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Chapter 1

Noise adaptive speech recognition

1.1 Abstract

We present a noise adaptive speech recognition approach to noisy speech recognition in non-
stationary environments. Environment effects include channel distortion and additive background
noises. Given previously estimated environment parameter sequences, the Viterbi process provides
approximated joint likelihood of active partial paths and observation sequence at current frame.
The joint likelihood after normalization provides approximation to the posterior probabilities of
state sequences for an EM-type recursive process based on sequential Kullback proximal algorithm
to estimate the current environment parameter. The combined process can easily be applied to
perform continuous speech recognition in presence of non-stationary environments. Experiments
conducted in simulated and real environments showed that the noise adaptive speech recognition
provides significant improvements in word accuracy as compared to the baseline system (with-
out environment compensation) and the normal noise compensation system (which assumes the
stationary environments). '

1.2 Introduction

Speech recognition has to be carried out often in situations where there exists environment dis-
tortions, such as channel distortion, background noise, competing speech and room reverberation,
which cause mismatches between pre-trained models and real testing data. These mismatches
between training and testing conditions can be viewed in the signal-space, the feature-space, or
the model-space [1]. Varieties of methods have been proposed to combat environment effects, and
in general, there are three approaches in this research. The first approach is based on front-end
signal processing, where the signal input for feature extraction has higher signal-to-noise ratio
(SNR) after processing than that without the processing, e.g., speech enhancement [2]. The sec-
ond approach is robust feature extraction, which tries to extract features, to some extent, invariant
to environment effects, e.g., Perceptual Linear Prediction (PLP) [3] and combination of static,
dynamic and acceleration features [4]. The third approach is denoted as model-based approach.
The model-based approach assumes parametric models representing environment effects on speech
features. Processing of the model-based approach can be either in modifying the Hidden Markov
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4 CHAPTER 1. NOISE ADAPTIVE SPEECH RECOGNITION

Model (HMM) parameters in the model-space, e.g., Parallel Model Combination (PMC) [5] and
stochastic matching [1], or modifying the input features for recognition, e.g., Code-Dependent
Cepstral Normalization (CDCN) [6], Vector Taylor Series (VTS) [7], and Frequency-Domain ML
feature estimation [8]. This approach has been shown promising to compensate noise effects [9].

Environment robustness can also be achieved by applying adaptation methods. Linear trans-
formation matrices for adaptation can be estimated by maximum likelihood linear regression
(MLLR) [10] and maximum a posterior (MAP) [11] approaches given adaptation utterances. As
suggested by their names, the difference between them is the estimation criterion.

In the above approaches, most researches are focused on stationary environment conditions. In
this situation, environment or adaptation parameters are often estimated before speech recognition
from a small set of environment adaptation data for modifying HMM parameter or input features.
However, it is known that the environment statistics may vary during recognition. As a result,
the environment or adaptation parameters estimated prior to speech recognition are no longer
relevant to the subsequent inputs.

Recently, a number of techniques have been proposed to combat time-varying environment
effects. They can be categorized into two approaches. In the first approach, time-varying environ-
ment sources are modeled by HMMs or Gaussian mixtures that were trained by prior measurement
of environments, so that environment compensation is a task of identification of the underlying
state sequences of the environment HMMs [5][12][13] by MAP estimation in a batch mode. For
example, in [5], ergodic HMM represents different SNR conditions, so that a composed HMM
with speech models can have expanded states that possibly represent speech states at different
SNR conditions. This approach requires to make a model representing different conditions of
environments (SNRs, types of noise, etc), so that statistics at some states or mixtures obtained
before speech recognition are close to the real testing environments.

In the second approach, environment parameters are assumed to be time-varying. The en-
vironment parameters can be estimated based on maximum likelihood, e.g., sequential EM al-
gorithm [14][15]. In [14], the sequential EM algorithm is applied to estimate time-varying noise
parameter in cepstral domain. Frequency domain EM algorithm [8] has been extended to sequen-
tial estimation of time-varying noise parameter in linear frequency domain [15]. The environment
parameters can also be estimated by Bayesian methods [16][17]. In [16], a Laplace transform is
used to approximate the joint distribution of speech, additive noise and channel distortion by
vector Taylor series approximation. In [17], sequential Monte Carlo method is used to estimate
environment parameters.

In this paper, we investigate a method assuming time-varying environment parameter for noisy
speech recognition in non-stationary environments. In particular, a noise adaptive speech recog-
nition approach [18] is proposed based on the following two novel points. Firstly, noise parameter
is estimated sequentially, i.e., frame-by-frame, which can possibly handle non-stationary environ-
ments. Secondly, time-varying environment parameter estimation makes use of a Viterbi process
from the recognition process to approximate the posterior probabilities along state sequences for
the time-varying parameter estimation.

This paper is organized as follows. Section 2.3 reviews the model-based noisy speech recog-
nition. In particular, Section 1.3.2 shows that the parametric modeling of the noise effects on
speech features can be seen as mapping between two spaces, where one space is considered as the
original training data space and the second space is in the testing environments. Based on this
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understanding, it is shown that the environment parameter for mapping between the two spaces
can be learned from data. Accordingly, the speech models to be transformed can also be trained
from noisy speech.

The process must be carried out sequentially in order to track the time-varying environment
parameter. In Section 1.4, the time-recursive environment parameter estimation is described. In
particular, the sequential Kullback proximal algorithm [19], which is an extension of the sequential
EM algorithm, is applied. Compared to the sequential EM algorithm, the sequential Kullback
proximal algorithm gives flexibility in controlling its convergence rate. Section 1.4.2 justifies the
Viterbi approximation of the posterior probabilities of state sequences given observation sequences.
Section 1.5 provides experimental results carried out on TI-Digits and Aurora 3 database to show
the efficacy of the method. Conclusions are in Section 1.6.

1.3 Model based ndisy speech recognition

1.3.1 MAP Decision rule for automatic speech recognition

The speech recognition problem can be described as follows. Given a set of trained models
Ax = {);,} where ), is the mth subword HMM unit trained from X, and an observation
vector sequence Y (T) = (y(1),y(2),---,y(T)), the aim is to recognize the word sequence W =
(W(1),W(2),---,W(L)) embedded in Y (7). Each speech unit model )\, is a T-state CDHMM
with state transition probability a;,(0 < a;; < 1) and each state 4 is modeled by a mixture of
Gaussian probability density functions {b;,(-)} with parameter {wi, i, ik }r=1,2, 1, where M
denotes the number of Gaussian mixture components in each state. p;, € RP*' and 3;;, € RP*P
are respectively the mean vector and covariance matrix of each Gaussian mixture component. D
is the feature vector size. wy is the mixture weight.

In speech recognition, the model Ax are used to decode Y'(T') using the maximum a posterior
(MAP) decoder

A

W = argmv%xP(WIAX,Y(T))
= argmv%xP(Y(T)MX, W) Pr (W) (1.1)

where the first term is the likelihood of observation sequence Y (T") given that the word sequence
is W, and the second term is denoted as the language model. However, in many situations,
there exists mismatches due to environments, e.g., additive noise and channel distortion, and
accordingly, there is a mismatch in the likelihood of Y (T') given Ax evaluated by (1.1).

1.3.2 Model-based noisy speech recognition

In the model-based approach to noisy speech recognition, models representing environment effects
on speech features are used. In particular, the following function was proposed in [5][6] to represent
environment effects on speech features. (A simple derivation is shown in Appendix .1).

yi(t) = 24 (t) + Rh(t) + log(1 + exp(n?(t) — g4 (t) — hL(1))) (1.2)
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where y: L(t) is the jth component in the vector of observation power y'(t ) in the -log-spectral
domain at frame ¢. Superscript [ denotes log-spectral domain. Similarly for z ( ) hé. (t) and né (1)
to denote the j-th component in vectors of speech power, channel dlstortlon power and additive
noise power at frame ¢. Subscript j ranges from 1 to J, where J denotes number of filter banks.

Note that cepstral vector y(t), z(t), h(t) and n(t) are obtained by discrete Cosine transform
(DCT) on %'(t), #(¢), h!(t) and nl(t), respectively. Training data of {z(¢) : ¢t =1,---,T} is used
to train the acoustic model Ax. If data of {h(¢) : ¢ = 1,---,T} and {n(t) : ¢t = 1,---,T} are
available, a model Ay can be trained, so that, by explicit use of function (1.2), (1.1) can be carried
out as,

W = arg max P(Y (T)|Ax, Ay, W) Pe(W) (1.3)
In case that {h(¢) :t =1,---,T} and {n(t) : ¢ = 1,---,T} are stationary or available before
recognition, Ay can be estimated prior to speech recognition.

1.3.3 Environment parameter estimation for the model-based noisy
speech recognition

Function (1.2) represents a parametric mappmg between «4(t) and y(t). Figure 1.1 shows the
function when z4(t) = 1.0, hk(¢) = 0.0 and n(¢) ranges from -10.0 to 10.0. Through the figure,
it is seen that the function is smooth and convex as a function of n}(¢) given z!(t) and hk(t).
The function approx1mates the masking effects of n}(t) on 2k (t). Funct10n (1. 2) w1ll output either

b (t) +hh(t) or L(t) depending on whether z(t )+hl( ) is much larger than n%(t) or n}(t) is much
larger than zh(t ) + hk(t). When =k (2) +ht(t) ~ nk(t ) the observation y(t) is non—linearly related
tox()—i—hl()andn()

Figure 1.1: Plot of function y}(t) = #4(t) + kL (2) +log(1 4 exp(nk(t) — 24 (¢) — BL(¢))). 4(t) = 1.0,
and hL(t) = 0.0. n(t) ranges from -10.0 to 10.0.

Accordingly, environment compensation includes two steps, the environment parameter esti-
mation step and an acoustic model ( or feature ) adaptation step. In the environment parameter
estimation step, Ay is estimated based on yi(t) and z%(¢). Note that, if assuming that z!(t) is
clean speech (as that in PMC [5)) and the environment is stationary, environment parameter Ay
can be estimated directly from the explicit noise-along segments. In such a case, h(t) and n(t)
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are not, function of z%(t). In contrast to the approach, in this work, parameters of hl(t) and nk(t)
need to be estimated given %(t) and y}(t). With the estimated parameter of h%(t) and n(2),
function (1.2) is applicable to the situation that environment segments are not explicitly available
or the acoustic models of z!(t) are trained from noisy speech.

