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In my work I try to develop a new technique for the calculation of the MFCC features. 

The basic idea is that, very often, the energy of "real-world" noises is not equally 

distributed along the frequency axis. The technique I present here is based on the 

division of the signal spectrum into sub-bands and on the weighting of these sub-bands 

before applying the IDCT. The evaluation on the AURORA2 database shows that the 

use of this technique, by enhancing the useful parts of the signal and by attenuating the 

noisy ones, results in an improvement of the recognition rate. 

（株）国際電気通信基礎技術研究所
音声言語コミュニケーション研究所

〒619-0288「けいはんな学研都市」光台二丁目 2番地2TEL: 0774-95-1301 

Advanced Telecommunication Research Institute International 
Spoken Language Translation Research Laboratories 
2-2-2 Hikaridai "Keihanna Science City" 619-0288,Japan 

Telephone:+81・774-95-1301 
Fax :+81・774-95-1308 

c2002 (株）国際電気通信基礎技術研究所
c2002 Advanced Telecommunication Research Institute International 



TABLE OF CONTENTS 

TABLE OF CONTENTS ー

TABLE OF FIGURES 2
 

TABLE OF TABLES 3
 

GLOSSARY 4
 

ACKNOWLEDGEMENT 5
 

INTRODUCTION 6
 

WEIGHTED SUB-BAND MFCCS 7
 

STARTING IDEA 
METHOD 
SUPERVISED EXPERIMENTS 
EXPERIMENTAL SETUP 
RESULT ANALYSIS 
AUTOMATIC SUB-BAND COEFFICIENT ESTIMATION 
EQUALIZATION EVALUATION 
WEIGHT ADAPTATION 
FURTHER IMPROVEMENTS 

GLOBAL CONCLUSION: OVERALL REVIEW 

7
7
9
9
1
0
1
1
1
1
1
3
1
5
1
6
 

REFERENCES 17 

APPENDIX 18 

APPENDIX 1: HTK HIDDEN MARKOV MODEL TOOLKIT 
APPENDIX 2:MEL-FREQUENCY CEPSTRAL COEFFICIENTS (MFCC) [4, S] 
APPENDIX 3: THE AURORA 2 DATABASE [8] 

19 
20 
23 

ー



TABLE OF FIGURES 

Figure 1 T : wo feature extraction approaches. 8 

Figure 2: 39-d' 1mens1on acoustic vector. 9 

Figure 3: Choice of WL for restaurant noise (solid line) and suburban train noise 
(dashed line). 10 

Figure 4: The equalization evaluation process. 11 

Figure 5: The weight adaptation process. 14 

Figure 6: Procedure applied to the speech signal to calculate the MFCCs. 20 

Figure 7: The speech production process. 21 

Figure 8: Extraction of the cepstrum coefficients. 21 

Figure 9: The Mel filter bank analysis. 22 

Figure 1 O: Long term spectra of some of the noises used in the AURORA2 database. 
24 

2
 



TABLE OF TABLES 

Table 1: Relative word accuracy improvement (in %)for the supervised mode. 10 

Table 2: Relative improvement (in %) in word accuracy: supervised mode and 
equalization evaluation. 12 

Table 3: Relative improvement (in %) in word accuracy: supervised mode and 
equalization evaluation(2). 12 

Table 4: Relative improvement (in %) in word accuracy: supervised mode and weight 
adaptation. 15 

3
 



GLOSSARY 

AID conversion: Analogical to Digital conversion. 

ASR: Automatic Speech Recognition (RAP in French). 

ATR: Advanced Telecommunications Research Institute International. 

AURORA: Name of a database designed to evaluate the performance of speech 
recognition algorithms in noisy conditions. This database was prepared as 
contribution to the ETSI STQ-AURORA DSR working group, which develops 
standards for distributed speech recognition. 

CLIPS: Communication Langagiere et Interaction Personne-Systeme 
(communication through language and human-machine interaction): French 
laboratory based in Grenoble and working in collaboration with ATR for the "C-Star 
project phase Ill" on the research topic of automatic speech translation. 

ENSERG: Ecole Nationale Superieure d'Electronique et de Radioelectricite de 
Grenoble (National Engineering School of Electronics and Radioelectricity of 
Grenoble): this is the school in which I followed studies for three years in order to 
become engineer. 

