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Chapter 1 

Noise adaptive speech recognition 

1.1 Abstract 

We present a noise adaptive speech recognition approach to noisy speech recognition in non-
stationary environments. Environment effects include channel distortion and additive background 
noises. Given previously estimated environment parameter sequences, the Viterbi process provides 
approximated joint likelihood of active partial paths and observation sequence at current frame. 
The joint likelihood after normalization provides approximation to the posterior probabilities of 
state sequences for an EM-type recursive process based on sequential Kullback proximal algorithm 
to estimate the current environment parameter. The combined process can easily be applied to 
perform continuous speech recognition in presence of non-stationary environments. Experiments 
conducted in simulated and real environments showed that the noise adaptive speech recognition 
provides significant improvements in word accuracy as compared to the baseline system (with-
out environment compensation) and the normal noise compensation system (which assumes the 
stationary environments). 

1.2 Introduction 

Speech recognition has to be carried out often in situations where there exists environment dis-
tortions, such as channel distortion, background noise, competing speech and room reverberation, 
which cause mismatches between pre-trained models and real testing data. These mismatches 

between training and testing conditions can be viewed in the signal-space, the feature-space, or 
the model-space [l]. Varieties of methods have been proposed to combat environment eげects,and 
in general, there are three approaches in this research. The first approach is based on front-end 
signal processing, where the signal input for feature extraction has higher signal-to-noise ratio 
(SNR) after processing than that without the processing, e.g., speech enhancement [2]. The sec-
ond approach is robust feature extraction, which tries to extract features, to some extent, invariant 
to environment effects, e.g., Perceptual Linear Prediction (PLP) [3] and combination of static, 
dynamic and acceleration features [4]. The third approach is denoted as model-based approach. 
The model-based approach assumes parametric models representing environment effects on speech 
features. Processing of the model-based approach can be either in modifying the Hidden Markov 
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Model (HMM) parameters in the model-space, e.g., Parallel Model Combination (PMC) [5] and 
stochastic matching [1], or modifying the input features for recognition, e.g., Code-Dependent 
Cepstral Normalization (CDCN) [6], Vector Taylor Series (VTS) [7], and Frequency-Domain ML 
feature estimation [8]. This approach has been shown promising to compensate noise effects [9]. 

Environment robustness can also be achieved by applying adaptation methods. Linear trans-
formation matrices for adaptation can be estimated by maximum likelihood linear regression 
(MLLR) [10] and maximum a posterior (MAP) [11] approaches given adaptation utterances. As 
suggested by their names, the difference between them is the estimation criterion. 

In the above approaches, most researches are focused on stationary environment conditions. In 
this situation, environment or adaptation parameters are often estimated before speech recognition 
from a small set of environment adaptation data for modifying HMM parameter or input features. 
However, it is known that the environment statistics may vary during recognition. As a result, 
the environment or adaptation parameters estimated prior to speech recognition are no longer 
relevant to the subsequent inputs. 

Recently, a number of techniques have been proposed to combat time-varying environment 
effects. They can be categorized into two approaches. In the first approach, time-varying environ-
ment sources are modeled by HMMs or Gaussian mixtures that were trained by prior measurement 
of environments, so that environment compensation is a task of identification of the underlying 
state sequences of the environment HMMs [5] [12] [13] by MAP estimation in a batch mode. For 
example, in [5], ergodic HMM represents different SNR conditions, so that a composed HMM 
with speech models can have expanded states that possibly represent speech states at different 
SNR conditions. This approach requires to make a model representing different conditions of 
environments (SNRs, types of noise, etc), so that statistics at some states or mixtures obtained 
before speech recognition are close to the real testing environments. 

In the second approach, environment parameters are assumed to be time-varying. The en-
vironment parameters can be estimated based on maximum likelihood, e.g., sequential EM al-
gorithm [14][15]. In [14], the sequential EM algorithm is applied to estimate time-varying noise 
parameter in cepstral domain. Frequency domain EM algorithm [8] has been extended to sequen-
tial estimation of time-varying noise parameter in linear frequency domain [15]. The environment 
parameters can also be estimated by Bayesian methods [16][17]. In [16], a Laplace transform is 
used to approximate the joint distribution of speech, additive noise and channel distortion by 
vector Taylor series approximation. In [17], sequential Monte Carlo method is used to estimate 
environment parameters. 

In this paper, we investigate a method assuming time-varying environment parameter for noisy 
speech recognition in non-stationary environments. In particular, a noise adaptive speech recog-
nition approach [18] is proposed based on the following two novel points. Firstly, noise parameter 
is estimated sequentially, i.e., frame-by-frame, which can possibly handle non-stationary environ-
ments. Secondly, time-varying environment parameter estimation makes use of a Viterbi process 
from the recognition process to approximate the posterior probabilities along state sequences for 
the time-varying parameter estimation. 

This paper is organized as follows. Section 2.3 reviews the model-based noisy speech recog-
nition. In particular, Section 1.3.2 shows that the parametric modeling of the noise effects on 
speech features can be seen as mapping between two spaces, where one space is considered as the 
original training data space and the second space is in the testing environments. Based on this 
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understanding, it is shown that the environment parameter for mapping between the two spaces 
can be learned from data. Accordingly, the speech models to be transformed can also be trained 
from noisy speech. 

The process must be carried out sequentially in order to track the time-varying environment 
parameter. In Section 1.4, the time-recursive environment parameter estimation is described. In 
particular, the sequential Kullback proximal algorithm [19], which is an extension of the sequential 
EM algorithm, is applied. Compared to the sequential EM algorithm, the sequential Kullback 
proximal algorithm gives flexibility in controlling its convergence rate. Section 1.4.2 justifies the 
Viterbi approximation of the posterior probabilities of state sequences given observation sequences. 
Section 1.5 provides experimental results carried out on TI-Digits and Aurora 3 database to show 
the efficacy of the method. Conclusions are in Section 1.6. 