As shown in Figure 1.1, the noise power is masked by speech power in the situation that the
noise power is smaller than a certain value. This non-linearity of the function (1.2) may result
in estimates of the h%(t) and n(t) that are different from true channel distortion and noise. In
this sense, it is better to view the estimates as parameters for the non-linear mapping by (1.2),
instead of explicit meaning of environment parameter. However, in the sequel, we still denote Ay
as the environment model, though the estimate may not be true environment parameter.

Normally, a direct observation of z%(t) is not available, so the parameters of A% (t) and n(t) are
estimated from Ax ( the model of () ), and :(¢) in either a supervised (with correct transcript)
or unsupervised (correct transcript is not known) way.

In the acoustic model ( or feature ) adaptation step, the estimated parameter of hé. (t) and
nk(t) are used in function (1.2) to transform Ax (which substitutes £%(¢) in function (1.2)) in the

model space, so that the transformed model Ay is close to {y(t) : t = 1,---, T}. Similarly, the
transformation can be carried out in the feature space to make {y(¢) : ¢t =1,---,T} close to Ax.
1.4 Noise adaptive speech recognition

Furthermore, consider that the noisy environment may change during the recognition process. Ay
(in (1.3)) thus have to be estimated sequentially, i.e., frame-by-frame.

Ay(®) A,

Noise parameter estimation Acoustic model adaptation \—b

Approximated @

posterior
probabilities

Y@®

Recognition |

‘ Hypothesis

Figure 1.2: Diagram of the noise adaptive speech recognition. Ax, Ay(t) and Ay (¢) are the original
acoustic model, noise model at frame ¢, and adapted acoustic model at frame ¢, respectively.
Y(t) is the input noisy speech observation sequence till frame ¢. Recognition module provides
approximated posterior probabilities of state sequences given noisy observation sequences till
frame ¢ to the noise parameter estimation module, which output Ay(t) to adapt acoustic model
Ax to Ay (2).

In this work, a noise adaptive speech recognition is proposed to do sequential estimation of
the time-varying environment parameter for noisy speech recognition. It works in the model
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space, i.e., modifying HMM parameters. Its diagram is shown in Figure 1.2. Details are shown
in the following sections. In Section 1.4.1, the objective function for time-varying environment
parameter estimation is defined. The Viterbi approximation of the posterior probabilities of state
sequences given noisy observation sequences is described in Section 1.4.2. Section 1.4.3 provides
the detailed implementation.

1.4.1 Objective function for time-varying environment parameter es-
timation

Denote the estimated environment parameter sequence till frame t—1as Ay (t—1) = (Ax(1), An(2), -

1)). Given the current observation sequence Y (t) = (y(1),y(2),---,y(t)) till frame ¢, the envi-
ronment parameter estimation procedure will find Ay(¢) as the current environment parameter
estimate, which satisfies,

~

LOAN(1) > L(An( = 1)) (1.4)
where
L(An(t)) = log P(Y ()lAXa(AN(t— 1), Xth))) (1.5)
= log > P(Y(t),S(t)|Ax, (An(t — 1), An(1)))
S5(t)
and

LN (t—1)) = 10gP(Y( JAx, (Aw(t = 1), A (t—1)))
= log Y P(Y(2),5(t)|Ax, (An(t — 1), An(t — 1)))
S(t)
(1.6)

S(t) = (s(1),s(2),---,s(t)) is the state sequence till frame ¢. The formula shows that the updated
environment parameter sequence (Ay (£ —1), Ay(t)) will not decrease the likelihood of observation
sequence Y (), over that given by the previous estimate of the environment parameter Ay (£ — 1)
concatenated with the previously estimated environment parameter sequence Ay (¢t — 1).

Since S(¢) is hidden, at each frame, we iteratively maximize the lower bound of the log-
likelihood according to Jensen’s inequality, i.e.,

log P(Y (#)|Ax, (AN(t ~1),Ax(t))) =

IOgZP (6)1Ax, (An (t = 1), An(2)))
> %:P t), Ax, (An(t — 1), Xy (2)))
S(t

P(Y (), S(t)|Ax, (An(t — 1), An (1))
. (1.7)

P8 BIS@IY (1), Ax, (An(t = 1), X5 (1))
— % P(S@IY (1), Ax, (An(t — 1), A5 (1))
S(t

log{P(Y (1), S(®)|Ax, (An(t — 1), An())} + Z
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where Z is not a function of Ay (t).
Define auxiliary function as

QN (8); An (1)) =
Y PS@Y (), Ax, (An(t — 1), X5 (1))

5(t)
log{P(Y (t), S(t)|Ax, (An(t — 1), 5\N(t)))} (1.8)

It provides the objective function to be maximized by sequential EM algorithm [20].

The algorithm is carried out by iterations between the procedure to calculate the posterior
probabilities P(S(t)|Y (t), Ax, (An(t — 1), A§(?))), and maximization of the objective function to
obtain Ay(t). For each iteration, estimated Ay (t) is for initialization of A% (¢) in the next iteration.

Forgetting factor p(0 < p < 1.0) can be adopted to improve convergence rate by reducing the
effects of past observations relative to the new input, so that the auxiliary function is modified
to [20]

Q: (/\* (1) An () = (1.9)
Zpt T PMIY (), Ax, (Ax(T = 1), Xy (7))

T=1 s(7)
log{P(Y (), s(7)|Ax, (An(T — 1), An(7)))}

The objective function by sequential Kullback proximal algorithm [19] ( derived in Appendix .2
) is obtained by adding a Kullback-Leibler (K-L) divergence between P(S(t)|Y (t), Ax, (Ax(t —
1), An(t—1))) and P(S(®)|Y(¢), Ax, (Ax(t—1), Ax(¢))) into the above objective functions. So the
new objective function is given by,

WO IO A 110
(B:—1)>_ P(S ) Ax,(An(t—1),An(t = 1)))
()
P(S@OIY (), Ax, (An(t — 1), 5\J\[(f ~1)))
P(S@[Y (), Ax, (An(t — 1), An(1)))

where 3; € R™ works as a relaxation factor. The sequential EM algorithm is a special case of this
algorithm and corresponds to setting §; equal to 1.0 in the algorithm. The algorithm holds the
objective in (1.4) ( Proofs are in Appendix .3).

As shown in Appendix .4, the sequential Kullback proximal algorithm can be viewed as a
constrained optimization problem. When 8; > 1.0, the estimate is constrained optimization of
the auxiliary function (1.8) with a regularization term I,(A%(¢); Ax(¢)). The larger the B, the
stronger the constraint. Thus, the estimate by the sequential Kullback proximal algorithm could
be smooth in this situation. When 0 < §; < 1.0, the estimate by sequential Kullback proximal
algorithm is a constrained maximization of the K-L divergence I;(A}(?); An(t)) with constraint
from —Q,(N5(t); An(t)) < C. The constraint on —Q(M(t); An(¢)) will be very tight when
By — 1.0, which results in estimate by sequential EM algorithm. When 8, — 0.0, the constraint
on —Q; (N5 (£); An(t)) is so loose that the estimate is far away from that given by sequential EM
algorithm.
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1.4.2 Approximation of the posterior probability

Normally, time-varying environment parameter estimation is carried out separately from the
recognition process, as that in [14][15], by sequential EM algorithm with summation over all
state/mixture sequences of a separately trained acoustic model. In fact, the joint likelihood of ob-
servation sequence Y (¢) and state sequence S(¢) can be approximately obtained from the Viterbi
process, i.e.,

P(Y(2), SOIAx, An () = age—1)s(bsy ((2))
P(Y(t—1),5%(t — D|Ax, Ay(t — 1)) (1.11)

where the previous state s*(¢t — 1) for decision of S*(t — 1) is given as,
s*(t—1) = arg 02X Qs(1-1)5(1)
PY(t=1),5(—1)|Ax, An(t — 1))

By normalizing the joint likelihood with respect to the sum of those from all active partial state
sequences in the recognition stage, an approximation of the posterior probability of state sequence
can be obtained. Thus in (1.7) and (1.10), instead of summing over all state/mixture sequences,
the summation is over all active partial state sequence (path) till frame ¢ provided by Viterbi
process. By Jensen’s inequality (1.7), the summation still provides the lower bound of the log-
likelihood. This approximation makes it easy to combine time-varying environment parameter
estimation with the Viterbi process. We thus denote this scheme of time-varying environment
parameter estimation as noise adaptive speech recognition since the same Viterbi process is shared
by the recognition process and time-varying environment parameter estimation process.

1.4.3 Implementation

Time-varying environment parameter estimation is carried out in the log-spectral domain. The
environment model Ay(t) is a single Gaussian with concatenation of the time-varying channel
distortion mean vector yul(t) € R/*! and time-varying noise mean vector p! (t) € R7*!, which
need to be estimated, and constant diagonal covariance X, € R*’*2/. At each frame, the pre-
trained mean vector ul, € R7*! in each mixture k of state 4 in acoustic models is transformed by
a non-linear transformation in the log-spectral domain,

fir () = pig + 1y (t) + 1og(1 + exp(un (1) — pig — y(t))) (1.12)

Cepstral mean vector i (t) € RP*! of the adapted model Ay (¢) is obtained by DCT on the above
transformed mean vector ik, (t). Note that function (1.12) is an approximation to function (1.2)
with the assumption that the “channel” h%(t) and “noise” n}(t) have very small variance.

Thus, by (1.12), the likelihood density function is related to environment parameters as that
shown in (1.3). The log-likelihood density function for mixture & in state 4 is given by

log b (y(1)) = —2 log(2n) (1.13)

~5 108 el = 50(8) ~ () ZRw(6) — ()
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where superscript 7' denotes transpose operation.

