

Some TTS systen1S do not perform the prosody generation [20}. In these systems, con-
textual information is used instead of prosody information for the next procedure, unit 

selection. 

In our corpus-based TTS under development, HMM-based speech synthesis is applied to 

a prosody generation module. A schematic diagram of HMM-based prosody generation is 

shown in Figure 2.3. 

2.2.3 Unit selection 

In the unit selection, an optimum set of units is selected from a speech corpus by minimizing 

the degradation of naturalness caused by various factors, e.g. prosodic difference, spectral 

difference, and a mismatch of phonetic environments [471[70]. Various types of units have 
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been proposed to alleviate such degradation. 

Nakajima et al. proposed an automatic procedure called Context Oriented Clustering 

(COC) [64]. In this technique, the optimum synthesis units are generated or selected from 
a speech corpus of a single speaker in advance in order to alleviate degradation caused by 

spectral difference. All segments of a given phoneme in the speech corpus are clustered 

in advance into equivalence classes according to their preceding and succeeding phoneme 

contexts. The decision trees that perform the clustering are constructed automatically by 

nunimizing the acoustic differences within the equivalence classes. The centroid segment 

of each cluster is saved as a synthesis unit. In the speech synthesis phase, the optimum 

synthesis units are selected from leaf clusters that most suit given phonetic contexts. As 

the synthesis units, either spectral parameter sequences [35] or waveform segments [46] are 
utilized. 

Kagoshima and Akamine proposed an automatic generation method of sy叫 esisunits with 

Closed-Loop Training (CLT) [2][49]. In this approach, an optimum set of synthesis units is 

selected or generated from a speech corpus in advance to minimize the degradation caused by 

synthesis processing such as prosodic modification. A measure capturing this degradation is 

defined as the difference between a natural speech segment prepared as training data cut off 

from the speech corpus and a synthesized speech segment with prosodic modification. The 

selection or generation of the best synthesis unit is performed on the basis of the evaluation 

and minimization of the measure in each unit cluster represented by a diphone [68]. Although 

the number of diphone waveform segments used as synthesis units is very small (only 302 
segments), speech with natural and smooth sounding quality can be synthesized. 

There are many types of basic synthesis units, e.g. phoneme, diphone, syllable, VCV units 

[73], and CVC units [74]. The units comprised of more than two phonemes can preserve 

transitions between phonemes. Therefore, the concatenation between phonemes that often 

produces perceptual discontinuity can be avoided by utilizing these units. The diphone units 

have unit boundaries at phoneme centers [27][65][68]. In the VCV units, concatenation points 

are vowel centers in which formant trajectories are stabler and dearer than those in consonant 

centers [73}. While, in the eve units, concatenation is performed at the consonant centers 
in which waveform power is often smaller than that in the vowel centers [74]. In Japanese, 
CV (e: Consonant, V: Vowel) units are often used since nearly all Japanese syllables consists 

of ev or V. 
In order to use stored speech data effectively and flexibly, Sagisaka et al. proposed Non-

Uniform Units (NUU) [47][70][83]. In this approach, the specific units are not selected or 
generated from a speech corpus in advance. An optimum set of synthesis units is selected 

by 1ninimizing a cost capturing the degradation caused by spectral difference, difference in 

phonetic environment, and concatenation between units in a synthesis procedure. Since it 

is possible to use all phoneme subsequences as synthesis units, the selected units, i.e. NUU, 

have variable lengths. The ATR v-talk speech synthesis system is based on the NUU repre-

sented by a spectral parameter sequence [71]. Hirokawa et al. proposed that not only factors 

related to spectrum and phonetic environment but also prosodic difference are considered 

in selecting the optimum synthesis units [39). In this approach, speech is synthesized by 

concatenating the selected waveform segments and then modifying their prosody. Camp-

bell et al. also proposed utilization of prosodic information in selecting the synthesis units 

[16][17]. Based on these works, Black et al. proposed a general algorithm for unit selection 

by using two costs [8][18][42]. One is a target cost, which captures the degradation caused by 

prosodic difference and difference in phonetic environment, and the other is a concatenation 

cost, which captures the degradation caused by concatenating units. In this algorithm, the 

sum of the two costs is minimized using a dynamic programming search based on phoneme 
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Figure 2.4: Schematic diagram of segment selection. 

units. By introducing these techniques to v-talk, CHATR is constructed as a generic speech 

synthesis system [7] [9]. Since the number of considered factors increases, a larger-sized speech 

corpus is utilized than that of v-talk. If the size of a corpus is large enough and it's possible 

to select waveform segments satisfying target prosodic features predicted by the prosody gen-

eration, it is not necessary to perform prosody modification [19}. Therefore, natural speech 

without degradation caused by signal processing can be synthesized by concatenating the 

waveform segments directly. This waveform segment selection has become the main current 

of corpus-based TTS systems for any language. In recent years, Conkie proposed a waveform 

segment selection based on half-phoneme units to improve the robustness of the selection 

[24}. 
CV* units [53] and multiform units [82] have been proposed as synthesis units by Kawai 

et al. and Takano et al., respectively. These units can preserve the important transitions 

for Japanese, i.e. V-V transitions, in order to alleviate the perceptual discontinuity caused 

by concatenation. The units are stored in a speech corpus as sequences of phonemes with 

phonetic environments. A stored unit can have multiple waveform segments with different 

F0 or phoneme duration. Therefore, optimum waveform segments can be selected while 

considering both the degradation caused by concatenation and that caused by prosodic 

modification. In general, the number of concatenations becomes smaller by utilizing longer 
units. However, the longer units cannot always synthesize natural speech, since the number 

of candidate units becomes small and the廿exibilityof prosody synthesis is lost. 

Shorter units have also been proposed. Donovan et al. proposed HMM state-based units 

[28][29]. In this approach, decision-tree state-clustered HMMs are trained automatically with 

a speech corpus in advance. In order to determine the segment sequence to concatenate, a 

dynannc progran叫 ngsearch is performed over all waveform segments aligned to each leaf of 

the decision-trees in synthesis. In the HMM-based speech synthesis proposed by Yoshimura 
et al. [901, the optimum HMM sequence is selected from decision-trees by utilizing phonetic 

and prosodic context information. 

In our corpus-based TTS, the waveform segment selection technique is applied to a unit 

selection module. A schematic diagram of the segment selection is shown in Figure 2.4. 
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2.2.4 Waveform synthesis 

An output speech waveform is synthesized from the selected units in the last procedure of 

TTS. In general, two approaches to waveform synthesis have been used. One is waveform 

concatenation without speech modification, and the other is speech synthesis with speech 

modification. 

In the waveform concatenation, speech is synthesized by concatenating waveform segments 

selected from a speech corpus using prosodic information to remove need for signal process-

ing [19]. In this case, instead of performing prosody modification, raw waveform segments 

are used. Therefore, synthetic speech has no degradation caused by signal processing. How-

ever, if the prosody of the selected waveform segments is different from the predicted target 

prosody, degradation is caused by the prosodic difference [39]. In order to alleviate the 

degradation, it is necessary to prepare a large-sized speech corpus that contains abundant 

waveform segments. Although synthetic speech by waveform concatenation sounds very 

natural, the naturalness is not always consistent. 

In the speech synthesis, signal processing techniques are used to generate a speech wave-

form with the target prosody. The Time-Domain Pitch-Synchronous OverLap-Add (TD-

PSOLA) algorithm is often used for prosody modification [63]. TD-PSOLA does not need 

any analysis algorithm except for determination of pitch marks throughout the segments. 

Speech analysis-synthesis methods can also modify the prosody. In the HMM-synthesis 

method, a mel-cepstral analysis-synthesis technique is performed [90]. Speech is synthesized 

from a mel-cepstrum sequence generated directly from the selected HMMs and the excitation 

source by utilizing a Mel Log Spectrum Approximation (MLSA) filter [44]. A vocoder type 

algorithm such as this can modify speech easily by varying speech parameters, i.e. spec-

tral parameter and source parameter [31]. However, the quality of the synthetic speech is 

often degraded. As a high-quality vocoder type algorithm, Kawahara et al. proposed the 

STRAIGHT (Speech Transformation and Representation using Adaptive Interpolation of 

weiGHTed spectrum.) analysis-synthesis method [51]. STRAIGHT uses pitch-adaptive spec-

tral analysis combined with a surface reconstruction method in the time-frequency region 

to remove signal periodicity and designs an excitation source based on phase manipulation. 

Moreover, STRAIGHT can manipulate such speech parameters as pitch, vocal tract length, 

and speaking rate while maintaining high reproductive quality. Stylianou proposed the Har-

monic plus Noise Model (HNM) as a high-q叫 ityspeech modification technique [78]. In 

this model, speech signals are represented as a time-varying harmonic component plus a 

modulated noise component. Speech synthesis with these modification algorithms is very 

useful in the case of a small-sized speech corpus. Synthetic speech by this speech synthesis 

sounds very smooth, and the quality is consistent. However, the naturalness of the synthetic 

speech is often not as good as that of synthetic speech by waveform concatenation. 

In our corpus-based TTS, both the waveform concatenation technique and STRAIGHT 

synthesis method are applied in the waveform synthesis module. In the waveform concate-

nation, we control waveform power in each phoneme segment by multiplying the segment by 

a certain value so that average power in a phoneme segment selected from a speech corpus 

becomes equal to average target power in the phoneme. ,iVhen the segments modified by 

this power are concatenated, an overlap-add technique is applied in the frame-pair with the 

highest correlation around a concatenation boundary between the segments. A schematic 

diagram of the waveform concatenation is shown in Figure 2.5. In the other synthesis 

method based on STRAIGHT, speech waveforms in voiced phonemes are synthesized with 

STRAIGHT by using a concatenated spectral sequence, a concatenated aperiodic energy 

sequence, and target prosodic features. In unvoiced phonemes, we use original waveforms 
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modified only by power. A schematic diagram of the speech synthesis with prosody modifi-

cation by STRAIGHT is shown in Figure 2.6. 