1.3 Model based noisy speech recognition 

1.3.1 MAP D ・・ec1s1on rule for automatic speech recognition 

The speech recognition problem can be described as follows. Given a set of trained models 

Ax= {入Xm}where入xmis the mth subword HMM unit trained from X, and an observation 
vector sequence Y(T) = (y(l), y(2), ・ ・ ・, y(T)), the aim is to recognize the word sequence W = 
(W(l), W(2), ・ • ・, W(L)) embedded in Y(T). Each speech unit model入Xmis a Y-state CDHMM 
with state transition probability aiq(O :s; aiq :s; 1) and each state i is modeled by a mixture of 
Gaussian probability density functions { bik (・)} with parameter {Wik,μ 枷江h=l,2,…，M, where M 
denotes the number of Gaussian mixture components in each state. μik E RDxl and江 ERDxD 
are respectively the mean vector and covariance matrix of each Gaussian mixture component. D 
is the feature vector size. Wik is the mixture weight. 

In speech recognition, the model Ax are used to decode Y(T) using the maximum a posterior 
(MAP) decoder 

W = argmaxP(WIAx, Y(T)) 
w 

- argmaxP(Y(T)IAx, W)Pr(W) 
w 

(1.1) 

where the first term is the likelihood of observation sequence Y(T) given that the word sequence 
is W, and the second term is denoted as the language model. However, in many situations, 
there exists mismatches due to environments, e.g., additive noise and channel distortion, and 
accordingly, there is a mismatch in the likelihood of Y(T) given Ax evaluated by (1.1). 

1.3.2 Model-b 
．． 

ased noisy speech recognition 

In the model-based approach to noisy speech recognition, models representing environment effects 
on speech features are used. In particular, the following function was proposed in [5][6] to represent 
environment effects on speech features. (A simple derivation is shown in Appendix .1). 

y;(t) = x;(t) + h;(t) + log(l + exp(n;(t) -x;(t) -h;(t))) (1.2) 
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where砂(t)is the jth component in the vector of observation power y1(t) in the・log-spectral 

domain at frame t. Superscript l denotes log-spectral domain. Similarly for吟(t),h;(t) and n;(t) 
to denote the j-th component in vectors of speech power, channel distortion power and additive 
noise power at frame t. Subscript j ranges from 1 to J, where J denotes number of filter banks. 

Note that cepstral vector y(t), x(t), h(t) and n(t) are obtained by discrete Cosine transform 
(DCT) on y1(t), 叶(t),が(t)andが(t),respectively. Training data of {x(t) : t = l, • • •, T} is used 
to train the acoustic model Ax. If data of {h(t) : t = l, ・ ・ ・, T} and {n(t) : t = l, ・ ・ ・, T} are 
available, a model AN can be trained, so that, by explicit use of function (1.2), (1.1) can be carried 

out as, 
W = argmaxP(Y(T)IAx,AN, W)Pr(W) 

w 
(1.3) 

In case that {h(t) : t = l, ・ ・ ・T} and {n(t) : t = l , ・ ・ ・, T} are stationary or available before 
recognition, AN can be estimated prior to speech recognition. 

1.3.3 Environment parameter estimation for the model-based noisy 

speech recognition 

Function (1.2) represents a parametric mapping between x;(t) and砂(t).Figure 1.1 shows the 

function when吋(t)= 1.0, h;(t) = 0.0 and州(t)ranges from -10.0 to 10.0. Through the figure, 
it is seen that the function is smooth and c伽nvexas a function of叫(t)given吋(t)and h;(t). 
The function approximates the masking effects of叫(t)on吟(t).Function (1.2) will output either 

x;(t)+h多(t)or n多(t)depending on whether x;(t) + h多(t)is much larger than n;(t) or n;(t) is much 
larger than x;(t) + h;(t). When xう(t)+ h;(t)~n;(t), the observation y;(t) is non-linearly related 
to x;(t) + h;(t) and叫(t).
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Figure 1.1: Plot of function y;(t) = x;(t) + h;(t) + log(l + exp(n;(t) -x;(t) -h;(t))). x;(t) = 1.0, 
and尻(t)= 0.0. 叫(t)ranges from -10.0 to 10.0. 

Accordingly, environment compensation includes two steps, the environment parameter esti-

mation step and an acoustic model (or feature) adaptation step. In the environment parameter 

estimation step, AN is estimated based on Y) (t) and吋(t).Note that, if assuming that吋(t)is 

clean speech (as that in PMC [5]) and the environment is stationary, environment parameter AN 
can be estimated directly from the explicit noise-along segments. In such a case, h; (t) and叫(t)
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are not function of x;(t). In contrast to the approach, in this work, parameters of閏(t)and叫(t)
need to be estimated given x;(t) and y;(t). With the estimated parameter of h;(t) and n;(t), 
function (1.2) is applicable to the situation that environment segments are not explicitly available 
or the acoustic models of x;(t) are trained from noisy speech. 

As shown in Figure 1.1, the noise power is masked by speech power in the situation that the 
noise power is smaller than a certain value. This non-linearity of the function (1.2) may result 
in estimates of the h;(t) and叫(t)that are different from true channel distortion and noise. In 
this sense, it is better to view the estimates as parameters for the non-linear mapping by (1.2), 
instead of explicit meaning of environment parameter. However, in the sequel, we still denote AN 
as the environment model, though the estimate may not be true environment parameter. 

Normally, a direct observation of吟(t)is not available, so the parameters of h;(t) and n;(t) are 
estimated from Ax (the model of x;(t)), and y;(t) in either a supervised (with correct transcript) 
or unsupervised (correct transcript is not known) way. 

In the acoustic model (or feature) adaptation step, the estimated parameter of h;(t) and 
叫(t)are used in function (1.2) to transform Ax (which substitutes吋(t)in function (1.2)) in the 

model space, so that the transformed model A.y is close to {y(t) : t = l, • • •, T}. Similarly, the 
transformation can be carried out in the feature space to make {y(t) : t = l, ・ ・ •, T} close to Ax. 

1.4 Noise adaptive speech recognition 

Furthermore, consider that the noisy environment may change during the recognition process. AN 
(in (1.3)) thus have to be estimated sequentially, i.e., frame-by-frame. 