Let Ay(t) denote the mean vector ph(t) and pl(¢). Ay(0) is the initial parameter. The
time-varying channel parameter !} (¢) and noise parameter u! (t) are estimated by the sequential
Kullback proximal algorithm shown below ( Detailed derivation is in Appendix .5). Given Y (%),
the recursive update of Ay (¢) is given as,

An(t) — An(t—1) (1.14)
Q¢ S\N(t_l)§5\N)
- 2 [Sw=aw (-1
2 271, (X A=Ay (t—1
/Bta Qt()\g)(\'g 1) AN 4 (1 )8 g}(\é\vN) N=AN

where the first-order derivative of the auxiliary function with respect to the environment parameter
is given as,

0Q:(An(t — 1); Aw)

= 1.15
e (1.15)
ZZP )AX7(AN(t“1)7/\N(t_1)))
s(t) k(1)
010g ba(uy( (¥(1))
0N
and similarly for its second order derivative with respect to the environment parameter
FQiOw(t = Vihy) _ | 0" Qua(wlt = 2)shw)
AN, O,
oD P(s(E@®Y (1), Ax, (An(t — 1), An(t — 1))
t) k(t)
ON%; '

The second order derivative of the log-likelihood lt(;\ ~) with respect to the environment parameter
is given as,
0*,(\v)
AN,
oY P(s@k®IY (), Ax, (An(t = 1), Ay (t — 1))
s(t) k(t)
0 log by (y(t )))2 + 0”108 by(e) (1) (?J(t))]

( Oy 022,
0Q(An(t — 1); An) 5
( e ) (1.17)

By (1.13), it has,

0log by( )k(t)( @) _ A Oty (1)
a/\N il 85\]\7
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82 1og bk (y(t)) O iy (1)

2 = Hy, (—x )
832, "
0% [y ()
b Gy, O
O\
where the jjth element in diagonal matrices G5 € R’*/ and Hy € R’/ are given as
d)— i, t—1 : .
G5 = Sialza vld) Zuﬁ((:)):((:)f( ))] and Hy ;= Y0~ mzd’] respectively. zy is the DCT
coefficient.

By (1.12), the j-th element in the vector of the first- and second-order differential coefficients
of /lls(t) k(t) (t) with respect to the channel parameter and noise parameter are respectively given as

8,us t)j( ) 1 eXP(M%j(t) - le(t)k(t)j - N%j(t))
3%( ) 1+ exp (i (t) = Brc; — Hhi ()
(1.18)
Ofthpre; (° exp(tth; (t) — heynnyi — Hhy (1))
Pub;(t) (14 exp(uhi(t) — Lhyren; — 1hi()?
(1.19)
and
Otk () exp(uh;(t) — Bhre; — 114 (1))
Opni(t) 1+ exp(uh;(t) — My — Hhy(t)
(1.20)
Ol exp(uhi(8) — 1, — 1 ()
az,un; t) (1 + exp(ub;(t) — :uls(t)k(t)j ~ 15 (1)))?
(1.21)

The posterior probability at state s(¢) and mixture k(t) given observation sequence Y () and
noise parameter sequence (Ay(t — 1), An(t)) is approximated by Viterbi process as described in
subsection 1.4.2.

Implementation on MFCC generated from spectral amplitude

As shown in Appendix .1, MFCC can also be generated from amplitude of the FF'T coefficients.

In such a case, the environment effects can be approximated by (15). Accordingly, (1.18) to (1.21)

are modified to

Oty (1) . exp(2(un,; (t) — Mls(t)k() o))

a,u;zj (t) 1+ exp(2(p4, (t) ,us( k()] Mﬁzj(t)))
(1.22)
02y (1) _ 2exp(2(pn; (1) — Hney; — Hhi (1)
azlu%zj (t) (1+ eXP(Q(MLg‘(t) - :u.ls(t)k(t)j - Nﬁzj(t))))z

(1.23)
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and
O iy () _ exp(2(pin; (t) ~ e — h(©))
O (t) 1+ exp(2(ph; () — Byri; — Hhi ()
(1.24)
8ﬂ§€t)k(t)j (t) _ 2 exp(2 (/'dnj (t) — Mi(t)k(t)j - M%j(t)))
02 i () (1 + exp(2(pn;(8) — Bhyren; — #hi())))?
(1.25)

1.5 Experimental results

In order to show the efficacy of the proposed method for noisy speech recognition, we conducted
experiments in simulated noisy environments and real noisy environments. In the first set of
experiments shown in Section 1.5.1, acoustic models were trained from clean speech. By varying
contaminating noise power, we showed that the noise adaptive speech recognition can estimate
the time-varying noise parameter during the recognition stage. The second set of experiments
shown in Section 1.5.2 were conducted on AURORA 3 database, which contains continuous digits
utterances collected in real car environments.

1.5.1 Experiments on acoustic models trained from clean speech
Experimental setup

Three systems were compared in the experiments conducted on subsets of TI-Digits database.
The first was the baseline without noise compensation, denoted as Baseline, and the second was
the system with noise compensation by (1.12) assuming stationary noise, i.e., ul/(t) was kept as
constant once initialized, denoted as Normal. The third was the noise adaptive recognition system
by (1.14). It is denoted according to the relaxation factor §; set. Forgetting factor p in (1.9) and
(1.16) was set to 0.995 empirically. These systems were compared in the view of the averaged
relative error rate reduction (ERR) in noises, which is calculated as the average of the relative
error rate reductions in the noise. '

Digits and silence were respectively modeled by 10-state and 3-state whole word HMMSs with
4 diagonal Gaussian mixtures in each state. The window size was 25.0ms with a 10.0ms shift.
Twenty-six filter banks were used in the binning stage. The features were MFCC + CO0, with
feature vector dimension D equal to 13.

Experiments were performed on TI-Digits database down-sampled to 16kHz. Five hundred
clean speech utterances from 15 speakers were used for training and 111 utterances unseen in the
training set were used for testing. }

Four seconds of contaminating noise was used in each experiment to obtain noise mean vec-
tor for Normal. It was also for initialization of p! (0) in the noise adaptive system. Baseline
performance in clean condition was 97.89% word accuracy (WA).
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noisa power

Figure 1.3: Estimation of the time-varying parameter p' () by the noise adaptive systems in the
12th filter bank. Estimates are labeled according to the relaxation factor ;. The dashed-dotted
curve shows evolution of the true noise power in the filter bank.

Table 1.1: Word Accuracy (in %) in simulated non-stationary noise, achieved by the noise adaptive
system as a function of §; in comparison with baseline without noise compensation (Baseline),
and noise compensation assuming stationary noise (Normal).

Baseline | Normal | 0.5 0.9 1.0
34.34 58.73 | 95.48 | 95.48 | 95.48

Speech recognition in simulated non-stationary noise

White noise signals were multiplied by a Chirp signal, so that the noise power, e.g., in the 12th
filter bank, changed continuously as the dash-dotted curve shown in Figure 1.3. The SNR ranged
from 0dB to 20.4dB. We also plotted the estimated noise power versus time in the filter bank by
the noise adaptive system.

Observations are as follows. First, the noise adaptive system can track the evolution of the
true noise power. Second, the results show that the smaller the relaxation factor 3;, the faster the
convergence rate in estimation process. For example, estimation by 8; = 0.5 shows much better
tracking performance than that by setting 5; = 1.0.

In terms of performance, Table 1.1 shows that the noise adaptive system achieves significant
performance improvement over “Baseline” and “Normal”.

Speech recognition in real noise

Speech signals were contaminated by non-stationary Babble noise in different SNRs. Recognition
performances are shown in Table 1.2, together with “Baseline” and “Normal”. It is observed
that, in all SNR, conditions, the noise adaptive system can further improve system performance,
compared to that obtained by “Normal”, over “Baseline”. For example, in 21.5dB, the “Baseline”
achieved 34.04% WA, and “Normal” attained 95.18%. The noise adaptive system with 3; = 1.0
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Table 1.2: Word Accuracy (in %) in Babble noise, achieved by the noise adaptive system as
a function of f; in comparison with baseline without noise compensation (Baseline), and noise
compensation assuming stationary noise (Normal). Relative error rate reduction (ERR) as a
function of 8; over Normal are in the last row.

SNR (dB) || Baseline | Normal | 0.5 | 0.9 | 1.0
29.5 96.69 96.69 | 97.59 | 97.89 | 97.89
21.5 34.04 95.18 | 96.39 | 96.69 | 96.69
13.6 25.30 83.13 |90.96 | 91.27 | 91.27
7.6 16.27 73.19 | 75.60 | 75.30 | 75.30

ERR (in %) 6.9 | 30.9 | 30.9

Table 1.3: Word Accuracy (in %) in the Chirp-signal-multiplied Babble noise, achieved by the
noise adaptive system as a function of 5; in comparison with baseline without noise compensa-
tion (Baseline), and noise compensation assuming stationary noise (Normal). Relative error rate
reduction (ERR) as a function of 3; over Normal are in the last row.

SNR (dB) || Baseline | Normal | 0.5 | 0.9 | 1.0
12.4 28.31 64.14 | 93.07 | 92.77 | 92.17
6.9 17.17 50.00 | 82.83 | 82.23 | 81.93
4.4 16.87 48.49 | 74.10 | 71.99 | 71.69
-1.6 14.76 37.65 |47.59 | 50.0 | 51.51

ERR (in % ) 53.0 | 524 | 52.3

achieved 96.69% WA. As a whole, the adaptive system with g; set to 0.5, 0.9, and 1.0, achieved,
respectively, 26.9%, 30.9%, and 30.9% relative error rate reduction (ERR) over that by “Normal”.

We then increased the non-stationarity of the Babble noise by multiplying the noise signal
with the Chirp signal as that in subsection 1.5.1. Results are shown in Table 1.3. It is observed
that the Relative error rate reduction (ERR) of the noise adaptive system are larger than those
in Table 1.2.

We also tested systems in highly non-stationary Machine-gun noise. Through results shown
in Table 2.2, we observe that the noise adaptive system can improve recognition performance in
the noise.

1.5.2 Experiments on acoustic models trained from noisy speech
Experimental setup

In this section, we show the validity of the noise adaptive speech recognition in the situation
that the acoustic models were trained from noisy speech. Environment effects include channel
distortion and background noises. Note that the acoustic models were trained from noisy speech.
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Table 1.4: Word Accuracy (in %) in Machine-gun noise, achieved by the noise adaptive system
as a function of 8; in comparison with baseline without noise compensation (Baseline), and noise
compensation assuming stationary noise (Normal). Relative error rate reduction (ERR) as a
function of B; over Normal are in the last row.

SNR (dB) | Baseline | Normal | 0.5 | 0.9 1.0
33.3 91.87 93.37 | 96.69 | 95.48 | 97.59
28.8 87.95 90.60 | 94.28 | 95.18 | 94.28
22.8 78.61 81.33 | 87.05 | 83.43 | 82.83
20.9 77.41 79.82 | 83.73 | 85.24 | 76.51

ERR (in %) 348 | 29.7 | 23.6

In this situation, many model-based methods, e.g. PMC, can not work, since they require acoustic
models trained from clean speech. A normal way to do environment robustness is employing
adaptation methods such as MLLR [10].