2.2.5 Speech corpus 

A speech corpus directly influences the quality of synthetic speech in corpus-based TTS. In 
order to realize a consistently high quality of synthetic speech, it is important to prepare 

a speech corpus containing abundant speech segments with various phonemes, phonetic 

environments, and prosodies, which should be recorded while maintaining high quality. 

Abe et al. developed a Japanese sentence set in which phonetic coverage is controlled [1 ]. 

This sentence set is often used not only in the field of speech synthesis but also in speech 

recognition. Kawai et al. proposed an effective method for designing a sentence set for 

utterances by taking into account prosodic coverage as well as phonetic coverage [55]. This 

method selects the optimum sentence set from a lar~e number of sentences by maximizing 
the measure of coverage. The size of the sentence set, 1.e. the number of sentences, is decided 

in advance. The coverage measure captures two factors, i.e. (1) the distributions of F;。and
phoneme duration predicted by the prosody generation and (2) perceptual degradation of 

naturalness due to the prosody modification. 

In general, the degradation of naturalness caused by a mismatch of phonetic environments 

and prosodic difference can be alleviated by increasing the size of the speech corpus鼻 However,

variation in voice quality is caused by recording the speech of a speaker for a long time in 

order to construct the large-sized corpus [56]. Concatenation between speech segments with 

different voice qualities pr_oduces audible discontinuity. To deal with this problem, previous 

stuclies have proposed usmg a measure capturing the difference in voice quality to avoid 

concatenation between such segments [56] and normalization of power spectral densities 

[75]. 
In our corpus-based TTS, a large-sized corpus of speech spoken by a Japanese male who 

is a professional narrator is under construction. The maximum size of the corpus used in 

this report is 32 hours. A sentence set for utterances is extracted from TV news articles, 

newspaper articles, phrase books for foreign tourists, and so on by taking into account 

prosodic coverage as well as phonetic coverage. 

2.3 Summary 

This section described the basic structure of corpus-based Text-to-Speech (TTS) and re-

viewed the various techniques in each module. We also introduced some techniques applied 

to the corpus-based TTS under development iin ATR Spoken Language Translation Research 

Laboratories. 

Corpus-base(l TTS improve the naturalness of synthetic speech dramatically compared 

with rule-based TTS. However, its naturalness is still inadequate. 
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Figure 2.5: Schematic diagram of waveform concatenation. 
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Figure 2.6: Schematic diagram of speech synthesis with prosody modification by 

STRAIGHT. 



Chapter 3 

A Segment Selection Algorithm for 
Japanese Speech Synthesis Based on 
Both Phoneme and Diphone Units 

This section describes a novel segment selection algorithm for Japanese TTS systems. Since 

Japanese syllables consist of CV (C: Consonant or consonant cluster1 V: Vowel or syl-

labic nasal /N /} or V1 except when a vowel is devoiced1 and these correspond to symbols 

切 theJapanese'I{ ana'syllabary1 CV units are often used in concatenative TTS systems for 

Japanese. However1 speech synthesized with CV units sometimes has discontinuities due to 
V-V or V-semivowel concatenation. In order to alleviate such discontinuities1 longer units1 
e.g. CV* units, have been proposed. Ho初 ever,since various vowel sequences appear fre-

quently in Japanese, it is not realistic to prepare long units that include all possible vowel 
sequences. To address this problem, we propose a novel segment selection algorithm. that 

incorporates not only phoneme units but also diphone units. The concatenation in the pro-

posed algorithm is allowed at the vo初 elcenter as well as at the phoneme boundary. The 

advantage of considering both types of units is examined by experiments on concatenation of 

vowel sequences. lvloreover, the results of perceptual evaluation experiments clarify that the 

proposed algorithm outperforms the conventional algorithms. 

3.1 Introduction 

In Japanese, a speech corpus can be constructed efficiently by considering CV (C: Conso-

nant or consonant duster, V: Vowel or syllabic nasal /N/) syllables as synthesis units, since 

Japanese syllables consist of CV or V except when a vowel is devoiced. CV syllables corre-

spond to symbols in the Japanese'Kana'syllabary and the number of the syllables is small 

(about 100). It is also well known that transitions from C to V, or from V to V, are very im-

portant in auditory perception [701[82]. Therefore, CV units are often used in concatenative 

TTS systems for Japanese. On the other hand, other units are often used in TTS systems 

for English because the number of syllables is enormous (over 10,000) [60}. In recent years, 

an English TTS system based on CHATR has been adapted for diphone units by AT&T [4]. 

Furthermore, the NextGen TTS system based on half-phoneme units has been constructed 

[5}[24][80], and this system has proved to be an improvement over the previous system. 
In Japanese TTS, speech synthesized with CV units has discontinuities due to V-V or V-

semivowel concatenation. In order to alleviate these discontinuities, Kawai et al. extended 

the CV unit to the CV* unit [53]. Sagisaka proposed non-uniform units to use stored speech 

12 



3.2 Cost Function for Segment Selection 13 

data effectively and flexibly [70]. In this algorithm, optimum units are selected from a speech 

corpus to minimize the total cost calculated as the sum of some sub-costs [47][71][83]. As 

a result of dynamic programming search based on phoneme units, various sized sequences 

of phonemes are selected [8][18][42]. However, it is not realistic to construct a corpus that 

includes all possible vowel sequences, since various vowel sequences appear frequently in 

Japanese. The frequency of vowel sequences is described in Appendix A . If the coverage 
of prosody is also to be considered, the corpus becomes enormous [55J. Therefore, the 

concatenation between V and V is unavoidable. 
Formant transitions are more stationary at vowel centers than at vowel boundaries. There-

fore, concatenation at the vowel centers tends to reduce audible discontinuities compared 

with that at the vowel boundaries. VCV units are based on this view [73], which has been 
supported by our informal listening test. As typical Japanese TTS systems that utilize the 

concatenation at the vowel centers, TOS Drive TTS (Totally Speaker Driven Text-to-Speech) 

has been constructed by TOSHIBA [49] and Final Fluet has been constructed by NTT [82]. 
The former TTS is based on diphone units. In the latter TTS, diphone units are used if the 

desirable CV* units are not stored in the corpus. Thus, both TTS systems take into account 

only the concatenation at the vowel centers in vowel sequences. However, concatenation at 

the vowel boundaries is not always inferior to that at the vowel centers. Therefore, both 

types of concatenation should be considered in vowel sequences. In this section, we propose 

a novel segment selection algorithm incorporating not only phoneme units but also diphone 

units. The proposed algorithm permits the concatenation of synthesis units not only at the 

phoneme boundaries but also at the vowel centers. The results of evaluation experiments 

clarify that the proposed algorithm outperforms the conventional algorithms. 

The section is organized as follows. In Section 3.2, cost functions for segment selection 
are described. In Section 3.3, the advantage of performing concatenation at the vowel 
centers is discussed. In Section 3.4, the novel segment selection algorithm is described. In 

Section 3.5, evaluation experiments are described. Finally, we summarize this section in 

Section 3.6. 

3.2 Cost Function for Segment Selection 

The cost function for segment selection is viewed as a mapping, as shown in Figure 3.1, 

of objective features, e.g. acoustic measures and context叫 information,into a perceptual 

measure. A cost is considered the perceptual measure capturing the degradation of natu-

ralness of synthetic speech. In this report, only phonetic information is used as contextual 

information, and the other contextual information is converted into acoustic measures by 

the prosody generation. 

The components of the cost function should be determined based on results of percept叫

experiments. A mapping of acoustic measures into a perceptual measure is generally not 

practical except when the acoustic measures have simple structure, as in the case of Fi。or
phoneme duration. Acoustic measures with complex structure, such as spectral features 

that are accurate enough to capture perceptual characteristics, have not been found so far 

[26] [59] [79] [88]. 
On the other hand, a mapping of phonetic information into perceptual measures can 

be determined from the results of perceptual experiments [57]. Therefore, it is possible 

to capture the perceptual characteristics by utilizing such a mapping. However, acoustic 

measures that can represent the characteristic of each segment are still necessary, since 

phonetic information can only evaluate the difference between phonetic categories. 
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~! 

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・' 

□三／
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measure 

Cost 

Mapping observable features 
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Figure 3.1: Schematic diagram of cost function. 

Table 3.1: Sub-cost functions 

Source information 

Vocal tr叩 info:rmation 

Prosody (Fo, duration) 
F。discontinuity
Phonetic environment 
Spectral discontinuity 
Phonetic appropriateness 

C pro 
CFo 
C er, 戌］
C spec 
C app 

Therefore, we utilize both acoustic measures and perceptual measures determined from 
the results of perceptual experiments. 

3.2.1 Local cost 

The local cost shows the degradation of naturalness caused by utilizing an individual can-
didate segment. The cost function is comprised of five sub-cost functions shown in Table 
3.1. Each sub-cost re.fleets either source information or vocal tract information. 
The local cost is calculated as the weighted sum of the five suh-costs. The local cost 

LC(ui, t;) at a candidate segment ui is given by 

LC(佑，tiー）

Wpr。+wFo ＋
 

Wpro・Cpro(Ui,ti) 

+w.Fl。• 作。(uい年1)

＋叫nv・Cenv(Ui墨i-1)

十切spec・Cspec (附，糾~ー1)

十切app・Capp仇，tふ
叫 nv+叫pee+ Wapp = 1, 

(3.1) 

(3.2) 

where ti denotes a target phoneme. All sub-costs are normalized so that they have pos-

itive values with the same mean. These sub-cost functions are described in the following 
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' ' .  
Segments ビ

Figure 3.2: Targets and segments used to calculate each sub-cost in calculation of the cost 

of a candidate segment ui for a target k ti and Ui show phonemes considered target and 

candidate segments, respectively. 

subsections. Wpro, WF;。,Wenv, Wspec, and Wapp denote the weights for individual sub-costs. In 
this report, these weights are equal, i.e. 0.2. The preceding segment Ui-l shows a candidate 

segment for the (i -1)-th target phoneme t← 1. ¥'!I/hen the candidate segments ui-l and ui are 
connected in the corpus, concatenation between the two segments is not performed. Figure 
3.2 shows targets and segments used to calculate each sub-cost in the calculation of the cost 
of a candidate segment ui for a target tか

3.2.2 Sub-cost on prosody: Cpro 

This sub-cost captures the degradation of naturalness caused by the difference in prosody 

(Fi。contourand duration) between a candidate segment and the target. 