Y(t) 
心 (t) ふ(t)

Noisep紅 ame(erestimation 1-ー↓ Acoustic model adaptation 

Recognition 

Hypothesis 

Figure 1.2: Diagram of the noise adaptive speech recognition. Ax, AN(t) and応(t)are the original 
acoustic model, noise model at frame t, and adapted acoustic model at frame t, respectively. 
Y(t) is the input noisy speech observation sequence till frame t. Recognition module provides 
approximated posterior probabilities of state sequences given noisy observation sequences till 
frame t to the noise parameter estimation module, which output AN(t) to adapt acoustic model 

Ax to A.y(t). 

In this work, a noise adaptive speech recognition is proposed to do sequential estimation of 
the time-varying environment parameter for noisy speech recognition. It works in the model 
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space, i.e., modifying HMM parameters. Its diagram is shown in Figure 1.2. Details are shown 
in the following sections. In Section 1.4.1, the objective function for time-varying environment 
parameter estimation is defined. The Viterbi approximation of the posterior probabilities of state 
sequences given noisy observation sequences is described in Section 1.4.2. Section 1.4.3 provides 
the detailed implementation. 

1.4.1 Objective function for time-varying environment parameter es-

timation 

Denote the estimated environment parameter sequence till frame t-1 as A叫—1) = (心(1)'ぶ(2),・・・，入N(t
1)). Given the current observation sequence Y(t) = (y(l), y(2), ・ ・ ・, y(t)) till frame t, the envi-
ronment parameter estimation procedure will find入N(t)as the current environment parameter 
estimate, which satisfies, 

lt(,\N(t))~lt(入N(t -1)) (1.4) 

where 

lt (入N(t))= logP(Y(t)IAx, (AN(t-1), 入N(t)))
- log区P(Y(t),S(t) I Ax, (AN(t -1)ぶ叫）））

S(t) 

(1.5) 

and 

lt(入N(t-1))= logP(Y(t)IAx, (AN(t-1), ぶ(t-1))) 

- log~P(Y(t), S(t)IAx, (AN(t -1)ぶ(t-1))) 
S(t) 

(1.6) 

S(t) = (s(l), s(2), • ・ ・, s(t)) is the state seque1:ce till frame t. The formula shows that the updated 
environment parameter sequence (AN(t-1), ぶ(t))will not decrease the likelihood of o b~ervation 
sequence Y(t), over that given by the previous estimate of the environment parameter入N(t-1) 
concatenated with the previously estimated environment parameter sequence AN(t -1). 

Since S(t) is hidden, at each frame, we iteratively maximize the lower bound of the log-
likelihood according to Jensen's inequality, i.e., 

logP(Y(t)IAx, (AN(t-1), ぶ(t)))= 

log L P(Y(t), S(t) !Ax, (A叫— 1),バ(t)))
S(t) 

＞区P(S(t)IY(t),Ax, (ふ(t-1), 入t(t)))
S(t) 

log 
P(Y(t), S(t)IAx, (AN(t -1), 入N(t)))

P(S(t)IY(t),Ax, (AN(t-1), 入Jv(t)))

ー LP(S(t)IY(t), Ax, (AN(t -1), 入t(t)))
S(t) 

log{P(Y(t), S(t)IAx, (J¥廿v(t-1), 入N(t)))}+ Z 

(1. 7) 
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where Z is not a function of心(t).
Define auxiliary function as 

Q心t(t);入N(t))= 
区P(S(t)JY(t),Ax,(AN(t-l), 入t(t)))
S(t) 

log{ P(Y(t), S(t) !Ax, (AN(t -1),, ふv(t)))}

，
 

(1.8) 

It provides the objective function to be maximized by sequential EM algorithm [20]. 
The algorithm is carried out by iterations between the procedure to calculate the posterior 

probabilities P(S(t) IY(t), Ax, (AN(t -1)入Jv()))t , and max1m1zat10n of the objective function to 
obtain入N(t).For each iteration, estimated枯 (t)is for initialization of入'Jv(t)in the next iteration. 

Forgetting factor p(O < p::::; 1.0) can be adopted to improve convergence rate by reducing the 
effects of past observations relative to the new input, so that the auxiliary function is modified 
to [20] 

Qt凶 (t)心 (t))= 

立t-TL P(s(T)IY(T), Ax, (AN(T -1)心 (T)))
T=l s(T) 

log{P(Y(T), s(T)IAx, (AN(T -1), 入N(T)))}

(1.9) 

The objective function by sequential Kullback proximal algorithm [19] (derived in Appendix .2 
) is obtained by adding a Kullback-Leibler (K-~) divergence between P(S(t)IY(t),Ax, (AN(t -
1), 入N(t-l))) and P(S(t) IY(t), Ax, (AN(t-l), AN(t))) into the above objective functions. So the 
new objective function is given by, 

Qt(入1v(t);入N(t))-

（店ー 1)区P(S(t)IY(t),Ax, (A叫ー 1)ぶN(t-1))) 
S(t) 

P(S(t)IY(t), Ax, (AN(t -1), 入N(t-1))) 
log 

P(S(t)IY(t), Ax, (I¥ヅv(t-1), 入N(t)))

(1.10) 

where f3t E R+ works as a relaxation factor. The sequential EM algorithm is a special case of this 
algorithm and corresponds to setting店equalto 1.0 in the algorithm. The algorithm holds the 
objective in (1.4) (Proofs are in Appendix .3). 