Thus, we compared three systems. The first system, denoted as “Baseline”, was the sys-
tem neither with MLLR nor noise adaptive speech recognition. The second system, denoted as
“+MLLR”, was with acoustic models adapted by supervised MLLR. The third system, denoted
as “4 Noise adaptive recognition”, was with acoustic models firstly adapted by the supervised
MLLR, and then with noise adaptive speech recognition by (1.14). The only difference between
the second and the third system is if noise adaptive speech recognition was applied.

The experiments were conducted on the AURORA 3 database, which is a subset of the
SpeechDat-Car (SDC) corpus collected in cars through close-talking microphones and hands-free
microphones with different driving conditions, e.g., High-speed, Low-speed, and various placing
configurations, such as climate control on/off and sunroof open/closed, etc. We showed experi-
mental results on Spanish, Finnish, and Danish subset of the database.

In all of the tested languages, three sets of evaluations are provided. The Well-matched (WM)
evaluation has training and testing set from utterances through both microphone types and all
driving conditions. The Medium-mismatched (MM) evaluation utilizes training data from hands-
free microphones using all driving conditions except for the High Speed driving condition. The
testing set has data from hands-free microphones and the High Speed driving condition only.
High-mismatched (HM) evaluation utilizes data from close-talking microphones and all driving
conditions. The testing set in the evaluation has data through hands-free microphones and all
driving conditions except the Stopped Motor driving condition.

Window size for FFT was 25 ms, and time-shift was 10 ms. The number of filter banks and
dimension of static cepstral coefficients were 26 and 13, respectively. MFCCs were generated
from linear-spectral amplitude®. Regression window length for both of the first- and second-order

!The MFCCs in this work has slight difference from traditional MFCCs in the sense that a median filtering is
introduced after FFT. The median filter was added in each frequency bin after FFT to filter the sequence of linear
spectral amplitude coefficients along frame index. The median of the input sequence was extracted in order to
smooth the sequence. The filter length was set according to the spectral frequency. The higher the frequency, the
longer the median filter length. In this work, the longest filter length was 10 frames and the shortest filter length




1.5. EXPERIMENTAL RESULTS 17

MFCC coefficients was 2. Feature dimension was 39.

The HMM back-end was defined by AURORA 3 task as 18 states with 3 Gaussian mixtures in
each state for speech models, and five state HMM with 6 mixtures in each state for silence model.
A three state tee model with six Gaussian mixtures in each state was used to model short-pause
between speech events?.

Block diagonal matrix for MLLR was used in this work where each sub-matrix for static, first-
and second-order coefficients was full. MLLR was supervised with 22 adaptation utterances in
each evaluation set. Noise adaptive speech recognition took one iteration at each frame. It had
forgetting factor p = 0.995 and relaxation factor 8; = 0.95. At the beginning for each evaluation,
channel parameter 1} (¢) and noise parameter !, (t) were initialized to be zero vector. The noise
adaptive speech recognition was with beam-width of 300 for the evaluation. Note that, since the
spectral amplitude was used in this work, the noise adaptive speech recognition made use of (1.22)
to (1.25).

Experimental results

Table 1.5: Word accuracy of the Finnish set. WM, MM, and HM each denotes Well-matched
evaluation, Medium-mismatched evaluation, and High-mismatched evaluation. Baseline denotes
system without acoustic model adaptation. +MLLR denotes system with supervised MLLR
adaptation of acoustic models. +Noise adaptive recognition denotes system with combination of
the supervised MLLR and the noise adaptive speech recognition.

WM MM HM
Baseline 93.68% | 76.35% | 68.79%
+MLLR 93.50% | 78.056% | 85.64%
+Noise adaptive recognition | 93.77% | 83.35 % | 85.27%

Recognition accuracies by the three systems are shown in Table 1.5 to Table 1.7 for Finnish,
Danish, and Spanish, respectively. It is observed that MLLR was effective to improve system
performance in the three sets of evaluations. Though adding MLLR slightly decreased word
accuracies in Well-matched evaluations in the Finnish and Danish set, it effectively improved
recognition accuracies in other evaluations sets. For example, in Well-matched evaluation in
the Spanish set, word accuracy increased from 92.97% attained by the “Baseline” to 93.54% by
“+MLLR”.

By noise adaptive speech recognition on the acoustic models adapted by MLLR, a competitive
performance improvements were observed in the evaluations. Relative error rate reductions (ERR)
of the “+noise adaptive recognition” over system “+MLLR” are shown in Table 1.8. For example,
in the Medium-mismatched evaluation in the Spanish set shown in Table 1.7, word accuracy was
improved from 85.30% by the system “+MLLR” to 89.52% by “+ noise adaptive recognition”,

was 3 frames.
A segmentation module by GMMs was applied before acoustic model training[21]. It works as a speech/non-
speech classifier, which remove some very noisy segments. GMMs had 32 Gaussian mixtures.
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Table 1.6: Word accuracy of the Danish set. WM, MM, and HM each denotes Well-matched
evaluation, Medium-mismatched evaluation, and High-mismatched evaluation. Baseline denotes
system without acoustic model adaptation. +MLLR denotes system with supervised MLLR
adaptation of acoustic models. +Noise adaptive recognition denotes system with combination of
the supervised MLLR and the noise adaptive speech recognition.

WM MM HM
Baseline 89.61% | 73.87% | 60.20%
+MLLR 89.28% | 76.75% | 76.38%
+Noise adaptive recognition | 89.59% | 77.00 % | 77.44%

Table 1.7: Word accuracy of the Spanish set. WM, MM, and HM each denotes Well-matched
evaluation, Medium-mismatched evaluation, and High-mismatched evaluation. Baseline denotes
system without acoustic model adaptation. +MLLR denotes system with supervised MLLR
adaptation of acoustic models. +Noise adaptive recognition denotes system with combination of
the supervised MLLR and the noise adaptive speech recognition.

WM MM HM
Baseline 92.97% | 77.57% | 61.13%
+MLLR 93.54% | 85.30% | 68.02%
+Noise adaptive recognition | 93.93% | 89.52% | 72.05%

which corresponds to 28.71% of relative error rate reduction of the “+noise adaptive recognition”
over “+MLLR”. Through Table 1.8, it is seen that, with combination of the noise adaptive speech
recognition and supervised MLLR, system performances could be further improved over those
attained by supervised MLLR, though a slight decrease of the word accuracy was observed in the
High-mismatched evaluation in the Finnish set.

1.6 Conclusions

We have the following observations on the results: 1) Our derivation is based on the assumption
that the environments are non-stationary. The assumption fits the real situations. In the non-
stationary environments, we observed improvements over noise compensation assuming stationary
environments. 2) As shown in Table 1.2, the highest ERR of the adaptive system over “Normal”
was achieved at f3; equal to 1.0 and 0.9, whereas it achieved the highest ERR at 8, = 0.5, when
the non-stationarity of the Babble noise was increased by multiplying it with a Chirp signal. Also,
we observed that the highest ERR was achieved at 8, = 0.5 in Machine-gun noise, which is more
non-stationary than Babble noise. It seems that the more non-stationary the noise is, the smaller
the f3; to be set?.

3The B; cannot be too small, since, otherwise, the estimation error after convergence might be large [19].
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Table 1.8: Relative error rate reduction (ERR) of the noise adaptive speech recognition sys-
tem with combination of the supervised MLLR, over systems with acoustic models adapted by
supervised MLLR, in Finnish, Danish, and Spanish sets of the AURORA 3 database. WM,
MM, and HM each denotes Well-matched evaluation, Medium-mismatched evaluation, and High-
mismatched evaluation.

WM MM HM
Finnish | 4.156% | 24.15% | -2.58%
Danish | 2.89% | 1.08% | 4.49%
Spanish | 6.04% | 28.71% | 12.60%

Our results on Aurora 3 database also show that the noise adaptive speech recognition is ap-
plicable when speech models were trained from noisy speech. In this situation, the “environment”
parameter estimated may not have the explicit meaning of environment parameter, but works as
the parameter for the parametric mapping (1.2).

Our results also show that it is possible to improve system robustness to environment effects by
combining adaptation methods, e.g., MLLR, with the noise adaptive speech recognition. They can
possibly boost each other. MLLR can adapt the static, first- and second-order feature coefficients
in a batch or incremental way before recognition. The noise adaptive speech recognition further
adapts static feature coefficients of the acoustic models in an un-supervised way frame-by-frame
during the recognition stage.

The above results have shown that the noise adaptive speech recognition improves system
performances in non-stationary environments. Results also show a possible relationship between
the best relaxation factor §; of the recursive environment parameter estimation and the environ-
ments. Further improvement in this research can be achieved via incorporation of adaptation for
the dynamic features and refinement of acoustic models.
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Chapter 2

Sequential Monte Carlo method

2.1 Abstract

We present a sequential Monte Carlo method applied to additive noise compensation for robust
speech recognition in time-varying noise. The method generates a set of samples according to
the prior distribution given by clean speech models and noise prior evolved from previous estima-
tion. An explicit model representing noise effects on speech features is used, so that an extended
Kalman filter is constructed for each sample, generating the updated continuous state estimate
as the estimation of the noise parameter, and prediction likelihood for weighting each sample.
Minimum mean square error (MMSE) inference of the time-varying noise parameter is carried out
over these samples by fusion the estimation of samples according to their weights. A residual re-
sampling selection step and a Metropolis-Hastings smoothing step are used to improve calculation
efficiency. Experiments were conducted on speech recognition in simulated non-stationary noises,
where noise power changed artificially, and highly non-stationary Machinegun noise. In all the ex-
periments carried out, we observed that the method can have significant recognition performance
improvement, over that achieved by noise compensation with stationary noise assumption.

2.2 Introduction

Speech recognition in noise has been considered to be essential for its real applications. There
have been active research efforts in this area. Among many approaches, model-based approach
assumes explicit models representing noise effects on speech features. In this approach, most re-
searches are focused on stationary or slow-varying noise conditions. In this situation, environment
noise parameters are often estimated before speech recognition from a small set of environment
adaptation data. The estimated environment noise parameters are then used to compensate noise
effects in the feature or model space for recognition of noisy speech.

However, it is well-known that noise statistics may vary during recognition. In this situation,
the noise parameters estimated prior to speech recognition of the utterances is possibly not relevant
to the subsequent frames of input speech if environment changes.