In order to calculate the diザerencein the F;。contour,a phoneme is divided into several 
parts, and the difference in an averaged log-scaled F;。iscalculated in each part. In each 
phoneme, the prosodic cost is represented as an average of the costs calculated in these 

parts. The sub-cost Cpr。isgiven by 

1 1vJ 
Cpro(u;,i;) =一 LP(D叫附，t;,m),D凸ふ）），

M 
m=l 

(3.3) 

where DFl。(ui,ti, m) denotes the difference in the averaged log-scaled F;。inthem-th divided 

part. In the unvoiced phoneme, DFi。isset to 0. Dd denotes the difference in the duration, 
which is calculated for each phoneme and used in the calculation of the cost in each part . 

. M denotes the number of divisions. P denotes the nonlinear function and is described in 

Appendix B. 

The function P was determined from the results of perceptual experiments on the degra-

dation of naturalness caused by prosody modification, assuming that the output speech was 

synthesized with prosody modification. When prosody modification is not performed, the 

function should be determined based on other experiments on the degradation of naturalness 

caused by using a different prosody from that of the target. 

3.2.3 Sub-cost on F 
. . . 

0 d1scontinu1ty: CF;。
This sub-cost captures the degradation of naturalness caused by an F;。discontinuityat a 

segment boundary. The sub-cost CFi。isgiven by 

仰。(u;,u;_1) = P(DF;。(Ui,Ui-1), 0), (3.4) 
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where DFl。denotesthe difference in log-scaled F;。atthe boundary. DF,。isset to O at th~ 
unvoiced phoneme boundary. In order to normalize a dynamic range of the sub-cost, we 

utilize the function P in Equation (3.3). ・when the segments Ui-l and u; are connected in 

the corpus, the sub-cost becomes 0. 

-cost on . onetic environn1ent: Cenv 3.2.4 Sub ph ・

This sub-cost captures the degradation of naturalness caused by the mismatch of phonetic 

environments between a candidate segment and the target. The sub-cost Cenv is given by 

Cenv(叩，U;_1) = {ふ(ui-1,Es(ui-1), 糾）＋名（糾， EP仇），糾—1)}/2, (3.5) 

＝｛凡(ui-1,Es(Ui-1), i;) +名（糾，晶（叫，t;-1)}/2, (3.6) 

where we turn Equation (3.5) into Equation (3.6) by considering that a phoneme for附

is equal to a phoneme for i; and a phoneme for u;_1 is equal to a phoneme for i;_1. Ss 

denotes the sub-cost function that captures the degradation of naturalness caused by the 

1nismatch with the succeeding environment, and SP denotes that caused by the mismatch 

with the preceding environment. Es denotes the succeeding phoneme in the corpus, while 

Ep denotes the preceding phoneme in the corpus. Therefore, Ss(u;_1, Eパ止—1) よ） denotes 
the degradation caused by the mismatch with the succeeding environment in the phoneme 

for u← 1, i.e. replacing Es(い） with the phoneme fort;, and SP仇，Eパ叫，i;_1)denotes the 
degradation caused by the mismatch with the preceding environment in the phone1ne u;, i.e. 

replacing砧（叫 withthe phoneme for t;-1. The sub-cost functions Ss andふaredetermined 

from the results of percept叫 experimentsdescribed in Appendix C . 

Even if a mismatch of phonetic environments does not occur, the sub-cost does not neces-

sarily become O because this sub-cost reflects the difficulty of concatenation caused by the 

uncertainty of segmentation. When the segments u;_1 and u; are connected in the corpus, 

this sub-cost is set to 0. 

d. 3.2.5 Sub-cost on spectral 1scontinu1ty: Cspec 

This sub-cost captures the degradation of naturalness caused by the spectral discontinuity 

at a segment boundary. This sub-cost is calculated as the weighted sum of mel-cepstral 

distortion between frames of a segment and those of the preceding segment around the 

boundary. The sub-cost Cspec is given by 

叫2-1

Cspec(uいい） = Csー L h(f)_ll;,JCD(u;,u;_i,f), (3.7) 
f=-w/2 

where h denotes the triangular weighting function of length w. NJC D(糾直i-bf) denotes 

the mel-cepstral distortion between the f-th frame from the concatenation frame (f = 0) of 
the preceding segment Ui-l and the f-th frame from the concatenation frame (f = 0) of the 
succeeding segment Ui in the corpus. Concatenation is performed between the -1-th frame 

of ui-l and the 0-th frame of Ui. c5 is a coefficient to normalize the dynamic range of the 

sub-cost. The mel-cepstral distortion calculated in each frame-pair is given by 

l> ·\j2・f (mdf) -meい）汽
d=l 

(3.8) 



3.2 Cost Function for Segment Selection 17 

Targets ニ
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ぷ I'-----,．． ．． .. .•· 
LC(u1, t1) LC(u2, t2) 

Mapping local costs 
into an integrated cost 

LC(uN, な）
） 

Integrated 
cost 

Figure 3.3: Schematic diagram of function to integrate local costs LC. 

where mc~d) and mc1) show the d-th order mel-cepstral coefficient of a frame a and that of 

a frame fJ, respectively. Mel-cepstral coefficients are calculated from the smoothed spectrum 
analyzed by the STRAIGHT analysis-synthesis method [51][52]. Then, the conversion algo-
rithm proposed by Oppenheim et al. is used to convert cepstrum into mel-cepstrum [66]. 

When the segments ui-I and ui are connected in the corpus, this sub-cost becomes 0. 

3.2.6 Sub-cost on ph onetic appropriateness: Capp 

This sub-cost denotes the phonetic appropriateness and captures the degradation of natural-

ness caused by the difference in mean spectra between a candidate segment and the target. 

The sub-cost Capp is given by 

Capp(糾， t』=ct・MCD(CEN(u』,CEN(t;)), (3.9) 

where GEN denotes a mean cepstrum calculated at the frames around the phoneme center. 

~MC D denotes the mel-cepstral distortion between the mean cepstrum of the segment u; and 

that of the target i;. Ct, is a coefficient to normalize the dyna1nic range of the sub-cost. The 

mel-cepstral distortion is given by Equation (3.8). We utilize the mel-cepstrum sequence 

output from context-dependent HMMs in the HMM synthesis m叫10d[90] in calculating 
the mean cepstrum of the target CE N (む）. In this report, this sub-cost is set to O in the 

unvoiced phoneme. 

3.2. 7 Integrated cost 

In segment selection, the optimum set of segments is selected from a speech corpus. There-

fore, we integrate local costs for individual segments into a cost for a segment sequence as 

shown in Figure 3.3. This cost is defined as an integrated cost. The optimum segment 

sequence is selected by minimizing the integrated cost. ・ 

The average cost AC is often used as the integrated cost [8][18][21 ][42][80], and it is given 
by 

N 1 
AC=ー・ LLC(u凸），

N 
i=l 

(3.10) 
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Figure 3.4: Spectrograms of vowel sequences concatenated at (a) a vowel boundary and (b) 
a vowel center. 

where N denotes the number of targets in the utterance. t。(u0)shows the pause before the 
utterance and tN (uN) shows the pause after the utterance. The sub-costs Cpro and Capp are 
set to O in the pause. Minimizing the average cost is equivalent to mini叫 zingthe sum of 

the local costs in the selection. 

3.3 Concatenation at Vowel Center 

Figure 3.4 comp紅 esspectrograms of vowel sequences concatenated at a vowel boundary 

and a.t a vowel center. At vowel boundaries, ふscontinuitiescan be observed at the conca.te-
叫 ionpoints. This is because it is not easy to find a synthesis unit satisfying continuity 

requirements for both static and dynamic characteristics of spectral features at once in a 

restricted-sized speech corpus. At vowel centers, in contrast, finding a synthesis unit involves 

only static characteristics, because the spectral characteristics are nearly stable. Therefore, 

it is expected that more synthesis units reducing the spectral discontinuities can be found. 

As a result, the formant trajectories are continuous at the concatenation points, and their 

transition characteristics are well preserved. 

In order to investigate the instability of spectral characteristics in the vowel, the distances 

of static and dynamic spectral features were calculated between centroids of individual vowels 

and all segments of each vowel in a corpus described in the following subsection. As the 

spectral feature, we used the mel-cepstrum described in Section 3.2.5. The results are 
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Figure 3.5: Statistical characteristics of static feature and dynamic feature of spectrum in 

vowels. "Normalized time" shows the time normalized from O (preceding phoneme boundary) 

to 1 (succeeding phoneme boundary) in each vowel segment. 

shown in Figure 3.5. It is obvious that the spectral characteristics are stabler around the 
vowel center than those around the boundary. 

From these results, it is assumed that the discontinuities caused by concatenating vowels 

can be reduced if the vowels are concatenated at their centers. In order to clarify this 
assumption, we need to investigate the effectiveness of concatenation at vowel centers in 

segment selection. However, it is difficult to directly show the effectiveness achieved by 

using the concatenation at vowel centers since various factors are considered in segment 

selection. Therefore, we first investigate this effectiveness in terms of spectral discontinuity, 

which is one of the factors considered in segment selection. 