HMM: Hidden Markov Model: one of the main techniques used in ASR today. 

HTK: Hidden Markov model ToolKit: software developed by Cambridge University in 
order to build and manipulate HMMs for speech recognition procedures (see 
Appendix 1). 

ICASSP: International Conference on Acoustics, Speech and Signal Processing: this 
is a major conference on speech processing. It is held every year and groups 
researchers from all over the world. 

ICSLP: International Conference on Spoken Language Processing: it is another 
major speech processing conference where many researchers present their state of 
the art achievements and work. 

IDCT: !nverse Discrete Cosine Transform: this is a mathematical transformation very 
useful in speech processing and particularly in ASR. 

MFCC: Mel-scale Frequency Cepstrum Coefficients: coefficients used in speech 
feature extraction (see Appendix 2). 

SL T: Spoken Language Translation Research Laboratories: one of the four main 
departments of ATR (the one in which I did my internship). 

SNR: Signal to Noise Ratio: this ratio measures the importance of the noise 
compared to the interesting signal (RSB in French). 
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INTRODUCTION 

Lately, research in the field of speech recognition has greatly evolved. Indeed, 
systems achieving greater and greater recognition accuracies are being developed. 
Some applications are starting to pop up through great public products such as 
cellular phones, human-computer interfaces .... Nevertheless, there remains a great 
problem that still requires the help of research: robustness. Actually, it is true that 
many systems show good recognition accuracies, nevertheless these good 
performances are achieved in laboratory conditions: clean data, no surrounding noise 
and stable environment. The problem is that for everyday applications such 
conditions are never gathered. Indeed, there is always some background noise 
(public places, people speaking behind the main speaker, reverberation of the 
speaker's voice…) • Moreover, in spontaneous speech conditions, the speakers 
hesitate and may start over their sentences and use spontaneous speech 
expressions such as: "umh", "euh"…. Of course, the system must not consider this as 
useful speech information. 
The main issue in speech recognition today is therefore robustness. A few main 
guidelines direct the researchers'work all over the world and research considers 
many possibilities to improve robustness. Two main directions are being followed: 
either through recognition itself by noise adaptation and compensation or as post-
processing methods focusing on a way to (re)estimate the reliability of the results by 
using more sophisticated language models or confidence measures. Only the first 
aspect has been explored through the research work I have made. Indeed, my work 
focused on speech processing and noise compensation. 

My work presents a new multi-band approach for robust feature extraction. Multi-
band processing has been widely used for speech recognition [1, 2]. These 
techniques try to extract useful information from different frequency sub-band and 
then combine them in order to produce useful information for the recognizer. A 
problem with these techniques is the merging strategy used for collecting all the 
information coming from the different sub-bands. Indeed, this merging is not 
straightforward and various. strategies can be applied to this step. The approach 
presented here tries to avoid this step. This is achieved by enhancing some of the 
sub-bands, which contain useful information, and by attenuating others, which mainly 
contain noise. The aim of this internship was to find a method to automatically 
determine how this process has to be done. 

This document will consider both my methods and my achievements through the 
description of my work, the experiments I conducted and the analysis of the results I 
got. 
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WEIGHTED SUB-BAND MFCCs 

STARTING IDEA 

When you look at the long-term spectra of the noises used in the AURORA2 
database (see Appendix 3), you can see that some noises have properties very far 
from those of a white noise. For example, the restaurant noise shows energy in the 
0-1 kHz region and much less in the remaining spectral regions. Of course some 
noises of the database do not have such a spectral pattern (like the suburban train 
noise for example) but nevertheless, the majority of them does. Since this database 
is built in order to match real world noise conditions, the starting idea is to take 
advantage of this dis-symetry of the noise spectral pattern by enhancing spectral 
regions which are less affected by noise and by attenuating regions which are much 
more corrupted by noise (like the 0-1 kHz region in the case of the restaurant noise). 
I can already forecast that if this method is efficient, it will work correctly for 
noises that show strong differences of energy values along the frequency axis and 
that the results might not be as good for noises with "whiter" properties, that is to say, 
for noises with more equally distributed energy along the frequency axis. 