A number of techniques have been proposed to compensate time-varying noise effects. They
can be categorized into two approaches. In the first approach, time-varying environment sources

21
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are modeled by Hidden Markov Models (HMM) or Gaussian mixtures that were trained by prior
measurement of environments, so that noise compensation is a task of identification of the under-
lying state sequences of the noise HMMs, e.g., in [12], by maximum a posterior (MAP) decision.
This approach requires making a model representing different conditions of environments (signal-
to-noise ratio, types of noise, etc.), so that statistics at some states or mixtures obtained before
speech recognition are close to the real testing environments. In the second approach, environment
model parameters are assumed to be time-varying, so it is not only an inference problem but also
related to environment statistics estimation during speech recognition. The parameters can be
estimated by Maximum Likelihood estimation, e.g., sequential EM algorithm [14][19][22]. They
can also be estimated by Bayesian methods. In the Bayesian methods, all relevant information on
the set of environment parameters and speech parameters, which are denoted as ©(t) at frame ¢,
is included in the posterior distribution given observation sequence Y (0 : t), i.e., p(O(¢)|Y (0 : t)).
Except for a few cases including linear Gaussian state space model (Kalman filter), it is formidable
to evaluate the distribution updating analytically. Approximation techniques are required. For
example, in [16], a Laplace transform is used to approximate the joint distribution of speech and
noise parameters by vector Taylor series. The approximated joint distribution can give analytical
formula for posterior distribution updating.

We report an alternative approach for Bayesian estimation and compensation of noise effects
on speech features. The method is based on sequential Monte Carlo method [23]. In the method,
a set of samples is generated hierarchically from the prior distribution given by speech models. A
state space model representing noise effects on speech features is used explicitly, and an extended
Kalman filter (EKF) is constructed in each sample. The prediction likelihood of the EKF in each
sample gives its weight for selection, smoothing, and inference of the time-varying noise parameter,
so that noise compensation is carried out afterwards. Since noise parameter estimation, noise
compensation and speech recognition are carried out frame-by-frame, we denote this approach as
sequential noise compensation.

2.3 Speech and noise model

Our work is on speech features derived from Mel Frequency Cepstral Coefficients (MFCC). It is
generated by transforming signal power into log-spectral domain, and finally, by discrete Cosine
transform (DCT) to the cepstral domain. The following derivation of the algorithm is in log-
spectral domain. Let ¢ denote frame (time) index.

In our work, speech and noise are respectively modeled by HMMs and a Gaussian mixture.
For speech recognition in stationary additive noise, the following formula [22] has been shown
to be effective in compensating noise effects. For Gaussian mixture k; at state s;, the Log-Add
method transforms the mean vector 4! ;. of the Gaussian mixture by,

pl = by, +log(l+exp(u — 1l s,)) (2.1)

where 4! is the mean vector in the noise model. s; € {1,---, Stk € {1,---,M}. S and M
each denote the number of states in speech models and the number of mixtures at each state.
Superscript [ indicates that parameters are in the log-spectral domain.
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After the transformation, the mean vector fif , is further transformed by DCT, and then
plugged into speech models for recognition of noisy speech. In case of time-varying noise, the pt,
should be a function of time, i.e., 1}, (t). Accordingly, the compensated mean is 2, (¢).

Figure 2.1: The graphical model representation of the dependences of the speech and noise model
parameters. s; and k; each denote the state and Gaussian mixture at frame ¢ in speech mod-
els. pl . (t) and pf(¢) each denote the speech and noise parameter. Y'(t) is the noisy speech
observation.

The following analysis can be viewed in Figure 2.1. In Gaussian mixture £, at state s; of
speech model, speech parameter ! , (t) is assumed to be distributed in Gaussian with mean p!
and variance X% , . On the other hand, since the environment parameter is assumed to be time
varying, the evolution of the environment mean vector can be modeled by a random walk function,
ie., '

Hn(t) = pin(t = 1) +0(2) (2:2)
where v(t) is the environment driving noise in Gaussian distribution with zero mean and variance
V.

Then, we have,

p(8t7 kt? l"’i‘tkt (t)7 l"’f’t (t) ’875_17 kt“‘]-? l"’lst_lkt_l (t - 1)7 l"’f’z (t - 1))
astulstPStktN(uitkt (t); l"’itkﬁ Elstkt)N(u’lfb (t)i l"”ln(t - 1)7 V) (2'3)

where a;, s, is the state transition probability from s;_; to s;, and ps,,, is the mixture weight.
The above formula gives the prior distribution of the set of speech and noise model parameter

O(t) = {54, kes iy, (), 15 (D)}
Furthermore, given observation Y(¢), assume that the transformation by (2.1) has modeling
and measurement uncertainty in Gaussian distribution, i.e.,

V() = prgp, (8) + 10g (1 + €xp (1 () — e, (1)) + oy, (2) (24)

where w4, (t) is Gaussian with zero mean and variance ¢ , , i.e., N(;0,%% . ). Thus, the likeli-
hood of observation Y*(¢) at state s; and mixture k; is

p(Y' ()IO()) = N(Y'(2); g, (1) +log (1 + exp (1, (t) — pip, (1)), Blr,) (2.5)
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Refereeing to (2.3) and (2.5), the posterior distribution of O(t) given Y'(t) is

P(st, Koy gy, (8), 1 ()Y (1)) o
P(Y! (#)|O(8)) @5,y 5Psuke N (b, (8); 1> Sioies) N (124, (8); 1 (8 = 1), V) (2.6)

The time-varying noise parameter is estimated by MMSE, given as,

o= [, hOX [, OONO: )did, 0 2.7

sty Hophy ®

However, it is difficult to obtain the posterior distribution p(©(¢)|Y*(0 : t)) analytically, since
P, i, (8), b (8)|YH(2)) is non-Gaussian in i}, (¢) and pl () due to the non-linearity in (2.4). It is
thus difficult, if possible, to assign conjugate prior of ! (¢) to the likelihood function p(Y'()|0(2)).
Another difficulty is that the speech state and mixture sequence is hidden in (2.7). We thus rely
on the solution by computational Bayesian approach [23].

2.4 Time-varying noise parameter estimation by sequen-
tial Monte Carlo method

We apply the sequential Monte Carlo method [23] for posterior distribution updating. At each
frame ¢, a proposal importance distribution is sampled whose target is the posterior distribution
n (2.7), and it is implemented by sampling from lower distributions in hierarchy. The method
goes through the sampling, selection, and smoothing steps frame-by-frame. MMSE inference of
the time-varying noise parameter is a by-product of the steps, carried out after the smoothing
step. :
In the sampling step, the prior distribution given by speech models is set to the proposal
importance distribution, i.e., ¢(0(¢)|0(t — 1)) = a,,_ 1StpstktN(/LMW( ); k> X ,)- The samples
are then generated by samphng hierarchically of the prior d1str1but10n described as follows: set
1 = 1 and perform the following steps:

1. sample s ~ a
S;_15¢t

2. sample kgi) ~ Py,

1z . .
3. sample /Ls((?)k(i) (t) ~ N(; /Li(i)k(i), Ei(i)k(i))’ and set i =17+ 1
t t t i t i

4. repeat step 1 to 3 until ¢ = N

where superscript (i) denotes the index of samples and N denotes the number of samples Each
1)

sample represents certain speech and noise parameter, which is denoted as O (t) = (st , kgl , b REND

p(O(N)D|y!(r))
(e(n®]e(r-1)®)"

The weight of each sample is given by []:_,; . Refereeing to (2.6), the weight is

calculated by
B = p(Y' ()| OD )N (1 (8); s (¢ = 1), V) (¢ — 1) (2.8)
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where 3 (t— 1) is the sample weight from previous frame. The remaining part in the right side of
above equation, in fact, represents the prediction likelihood of the state space model given by (2.2)
and (2.4) for each sample (%). This likelihood can be obtained analytically since after linearization
of (2.4) with respect to p (t) at pd?(t — 1), an extended Kalman filter (EKF) can be obtained,
where the prediction likelihood of the EKF gives the weight, and the updated continuous state of
EKF gives pt®(t).

In practice, after the above sampling step, the weights of all but several samples may become
insignificant. Given the fixed number of samples, this will results in degeneracy of the estimation,
where not only some computational resources are wasted, but also estimation might be biased
because of losing detailed information on some parts important to the parameter estimation. A
selection step by residual resampling [23] is adopted after the sampling step. The method avoids
the degeneracy by discarding those samples with insignificant weights, and in order to keep the
number of the samples constant, samples with significant weights are duplicated. Accordingly, the
weights after the selection step are also proportionally redistributed. Denote the set of samples
after the selection step as ©(t) = {00 (t);5 = 1--- N} with weights 5(t) = {8@(¢);i=1---N}.

After the selection step at frame 7, these /N samples are distributed approximately according
to the posterior distribution in (2.7). However, the discrete nature of the approximation can
lead to a skewed importance weights distribution, where the extreme case is all the samples
have the same ©(t) estimated. A Metropolis-Hastings smoothing [24] step is introduced in each
sample where the step involves sampling a candidate ©*®)(¢) given the current ©®(¢) according

to the proposal importance distribution ¢(©*(t)|©®(¢)). The Markov chain then moves towards
p(@* DY (#))g(61) |0*®)
p(ODY1(1)g(6*P[6D) e
To simplify calculation, we assume that the importance distribution ¢(6*(¢)|6® (t)) is symmetric,
and after some mathematical manipulation, it is shown that the acceptance possibility is given

by min{1, %*(%3)1} Denote the obtained samples as O(t) = {©@(t);i = 1--- N} with weights

Bt) = {BO(0);i=1--- N}

Noise parameter p' (t) is estimated via MMSE over the samples, i.e.,

}, otherwise it remains at 6@,

©*((t) with acceptance possibility as min{1,

N 3(4)
N 6 (t) ~1(1)
L) = 3 ()
i=1 ;'VZI /B(j) (t)
where /ii®) (¢) is the updated continuous state of the EKF in the sample after the smoothing step.
Once the estimate /i () has been obtained, it is plugged into (2.1) to do non-linear transformation
of clean speech models.

2.5 Experimental results

2.5.1 Experimental setup

Experiments were performed on the TI-Digits database down-sampled to 16kHz. Five hundred
clean speech utterances from 15 speakers and 111 utterances unseen in the training set were used
for training and testing, respectively. Digits and silence were respectively modeled by 10-state
and 3-state whole word HMMs with 4 diagonal Gaussian mixtures in each state.
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The window size was 25.0ms with a 10.0ms shift. Twenty-six filter banks were used in the
binning stage. The features were MFCC 4+ A MFCC. The baseline system had a 98.7% Word
Accuracy under clean conditions.