In this subsection, we compare concatenation at vowel boundaries with that at vowel 

centers by the mel-cepstral distortion. When a vowel sequence is generated by concatenating 

one vowel segment and another vowel segment, the mel-cepstral distortion caused by the 

concatenation at vowel boundaries and that at vowel centers are calculated. The vowel 

center shows a point of a half duration of each vowel segment. 

3.3.1 Exp . 
．． 

enmental cond1t1ons 

The concatenation methods at a vowel boundary and at a vowel center are shown in Figure 

3.6. We used a speech corpus comprising Japanese utterances of a male speaker, where 

segmentation was performed by experts and F;。wasrevised by hand. The utterances had a 

duration of about 30 minutes in total (450 sentences). The sampling frequency was 16,000 Hz. 

The concatenation at vowel boundaries and that at vowel centers were performed by using 

all of the vowel sequences in the corpus. In each segment-pair, the weighted sum of the 

mel-cepstral distortion given by Eq叫 ion(3. 7) was calculated, and then the coefficient c8 

was set to 1. 
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Target vowel sequence: Vl -V2 

Concatenation at vowel boundary 

Segment 1 

竺；三冒
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Vl 

Concatenation at vowel center 
Segment 1 

円．ぎi〗喜言ぎ］言冒

‘ Vl1hj 

Segment 2 

f_-_-_-_----~ ー-:_-_i-(_-_ー一ーエ王

~ 
V2 

Segment 2 

［竺．叫 Vl1hl V2 

------I 

V2 

Figure 3.6: Concatenation methods at a vowel boundary and a vowel center. "V*" shows 

all vowels. "V fl/ and "V1h" show the first half-vowel and the last half-vowel, respectively. 

3.3.2 Experiment allowing substitution of phonetic environn1ent 

In this experiment, substitution of phonetic environments was not prohibited. All segments 
of "Vl" having a vowel as the succ硲 dingphoneme in the corpus were used, i.e. "V*" in 
Figure 3.6 shows all vowels. 
Figure 3. 7 shows frequency distribution of distortion caused by concatenation. Con-

catenation at vowel centers ("Vowel center") can generally reduce the discontinuity caused 
by the concatenation compared with that at vowel boundaries ("Vowel boundary"). In the 

segment selection, it is important to select the segments that can reduce not only the spec-
tral discontinuity but also the distortion caused by various factors, e.g. prosodic distance. 

Therefore, as the frequency distribution shifts to the left side, the number of segments that 

can reduce distortion increases. From this point of view, it was found that segment selection 

was better when using concatenation at vowel centers along with substitution of phonetic 
environments. 

3.3.3 Experin1ent prohibiting substitution of phonetic environ-

ment 

In this experiment, substitution of phonetic environments was prohibited. All segments of 

"Vl" having "V2" as the succeeding phoneme in the corpus were used, i.e. "V*" = "V2." 
Figure 3.8 shows the frequency distribution of distortion caused by the concatenation 

between vowels that have the same phonetic environment. The distortion caused by the 

concatenation at vowel centers is almost equal to that at vowel boundaries. Therefore, the 

performance of concatenation at vowel centers is the same as that at vowel boundaries when 

substitution of phonetic environments is not performed. 

Next, we selected the best type of concatenation in each segment-pair by allowing both 

vowel center and vowel boundary concatenations. Frequency distribution of distortion in 

this case is shown in Figure 3.8. This approach ("Vowel boundary & Vowel center") can 
reduce the discontinuity in concatenation compared with concatenation performed only at 
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Figure 3. 7: Frequency distribution of distortion caused by concatenation between vowels in 
the case of allowing substitution of phonetic environment. "S.D. " shows standard deviation. 
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Figure 3.9: Example of segment selection based on phoneme units. The input sentence is 

"tsuiyas" ("spend" in English). Concatenation at C-V boundaries is prohibited. 

vowel boundaries or only at vowel centers. This shows that the number of better segments 

increases by considering both types of concatenation. 

These results clarify that better segment selection can be achieved by considering not only 

the concatenation at vowel centers but also that at vowel boundaries in vowel sequences. 

3.4 Segment Selection Algorithm Based on Both Phoneme 

and Diphone Units 

Motivated by the considerations in Section 3.3, we propose a novel segment selection algo-

:rithm based on both phoneme and diphone units. Here, we also describe the conventional 

segment selection algorithm based on phoneme unit for comparison with the proposed algo-

rithm. 

3.4.1 Conventional algorithm 

An input sentence, i.e. a target phoneme sequence, is divided into phonemes. The local 

costs of candidate segments for each target phoneme are calculated by Equation (3.1). The 
optimum set of segments is selected from a speech corpus by minimizing the average cost 

given by Equation (3.10), i.e. the sum of the local costs. As a result, non-uniform units 

based on phoneme units can be used as synthesis units. 

Figure 3.9 shows an example of the conventional segment selection based on phoneme 

units. In this report, we do not allow C-V concatenation since the transition from C to Vis 

very important in auditory perception to the intelligibility in Japanese [701[82}. Therefore, 

the segment sequences comprised of non-unifo:rm units based on the syllable were selected. 

3.4.2 Proposed algorithn1 

¥¥hen concatenation is allowed at the vowel centers, the half-vowel segments dividing the 

vowel segments are utilized to take account of diphone units. Each half-vowel segment has 

a half duration of the original vowel segment. 

We assumed that candidate segments u{ and u} are the first half-vowel segment of the 

original vowel segment u1; and the last half-vowel segment of the original vowel segment u2;, 

respectively. Sub-costs for a target phoneme t;, which is divided into the first half-phoneme 

t{ and the last half-phoneme tL are calculated as follows: 
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• The Opro sub-cost is calculated as the weighted sum of the sub-costs calculated at the 
half-vowel segments and is given by 
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where the weights WJ and w1 are defined according to durations of the segments. 

如 (u{)and dur(碕） denote duration of the什rsthalf-vowel segment u{ and that of 

the last half-vowel segment uL respectively. In calculating the Cpro for the half-vowel 
segments, each half-vowel segment is divided into M/2 parts. 

• The CFi。sub-costis calculated as the sum of the sub-costs at a phoneme boundary and 
a vowel center and is given by 

伍 (u{,Ui-1) + C叫碕，u{). (3.13) 

• The Cenv sub-cost is calculated as the sum of the sub-costs at a phoneme boundary 
and a vowel center and is given by 

Cenv(u{,ui-1) + Cenv国，u{)

= Cenv(U1i, Ui-1) + {S応ぶ（印），ii+1)

＋界(u加属（匹），ti-1)}/2, (3.14) 

where the phonetic environments of the half-vowel segment are equal to those of the 

original vowel segment divided into the half-vowel segments. On the other hand, the 

sub-cost functions, Sf and s;, for the concatenation at vowel centers are not eq叫 to

the sub-cost functions, Ss and Sp, for the concatenation at phoneme boundaries, which 
are given by Equation (3.6). 

• The Cspec sub-cost is calculated as the sum of the sub-costs at a phoneme boundary 

and a vowel center and is given by 

Cspec(u{, 叩 1)+ Cspec(碕叫）． (3.15) 

• The Capp sub-cost is calculated as the weighted sum of the sub-costs calculated at the 
original vowel segments, u1i and u2i divided into the half-vowel segments, 砕andu{, 
and is given by 

町 ・Capp(u1i,ti) + Wz・Capp(u2i, tふ

where the weights w1 and w1 are given by Equation (3.12). 

(3.16) 

Figure 3.10 shows targets and segments used to calculate each sub-cost in the calculation 

of the cost of candidate segments ui, u~for a target ti. If a diphone unit is used, the sub-

costs, Cenv(叫，Ui-1),Cspec(u{, Ui-1), and C叫叫叩1),become 0, since ui-l and u{ are 

connected in the corpus. Furthermore, if a phoneme unit is used, the sub-costs, Cenv(碕，u{),
f) Cspec(碕，ui),and C叫辺，糾， alsobecome 0, since ui and u~are connected in the corpus. 

In the other phonemes where concatenations are not allowed at their centers, the costs are 

calculated in the same way as the conventional algorithm. The optimum segment sequence 
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Figure 3.10: Targets and segments used to calculate each sub-cost in calculation of the cost 

of candidate segments u{, 叶fora target ti. 

is selected from a speech corpus by minimizing the average cost. As a result, non-uniform 

units based on both phoneme units and diphone units can be used as synthesis units. 

Phoneme units and diphone units have their own advantages and disadvantages. The ad-

vantage of using phoneme units is the ability to preserve the characteristics of phonemes. 

Moreover, it might be assumed that slight spectral discontinuities in the transitions in which 

spectral features change rapidlly are hard to perceive. However, it is not easy to find synthesis 

units that can reduce the spectral discontinuities since static and dynamic characteristics of 

spectral features should be considered in the transitions. On the other hand, the advantage 

of using diphone units is the ability to preserve transitions between phonemes and to con-

catenate at steady parts in phonemes. Therefore, more synthesis units reducing the spectral 

discontinuities can be found. However, it might be assumed that spectral discontinuities in 

steady parts are easy to perceive. In the proposed algorithm, the cost is used to determine 

which of the two units is better. 

We allow concatenations at vowel centers not only in transitions from V to V but also in 

transitions from V to a semivowel or a nasal. In the transitions from V to a sennvowel or a 

nasal, diphone units that start from the center of a vowel in front of consonants are used. In 

this report, the half-vowel segments are not used except for the segments having silences as 

phonetic environments. Therefore, minimum units preserve either the important transitions 

l)etween phonemes or the characteristics of Japanese syllable~. 
An example of the proposed segment selection algorithm rs shown in Figure 3.11. Di-

phone units such as /ts-u/, /u-i/, and /i-y / as well as phoneme units are considered in the 

segment selection. 

3.4.3 Con1parison with segment selection based on half-phonen1e 

units 

Our TTS under development is mainly for Japanese speech synthesis. Since the number of 

Japanese syllables is much smaller than that of English syllables, we can construct a speech 

corpus containing all of the syllables. Therefore, we restrict minimum synthesis units to 
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Figure 3.11: Example of segment selection based on phoneme units and diphone units. 