As shown in Appendix .4, the sequential Kullback proximal algorithm can be viewed as a 

constrained optimization problem. When f3t~1.0, the estimate Js constrained optimization of 
the auxiliary function (1.8) with a regularization term It(入1v(t);入N(t)).The larger the f3t, the 
stronger the constraint. Thus, the estimate by the sequential Kullback proximal algorithm could 
be smooth in this situation. When O <店く 1.0,the estimate by sequential Kullback proximal 

algorithm is a co互strainedmaximization of the K-L divergence !t(入Jv(t);応(t))with constraint 
from -Qt(入Jv(t);入N(t)) :S C. The constraint onー仙（入1v(t);入N(t))will be very tight when 
店→ 1.0, whicしresultsin estimate by sequential EM algorithm. When的→ 0.0, the constraint 
on -Qい1v(t);入N(t))is so loose that the estimate is far away from that given by sequential EM 
algorithm. 
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1.4.2 Approximation of the posterior probability 

Normally, time-varying environment parameter estimation is carried out separately from the 
recognition process, as that in [14][15], by sequential EM algorithm with summation over all 
state/mixture sequences of a separately trained acoustic model. In fact, the joint likelihood of ob-
servation sequence Y(t) and state sequence S(t) can be approximately obtained from the Viterbi 
process, i.e., 

P(Y(t), S(t)IAx, AN(t))~as*(t-l)s(t)bs(t)(y(t)) 

P(Y(t -1), S*(t -l)IAx, AN(t -1)) 

where the previous state s*(t -1) for decision of S*(t -1) is given as, 

s*(t -1) = arg max as(t-l)s(t)" 
s(t-l) 

P(Y(t -1), S(t -l)IAx, AN(t -1)) 

(1.11) 

By normalizing the joint likelihood with respect to the sum of those from all active partial state 
sequences in the recognition stage, an approximation of the posterior probability of state sequence 
can be obtained. Thus in (1.7) and (1.10), instead of summing over all state/mixture sequences, 
the summation is over all active partial state sequence (path) till frame t provided by Viterbi 
process. By Jensen's inequality (1.7), the summation still provides the lower bound of the log-
likelihood. This approximation makes it easy to combine time-varying environment parameter 
estimation with the Viterbi process. We thus denote this scheme of time-varying environment 
parameter estimation as noise adaptive speech recognition since the same Viterbi process is shared 
by the recognition process and time-varying environment parameter estimation process. 

1.4.3 Implementation 

Time-varying enviro皿mentparameter estimation is carried out in the log-spectral domain. The 
environment model心(t)is a single Gaussian with concatenation of the time-varying channel 
distortion mean vectorµ~(t) E RJxl and time-varying noise mean vectorµ~(t) E RJxi, which 
need to be estimated, and constant diagonal covariance :E~E R2Jx2J_ At each frame, the pre-
trained mean vectorμ 仇ERJxl in each mixture k of state i in acoustic models is transformed by 
a non-linear transformation in the log-spectral domain, 

fl!k(t) =µ!k 十 µ~(t) + log(l + exp(µ~(t) -μ!k -µ~(t))) (1.12) 

Cepstral mean vector如 (t)E RDxl of the adapted model J¥y(t) is obtained by DCT on the above 
transformed mean vector叫(t).Note that function (1.12) is an approximation to function (1.2) 
with the assumption that the "channel" h; (t) and "noise"叫(t)have very small variance. 

Thus, by (1.12), the likelihood density function is related to environment parameters as that 
shown in (1.3). The log-likelihood density function for mixture kin state i is given by 

D 
log bik (y(t)) =―了log(21r) (1.13) 

1 1 
--log l:Eikl --(y(t) -Pik(t)f:Eik1(y(t) -Pik(t)) 
2 2 
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where superscript T denotes transpose operation. 

Let入N(t)denote the mean vectorμi(t) andµ~(t). ぶr(O)is the initial parameter. The 
time-varying channel parameterμi(t) and noise parameterµ~(t) are estimated by the sequential 
Kullback proximal algor]thm shown below (Detailed derivation is in Appendix .5). Given Y(t), 
the recursive update of心(t)is given as, 

入N(t)←入N(t-1) (1.14) 
匹 t(ふ(t-1)ふ）

応 ＾g 虹（入叫—1)ふ） A I枯＝枯(t-1)
8入食

+ (1-店）皿饂）
ぬ 2

where the first-order derivative of the auxiliary function with respect to the environment parameter 
is given as, 

闊（ぶ(t-1); 枯）
＝ 

8ふv

区区P(s(t)k(t)IY(t), Ax, (A叫— 1)ぶ（← 1))) 
s(t) k(t) 

8 log bs(t)k(t) (y(t)) 

狐N

and similarly for its second order derivative with respect to the environment parameter 

a2Qt(入N(t-1); 入N) 82Qt-1(入N(t-2)ぶり
狐2

=p・+  
N 8汎

LL P(s(t)k(t)IY(t), Ax, (AN(← 1)ぶ叫ー 1)))
s(t) k(t) 

82 log bs(t)k(t) (y(t)) 

狐因

(1.15) 

(1.16) 

The second order derivative of the log-likelihood lt(ふ） with respect to the environment parameter 
is given as, 

By (1.13), it has, 

汎（い
凰＝

LL P(s(t)k(t)IY(t), Ax, (A叫ー 1)ぶ (t-1))) 
s(t) k(t) 

［（ 
fJ log bs(t)k(t) (y(t)) 2 82 log bs(t)k(t) (y(t)) 

） 
ぬN 十凰

（ 
叩 t(心 (t-1); 心） 2 

） 
8バ

a log bs(t)k(t) (y(t)) 

狐N
- G-

闊 t)k(t)(t)

入N a入N

］ 

(1.17) 
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- Hい＾
鴫）k(t)(t) 2 

ぬN

82 log bs(t)k(t) (y(t)) 

ぬ因

+ G・ 
f)2µ~(t)k(t) (t) 

入N 0入2
N 

where the jjth element in diagonal matrices G・E  RJxJ and H・E  RJxJ 
入N ぷ are given as 

G・ ・・=以公[zdj
(Yt(d)-fls(t)k(t)d (t-1)) 

入NJJ r;~ ] and H入りj= 四f=i[一 w-1--—翡], respectively. Zdj is the DCT 
s(t)k(t)d s(t)k(t)d 

coefficient. 
By (1.12), the j-th element in the vector of the first-and second-order differential coefficients 

of p~(t)k(t) (t) with respect to the channel parameter and noise parameter are respectively given as 

吼(t)k(t)j(t)
= 1-

exp(叫(t)-µ~(t)k(t)j ―心(t))

°心(t) 1 + exp(心(t)-µ~(t)k(t)j ―心(t))
(1.18) 

闊(t)k(t)j(t)2 exp(心(t)-µ~(t)k(t)j ―心(t))
的如(t) (1 + exp(心(t)-µ~(t)k(t)j ―心(t)))2

(1.19) 

and 

吼(t)k(t)j(t) exp(心(t)-µ~(t)k(t)j ―心(t))
8心(t) 1 + exp(心(t)-µ~(t)k(t)j ―心 (t))

(1.20) 

娼(t)k(t)j(t)2 exp(心(t)-µ~(t)k(t)j ―心(t))
伊μい;(t) (1 + exp(心(t)-µ~(t)k(t)j ―心(t)))2

(1.21) 

The posterior probability at state s,_(t) and mixture k(t) given observation sequence Y(t) and 
noise parameter sequence (AN(t -1), 入N(t))is approximated by Viterbi process as described in 
subsection 1.4.2. 