We compared three systems. The first was the baseline trained on clean speech without noise
compensation, and the second was the system with noise compensation by (2.1) assuming station-
ary noise [22]. They were each denoted as Baseline and Stationary Compensation. The sequential
method was un-supervised, i.e., without training transcript, and it was denoted according to the
number of samples and variance of the environment driving noise V. Four seconds of contami-
nating noise was used in each experiment to obtain noise mean vector !, in (2.1) for Stationary
Compensation. It was also for initialization of 4, (0) in the sequential method. The initial 49 (0)
for each sample was sampled from N(ul(0),0.01) + N(ul (0) + ¢(0),10.0), where ((0) was flat
distribution in [—1.0,9.0].

2.5.2 Speech recognition in simulated non-stationary noise

White noise signal was multiplied by a Chirp signal and a rectangular signal, so that the noise
power of the contaminating White noise changed continuously, denoted as experiment A, and dra-
matically, denoted as experiment B. As a result, signal-to-noise ratio (SNR) of the contaminating
noise ranged from 0dB to 20.4dB. We plotted the noise power in 12th filter bank versus frames
in Figure 2.2, together with the estimated noise power by the sequential method with number of
samples set to 120 and environment driving noise variance set to 0.0001. As a comparison, we
also plotted the noise power and its estimate by the method with the same number of samples
but larger driving noise variance to 0.001.

By Figure 2.2 and Figure 2.3, we have the following observations. First, the method can track
the evolution of the noise power. Second, the larger driving noise variance V will make faster
convergence but larger estimation error of the method. In terms of recognition performance,
Table 2.1 shows that the method can effectively improve system robustness to the time-varying
noise. For example, with 60 samples, and the environment driving noise variance V' set to 0.001,
the method can improve word accuracy from 75.30% achieved by “Stationary Compensation”,
to 94.28% in experiment A. The table also shows that, the word accuracies can be improved by
increasing number of samples. For example, given environment driving noise variance V set to
0.0001, increasing number of samples from 60 to 120, can improve word accuracy from 77.11% to
85.84% in experiment B.

2.5.3 Speech recognition in real noise

In this experiment, speech signals were contaminated by highly non-stationary Machinegun noise
in different SNRs. The number of samples was set to 120, and the environment driving noise
variance V was set to 0.0001. Recognition performances are shown in Table 2.2, together with
“Baseline” and “Stationary Compensation”. It is observed that, in all SNR conditions, the method
can further improve system performance, compared to that obtained by “Stationary Compensa-
tion”, over “Baseline”. For example, in 8.86dB SNR, the method can improve word accuracy from
75.60% by “Stationary Compensation” to 83.13%. As a whole, the method can have a relative
39.9% word error rate reduction compared to “Stationary Compensation”.
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Figure 2.2: Estimation of the time-varying parameter y! (¢) by the sequential Monte Carlo method
at 12th filter bank in experiment A. Number of samples is 120. Environment driving noise variance
is 0.0001. Solid curve is the true noise power. Dash-dotted curve is the estimated noise power.

2.6 Summary

We have presented a sequential Monte Carlo method for Bayesian estimation of time-varying
noise parameter, which is for sequential noise compensation applied to robust speech recognition.
The method uses samples to approximate the posterior distribution of the additive noise and
speech parameters given observation sequence. Once the noise parameter has been inferred, it
is plugged into a non-linear transformation of clean speech models. Experiments conducted on
digits recognition in simulated non-stationary noises and real noises have shown that the method
is very effective to improve system robustness to time-varying additive noise.

Table 2.1: Word Accuracy (in %) in simulated non-stationary noises, achieved by the sequential
Monte Carlo method in comparison with baseline without noise compensation, denoted as Base-
line, and noise compensation assuming stationary noise, denoted as Stationary Compensation.

Experiment || Baseline Stationary # samples = 60 | # samples = 120

Compensation V V
0.001 | 0.0001 | 0.001 0.0001
A 48.19 75.30 94.28 | 93.98 | 94.28 94.58
B 53.01 78.01 82.23 77.11 85.84 85.84
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Figure 2.3: Estimation of the time-varying parameter p! (¢) by the sequential Monte Carlo method
at 12th filter bank in experiment A. Number of samples is 120. Environment driving noise variance
is 0.001. Solid curve is the true noise power. Dash-dotted curve is the estimated noise power.

Table 2.2: Word Accuracy (in %) in Machinegun noise, achieved by the sequential Monte Carlo
method in comparison with baseline without noise compensation, denoted as Baseline, and noise
compensation assuming stationary noise, denoted as Stationary Compensation.

SNR (dB) || Baseline | Stationary Compensation | #samples = 120, V' = 0.0001
28.86 90.36 92.77 97.59
14.88 64.46 76.81 88.25
8.86 56.02 75.60 83.13
1.63 50.0 68.98 72.89




Chapter 3

Generative Factor Analyzed HMM for
Automatic Speech Recognition

3.1 Abstract

We present a generative factor analyzed Hidden Markov model (GFA-HMM) for automatic speech
recognition. Traditional HMM models observation vectors by mixtures of Gaussian (MoG) asso-
ciated with discrete-valued hidden state sequences. In this work, in addition to the hidden state
sequences, the observation vectors are also represented by continuous-valued latent vectors. On
contrary to principle component analysis (PCA) and factor analysis (FA), the continuous-valued
latent vectors are dependent on acoustic units for recognition. Accordingly, the distributions of
the latent vectors are MoGs associated to discrete state sequence. To model the correlations of the
latent vectors, a further latent representation is introducted by factor analysis. Our experiments
on digits recognition showed that GFA-HMM could consistently outperform traditional HMM
with the same amount of training data.

3.2 Introduction

In automatic speech recognition (ASR), system is presented with multi-dimensional observation
vectors which may have varies order of statistics. Normally, mixture of Gaussian (MoG) with
diagonal covariances are used to model the distributions of the observation vectors, which result
in implicit modeling of the correlations of the vectors. To account for dynamics of the distribution,
the MoGs are assumed to be dependent on discrete state sequence, which accounts for semantic
information of the speech. This gives rise to the traditional Hidden Markov model (HMM) for
ASR.

Recently, continuous-valued latent representation of the observed vectors is found to be useful
for pattern recognition, since they can provide compact representation of the correlations of
the observation vectors. For example, the latent representation can be carried out by principle
component analysis (PCA) [25] and factor analysis (FA) [26], which find various applications in
image processing [27] and speech recognition [28]. The above works assume that the vectors in
the introduced latent space, denoted as X, are distributed in Gaussian N(-;0,I), i.e., zero mean

29
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Figure 3.1: Graphical model of the generative factor analyzed HMM.

and unit diagonal covariance.

Instead of the single Gaussian distribution N(-;0,I), of the latent vectors, other important
works of continuous-latent representation include independent component analysis (ICA) [29]
assume non-Gaussian distribution of the latent vectors. As a result, higher-order statistics of the
observation vectors can be modeled.

Since speech observation vector is dynamic, it might be beneficial to consider the vector in
the continuous-valued latent space as acoustic-unit dependent, and, as a result, it is no longer
distributed in N(-;0,7) as PCA and FA. Furthermore, instead of assuming independence of the
vector elements as in ICA, these elements in the latent vectors can be considered as correlated
with each other. To model the correlations, a further latent representation can be introduced.

Based on above considerations, in this work, we propose to model speech observation by a
generative factor-analyzed Hidden Markov models (GFA-HMMs). The key to our approach lies in
the introduction of acoustic-unit-dependent latent representation vector z; € R” of the observation
vector y; € RY and a further acoustic-unit-independent latent representation vector z, € RX of
the latent vector z;. Since z; is acoustic-unit independent, it could be considered as generative
source to acoustic-unit dependent latent vector z; via a acoustic-unit dependent loading matrix.
The model is related to factor analysis since there are noises in both of the observation vector y;
and latent vector ;.

3.3 Generative factor analyzed HMM

Figure 3.1 shows the graphical model of the generative factor analyzed HMM. Round circle and
rectangular square each denotes continuous- and discrete-valued node. Shaded nodes denote
observations. ¢; = {1,---, S} denote discrete state at time ¢t. Q(T) = (g1, ", Gts G155 * "> qT)
is the discrete state sequence with first-order state transition probability a,, from state p to state
¢, which accounts for semantic sequence in speech. Two continuous-valued variables, z; and ;, are
dependent on the discrete state sequence, whereas z; is independent of the discrete state sequence.

The continuous-valued nodes, y;, z;, and z; are hierarchical. In the highest hierarchy, vector
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4 is considered to be generated from 2, through factor analyzer [28] by C,, the state-dependent
loading matrix with dimension L x K in state g, i.e.,

2t ~ p(z) = N(24;0,1) (3.1)
Ty = Cozy + (.

where vector (,; denotes noise in space X. The noise is modeled by mixture of Gaussian
{N (Cgt5 €q5s Vag) i=1,-,m2, With component weight c,;. Vy; is diagonal. M7 denotes number of
the mixture components for state ¢ in space X.

Since elements in diagonal covariance V;; are not restricted to have the same value, the above
functions are factor analysis on z; in each component j € {1,---, My } at state ¢q. The observation
s is related to x; by the following model.

zy ~ ModelFA—HMM (3.3)

Yt = NgTe + Vg (3.4)

where the observation noise vg is distributed according to mixtures of Gaussian {N (vet; Kgm, Zgm) fm=1,.... m¥
with mixture weight 7. MY is the number of mixture components in state ¢ in space Y. g
is diagonal with o, for element (n,n). Value of o2, is not restricted to be the same for
Vn € {1,---,N}. A, is state-dependent loading matrix with dimension of N x L.
It is seen through Figure 3.1 that, without the link from z; to y; and the link of A, the model
is the traditional HMM. FA-HMM [28] can be obtained from Figure 3.1 by adding a direct link
from z; to y; and deleting link from z; to y;.
Functions (3.1) and (3.2) are compact representation of z;. Since z; is semantic independent,
it can be considered as source stimulus. By the state-dependent C, working as a “vocal tract
filter”, semantic dependent z; is generated. For this reason, we denote our model as generative

factor-analyzed HMM.