Concatenation at C-V boundaries and selection of isolated half-vowels are prohibited. 
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Fi邸 :rre3.12: Example of segment selection based on half-phoneme units. 

syllables or diphones in order to preserve important transitions. Namely, we don't use half-

phoneme units as used in the AT&T NextGen TTS system [24]. An example of a segment 

selection algorithm based on half-phoneme units is shown in Figure 3.12. 

The proposed algorithm can be considered an algorithm based on half-phoneme units 

adapted for Japanese speech synthesis by restricting some types of concatenation. However, 

it might be assumed that half-phoneme units would also work well for Japanese speech 

synthesis. Therefore, we compared the proposed algorithm with the conventional algorithm 

based on half-phoneme units. In order to make a fair comparison, the weight Wenv in Equation 

(3.1) was set to O since we have not yet determined Ss and SP in sub-cost Cenv for almost all 

of the half-phoneme units. As a result of a preference test on the naturalness of synthetic 

speech, the 95% confidence interval of the proposed algorithm's preference score was 66.67土

3.98%. This result shows that as the length of units used in segment selection becomes short, 

the risk of causing more audible discontinuities by excessive concatenations becomes high, 

although more combinations of units can be considered to reduce the prosodic difference. 

Therefore, it is important to use a cost that is accurate enough to capture the audible 

discontinuities, especially in segment selection based on short units. 
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Table 3.2: Number of concatenations in experiment comparing proposed algorithm with 

segment selection based on phoneme units. "S" and "N" show sennvowel and nasal. "Center" 

shows concatenation at vowel center 

Concatenation 

Proposed algorithm 

Conventional algorithm 

V-V V-S V-N j Center 
125 6 3 11 I 25 
124 16 3 20 

Table 3.3: Number of concatenations in experiment comparing proposed algorithm with seg-

ment selection allowing only concatenation at vowel center in V-V, V-S, and V-N sequences 

Concatenation 

Proposed algorithm 

Conventional algorithm 

V-V V-S V-N j Center 

>; 1_0~2_3 I~~ 

3.5 Experimental Evaluation 

In order to evaluate the performance of the proposed algorithm, we compared the proposed 

algorithm with the conventiona1 algorithm, which allows concatenation only at phoneme 

bounda五es.Moreover, we also compared the proposed algorithm with another conventional 

algorithm, which allows conca.tenation only at vowel centers in V-V, V-S, and V-N sequences. 

We call the former comparison Experiment A and the latter comparison Experiment B. 

3.5.1 
．． 

Experimental conditions 

We used the speech corpus comprising Japanese utterances of a male speaker, which is 

described in Section 3.3.1. 

A preference test was performed with synthesized speech of 10 Japanese sentences. The 

sentences used in Experiment A were different form those in Experiment B. These sentences 

were not from the speech corpus used in the segment selection. The speech was synthesized 

by the proposed segment selection algorithm or the conventional algorithm in each exper-

iment. The natural prosody and the mel-cepstrum sequences extra.cted from the original 

utterances were used to investigate the performance of the segment selection algorithms. 

In Experiment A, all of the synthesized speech were comprised of 366 phonemes, and the 
number of concatenations in each algorithm is shown in Table 3.2. In the other experi-

ment, Experiment B, all of the synthesized speech were comprised of 453 phonemes, and the 

number of concatenations in each algorithm is shown in Table 3.3. 

The speech was synthesized with prosody (.F;。contour,duration, and power) modification 

by using STRAIGHT. Ten listeners participated in the experiment. In each trial, a pair 

of utterances synthesized with the proposed algorithm and the conventional algorithm was 

presented in random order, and the listeners were asked to choose either of the two types of 

synthetic utterances as sounding more natural. 
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Figure 3.13: Results of comparison with the segment selection based on phoneme units 

("Exp. A") and those of comparison with the segment selection allowing only concatenation 

at vowel center in V-V, V-S, and V-N sequences ("Exp. B"). 

3.5.2 Experimental results 

Results of Experiment A and those of Experiment Bare shown in Figure 3.13. The prefer-

ence score of the proposed algorithm in Experiment A was 69.25%, and that in Experiment 

B was 64.25%. In both experiments, the preference scores of the proposed algorithm ex-

ceeded 50% by a large margin. These results demonstrate that the proposed algorithm can 

synthesize speech more naturally than the conventional algorithms. 

3.6 Summary 

In this section, we proposed a novel segment selection algorithm for Japanese speech syn-

thesis with both phoneme and diphone units to avoid the degradation of naturalness caused 

by concatenation at perceptually important transitions between phonemes. In the proposed 

algorithm, non-uniform units allowing concatenation not only at phoneme boundaries but 

also at vowel centers can be selected from a speech corpus. The experimental results of 

concatenation of vowel sequences clarified that better segments reducing the spectral discon-

tinuities increases by considering both types of concatenation. "¥¥e also performed perceptual 

experiments. The results showed that speech synthesized with the proposed algorithm has 

better naturalness than that of the conventional algorithms. 

Although we restrict minimum synthesis units to syllables or diphones, these units are not 

always the best units. The best unit definition is expected to be determined according to 

various factors, e.g. corpus size, correspondence of the cost to perceptual characteristics, 

synthesis methods, and the kinds of languages. Consequently, we need to investigate various 

units based on this view。 Moreover,we need to clarify the effectiveness of searching optimal 

concatenation frames [23] after segment selection, although we have no acoustic measure 

that is accurate enough to capture perceptual characteristics. 
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An Evaluation of Cost Capturing 

Both Total and Local Degradation of 

Naturalness for Segment Selection 

In segment selection for concatenative TTS1 it is important to utilize a cost that corresponds 

to the perceptual characteristics. In this section1 we clarify correspondence of the cost to the 
perceptual scores and then evaluate various functions to integrate the costs. The perceptual 

scores are determined from results of perceptual experiments on the naturalness of synthetic 

speech. The results show that the average cosもwhichshows the degradation of naturalness 

over the entire synthetic speech) has better correspondence to the perceptual scores than the 

maximum cost1初hichsh咋 sthe local degradation of naturalness. Furthemwre1 it is shown 

that R.NJS (Root Mean Square) cost, which is affected bリboththe average cost and the maェ—
imum cost) has the best correspondence. We also clarify that the naturalness of synthetic 

speech can be slightly improved by utilizing the RMS cost. Then1 we investigate the e.ffect of 

usin9 the RNIS cost for segment selection. From the results of experiments comparing this 

approach with segment selection based on the conventional average cost, it is fo-und that (1) 
in segment selection based on the RNIS cost a larger number of concatenations causing slight 

local degradation are performed to avoid concatenations causing greater local degradation) 
and (2) the effect of the RNLS cost has little dependence on the size of the corpus. 

4 .1 Introduction 

In corpus-based concatenative TTS, speech synthesis based on segment selection has recently 

become the focus of much work on synthesis [20][80]. In segment selection, the optimum set 
of segments is selected from a speech corpus by minimizing the integrated cost for a segment 

sequence, which is described in Section 3.2. 7. Therefore, it is important to utilize a cost 

that corresponds to the perceptual characteristics to synthesize speech naturally [61 }[87]. 
However, such a cost has not been found so far [26}[59}[81}[88}. To realize TTS with high 

quality and robustness, it is necessary to improve this cost function [21 ][67]. 
In the design process of the cost function, however, it is doubtful whether this correspon-

dence is preserved, since there are some approximations, e.g. utilization of acoustic measures 

that are not accurate enough to capture perceptual characteristics [57][79], and independence 
among various factors. Moreover, it n-right be assumed that local degradation of naturalness 

would have a great effect on the naturalness of synthetic speech, although the average cost, 

which shows the degradation of naturalness over the entire synthetic speech, is often used 

28 
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[8][18][42]. Therefore, a direct investigation of the relationship between a perceptual measure 

and the cost is worthwhile. 

Here, we clarify the correspondence of our cost described in Section 3.2 to the perceptual 

scores. Then various functions to integrate the costs are evaluated in terms of correspondence 

to the MOS (Mean Opinion Score) determined from the results of perceptual experiments 

on the naturalness of synthetic speech. As a result, we show that the RMS (Root Mean 

Square) cost, which is affected by both the average cost and the maximum cost showing the 

local degradation of naturalness, has the best correspondence to the perceptual scores. We 

also clarify that the naturalness of synthetic speech can be slightly improved by using the 

RMS cost in segment selection. 

In order to investigate the effect of considering not only the total degradation of naturalness 

of synthetic speech but also the local degradation in segment selection, we compare segment 

selection based on the RMS cost with that based on the average cost. Selected segment 

sequences are analyzed from various points of view to clarify how the local degradation of 

naturalness can be alleviated by utilizing the RMS cost. vVe also clarify the relationship 

between the effectiveness of the RMS cost and the size of the corpus. 

This section is organized as follows. In Section 4.2, various integrated costs for the 
segment selection are described. In Section 4.3, we present perceptual evaluations of the 

costs. In Section 4.4, the effectiveness of utilizing the RMS cost in segment selection is 

discussed. Finally, we smnmarize this section in Section 4.5. 

4.2 Various Integrated Costs 

In the conventional segment selection [8][18][21][42][80], the optimum set of segments is 

selected from a speech corpus by minimizing the average cost AC given by Equation (3.10). 
The average cost shows the degradation of naturalness over the entire synthetic utterance. 

Therefore, a segment with a large cost can be included in the output sequence of segments 

even if it is optimal in view of the average cost. 

It might be assumed that the largest cost in the sequence, i.e. the local degradation of 

naturalness, would have much effect on the degradation of naturalness in synthetic speech. 

To investigate this issue, let us define the maximum cost 1¥lf C as the integrated cost given 

by 

MC=  max{vVC(u;, t;)}, l ::; i::; N, ， (4.1) 

where N denotes the number of targets in the utterance. 