Implementation on MFCC generated from spectral amplitude 

As shown in Appendix .1, MFCC can also be generated from amplitude of the FFT coefficients. 
In such a case, the environment effects can be approximated by (15). Accordingly, (1.18) to (1.21) 
are modified to 

呪(t)k(t)j(t) 

°心(t)

詞it)k(t)j(t) 

びμし(t)

1 
exp(2(μ い(t)-µ~(t)k(t)j ―µし (t)))

1 + exp(2(心(t)-µ~(t)k(t)j ―心(t)))

2 exp(2(μ し(t)-µ~(t)k(t)j ―心(t)))
― (1 + exp(2(µ~j(t) -µ~(t)k(t)j —µhj(t))))2 

(1.22) 

(1.23) 
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and 

吼(t)k(t)j(t) 

8心(t)

呪(t)k(t)j(t) 

びμい(t)

exp(2(心(t)-µ~(t)k(t)j ―心(t)))
1 + exp(2(心(t)-µ~(t)k(t)j ―心(t)))

2 exp(2(μ し(t)-µ~(t)k(t)j ―心(t)))
(1 + exp(2(µ~j(t) -µ~(t)k(t)j —µ~j(t))))2 

1.5 Experimental results 

13 

(1.24) 

(1.25) 

In order to show the efficacy of the proposed method for noisy speech recognition, we conducted 
experiments in simulated noisy environments and real noisy environments. In the first set of 
experiments shown in Section 1.5.1, acoustic models were trained from clean speech. By varying 
contaminating noise power, we showed that the noise adaptive speech recognition can estimate 
the time-varying noise parameter during the recognition stage. The second set of experiments 
shown in Section 1.5.2 were conducted on AURORA 3 database, which contains continuous digits 
utterances collected in real car environments. 

1.5.1 Experiments on acoustic models trained from clean speech 

Experimental setup 

Three systems were compared in the experiments conducted on subsets of TI-Digits database. 
The first was the baseline without noise compensation, denoted as Baseline, and the second was 
the system with noise compensation by (1.12) assuming stationary noise, i.e., 瓜(t)was kept as 
constant once initialized, denoted as Normal. The third was the noise adaptive recognition system 
by (1.14). It is denoted according to the relaxation factor f3t set. Forgetting factor pin (1.9) and 
(1.16) was set to 0.995 empirically. These systems were compared in the view of the averaged 
relative error rate reduction (ERR) in noises, which is calculated as the average of the relative 
error rate reductions in the noise. 

Digits and silence were respectively modeled by 10-state and 3-state whole word HMMs with 
4 diagonal Gaussian mixtures in each state. The window size was 25.0ms with a 10.0ms shift. 
Twenty-six filter banks were used in the binning stage. The features were MFCC + CO, with 
feature vector dimension D eq叫 to13. 

Experiments were performed on TI-Digits database down-sampled to 16kHz. Five hundred 
clean speech utterances from 15 speakers were used for training and 111 utterances unseen in the 
training set were used for testing. 

Four seconds of contaminating noise was used in each experiment to obtain noise mean vec-
tor for Normal. It was also for initialization ofμ い(0)in the noise adaptive system. Baseline 
performance in clean condition was 97.89% word accuracy (WA). 



14 CHAPTER 1. NOISE ADAPTIVE SPEECH RECOGNITION 

4

5

3

 

ー

3
 

ー

ー

」•
A
且
器

i
o
t
-

20 40 eo eo 100 120 140 160 
llme(seoood) 

Figure 1.3: Estimation of the time-varying parameterµ~(t) by the noise adaptive systems in the 
12th filter bank. Estimates are labeled according to the relaxation factor Pt・The dashed-dotted 
curve shows evolution of the true noise power in the filter bank. 

Table 1.1: Word Accuracy (in%) in simulated non-stationary noise, achieved by the noise adaptive 
system as a function of f3t in comparison with baseline without noise compensation (Baseline), 
and noise compensation assuming stationary noise (Normal). 

Baseline 

34.34 

Normal 

58.73 
o.s I o.9 I 1.0 

95.48 95.48 95.48 

Speech recognition in simulated non-stationary noise 

White noise signals were multiplied by a Chirp signal, so that the noise power, e.g., in the 12th 
filter bank, changed continuously as the dash-dotted curve shown in Figure 1.3. The SNR ranged 
from OdB to 20.4dB. We also plotted the estimated noise power versus time in the filter bank by 
the noise adaptive system. 

Observations are as follows. First, the noise adaptive system can track the evolution of the 
true noise power. Second, the results show that the smaller the relaxation factor瓜， thefaster the 
convergence rate in estimation process. For example, estimation by f3t = 0.5 shows much better 
tracking performance than that by setting均=1.0. 

In terms of performance, Table 1.1 shows that the noise adaptive system achieves significant 
performance improvement over "Baseline" and "Normal". 

．． 
Speech recogmt10n m real n01se 

Speech sig叫 swere contaminated by non-stationary Babble noise in different SNRs. Recognition 
performances are shown in Table 1.2, together with "Baseline" and "Normal". It is observed 
that, in all SNR conditions, the noise adaptive system can further improve system performance, 
compared to that obtained by "Normal", over "Baseline". For example, in 21.5dB, the "Baseline" 
achieved 34.04% WA, and "Normal" attained 95.18%. The noise adaptive system with均=1.0 
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Table 1.2: Word Accuracy (in %) in Babble noise, achieved by the noise adaptive system as 
a function of釘 incomparison with baseline without noise compensation (Baseline), and noise 
compensation assuming stationary noise (Normal). Relative error rate reduction (ERR) as a 
function of店overNormal are in the last row. 