METHOD 

The approach used to develop the previous idea is described in Figure 3. The 
first part of the process is conventional. At first, the speech signal is pre-emphasized, 
then it is windowed with a Hamming window of 200 samples. After that a FFT 
algorithm is applied to these samples and only the magnitude of the spectrum is kept. 
Finally, the log of the 24 Mel-filterbank coefficients is computed. 
From this point, my approach is different from the conventional one. Instead of 
applying the IDCT to the 24 coefficients in order to get the MFCCs (Mel Frequency 
Cepstral Coefficients, for more information on the meaning and calculation of these 
coefficients please refer to Appendix 2), the observation vector O is divided into two 
parts. The first one, OL, consists of 24 coefficients. The first 12 are equal to the first 
12 coefficient of O and the last twelve are equal to 0. The second one, OH, is 
composed of 12 nul coefficients (the first 12) and of the last 12 coefficients of 0. As a 
consequence, the sum of these two new vectors is equal to 0. 
After that, the two vectors are weighted differently, the weights being chosen so 
that their sum _is equal to 2. The reason for this choice is that the initial vector can be 
regarded as a result of this weighting process were the two weights are equal to 1 
and so their sum equal to two. 
After this weighting step, OL and OH are added to each other, the IDCT transfrom 
is applied to this sum in order to get coefficients kind of like MFCCs. 
It is interesting to notice that this process is linear and so is the derivation. 
Therefore, the delta and acceleration of the MFCCs obtained with this method will 
also be affected by this weighting. 
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SUPERVISED EXPERIMENTS 

The first experiments I conducted corresponded to the case where the sub-band 
coefficient, wL, was set "manually" to certain values in order to test the efficiency of 
the method. The aim ()f such experiments was first, to check whether this method 
was useful or not and second, to get an idea of the limits of this technique. 

Experimental setup 

I used the AURORA2 database for both training and testing. The training process 
is described in Appendix 3. The acoustic features used for this training are 
conventional MFCCs. That is to say that no weighting process is applied in order to 
get those coefficients. The first 12 cepstral coefficients are used along with the 0th 
order coefficient. The delta and acceleration of those 13 coefficients are also 
extracted from the speech signal (see Figure 4). 

ロ I C121 C。ID1 I D21 I D12[ D。IA1 I A2 I 三
MFCC DELTA ACCELERATION 

Figure 2: 39-dimension acoustic vector. 

The testing data used is the data refered to as "test A" and "test B" in the 
AURORA2 database. It includes 8 different noise conditions added to the speech 
signal with 7 different SNRs (going from CLEAN to -SdB, see Appendix 3). All 
together, this corresponds to 56 conditions. Acoustic vectors for the 1001 utterrances 
for each of the 56 conditions are extracted using my weighting method. The sub-
band coefficient used for this step is set "manually" to different values which are: O, 
0.4, 0.7, 0.8, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1 (which is 
the conventional value), 1.01, 1.02, 1.03, 1.04, 1.05, 1.1, 1.2, 1.3, 1.6, and 2. This 
makes a total of 26 different values. 
After that, the 26 sets of 56 conditions are combined with the HMM model 
previously trained in order to perform speech recognition. This step is accomplished 
using HTK tools. 
Finaly, the sub-band coefficient that gives the best recognition rate for each of the 
56 noise conditions is recorded. Table 5 shows the relative improvement in word 
accuracy using this method compared to the conventional one. The number shown is 
the difference beetween the average recognition rate for all SNRs in the conventional 
case and in the case corresponding to the new method. 
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TEST CONDITION AVERAGE OVERALL 

SUBWAY 0.80 

A BABBLE 11.23 5.17 
CAR 5.21 

EXHIBITION 3.43 
7.02 

RESTAURANT 12.95 

B STREET 3.95 8.87 
AIRPORT 12.14 

STATION 6.42 

Table 1: Relative word accuracy improvement (in %) for the supervised mode. 

Figure 5 shows two different choices for WL as a function of the type of noise 
(suburban train or restaurant) and of SNR. 
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Figure 3: Choice of WL for restaurant noise (solid line) and suburban train noise 

(dashed line). 