3.4 Maximum likelihood parameter estimation of the GFA-
HMM

Since the sequences Q(T"), X(T), Z(T), M(T), and J(T') are hidden, maximum likelihood estima-
tion of the model parameter © may be carried out iteratively by EM algorithm [30]. In the EM
algorithm, the auxiliary function is defined as the average of the joint log-likelihood calculated on
current model parameter © over posterior probabilities of the hidden sequences calculated from
previous model parameter ©, i.e.,

T

Q(@; é) = Lg [108 H p(yta Ty 2ty Qty T, Jtlé)]
t=1
T
= EG[IOg H{&Qt—lthfrthmt}éqm(t)]

t=1

T
+ FBollog [[{p(2:)ég;.p(x| 2, az, 72; ©) 329 Y]

t=1
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T
+ Egllog H{p(yt|zt7Qtamt§@)}qu(t)] (3.5)
t=1
where 4,,,;(t) is calculated given previous model parameter ©. Since components in the right
of (3.5) are functions of {@gp, Tgm}, {C4q,CejrEqs» Vit and {figm, Lgm}, respectively, parameter
estimation can be carried out on them separately. Solving the auxiliary function requires their
posterior statistics.

3.4.1 Posterior statistics

The likelihood at state ¢, mixture component m in space Y, and mixture component j in space
X at time ¢ is given as,

p(ytIQa m, J; 8) = N(yt§ Ham + Aqﬁqj? Ygm + Aq(véj + quf)f\:‘f) (3'6)

where superscript 7' denotes transpose. By marginalizing, likelihood p(y;|¢, m) and p(y:]q) can be
obtained.

Given previous model parameter ©, the posterior probability of being in state ¢, mixture com-
ponent m in space Y and mixture component j in space X at time ¢, y,m;(t) = p(gmj|Y (T); ©),
can be obtained by forward-backward algorithm with the above likelihood, i.e.,

— TamCqiP(Yela, M, J; ©)
g 2m 2 qucqu(yt[q7 m, j; ©)

Vamg (t) (3.7)
Marginalizing of the above posterior probability can give posterior probability in state ¢ and
mixture component m, Ygm(t), and the posterior probability in state g, v,(¢).
Regarding the posterior distribution of the continuous-valued hidden sequence X (7T'), according
to Bayes rule, it is given as,
_ p(yilzs, ¢, m; ©)p(4]g, 35 ©)

TelYs, @, M, J;0) = - 3.8
p( tlyt q J ) p(yth,m,j;@) ( )

Since each component in the above function is Gaussian, the posterior distribution is Gaus-
sian as well. It can be verified that the posterior distribution, p(z:|y:,q,m,7;©) is given as
N(2s; ¢%,5(t), U2, where,

qmj qmj

il]:m‘](t) = E@[zt|yt7 g, m:]]

W[ (Vag + CoC) ™ g + Mg X (0 = figm)] (3.9)
\Illa;mj - E@[éxtézflytaQ7 m?]]
= [(Vg + C,CH) + ATS A ™! (3.10)
Denote Folz:xf |y, q,m,j] as ®% .(t). It is given as, W% . + @2 .(1)¢%,;(t)'. Marginalizing
of (3.9) and (3.10) can give posterior mean ¢7,,(t) as Y2, Yem;(t)$5,;(t), and posterior variance

W () = X Voms Vim;(t). Similarly for ¢f(¢) and Wi (t).
Since p(z;) ~ N(z;0, 1) and p(z4|2:, g, m, j; ©) is Gaussian, the posterior distribution of z; is

also Gaussian N (z; ¢%,,;(t), ¥% .:(t)). Thus, only the first- and second-order statistics are needed.
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This simplifies calculation of the posterior statistics for 2, since the posterior mean vector of z;,
om;(t), can be taken as the “observation vector” of z; to Function (3.1) and (3.2). Thus, in the
same way as (3.9) and (3.10), the posterior statistics of z; is

z

qmj(t) = E@[zt|xt7 Y, 4, M, .7]

= o ()Cq V7 ($gn(t) = &) (3.11)
\P;mj(t) = E@[dztdzﬂfﬂt» yt7q7m7j]
= [I+CIV'C,™ (3.12)

Denote Eglz:2] |yt, q,m, j] as ®,,:(t), which is given as W2 .(t) + ¢Z,.:(t) %, (t)7.

3.4.2 Parameter estimation

EM algorithm for updating model parameters © involves summation over the above posterior
statistics. Re-estimation formulae are shown in appendix.

3.5 Experimental results

3.5.1 Experimental setup‘

The proposed GFA-HMM was compared with the traditional HMM in this paper by experiments
on Aurora 2 database [31], a down-sampled TI-Digits database to 8kHz sampling rate.

Features for recognition were 39-dimensional MFCC plus CO and its first- and second-order
coefficients. One thousand utterances in clean training set of the database were used for training
acoustic models. Testing was conducted with 1,000 clean utterances from the testing set of the
database. ‘

Acoustic models in all of the systems were trained by EM algorithm with six iterations. In all
the acoustic models, state number was ten for digits and three for silence model.

Traditional HMM could only adjust its number of mixture components MY. Accordingly,
number of free parameters (NoF'P) for a model was S x (2N) x M¥. The structure of GFA-HMM
is more flexible. In this work, we varied the number of mixture component in space X, M7 and
the dimension of space X, L. The dimension of space Z was set to one, and the number of mixture
component MY was set to one. Latent parameters {A,, &, Vg5, C,} are shared among states for
each acoustic models. For a word model by GFA-HMM, NoFP was S x (2N) + (N +1) x L+
(2x L) x M7.

Mixture components in space Y and X were incrementally obtained by mixture splitting [32].
In the training stage, V; and X, were floored to 1.0 and 0.001, respectively.

3.5.2 Results

Table 3.1 shows results by traditional HMM. The highest word accuracy (W.A.) was 88.93% by
setting MY to 4. In such a case, NoFP arrived to 2496 for a word model.

Performances by GFA-HMM were shown in Table 3.2. It is seen that GFA-HMM could achieve

higher recognition accuracy over traditional HMM with the same amount of training data. For
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Table 3.1: Number of free parameters (NoFP) for a word model and word accuracy (in %) in
testing set by traditional HMM as a function of number of mixture component in space Y, M¥.

My |1 2 3 | 4
NoFP | 624 | 1248 | 1872 | 2496
W.A. || 88.05 | 85.04 | 87.96 | 88.93

example, word accuracy increased consistently by increasing mixture component in space X while
keeping L = 1. The best W.A. was 90.93% by setting L = 1 and M = 4. Moreover, the NoFPs
could be much lower than those by traditional HMMs. For example, in this situation, the NoFP
was 672, whereas the NoFP was 2496 for traditional HMM to achieve its best performance.

Table 3.2: Number of free parameters (NoFP) for a word model and word Accuracy (in %) in
testing sets by generative factor-analyzed HMM (GFA-HMM) as a function of number of mixture
components in space X, M7, and dimension in space X, L.

Dimension L M7 1 2 3 4
1 NoFP | 666 668 670 672
W.A. || 88.80 | 89.73 | 90.30 | 90.93
2 NoFP || 708 712 716 720
W.A. || 86.44 | 89.09 | 89.73 | 89.66

3.6 Conclusions and discussions

We propose to model speech observation vectors by a generative factor-analyzed HMM. Continuous-
valued latent representation, which is also dependent on discrete hidden state sequence, of the
observation vectors is introduced in this model. The model can achieve more compact represen-
taion of observations compared to traditional HMM. Our experimental results on digits recognition
show that the proposed model could achieve better performance than traditional HMM with the
same amount of training data.

The model can be considered as a generalization of several models recently proposed for speech
recognition. Without the latent representation of z; by z;, our model reduces to the factor analyzed
HMM by [33]. The model reduces to the model by [28] without latent representation of z; by
z; and a further assumption of single Gaussian N(x;;0,7) in space X. Without the continuous
latent representation of y;, the model is the traditional HMM.

Further work will investigate various sharing schemes of the latent representation parameters
and automatic decision of the dimension of the latent vector and number of mixture components.
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.1 Approximation of the environment effects on speech
features

The derivation is on normal Mel-Filter Cepstral Coefficients (MFCCs). In each filter bank in
the linear frequency domain, channel distortion and additive noise have effects on speech power,
which can be approximated by [5][6]

0,(j) = 02(5) x o4 (4) + on(4) (13)

where ¢2(j), 02(4), 0(j) and 02(j) each denotes observation power, speech power, channel dis-
tortion power, and additive noise power in filter bank j.
MFCC extracts the power or the amplitude for later stages by logarithm compression to log-

spectral domain and discrete Cosine transform (DCT) to the cepstral domain. In case that the

amplitude is used, following equations can be used to approximate the channel and noise effects
on speech in the log-spectral domain.

log( W 5) +02(5)) (14)
@%—j)]
02(5) x o3 (j)

= —[10grf (7) +log oy (j) + log(1 +
1 9. 1 9.

= 510g03(1)+§10g0h(1)+
1 1
§log(1 +exp2 x (loga (7) — log o2(j) — logah(j)))

Substitute z = 1 logo?(j), and similarly n}, A%, and y} for 1logo?(j), :log o} (j) and logoZ(j),
respectively. The above function can be ertten as,

y; =+ hi+ o 10g(1 + exp(2(n} — 2} — hL))) (15)

In a similar way, the following function is obtained to approximate the environment effects in
log-spectral domain on speech feature extracted from the power in the linear frequency domain.

y; =z + ht +log(1 + exp(n} — 2 — ht)) (16)

.2 The objective function of the sequential Kullback prox-
imal algorithm

The sequential Kullback proximal algorithm [19] is a sequential version of the Kullback proximal
algorithm [34] for maximum-likelihood estimation. In the sequential Kullback proximal algo-
rithm [19], the cost function for the iterative procedure is given as the log-likelihood function
(shown in function (1.5)) regularized by a Kullback-Leibler divergence, i.e.,

LAw (1) — Bl (R (0; An (1) = A (17)
L(AN (1) = LAy (8); An(8)) — (Be — DI(AN (2); An (1))
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where I,(M%(t); Aw(t)) is the Kullback-Leibler divergence between the posterior distribution of
state sequences given observation sequence Y (¢) and noise parameter sequence (Ay(t —1), X5 (¢))
and that by the noise parameter sequence Ay(t) till frame ¢, which is given as,

L% () Aw(t )) =
2 P(SOIY(®), (Av(t—1), A (®)))

S@)
p(S@OIY(®), (An(t — 1), Ay (%))
P(S@)Y (), (AN(t),/\N(t)))
= L)+ X PSOY (1), (An(t = 1), X5(2))

S(0)
PS@[Y(®), (Ax(t — 1), Xy(1))
P(Y(®), S@I(An(2), An (1))
= —Q:(\y ( ) N (1) + (AN ()
+ ZP (®), (A (t = 1), A% (%))

logP( @Y (@), (An(t = 1), A% (2))) (18)

log

where

Qe (AN (8); /\N())=
Zp Y(#), (An(t — 1), A5 (2)))

logp(Y( ), SEI(An(1), A (1)) (19)

Substituting above equation into (18), we obtain,

A~

LGN () — BLOY0); An (D) @)

~

= Q) An (1) — (B — DLON®); An(®) + Z

where Z is a function without relation to Ay(t). We thus obtain (1.10) as the objective function
for the sequential parameter estimation.