SNR (dB) Baseline Normal 0.5 0.9 1.0 
29.5 96.69 96.69 97.59 97.89 97.89 
21.5 34.04 95.18 96.39 96.69 96.69 
13.6 25.30 83.13 90.96 91.27 91.27 
7.6 16.27 73.19 75.60 75.30 75.30 

ERR (in%) 26.9 30.9 30.9 

Table 1.3: Word Accuracy (in %) in the Chirp-sig叫 -multipliedBabble noise, achieved by the 
noise adaptive system as a function of f3t in comparison with baseline without noise compensa-
tion (Baseline), and noise compensation assuming stationary noise (Normal). Relative error rate 
reduction (ERR) as a function of店overNormal are in the last row. 

SNR (dB) Baseline Normal 0.5 0.9 1.0 
12.4 28.31 64.14 93.07 92.77 92.17 
6.9 17.17 50.00 82.83 82.23 81.93 
4.4 16.87 48.49 74.10 71.99 71.69 
-1.6 14.76 37.65 47.59 50.0 51.51 

ERR (in%) 53.0 52.4 52.3 

achieved 96.69% WA. As a whole, the adaptive system with店setto 0.5, 0.9, and 1.0, achieved, 
respectively, 26.9%, 30.9%, and 30.9% relative error rate reduction (ERR) over that by "Normal". 

We then increased the non-stationarity of the Babble noise by multiplying the noise signal , 
with the Chirp signal as that in subsection 1.5.1. Results are shown in Table 1.3. It is observed 
that the Relative error rate reduction (ERR) of the noise adaptive system are larger than those 
in Table 1.2. 

We also tested systems in highly non-stationary Machine-gun noise. Through results shown 
in Table 2.2, we observe that the noise adaptive system can improve recognition performance in 
the noise. 

1.5.2 Experiments on acoustic models trained from noisy speech 

Experimental setup 

In this section, we show the validity of the noise adaptive speech recognition in the situation 
that the acoustic models were trained from noisy speech. Environment effects include channel 
distortion and background noises. Note that the acoustic models were trained from noisy speech. 
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Table 1.4: Word Accuracy (in %) in Machine-gun noise, achieved by the noise adaptive system 

as a function of店incomparison with baseline without noise compensation (Baseline), and noise 

compensation assuming stationary noise (Normal). Relative error rate reduction (ERR) as a 

function of店overNormal are in the last row. 

SNR (dB) Baseline Normal 0.5 0.9 1.0 

33.3 91.87 93.37 96.69 95.48 97.59 

28.8 87.95 90.60 94.28 95.18 94.28 

22.8 78.61 81.33 87.05 83.43 82.83 

20.9 77.41 79.82 83.73 85.24 76.51 

ERR (in%) 34.8 29.7 23.6 

In this situation, many model-based methods, e.g. PMC, can not work, since they require acoustic 
models trained from clean speech. A normal way to do environment robustness is employing 

adaptation methods such as MLLR [10]. 

Thus, we compared three systems. The first system, denoted as "Baseline", was the sys-

tem neither with MLLR nor noise adaptive speech recognition. The second system, denoted as 

"+MLLR", was with acoustic models adapted by supervised MLLR. The third system, denoted 

as "+ Noise adaptive recognition", was with acoustic models firstly adapted by the supervised 

MLLR, and then with noise adaptive speech recognition by (1.14). The only difference between 

the second and the third system is if noise adaptive speech recognition was applied. 

The experiments were conducted on the AURORA 3 database, which is a subset of the 

SpeechDat-Car (SDC) corpus collected in cars through close-talking microphones and hands-free 

microphones with different driving conditions, e.g., High-speed, Low-speed, and various placing 

configurations, such as climate control on/off and sunroof open/closed, etc. We showed experi-

mental results on Spanish, Finnish, and Danish subset of the database. 

In all of the tested languages, three sets of evaluations are provided. The Well-matched (WM) 

evaluation has training and testing set from utterances through both microphone types and all 

driving conditions. The Medium-mismatched (MM) evaluation utilizes training data from hands-

free microphones using all driving conditions except for the High Speed driving condition. The 

testing set has data from hands-free microphones and the High Speed driving condition only. 

High-mismatched (HM) evaluation utilizes data from close-talking microphones and all driving 

conditions. The testing set in the evaluation has data through hands-free microphones and all 

driving conditions except the Stopped Motor driving condition. 

Window size for FFT was 25 ms, and time-shift was 10 ms. The number of filter banks and 

dimension of static cepstral coefficients were 26 and 13, respectively. MFCCs were generated 

from linear-spectral amplitude1. Regression window length for both of the first-and second-order 

1The MFCCs in this work has slight difference from traditional MFCCs in the sense that a median filtering is 
introduced after FFT. The median filter was added in each frequency bin after FFT to filter the sequence of linear 
spectral amplitude coefficients along frame index. The median of the input sequence was extracted in order to 
smooth the sequence. The filter length was set according to the spectral frequency. The higher the frequency, the 
longer the median filter length. In this work, the longest filter length was 10 frames and the shortest filter length 
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MFCC coefficients was 2. Feature dimension was 39. 

The HMM back-end was defined by AURORA 3 task as 18 states with 3 Gaussian mixtures in 

each state for speech models, and five state HMM with 6 mixtures in each state for silence model. 

A three state tee model with six Gaussian mixtures in each state was used to model short-pause 

between speech events乞

Block diagonal matrix for MLLR was used in this work where each sub-matrix for static, first-

and second-order coefficients was full. MLLR was supervised with 22 adaptation utterances in 

each evaluation set. Noise adaptive speech recognition took one iteration at each frame. It had 

forgetting factor p = 0.995 and relaxation factor f3t = 0.95. At the beginning for each evaluation, 

channel parameterµ~(t) and noise parameterµ~(t) were initialized to be zero vector. The noise 
adaptive speech recognition was with beam-width of 300 for the evaluation. Note that, since the 

spectral amplitude was used in this work, the noise adaptive speech recognition made use of (1.22) 

to (1.25). 