Result analysis 

The experiments give 3 types of information. The first one is that my method is 
useful since I get an overall improvement of roughly 7% in word accuracy. The 
second is that, as forecasted, the efficiency of this method really depends on the 
spectral pattern of the noise added to the signal. Indeed, a closer look at the results 
of Table 5 shows that the improvement for the restaurant noise almost reaches 13°/4。
whereas the one for the suburban train noise is only of 0.8%. The third thing is that 
the experiments give a reference for the next step of my work, which is the wL 
automatic estimation. Indeed, by knowing the value of WL that gives the best results, I 
will now be able to get an idea of the efficiency of the estimation methods before 
conducting any speech recognition experiments. 
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AUTOMATIC SUB-BAND COEFFICIENT ESTIMATION 

During this internship, I have mainly developed two methods concerning 
automatical estimation of the value of wL. The first one is based on the use of noise 
estimation within each utterance. As a consequence, this one only uses noise 
information. This technique is called equalization evaluation because it has a link with 
usual equalization, as I will explain later. The second one uses a set of adaptation 
data selected from the testing data. WL is then chosen to best fit a criterion relative to 
this set of data. This method will be referred to as weight adaptation. 

Equalization evaluation 

Starting idea 

The starting point for this technique is very simple. The data used in the training 
process is never completely "clean". Even if the SNR is very important, there is 
always a bit of white noise in the signal, due to AID conversion for example. The idea 
is that the weighting process might try to transform the noise added to the signal for it 
to become as close as possible to this white noise and thereby get closer to the 
performance achieved using clean data. 

Implementation 

I tried to use this idea to evaluate the sub-band coefficient. The implementation 
process is described in Figure 6. The first step is noise estimation. This is achieved 
by keeping only the 1 O first frames of each utterance (i.e. about 1 OOms of speech 
signal) where it is assumed that there is no speech. Then the spectrum of the "signal" 
noise is compared to the one of a white noise and wL is chosen in order to minimize 
the quadratic distance between the two spectra according to Equation 1. This is why 
this technique is called equalization. 

speech 
signal 

"signal" noise 
filter banks 

NOISE 

EVALUATION MATCHING 

white-noise 
filter banks 

Figure 4: The equalization evaluation process. 
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the filter banks of a white noise. 
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Experimental results 

The experimental setup is almost the same as the one used for the supervised 
experiments. The only difference is that for the supervised experiments, the chosen 
sub-band coefficient was the same for all the 1001 utterances of a noise condition 
(i.e. one noise type and one SNR). In the following experiments, the sub-band is 
calculated for each utterance. The results are shown in Table 6. 

TEST CONDITION SUPERVISED EQUALIZATION OVERALL 

SUBWAY 0.8 -0.61 

A BABBLE 11.23 8.48 

CAR 5.21 7.03 

EXHIBITION 3.43 2.49 
6.51 

RESTAURANT 12.95 10.1 

B STREET 3.95 5.01 

AIRPORT 12.14 11.88 

STATION 6.42 7.73 

Table 2: Relative improvement (in%) in word accuracy: supervised mode and 
equalization evaluation. 

These experiments show that, even if the overall improvement is not as important 
as the one obtained for the supervised mode, it is just 0.5% under which is not so 
bad. This method even achieves better results for three noise conditions (car, street 
and station). This is due to the fact that the evaluation method calculates a specific 
WL for each utterance, which is, of course, more efficient than to use the same wL for 
a given set of utterances. 

Training noise equalization 

In the previous experiments the noise pattern to be matched was the pattern of a 
white noise. But if a closer look is taken at the noise included in the training data, we 
can see that the noise of the signal is not exactly a white noise. Therefore, trying to 
match the real noise pattern in the previous processing might be a good idea. 
Unfortunately, the results I get by using it are really bad. Another idea might be to 
use a mixing between this noise and a white noise. This is what I tried to do and the 
results from these experiments are shown in Table 7. 

TEST CONDITION SUPERVISED EQUALIZATION(2} OVERALL 

SUBWAY 0.8 0.38 

A BABBLE 11.23 10.46 

CAR 5.21 4.5 

EXHIBITION 3.43 2.92 
6.34 

RESTAURANT 12.95 11.93 

B STREET 3.95 3.8 

AIRPORT 12.14 11.01 

STATION 6.42 5.71 

Table 3: Relative improvement (in %) in word accuracy: supervised mode and 
equalization evaluation(2). 
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The results obtained by using this noise pattern are quite close to the previous 
ones, 6,34% overall improvement (compared to 6.51%). Nevertheless, with this 
method, the results are always under those for the supervised mode results. 