In order to evaluate the various integrated costs, we utilize the norm cost, NCp, given by 

NCP = [~ ・立WC(糾，i;)}P
~ 

i=l l (4.2) 

where p denotes a power coe缶cient.When pis set to 1, the norm cost is equal to the average 

cost. When pis set to infinity, the norm cost is equal to the maximum cost. Thus, this norm 

cost takes into account both the mean value and the maximum value by varying the power 

coefficient. In the following subsection, we find an optimum value of the power coefficient 

from the results of perceptual experiments. 
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4.3 Perceptual Evaluation of Cost 

4.3.1 Correspondence of cost to perceptual score 

We performed an opinion test on the naturalness of the synthetic speech. In order to select 

a proper set of test stimuli, a large number of utterances were synthesized by varying the 

corpus size from 0.5 to 32 hours (0.5, 0.7, 1, 1.4, 2, 2.8, 4, 5.7, 8, 11.3, 16, 22.6, 32). Each 
utterance consisted of a part of a sentence that was divided by a pause. We synthesized 

14,926 utterances that were not included in the corpus, from which we selected a set of 

140 stimuli so that the set covers a wide field in terms of both average cost and maximum 

cost. This selection was performed under the restriction that the number of phonemes in an 

utterance, the duration of an utterance, and the number of concatenations are roughly equal 

among the selected stimuli. The distribution of the average cost and the maximum cost for 

all synthetic utterances and selected test stimuli are shown in Figure 4.1 and Figure 4.2, 
respectively. 

Natural prosody and the mel-cepstrum sequences extracted from the original utterances 

were used as input information for segment selection. In order to alleviate audible disconti-
nuity at the boundary between vowel and voiced phoneme, concatenation at the preceding 

vowel center is also allowed in the segment selection. In the waveform synthesis, signal pro-

cessing for prosody modification was not performed except for power control. Therefore, we 

should use a different sub-cost on prosody Cpr。fromthat described in Section 3.2.2, where 
the function P has been determined in the case of performing prosody modification. In the 

case of not performing prosody modification, however, we have not deterrr廿nedany function 

P. Therefore, we approximate Cpro by the function P described in Appendix C . 

Eight listeners participated in the experiment. They evaluated the naturalness on a scale 

of seven levels, namely 1 (very bad) to 7 (very good). These levels were determined by each 

listener, so the scores were distributed widely among the stimuli. The perceptual score, here 

the MOS, was calculated as an average of the normalized score calculated as a Z-score (mean 

= 0, variance= 1) for each listener in order to equalize the score range among listeners. 

Figure 4.3 shows the correlation coefficient between the norm cost and the perceptual 
score as a function of the power coefficient. The average cost (p = 1) has better correspon-

dence to the perceptual scores (correlation coefficient = -0.808) than does the maximum 
cost (correlation coe缶cient= -0.685). Therefore, the naturalness of synthetic speech is bet-
ter estimated by the degradation of naturalness over the entire synthetic utterance than by 

using only the local degradation of naturalness. Figure 4.4 shows the correlation between 

the average cost and the perceptual score, and Figure 4.5 shows the correlation between 
the maximum cost and the perceptual score. 

Moreover, when the power coefficient is set to 2, the norm cost, called the Root Mean 

Square (RMS) cost, has the best correspondence to the perceptual scores (correlation coe:ffi-

cient = -0.840). The absolute value of the correlation coefficient in the case of the RMS cost 

is statistically larger than those in the cases of the average cost (t = 2.4696, df = 137, p < 
0.05). Therefore, the naturalness of synthetic speech is better estimated by considering both 
the degradation of naturalness over the entire synthetic speech and the local degradation of 

naturalness, since the RMS cost is affected by both types of degradation. Figure 4.6 shows 
the correlation between the RMS cost and the perceptual score. 

In order to estimate the perceptual scores more accurately, we also performed multiple 

linear regression analysis by utilizing the norm costs while varying the power coefficient 

from 1 to 10 and the maximum cost as predictor variables. As a result, the correspondence 

to the perceptual scores was not improved statistically (multiple correlation coefficient = 
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Figure 4.1: Distribution of average cost and maximum cost for all synthetic utterances. 
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0.846) compared with the correspondence of the RMS cost. 

Although the RMS cost is the best integrated cost in this experiment, it is expected 

that the best power coefficient depends on the correspondence of the local cost to perceptual 

characteristics. It is worth noting that the naturalness of synthetic speech :is better estimated 

by using both the total degradation of naturalness and the local degradation than by using 

only the total degradation. 

4.3.2 Preference test on naturalness of synthetic speech 

Figure 4. 7 shows an example of local costs of a segment sequence selected by the conven-

tional average cost and that of another segment sequence selected by the novel RMS cost. 

Some large local costs surrounded by circles are shown in the case of the average cost. On 

the other hand, such large local costs are alleviated in the case of the RMS cost. In order 
to clarify which of the two costs could select the best segment sequence, we performed a 

preference test on the naturalness of synthetic speech. The corpus size was 32 hours, and 

utter皿 cesused as test stimuli were not included in the corpus. Natural prosody and the 

mel-cepstrum sequences ext:raded from the o:ri邸nalutterances were used as :input informa-

tion for segment selection. Si邸 alprocessing for prosody modification was not performed 

except for power control. 

The naturalness of synthetic speech was expected to be nearly equal between segment 

sequences having similar costs. Therefore, we used pairs of segment sequences that had 

greater cost differences in the test. Each pair is comprised of the segment sequence selected 

by the RMS cost and that by the average cost. In order to fairly compare the performances 

of these two costs, we selected the pairs with the larger differences in the average cost as 

well as those with the larger differences in the RMS cost. A scatter chart of the test stimuli 

is shown in Figure 4.8. The difference in the RMS cost and that in the average cost were 
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converted into a perceptual score by utilizing the regression line. 
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calculated as follows: 

4.3 Perceptual Evaluation of Cost 

RMSCACsel -RJvfSCRMSCsel, 

ACACsel -ACRMSCsel, 

35 

(4.3) 

(4.4) 

where RMS C ACsel and AC ACsel denote the RMS cost and the average cost of the segment se-

quence selected by minimizing the average cost, respectively. RMSCRMSCsel and ACRMSCsel 

denote the RMS cost and the average cost of the segment sequence selected by minimizing 

the RMS cost, respectively. "Sub-set A" includes stimulus pairs with larger differences in the 

RMS cost. On the other hand, "sub-set B" includes stimulus pairs with larger differences in 

average cost. There were 20 stimulus pairs in each sub-set, and the total number of stimulus 

pairs was 35, since 5 pairs were included in both sub-sets. 

Eight Japanese listeners participated in the experiment. In each trial, synthetic speech by 
the segment selection based on the average cost and that by the segment selection based on 

the RMS cost were presented in random order, and listeners were asked to choose either of 

the two types of synthetic speech as sounding more natural. 

The results in Figure 4.9 show that the segment selection based on the RMS cost can 

synthesize speech more naturally than that based on the average cost in all cases: utilizing all 

stimuli, stimuli in sub-set A only, and stimuli in sub-set B only. However, this improvement 

is only slight. 

4.3.3 Correspondence of RMS cost to perceptual score in lower 

range of RMS cost 

¥"fve clarified the correspondence of the RMS cost to the perceptual scores when the size of the 

corpus was varied in Section 4.3.1. However, our TTS system utilizes a large-sized corpus 

that includes many segments with high coverage on both phonetic environment and prosody 

to synthesize speech more naturally and consistently. In the case of a large-sized corpus, the 

RMS costs are expected to be distributed not in a wide range but in a lower range, since 

segments causing only a slight degradation of naturalness can us叫 lybe selected. Thus, it 

is worthwhile to investigate the correspondence to the perceptual scores in a range of lower 

RMS costs. 

vVe performed an opinion test on the naturalness of the synthetic speech to clarify the 

correspondence of the RMS cost to the perceptual scores in a lower range. Test stimuli were 

included in the region covered in utilizing the 32-hour corpus, in which the RMS costs were 

less than 0.4. They were selected from a large number of utterances synthesized by varying 

the corpus size. This selection was performed under the restriction that the number of 

phonemes in an utterance, the duration of an utterance, and the number of concatenations 

were roughly equal among the selected stimuli. The number of selected stimuli was 160. 

Eight Japanese listeners participated in the experiment. They evaluated the naturalness on 

a scale of seven levels. These levels were determined by each listener, so the scores were 

distributed widely among the stimuli. The perceptual score was calculated as an average of 

the normalized score calculated as a Z-score (mean = 0, variance = 1) for each listener in 

order to equalize the score range among listeners. 

The correspondence of the RMS cost to the perceptual scores is shown in Figure 4.10. 

The correspondence is much worse (correlation coefficient = -0.400) than that in the case 
of utilizing stimuli that cover a wide range of the cost (correlation coefficient = -0.840). 
Therefore, it is obvious that the correspondence of the RMS cost is inadequate and that we 

should improve the cost function. 
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4.4 Segment Selection Considering Both Total and Lo-

cal Degradation of Naturalness 

In the conventional segment selection based on the average cost, the optimum segment 

sequence is selected while taking into account only the total degradation. In order to consider 
not only the total degradation but also the local degradation, we incorporated the RMS cost 

in segment selection. In this selection, the RMS cost R.fv[ SC is 1ninimized and given by 

R1¥1SC = 
1 N 

N L゚{LCi(几山）｝生
i=l 

(4.5) 

Actually, only the sum of the square local costs is calculated for the selection. 