Experimental results 

Table 1.5: Word accuracy of the Finnish set. WM, MM, and HM each denotes Well-matched 

evaluation, Medium-mismatched evaluation, and High-mismatched evaluation. Baseline denotes 

system without acoustic model adaptation. + MLLR denotes system with supervised MLLR 

adaptation of acoustic models. +Noise adaptive recognition denotes system with combination of 

the supervised MLLR and the noise adaptive speech recognition. 

WM  MM  HM 

Baseline 93.68% 76.35% 68.79% 

+MLLR 93.50% 78.05% 85.64% 

+Noise adaptive recognition 93.77% 83.35 % 85.27% 

Recognition accuracies by the three systems are shown in Table 1.5 to Table 1.7 for Finnish, 

Danish, and Spanish, respectively. It is observed that MLLR was effective to improve system 

performance in the three sets of evaluations. Though adding MLLR slightly decreased word 

accuracies in Well-matched evaluations in the Finnish and Danish set, it effectively improved 

recognition accuracies in other evaluations sets. For example, in Well-matched evaluation in 

the Spanish set, word accuracy increased from 92.97% attained by the "Baseline" to 93.54% by 

"+MLLR". 

By noise adaptive speech recognition on the acoustic models adapted by MLLR, a competitive 

performance improvements were observed in the evaluations. Relative error rate reductions (ERR) 

of the "+noise adaptive recognition" over system "+MLLR" are shown in Table 1.8. For example, 

in the Medium-mismatched evaluation in the Spanish set shown in Table 1.7, word accuracy was 

improved from 85.30% by the system "+MLLR" to 89.52% by "+ noise adaptive recognition", 

was 3 frames. 
2 A segmentation module by GMMs was applied before acoustic model training[21]. It works as a speech/non-

speech classifier, which remove some very noisy segments. GMMs had 32 Gaussian mixtures. 



18 CHAPTER 1. NOISE ADAPTIVE SPEECH RECOGNITION 

Table 1.6: Word accuracy of the Danish set. WM, MM, and HM each denotes Well-matched 
evaluation, Medium-mismatched evaluation, and High-mismatched evaluation. Baseline denotes 
system without acoustic model adaptation. + MLLR denotes system with supervised MLLR 
adaptation of acoustic models. +Noise adaptive recognition denotes system with combination of 
the supervised MLLR and the noise adaptive speech recognition. 

Baseline 

+MLLR 
+Noise adaptive recognition 

WM  
89.61% 

89.28% 

89.59% 

M M  

73.87% 

76.75% 

77.00 % 

HM 

60.20% 

76.38% 

77.44% 

Table 1.7: Word accuracy of the Spanish set. WM, MM, and HM each denotes Well-matched 
evaluation, Medium-mismatched evaluation, and High-mismatched evaluation. Baseline denotes 
system without acoustic model adaptation. + MLLR denotes system with supervised MLLR 
adaptation of acoustic models. +Noise adaptive recognition denotes system with combination of 
the supervised MLLR and the noise adaptive speech recognition. 

WM  M M  HM 
Baseline 92.97% 77.57% 61.13% 

+MLLR 93.54% 85.30% 68.02% 

+Noise adaptive recognition 93.93% 89.52% 72.05% 

which corresponds to 28. 71 % of relative error rate reduction of the "+noise adaptive recognition" 
over "+ MLLR". Through Table 1.8, it is seen that, with combination of the noise adaptive speech 
recognition and supervised MLLR, system performances could be further improved over those 
attained by supervised MLLR, though a slight decrease of the word accuracy was observed in the 
High-mismatched evaluation in the Finnish set. 

1. 6 Conclusions 

We have the following observations on the results: 1) Our derivation is based on the assumption 
that the environments are non-stationary. The assumption fits the real situations. In the non-
stationary environments, we observed improvements over noise compensation assuming stationary 
environments. 2) As shown in Table 1.2, the highest ERR of the adaptive system over "Normal" 
was achieved at f3t equal to 1.0 and 0.9, whereas it achieved the highest ERR at店=0.5, when 
the non-stationarity of the Babble noise was increased by multiplying it with a Chirp signal. Also, 
we observed that the highest ERR was achieved at店=0.5 in Machine-gun noise, which is more 
non-stationary than Babble noise. It seems that the more non-stationary the noise is, the smaller 
the均tobe set3. 

3The f3t cannot be too small, since, otherwise, the estimation error after convergence might be large [19]. 
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Table 1.8: Relative error rate reduction (ERR) of the noise adaptive speech recognition sys-
tern with combination of the supervised MLLR, over systems with acoustic models adapted by 
supervised MLLR, in Finnish, Danish, and Spanish sets of the AURORA 3 database. WM, 
MM, and HM each denotes Well-matched evaluation, Medium-mismatched evaluation, and High-
mismatched evaluation. 

WM  MM  HM 
Finnish 4.15% 24.15% -2.58% 

Danish 2.89% 1.08% 4.49% 

Spanish 6.04% 28.71% 12.60% 

Our results on Aurora 3 database also show that the noise adaptive speech recognition is ap-
plicable when speech models were trained from noisy speech. In this situation, the "environment" 
parameter estimated may not have the explicit meaning of environment parameter, but works as 
the parameter for the parametric mapping (1.2). 

Our results also show that it is possible to improve system robustness to environment effects by 
combining adaptation methods, e.g., MLLR, with the noise adaptive speech recognition. They can 
possibly boost each other. MLLR can adapt the static, first-and second-order feature coefficients 
in a batch or incremental way before recognition. The noise adaptive speech recognition further 
adapts static feature coefficients of the acoustic models in an un-supervised way frame-by-frame 
during the recognition stage. 