Limits of equalization 

The results presented above show that this method achieves better 
performances than the baseline system. But they also show that the overall 
performance is under that for the supervised mode. So, even if wL is calculated for 
each utterance. 
This might represent a limit of this method. The problem is that I have only 
presented two ways of using equalization for the sub-band coefficient evaluation. 
Actually, I have tried many other noise patterns that achieved roughly the same 
performances. This shows that the method might not be the best one for evaluating 
wL. This is due to two linked reasons, which are: 
■ it seems that, for the experiments, there is no "best" noise pattern to be 
matched. 

■ there might be a serious drawback to this method. Indeed, it only uses the 
noise information included in the speech data. It seems quite reasonable to 
think that wL depends on both the speech signal and the noise information. 

These reasons have encouraged me to try to develop another method for the 
sub-band coefficient evaluation in order to combine both speech and noise 
information. This leads to the second method I will introduce: weight adaptation. 

Weight adaptation 

This method uses a set of adaptation data. This data is composed of 50 
utterances randomly chosen among the 1001 utterances composing the testing 
conditions in the AURORA2 database. 
The different steps of this method are shown in Figure 7. I applied the same 
process for all adaptation utterances. The first step is to determine the state 
sequence corresponding to the utterance. This is done using a tool from HTK and I 
used forced alignment to get this state sequence. That means that, for every 
utterance, the words pronounced are already known. In a "real world" application this 
would imply that the system asked the user to say some precise sentences in order 
for it to adapt itself to the new environment. I also need OL and 0門whichhave been 
defined before. In fact, the OL and OH used here are not exactly the same has the 
ones that were previously defined. Indeed, I apply the IDCT to the previously defined 
oL and oH in order to get the "new" oL and O圧Asa consequence, 0 now denotes 
an observation vector in the cepstral domain instead of an observation vector in the 
Mel-frequency domain. 
The next step is to calculate the likelihood of the frame given the corresponding 
state of the trained model. This likelihood is then summed over all the frames of all 
the adaptation utterances. This finally gives a global likelihood that is a function of WL, 
This function is given in Equation 2. The i index refers to the number of utterances in 
the adaptation utterances altogether. So, if there are only two adaptation utterances, 
and if they have 100 and 120 frames each, the i index would go from 1 to 220. The 
order in which the frames are used is not important. The j index refers to the mixture 
number used to model a given state (each state is modelled by a mixture of 
gaussians). In the AURORA2 database, a mixture of 3 gaussians models the words. 
There are a bit more for the "silence" model. mii denotes the different mixture 
coefficients of a given state. 

13 
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Figure 5: The weight adaptation process. 

Experimental results 

I then tried to estimate the performance of this evaluation technique. The 
experiments I conducted were only simulated experiments. First, wL was calculated 
for the 56 noise conditions (8 types of noise at 7 different SNRs). Then, since this 
technique implies that WL should be the same for each utterance of a given noise 
condition (which is not the same as for the previous evaluation technique), they are 
the same as the experiments conducted in the supervised mode. The only difference 
is that WL is automatically calculated. As a consequence, I can use the results 
obtained in the supervised mode. Indeed, those previous experiments enable me to 
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have the relationship between wL and the word accuracy for all the noise conditions. 
The problem is that in the supervised mode, I didn't try all the possible values of wL 
(of course I didn't!). So the "simulated" results obtained using a wL equal to 0.96 will 
be slightly different from what they would really be if a wL equal _to 0.957 was used 
nevertheless they will be accurate enough to give a good idea of the performance of 
this technique. The results from these experiments are shown in Table 8. 

TEST CONDITION SUPERVISED ADAPTATION OVERALL 

SUBWAY 0.8 0.16 

A BABBLE 11.23 8.63 
CAR 5.21 4.88 

EXHIBITION 3.43 1.3 
5.71 

RESTAURANT 12.95 11.19 

B STREET 3.95 2.58 

AIRPORT 12.14 11.39 

STATION 6.42 5.52 

Table 4: Relative improvement (in %) in word accuracy: supervised mode and weight 
adaptation. 

The results are quite good since the improvement is not so far from the one 
obtained for the supervised mode. Nevertheless, they are not as good as the results 
of the estimation method. This allows us to stress a drawback of this method: WL is 
the same for a given noise condition. Therefore, it is a kind of averaged value for this 
condition no matter what it should be for a specific utterance with slightly different 
noise conditions. 