In this subsection, in order to represent the costs more easily, we divide the five sub-

costs described in Section 3.2 into two commonly used costs, i.e. a target cost Ct and a 

concatenation cost Cc [8][18][42][80]. These costs are given by 

Ct(Ui, t』

は(ui墨i-1)

Wt 

We 

＝ 

＝ 

＝ 

＝ 

Wpro/Wt・Cpro(U凸）

＋叫pp/Wt・Capp(uゎむ），

叫 nv/Wc・Cenv(ui,Ui-1) 

+wspec/ We・Cspec(Ui, Ui-1) 

+w.F,。/we・CFi。(ui,Ui-t),
Wpr。＋叫pp,

WFi。+Wenv + Wspec, 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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shown. 

Local costs as a function of corpus size. Mean and standard deviation are 

and then the local cost is written as 

LC(Viiふ）

Wt ＋
 

叫 ・Ct(佑，り＋叩 ・Cc(uいに1),

We=  1. 

(4.10) 

(4.11) 

We compared the segment selection based on the RMS cost with that based on the average 
cost. We utilized 1,131 utterances as an evaluation set. These utterances were not included 

in the corpus used for segment selection. In the segment selection, concatenations at certain 

phoneme centers, i.e. preceding vowel centers of voiced phonemes and unvoiced fricative 

centers, were also allowed in order to alleviate audible discontinuity. 

4.4.1 Effect of RMS cost on various costs 

We investigated the effect of the RMS cost on the local cost. Figure 4.11 shows the local 

costs as a function of corpus size. In the segment selection based on the RMS cost ("RMS 

cost"), the standard deviation of the local cost is smaller than that of the segment selection 

based on the average cost ("Average cost"), although the mean of this cost is slightly worse. 

This is a consequence of the large penalty imposed on a segment with a large local cost in 

the case of the RMS cost. 

In order to clarify what causes the decrease in the standard deviation, we investigated the 
effects of the RMS cost on both the target cost and the concatenation cost. The target cost is 

shown in Figure 4.12 as a function of corpus size. The mean of the target costs is degraded, 

and the standard deviation increases slightly by utilizing the RMS cost. Figure 4.13 shows 

the concatenation cost as a function of corpus size. Although the means of concatenation 

costs are equal between the average cost and the RMS cost, the standard deviation becomes 

smaller by utilizing the RMS cost. The increase in the standard deviation of the target 

cost is much smaller than the decrease in the standard deviation of the concatenation cost. 
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These results show that the effectiveness of decreasing the standard deviation of the local 

cost is dependent on the concatenation cost. On the other hand, the mean of the local cost 

is slightly worse as a consequence of the degradation of the target cost. 

However, it might be assumed that these results would be influenced by the weights for 

sub-costs rather than by the local degradation, since we utilized a weight set in which the 

weight for the target cost was smaller than that for the concatenation cost, i.e. Wt = 0.4, 
We = 0.6 in Equation (4.10). Therefore, we tried to analyze the effects of utilizing other 

weight sets. The same results were obtained for all weight sets, in which the ratios of the 

target cost to the concatenation cost were set to 1 to 2, 1 to 1.5, 1 to 1, 1.5 to 1, and 2 to 

1. Therefore, the effectiveness mentioned above depends not on the weights for sub-costs 

but on the function used to integrate the local costs, which can take account of the local 

degradation as well as the the total degradation. 

4.4.2 Effect of RMS cost on selected segn1ents 

In order to clarify what causes the decrease in the standard deviation of the concatenation 

cost, we investigated characteristics of the segments selected by minimizing the RMS cost. 

The segment length in the number of phonemes is shown in Figure 4.14 as a function of 

corpus size. The segment length is shorter in the selection with the RMS cost compared 

with that in the case of the average cost, while the standard deviation is nearly equal. 

Moreover, Figure 4.15 shows the segment length in number of syllables as a function of 

corpus size for reference, since our segment selection is essentially based on syllable units, 

i.e. concatenations at C-V boundaries (C: Consonant and V: Vowel) are prohibited. In 

calculating the segment length, the number of syllables for half-phonemes in a diphone unit 

is set to 0.5 when the syllable is V, or 0.25 when the syllable is comprised of CV. It can be 

seen that the segment length is unexpectedly short, only less than 1.4 syllables, although 

the standard deviation of the segment length is large. In the segment selection, it is not 

necessarily best to select the longest segments, since such segments often cause a decrease 

in the number of candidate segments and thus cannot always synthesize speech naturally. 

The important point is to select the best segment sequence by considering not only the 

degradation caused by concatenation but also that caused by various factors, e.g. prosodic 

distance. It is also shown that the segment length becomes shorter as the corpus size increases 
to a level over 20 hours. This result is caused by pruning candidate segments to reduce the 

computational complexity of segment selection. We perform the pruning process, called pre-

selection [25}, by considering the target cost and the mismatch of phonetic environments. 

Namely, we do not consider whether segments紅 econnected in the corpus. Therefore, when 

we use the la:rge-sized corpus that includes many candidate segments having target phonetic 

environments, remaining candidate se如 entsdo not always connected :in the corpus even if 

these segments have target phonetic environments. 

The rate of :increase in the number of concatenations is shown in Figure 4.16 as a function 

of corpus size. This rate is calculated by dividing the number of concatenations in the case 

of utilizing the RMS cost by that in the case of utilizing the average cost. By utilizing the 

RMS cost, the concatenation at a boundary between any phoneme and a voiced consonant 

("* -Voiced consonant") decreases in any corpus size. However, the concatenations at both a 

phoneme center ("Phoneme center") and a boundary between any phoneme and an unvoiced 

consonant("* -Unvoiced consonant") increase. Figure 4.17 shows the concatenation cost 

in each type of concatenation when the corpus size is 32 hours. The concatenation between 

any phoneme and an unvoiced consonant can often reduce the concatenation cost compared 

with that between any phoneme and a voiced consonant, since the former type of concate-
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Figure 4.14: Segment length in number of phonemes as a function of corpus size. 
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Figure 4.18: Differences in costs as a function of corpus size. 

nation has no discontinuity caused by concatenating Fi。sat a segment boundary. It was also 
found that the concatenation at the phoneme center tends to reduce the concatenation cost 

compared with the other types of concatenation, although the number of concatenations is 

small. 

These results show a tendency to avoid performing concatenations that cause much local 

degradation of naturalness by instead performing more concatenations that cause slight audi-

ble discontinuity. As a whole, the number of concatenations increases rather than decreases. 

Therefore, a larger number of segments with shorter lengths, which only cause slight local 

degradation, are selected by utilizing the RMS cost. 

4.4.3 Relationship between effectiveness of RMS cost and corpus 

size 

In order to clarify the relationship between the effectiveness of using RMS cost and the 

corpus size, we investigated the differences in average costs, RMS costs, and maximum costs 

between the segment sequences selected by utilizing the average cost and those by utilizing 

the RMS cost. 

The results are shown in Figure 4.18. The cost differences are calculated by subtracting 

the costs of the segment sequences selected by utilizing the RMS cost from those of the 

segment sequences selected by utilizing the average cost as described in Section 4.3.2. 

From the results, the RMS cost works well for alleviating the local degradation of naturalness, 

since the maximum cost becomes small, i.e. the differences in the maximum cost are positive. 

Moreover, the differences in all costs have little dependence on the corpus size. Therefore, 

the effectiveness of utilizing the RMS cost can be found in a corpus of any size. 
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Figure 4.19: Estimated perceptual score as a function of corpus size. 

4.4.4 Evaluation 

score 

of segment selection by estimated perceptual 

The performance of segment selection is shown in the cost. However, it is difficult to estimate 

the naturalness of synthetic speech from the cost value directly. In order to indicate the 
performance of segment selection in a more intuitive quantity than the cost, we converted 

the cost value into a perceptual score by using the regression line on the RMS cost shown 

in Figure 4.6. Chu and Peng have also estimated the MOS from their cost [21}[67]. 
Estimated perceptual score is shown in Figure 4.19 as a function of corpus size. Small-

sized corpora have been constructed so that various phonetic contexts are included. As the 

corpus size becomes larger, the estimated perceptual score becomes higher and its standard 

deviation becomes smaller. This result means that the quality of the segment selection is 

higher and more consistent by utilizing the larger corpus. 

4.5 Summary 

In segment selection for concatenative TTS, it is important to utilize a cost that corresponds 

to the perceptual characteristics. In this section, we evaluated a cost for segment selection 

based on a comparison with perceptual scores dete:rn丘nedfrom the results of perceptual 

experiments on the naturalness of synthetic speech. As a result, we clarified that the average 

cost, which captures the total degradation, has a better correspondence to the perceptual 

scores than does the maximum cost, which captures the local degradation. Furthermore, we 

found that the RMS (Root Mean Square) cost, which takes into account both the average cost 

and the maximum cost, has the best correspondence. We also clarified that the叫 uralness

of synthetic speech could be slightly improved by utilizing the RMS cost. 

We investigated the effect of considering not only the degradation of naturalness over the 

entire synthetic speech but also local degradation in segment selection. In this selection, 
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the optimum segment sequences are selected by minimizing the RMS cost instead of the 

conventional average cost. From the results of experiments comparing this approach with 

segment selection based on the average cost, it was found that segment selection based on 

RMS cost performed a larger number of concatenations that caused slight local degradation 

in order to avoid concatenations causing greater local degradation. Namely, a larger number 

of segments with shorter units were selected. Moreover, the effectiveness of this selection 

was found for any size of corpus. 

When the RMS costs were distributed widely, the correspondence of the RMS cost seemed 

to be good. Namely, it was possible to accurately estimate the perceptual score from the 

RMS cost for synthetic speech of various qualities. Therefore, we evaluated the performance 

of segment selection by the estimated perceptual score by varying the corpus size. As a 

result, the quality of the segment selection was higher and more consistent by utilizing the 

larger corpus. 

We also performed the perceptual evaluation of the RMS cost in a lower range of the RMS 

cost. The results clarified that the correspondence of the RMS cost to the perceptual scores 

is inadequate in this case. Therefore, it is obvious that the RMS cost is not accurate enough 

for making comparisons between similar segments, which is naturally a difficult problem. 