.3 Properties of the sequential Kullback proximal algo-
rithm

.3.1 Sequential EM algorithm is a particular case of the sequential
Kullback proximal algorithm
When £ = 1.0, according to (20), the objective function L(Ax(t)) — Bule(M5(2); An(2)) to be

maximized is equivalent to maximization of Q;(\%(£); Ax(t)), which is the objective function to
be maximized by sequential EM algorithm.
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.3.2 Monotonic likelihood property
According to the objective function defined by the sequential Kullback proximal algorithm, it has,
L(w () = LN (E = 1))

> 5tft(5\N(t - 1); 5\N(t)) - 5tft(5\N(t - 1); S\N(t - 1))
= 5tft(5\N(t - 1)5 5\N(t)) (21)

Since 8, € RT, L(An(t —1);Ax(t — 1)) = 0 and L,(An(t — 1); Ax(¢)) > 0, we prove that the
sequential Kullback proximal algorithm can achieve the objective function (1.4).

.4 Sequential Kullback proximal algorithm can be viewed
as a constrained maximum problem

When 8, > 1.0, since I;(X5(t); Ax(t)) > 0.0, maximization of the function (20) corresponds to
the constrained maximum problem, i.e.,

~

An(t) = arg fhax Qi(An; An(t)) (22)
subject to
L(A%(t); An(t)) < C (23)

where C' € R*. The larger the f;, the stronger the constraint in (23). This means that estimate
by the sequential Kullback proximal algorithm will be “pulled close t0” A% (%).

Another situation is that 0 < f; < 1.0. In such a case, 8; — 1.0 < 0.0. Define & = 1.0 — 5.
Function (20) can be written as, -

B0 (A (0) + £ Qe () h(0) + 5 24

Maximization of the function thus can be seen as a constrained optimization given by,

~

An(t) = arg max L(AR(t); An (D)) (25)
subject to
| —QAN (1) An(8) < C » (26)

where C € R*. Since & — 0.0 when 8, — 1.0, constraint in (26) thus will be very tight in
this situation. On the contrary, when 8; — 0.0, the constraint will be very loose. As a result,
the estimate by sequential Kullback proximal algorithm will be far away from that provided by
sequential EM algorithm.
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.5 Derivation of the Sequential Kullback proximal algo-
rithm applied for environment parameter estimation

The first- and second-order differential of the K-L divergence of (18) are given respectively as,

BL (X% (1) An (1))

< = (27)
OAn (1)
aQt(A* (1) v (t) | 0O (®))
An(t) 0w (t)
L0 (1 int ) _ -
OAn(t)?
_PRON() | PUbx()
OAn(t)? - OAn(t)?
Assume that 2@%}%}25\_%@] Aw(H=2% () = = 0 has been achieved, and it thus holds
alt(A;\N(t)) s QX (®); Aw (1) . (29)
A (t) AN(t)—AMt) a)\N( ) An (=A% (D)

With the second-order Taylor series expansion of the objective function (17) at A% (¢), the
updating of environment parameter is given as,

8w (1)) =Be I A\ ():A (1))

3 3 N N A (t)
An(t) <= Aw(t—1) 82(1s (A (£)—BeLe (Vg (3AN (1)) S @=An (-1 (30)

AN ()2

By (28) and (29), the updating is given as,

aQt(A (t) )\N(t))
o B =An -1)
2Q:iOE BN (1) a8 (8) ANO=AN (-1
5w T (1= B) =5t

The derivation of the updating formulae for the auxiliary function Q,(Ay(t—1); Ay(t)) can be
seen in [20]. We briefly describe the derivation in this paper. Since

Q:(An(t —1); ;\N( )) =
ZP t), Ax, (An(t — 1), An(t — 1)) -
log[P(S(t ~ DY (t~1),Ax,Ax(t—1))-
as(t—1)s(t)bs(e) (¥ (1))]
= 3 P(S{t—1)|Y(t—1),Ax, Ay(t — 1))

S(t—1)




.5. DERIVATION OF THE SEQUENTIAL KULLBACK PROXIMAL ALGORITHM APPLIED FOR EN

log b 1( (t- 1)
n ZP t), Ax, (Aw(t — 1), An(t—1)))

logbs( @)+ 2

where Z is not a function of Ay(t). Denote Qs_1(An(t — 2); An(2)) = T P(SE - DY (¢ -

1), Ax, Ay (t=1)) log byce—1) (y(t—1)). Assume that Ax(t—1) has made 9= 1“’;&22””“” o ity =
0. We thus obtain the first- and second-order derivative of the auxiliary function with respect to
the noise parameter, which are shown in (1.15) and (1.16), respectively.

8% (An (1))
R BAN(t)2 )
i and mixture m as o (i, m; An(t)) = P(Y(2),s(t) = 4,k(t) = m|Ax, (An(t — 1), An(t))), and
accordingly the forward accumulated likelihood at state 7, e (4; Ax (£)) = 3, (i, m; An(2)). They
have relations shown below as

The remaining is how to calculate . Define forward accumulated likelihood at state

T

(i, m; )\N lz:at 1(4; )\N(t— 1)) ay;wipm by (y(1)) (32)

Since li(An (2)) = log Sim (i, m; An(2)), it has

MIA .
85\ ®) An()=An(t—1)
- ol Bmelm)
9w @) An@®)=Ay(t-1)
ST s day(i;mi ()

230 |50 (614
ST SM oy (G, ms Ay (£)) PO ED

By (1.13) and (32), it has,

Doy (i m; Mn (1)) _
A (2)

. N\ alogbzm(yt)
s ;)\ 1)) ———=
ol ms () =

Substituting the above equation into (33), we have,

T M o (Vs
Z z:: 1, m; )\N )—WIJ\N@):J\N@—U

where v,(i, m; Ay (1)) = E:’t(:z;if’g)( L representing the posterior probability at state 4 and mix-

ture m given observation sequence Y (t) and noise parameter sequence (An(t — 1), Ax(t)). We
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thus obtain,

LN (1) Z Z B, (3, m; An (£)) B10g bim (11
6/\N t 2 1=1 m=1 a/\N( ) a/A\N(t)

L : 8210 bim

= (35)
i=1m=1 a)\%v(t)
. . .3 ¢ at(zmAN(t)) . 4
Notice that (i, m; An (1)) = ST S ik () and refereeing to (34), we have,
Ov,(3, m; Ay (¢ i « 0log bip,
WG AN D) i,y 1) 2228 e)
OA (t) OAn(t)
L S 0 log bux (1)
Y(l, k; An (1)) —=——] (36)
lzzjlkzzjl OAn(t)
Substituting above equation into (35), we have,
62lt(/\N 010g bim (y1)
—_— i, m; A Ry
B () ;;1% v () B3 ) )
62 log bzm (yt)]
A (t)?
T M . L Olo bim
(3 3 4l ms o (1) 2B om0 @7
=1 m=1 8)\N (t)

.6 Gaussian PDF's

Since p(z) ~ N(0,I) and p(z4|q, 21, 7) is Gaussian, by marginalizing of z, the density of z; in
state ¢ and mixture component j is N(z; &5, Voj + CyCT).
Since the density of y; given z; in state g and observation component m is given by

p(yilzs, ¢,m) = , (38)
1 1
——————exp——y—um—AzTEm m — N
(27T)N|Eqm| ( 2( [ q q t) q (vt — Hq q t))

, by marginalizing of z;, we obtain the density function for y; at state ¢, mixture component m
in space Y and mixture component j in state X as that in (3.6).

.7 EM algorithm for GFA-HMM

By setting the first order derivative of the auxiliary function with respect to figm, f)qm and f\q to
zero, we obtained the following re-estimation formulae.

Zt: Yor (8) Zgm B i (8)
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Z ’qu(t)z;}i(yt — fgm) B ()T (39)
fqm Et Yam(t Et: Vam () [y — Aqﬁm(t)] (40)
ZA3qm = diagz Z Vam (t — Hgm) (Yt — qu)T (41)

t qm t

Aq¢qm( )( Yi — /‘qm) - (?/ qu) M ( )TA;F + Aq‘I’ffm(t)Af]

The loading matrix A, has to be estimated row by row [33]. The nth row vector Agn of the
new loading matrix A, can be written as,

A = kLG (42)

an = qn

where the L by L matrices G, and L dimensional vector are defined as follows,

G = Z’qu o, () (43)

qmn

1
ke = Z'qu (Ytn = Hgmn) ﬁm(t)T (44)

qmn

where Y, and pgmy, are, respectively, the nth element of the current observation and the observa-
tion noise mean vectors.

Taking ¢7,.:(t) as the “observation vector” in space X, re-estimation formulae for {Co Euiy Vii}
are similarly derived as above. The formulae are given as,

éq[z Z Va5 (1) 9
Z Z — &gslg;(t ) (45)

éqj Et i (t Et: Vai(t q¢ (1) (46)
qu =diog=—x S, Z Voi ( —&gj — Cq¢2j (t)]
[93;(t) — qu — Cyg;(t )]T + Cq‘I’Zj(t)Cff} (47)

The loading matrix C, should be calculated row-by-row similarly as that for A, by (39).
Maximization auxiliary function (3.5) with respect to mixture component weights arrives at
the following updating formulae,

N zt zj Yemj (t)
m = 48
e zt zm zj Ygmj (t) ( )
2ot 2om Yamj (t) (49)

O S T S Yami (D)
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