FURTHER IMPROVEMENTS 

There are at least three possible improvements for my method: 

・concerningthe wL evaluation method, it might be a good idea to try to 
combine the two approaches I have described here. The weight adaptation 
could be applied in order to get a first estimation of wL and then equalization 
could be used in order to take into account noise information that are more 
specific of to the utterance and to get the final estimation of wL 

• more generally, my technique only uses two sub-bands. Some noises like the 
suburban train noise of the AURORA2 database have almost the same 
energy in low and in high frequencies. Therefore, my technique is not so 
useful for that kind of noise. So, it could be interesting to use more sub-bands 
in order to deal with more noises and also to improve the performance. 

■ finally, the two sub-bands I use have the same number of filter banks (12). 
But it might be interesting to use a non-symmetric division of the whole band. 

These are three points that would require more time to be investigated, which 
unfortunately I hadn't. 
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GLOBAL CONCLUSION: OVERALL REVIEW 

This internship was my first real research project. Moreover, it was also my first 
experience having a concrete work to conduct during quite a long period (five 
months). Those two aspects were very interesting since they really enabled me to 
make use of all I have been learning for the past three years. 
This internship also enabled me to work in ATR, which was a very good 
experience for me. I learned how people from all over the world could gather and 
work on great research projects putting together not only their capacities and ideas 
but also the ways of working that they had been taught in their home countries. I 
learned how to work with Japanese, Chinese, American, Australians, Europeans …• 
Working in Japan was also full of surprises. I saw how one of the top countries in 
state of the art technologies manages to combine its own knowledge with methods 
and ideas coming from various countries and how it took profit from everything that 
fell upon its hands. 
So as a conclusion I would say that this internship was very self-rewarding 

both for personal and professional aspects. 
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APPENDIX 1: HTK Hidden Markov model Too/Kit 

The information given here was extracted from the following web page: 
http://htk.eng.cam.ac.uk/. 

This software was originally designed by the Speech vision and Robotics Group 
of the Cambridge University Enginneering department (CUED) in 1989 where it was 
used to build CUED's large vocabulary speech recognition systems. Then, the 
software was developed by Entropic Research Laboratory Inc. from 1993 and was 
licensed by Microsoft in 1999. 

HTK is a portable toolkit for building and manipulating hidden Markov models. It 
consists of a set of library modules and tools available in C source form. The tools 
provide sophisticated facilities for speech analysis, HMM training, testing and result 
analysis. The software supports HMMs using both continuous density mixture 
gaussians and discrete distributions and can be used to build complex HMM systems. 
The HTK release contains extensive documentation and examples. 

The HTK book [5] is very helpful to learn how to use HTK, it also gives 
information on how the software actually works and on the theoretical background 
concerning HMMs. 
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APPENDIX 2:MEL-Frequency Cepstral Coefficients (MFCC) [4, 5] 

The MFCCs are one kind of parameters used in ASR to describe the speech 
signal. In order to calculate these coefficients, the procedure shown in Figure 12 is 
applied to the speech signal. 

SIGNAL 

SPECTRUM 

FIL TERBANKS 

MFCCs 

~ ＼ 

TRANSFORMATIONS PARAMETERS 

Figure 6: Procedure applied to the speech signal to calculate the MFCCs. 

Some of the transformations, such as FFT and sampling, are quite traditional in 
signal processing but the Mel-filterbank analysis and the role of the log+inverse 
discrete cosine transform are more specific to speech processing. Therefore, their 
role will be detailed a little more in the next section. 

Cepstrum analysis 
A very widely spread model for human speech production is that the speech is 
the result of the filtering of a periodic signal, produced by the glottis, by the vocal tract 
(see Figure 13), the signals on Figure 13 are shown in the frequency domain. 
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Figure 7: The speech production process. 

In ASR, the information from the vocal tract is more useful than the information 
from the glottis. Therefore, it would be interesting to separate these two parts of the 
signal. This is done by using the log and the IDCT transform. 
The first step is to take the log of the speech spectrum in order to transform the 
speech signal into a sum of two terms thanks to the following equation: 

S1 = log(S) = log(S glottis)+ Iog(Stract) 

The second step is to apply the IDCT to S'in order to go back to a kind of 
temporal domain, which is called cepstral domain (or quefrency domain). In this 

domain, S glottis and Stract are located in two different regions on the quefrency axis. 