However, since our TTS does not consistently synthesize sufficiently natural speech, we 

should further improve the cost function based on perceptual characteristics. In particular, 
it is necessary to determine the optimum weight set for sub-costs. ¥A/e will deten直nethis 

weight set from the results of perceptual experiments on the naturalness of synthetic speech 

with a set of stimuli covering a wide range in terms of individual sub-costs. 



Chapter 5 

Conclusions 

5.1 Summary of the Report 

Corpus-based Text-to-Speech (TTS) enables us to dramatically improve the naturalness of 

synthetic speech over that of rule-based TTS. However, so far no general-purpose TTS has 

been developed that can consistently synthesize sufficiently natural speech. In this report, we 

addressed the problem how to improve the叫 uralnessof synthetic speech in corpus-based 

TTS. 

We first described the structure of a corpus-based TTS system in Chapter 2. Almost all 

corpus-based TTS systems have been developed on the basis of this structure. The various 

techniques in each module were reviewed. 

In Chapter 3, we proposed a novel segment selection algorithm for Japanese speech syn-

thesis in order to improve the naturalness of synthetic speech. Since Japanese syllables 

consist of CV (C: Consonant or consonant duster, V: Vowel or syllabic nasal /N/) or V, 

except when a vowel is devoiced, CV units are often used in concatenative TTS systems 

for Japanese. However, speech synthesized with CV units sometimes have auditory discon-

tinuity due to V-V and V-semivowel concatenations. Since various vowel sequences appear 

frequently in Japanese, it is not realistic to prepare long units that include all possible vowel 

sequences to avoid V-V concatenation. In order to address this problem, we proposed a novel 

segment selection algorithm that does not avoid the concatenation of the vowel sequences 

but alleviates the discontinuity by utilizing both phoneme and diphone units. In the pro-

posed algorithm, non-un:iform units allowing concatenation not only at phoneme boundaries 

but also at vowel centers cam be selected from a speech corpus. The experiments on concate-

nation of vowel sequences clarified that the number of better candidate segments increases 

by considering concatenations both at phoneme boundaries and at vowel centers. We also 

performed perceptual expe:r血 ents. The :results showed that speech synthesized with the 

proposed algorithm has better naturalness than that of the conventional algorithms. We 

also compared the proposed algorit加 withthe algorithm based on half-phoneme units. 

Moreover, a cost function for selecting the optimum waveform segments in our TTS system 

was described. 

In Chapter 4, we performed a perceptual evaluation of costs for segment selection. In 

order to achieve high-quality segment selection for concatenative TTS, it is important to 

utilize a cost that corresponds to the perceptual characteristics. From the results of percep-

tual experiments, we clarified the correspondence of the cost to the perceptual scores and 

then evaluated various functions to integrate local costs capturing degradation in individual 

segments. As a result, it was clarified that the average cost, which captures the degradation 

of naturalness over the entire synthetic speech, has better correspondence to the perceptual 
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scores than the maximum cost, which captures the local degradation of naturalness. Further-

more, the RMS (Root Mean Square) cost taking account of both average cost and maximum 

cost has the best correspondence: ¥¥e also showed that the naturalness of synthetic speech 

can be slightly improved by utilizing the RMS cost. Then, we investigated the effect of 

using the RMS cost for segment selection. From the results of experiments comparing this 

approach with segment selection based on the conventional average cost, it was found that 

(1) in segment selection based on the RMS cost, a larger number of concatenations causing 

slight local degradation were performed in order to avoid concatenations causing greater 

local degradation, and (2) the effect of the RMS cost has little dependence on the size of the 

corpus. We also clarified that utilizing a larger corpus improves the quality and consistency 

of the segment selection. 

In summary, we confirmed that the proposed segment selection algorithm and the proposed 
cost function based on perceptual evaluation are effective for improving the naturalness of 

synthetic speech. 

5.2 Future Work 

Although we have improved the corpus-based TTS system, a number of problems still re1hain 

to be solved. 

Effective search algorithm: The computational complexity of segment selection needs to 

be reduced while maintaining the naturalness of synthetic speech. As an approach to 

this problem, some clustering algorithms have been proposed to decrease the number of 

candidate segments [11 ][30]. Decision trees are constructed by utilizing target features 

in segment selection in advance in order to cluster similar candidate segments into the 

same classes. Other approaches have proposed pre-selection by sub-costs with small 

computational cost [251, which is applied in our TTS, and construction of a practical 

and efficient cache of sub-costs with high computational cost [6]. Moreover, a pruning 

algorithm that considers concatenation between candidate segments has been proposed 

[15]. It is expected that a larger-sized corpus will be used in the future to synthesize 

high-quality speech more consistently. More approaches from various viewpoints are 

needed to address this problem. 

Measures against voice-quality variation: Variation in voice quality is caused by record-

ing the speech of a speaker for a long time. Some approaches as described in Section 

2.2.5 have been proposed [56][75]. However, much more research is needed to solve 

this problem. 

Utilization of multiple targets: Almost all algorithms use the most suitable target infor-

mation predicted from contextual information. However, the predicted target informa-

tion is not always the best in cases where only a small number of candidate segments 

having the predicted target exist in the corpus. It is assumed that segment sequences 
with smooth concatenations cannot be selected under such conditions. As an inter-

esting approach to this problem, Bulyko et al. proposed a selection algorithm that 

considers multiple targets [12]. Moreover, Hirai et al. proposed a selection algorithm 

based on acceptable prosodic targets in Japanese speech synthesis [37]. Especially in 

Japanese, since accent information is crucial, it is important to avoid selecting segment 

sequences with unacceptable accent information. Moreover, it might be promising to 

utilize not only accent information but also other contextual information, e.g. syntactic 

structure in segment selection. 
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Improvement of cost: Cost functions for segment selection should be improved based on 

perceptual characteristics [21 ][67]. In this report, we did not determine the optimum 
weight set for sub-costs. Although a determination algorithm based on linear regression 

has been proposed, it uses an acoustic measure, e.g. cepstral distortion, as an objective 

measure in the regression [42]. However, the correspondence to perceptual character-

istics of acoustic measures is not sufficient. Therefore, it is necessary to explore a 

measure having better correspondence to perceptual characteristics. 

Various applications of TTS: Not only general-purpose TTS but also limited domain 

TTS have been studied [12] [22]. As an effective approach in the case of a small-sized 

corpus, spectral modification has been applied to concatenation speech synthesis [89]. 

Moreover, it is necessary to sy叫 1esizenot only speech in a reading style but also 

speech in various speaking styles [48][58] as well as expressive speech [13][43] in order 
to realize rich communication between man and machine. A number of these problems 

still remain to be solved. 



Appendix 

A Frequency of Vowel Sequences 

Table A .1 shows the frequency of vowel sequences in newspaper articles comprised of 

571,283 sentences. Phoneme sequences were divided into CV* units [53], and then we cal-

culated the frequency of vowel sequences while ignoring consonants, e.g. both /kai/ (CVV) 

and / ai/ (VV) are considered / ai/ (length = 2). Semivowels were considered vowels. The 
length of long vowels is set to 1, and that of devoiced vowels is set to 0. 

Table A .1: Frequency of vowel sequences 

Length j Frequency Normalized frequency [%] Number of different sequences 

゜
518553 2.7590 

1 16069643 85.4999 11 
2 1677866 8.9272 99 

3 459538 2.4450 575 

4 57090 0.3038 1154 

5 10306 0.0548 1155 
6 1582 0.0084 473 

7 306 0.0016 146 

8 28 0.0002 30 ， 4 0.0000 4 
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B
 

Definition of the Nonlinear Function -p 

We performed perceptual experiments on the degradation of naturalness caused by prosody 

modification with STRAIGHT [51 ][52] in order to define a sub-cost function on prosodic 

difference. Listeners evaluated the degradation on a scale of seven levels, namely 1 (very 

bad) to 7 (very good). Perceptual score was calculated as an average of the normalized score 
calculated as a Z-score (mean = 0, variance= 1) for each listener in order to equalize the 
score range among listeners. 

The perceptual scores were modeled by a nonlinear function z as follows: 
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where, x and y denote Fi。modificationratio and duration modification ratio by octave, 

respectively. Parameters a, b, r s S S S and S ''呼, xm,, yp, , ym are given by 
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These paraII_1eters were estimated by minimizing the error between the perceptual score and 

that estimated by the function z(x)y). The nonlinear function Pin Equation (3.3) is defined 
as follow: 

P(x,y) = -z(x,y) + s. (B .5) 

In the cases of 1) the sub-cost on Fe。discontinuityas described in Equation (3.4) and 2) no 

signal processing for prosody modification in waveform synthesis, the parameters are given 

by 
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C Sub-Cost Functions, Ss and Sp, on Mismatch of 

Phonetic Environment 

The sub-cost functions were determined from results of perceptual experiments, in which 

listeners evaluated the degradation of naturalness by listening to the speech stimuli syn-

thesized by concatenating phonemes extracted from various phonetic environments. The 

experimental method is described in [57]. Listeners evaluated the degradation on a scale of 

seven levels, namely 1 (very bad) to 7 (very good). Perceptual score was calculated as an 
average of the normalized score calculated as a Z-score (mean = 0, variance= 1) for each 

listener in order to equalize the score range among listeners. 

The cost Ss of capturing the degradation caused by a mismatch with the succeeding 

environment is given by 

Ss(Ph, Phe, Ph』=-z(Ph, Phe, Phu)+ b, (C .1) 

where z(Ph, Phe, P加） denotes the perceptual score in the case of a mismatch of the sue-

ceeding environment in a phoneme Ph, i.e. replacing a phoneme P加witha phoneme Phu. 

b is set to 1.5, which is utilized in order to convert the perceptual score into a positive 

value. The cost , 均ofcapturing the degradation caused by a mismatch with the preceding 

environment is determined in a similar way. 
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