The information concerning the vocal tract can very easily be selected by keeping the 
low quefrency coefficients. These coefficients are called cepstrum coefficients. 
Figure14 shows an example of this processing. 
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Figure 8: Extraction of the cepstrum coefficients. 
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Mel-filterbank analysis [3] 
The human ear resolves frequencies non-linearly across the audio spectrum and 
empirical evidence suggests that designing a front-end to operate in a similar non-
linear manner improves recognition performance. A good way to achieve this is 
through the use of a filter bank analysis. The problem is to choose the spacing of 
filters on the frequency axis. Perceptual studies showed that one possibility is to 
space the filters along the critical band in order to choose bands that give equal 
contribution to speech articulation. The MEL scale is a variant on the critical band 
scale and is defined by: 

Mel(f) = 2595log10(1 +)  f 
700 

In order to implement this filter bank, the speech is transformed using a Fourier 
transform and the magnitude is extracted. The magnitude coefficients are then 
binned by correlating them with triangular filters equally spaced on the Mel-scale. 
Here binning means that each FFT magnitude coefficient is multiplied by the 
corresponding filter gain and the results are accumulated (see Figure 15). 

ー

frequency 

Figure 9: The Mel filter bank analysis. 
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APPENDIX 3: the AURORA 2 database [8] 

This database has been designed in order to evaluate the performances of 
speech recognition algorithms in noisy conditions. It consists of a set of utterances 
and of selections of "real-world" noises added to the speech over a range of signal to 
noise ratios. 

Speech data 
The "TIDigits" database is taken as a basis. This part contains the recordings of 
male and female US-American adults speaking isolated digits and sequences of up 
to 7 digits. The original 20kHz data has been down sampled to 8 kHz with an "ideal" 
4 kHz low-pass filter. 

Noise data 
Eight different noise signals were used to simulate a "real world" environment. 
They were chosen in order to represent the most probable application scenarios for 
telecommunication terminals. They were recorded at different places: 

-suburban train, 
-crowd of people, 
-car, 
-exhibition hall, 
-restaurant, 
-street, 
-airport, 
-train station. 

Figure 16 shows the long-term spectra of some of these signals. 

23 



100 

lf 
g

8

7

0

 

碧
言
匂
包
号
巨
＄
155-

60 
註這柘山詑Iii

iooo 哀oo¥.. ・・・・・・isdoo 
・広・ 岬n守tBi

8·70~ 

B
P
}
E
1』
B
a
a
g
u
』国
t
琶
0-

引ぬ~~11冒刹·•~·

ooし
9: 寧~:,.··.··~ow\'

翫叩的可旧~

‘” ....  ● .. 

'.4.rJIE 

Figure 10: Long term spectra of some of the noises used in the AURORA2 

database. 

Finally, these noises are added to the "clean data" at six different SNRs: 20dB, 
15dB, 1 OdB, 5dB, OdB and -5dB. 

TRAINING DATA 
This database offers HMM model-training conditions but we have only used 

the "clean training" set. This set is composed of 8440 utterances selected from the 
training part of the TIDigits containing the recordings of 110 adults (55 male and 55 
female). Those data are clean data used for training any kind of speech recognition 
algorithm. 

TESTING DATA 
For the testing data, this database offers 3 sets but we have only used the 

sets A and B for our experiments. Each set is build the same way. 4004 utterances 
from 52 male and 52 female speakers in the TIDigits test part are split into 4 subsets 
each containing 1001 utterances. Recordings of all speakers are present in each 
subset. A noise signal is added to each subset of 1001 utterances at six different 
SN Rs: 20dB, 15dB, 1 OdB, 5dB, OdB, -5dB. Furthermore the clean case obtained 
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without adding noise is taken as a seventh condition. Set A and set B only differ by 
the noise which are added. 

HMM MODEL AND MODEL TRAINING 
The reference recognizer is based on the HTK software package version 2.2 

from Entropic. The digits are modeled as whole word HMMs with the following 
parameters: 

• 16 states per word 
• simple left-to-right models without skip-state transitions 
• mixture of 3 gaussians per state 
• only mean and variance of acoustic coefficients are used 

This model is then trained by applying the Baum-Welch re-estimation scheme 
contained in HTK tool HERest. The data used for this training are the training data 
set described above. 
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