The above results have shown that the noise adaptive speech recognition improves system 
performances in non-stationary environments. Results also show a possible relationship between 
the best relaxation factor応ofthe recursive environment parameter estimation and the environ-
ments. Further improvement in this research can be achieved via incorporation of adaptation for 
the dynamic features and refinement of acoustic models. 
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Chapter 2 

Sequential Monte Carlo method 

2.1 Abstract 

We present a sequential Monte Carlo method applied to additive noise compensation for robust 
speech recognition in time-varying noise. The method generates a set of samples according to 
the prior distribution given by clean speech models and noise prior evolved from previous estima-
tion. An explicit model representing noise effects on speech features is used, so that an extended 
Kalman filter is constructed for each sample, generating the updated continuous state estimate 
as the estimation of the noise parameter, and prediction likelihood for weighting each sample. 
Minimum mean square error (MMSE) inference of the time-varying noise parameter is carried out 
over these samples by fusion the estimation of samples according to their weights. A residual re-
sampling selection step and a Metropolis-Hastings smoothing step are used to improve calculation 
efficiency. Experiments were conducted on speech recognition in simulated non-stationary noises, 
where noise power changed artificially, and highly non-stationary Machinegun noise. In all the ex-
periments carried out, we observed that the method can have significant recognition performance 
improvement, over that achieved by noise compensation with stationary noise assumption. 

2.2 Introduction 

Speech recognition in noise has been considered to be essential for its real applications. There 
have been active research efforts in this area. Among many approaches, model-based approach 
assumes explicit models representing noise effects on speech features. In this approach, most re-
searches are focused on stationary or slow-varying noise conditions. In this situation, environment 
noise parameters are often estimated before speech recognition from a small set of environment 
adaptation data. The estimated environment noise parameters are then used to compensate noise 
effects in the feature or model space for recognition of noisy speech. 

However, it is well-known that noise statistics may vary during recognition. In this situation, 
the noise parameters estimated prior to speech recognition of the utterances is possibly not relevant 
to the subsequent frames of input speech if environment changes. 

A number of techniques have been proposed to compensate time-varying noise effects. They 
can be categorized into two approaches. In the first approach, time-varying environment sources 

21 
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are modeled by Hidden Markov Models (HMM) or Gaussian mixtures that were trained by prior 
measurement of environments, so that noise compensation is a task of identification of the under-
lying state sequences of the noise HMMs, e.g., in [12], by maximum a posterior (MAP) decision. 
This approach requires making a model representing different conditions of environments (signal-
to-noise ratio, types of noise, etc.), so that statistics at some states or mixtures obtained before 
speech recognition are close to the real testing environments. In the second approach, environment 
model parameters are assumed to be time-varying, so it is not only an inference problem but also 
related to environment statistics estimation during speech recognition. The parameters can be 
estimated by Maximum Likelihood estimation, e.g., sequential EM algorithm [14][19][22]. They 
can also be estimated by Bayesian methods. In the Bayesian methods, all relevant information on 
the set of environment parameters and speech parameters, which are denoted as 8(t) at frame t, 
is included in the posterior distribution given observation sequence Y(O: t), i.e., p(8(t)IY(O: t)). 
Except for a few cases including linear Gaussian state space model (Kalman filter), it is formidable 
to evaluate the distribution updating analytically. Approximation techniques are required. For 
example, in [16], a Laplace transform is used to approximate the joint distribution of speech and 
noise parameters by vector Taylor series. The approximated joint distribution can give analytical 
formula for posterior distribution updating. 

We report an alternative approach for Bayesian estimation and compensation of noise effects 
on speech features. The method is based on sequential Monte Carlo method.[23]. In the method, 
a set of samples is generated hierarchically from the prior distribution given by speech models. A 
state space model representing noise effects on speech features is used explicitly, and an extended 
Kalman filter (EKF) is constructed in each sample. The prediction likelihood of the EKF in each 
sample gives its weight for selection, smoothing, and inference of the time-varying noise parameter, 
so that noise compensation is carried out afterwards. Since noise parameter estimation, noise 
compensation and speech recognition are carried out frame-by-frame, we denote this approach as 
sequential noise compensation. 

2.3 Speech and noise model 

Our work is on speech features derived from Mel Frequency Cepstral Coefficients (MFCC). It is 
generated by transforming signal power into log-spectral domain, and fi叫 ly,by discrete Cosine 
transform (DCT) to the cepstral domain. The following derivation of the algorithm is in log-
spectral domain. Let t denote frame (time) index. 

In our work, speech and noise are respectively modeled by HMMs and a Gaussian mixture. 
For speech recognition in stationary additive noise, the following formula [22] has been shown 
to be effective in compensating noise effects. For Gaussian mixture kt at state St, the Log-Add 
method transforms the mean vectorµ~ 心tof the Gaussian mixture by, 

凡心t =µ~tkt + log(l + exp(µ~ ー µ~tkt)) (2.1) 

whereµ~is the mean vector in the noise model. St E {1, ・ ・ ・, S}, kt E {1, ・ ・ ・, M}. S and M 
each denote the number of states in speech models and the number of mixtures at each state. 
Superscript l indicates that parameters are in the log-spectral domain. 
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After the transformation, the mean vectorµ~tkt is further transformed by DCT, and then 
plugged into speech models for recognition of noisy speech. In case of time-varying noise, theµ~ 
should be a function of time, i.e., µ~(t). Accordingly, the compensated mean isµ~ 心t(t). 

s
 

Figure 2.1: The graphical model representation of the dependences of the speech and noise model 
parameters. St and kt each denote the state and Gaussian mixture at frame t in speech mod-
els. μstkt(t) andµ~(t) each denote the speech and noise parameter. Y1(t) is the noisy speech 
observation. 

The following analysis can be viewed in Figure 2.1. In Gaussian mixture kt at state St of 
speech model, speech parameterμ に(t)is assumed to be distributed in Gaussian with meanμ に
and variance~~ 心t.. On the other hand, since the environment parameter is assumed to be time 
varying, the evolution of the environment mean vector can be modeled by a random walk function, 
i.e., 

µ~(t) =µ~(t -l) + v (t) (2. 2) 

where v(t) is the environment driving noise in Gaussian distribution with zero mean and variance 
V. 

Then, we have, 

p(st, kt, µ~tkt (t), µ~(t) lst-1, kt-1, µ~t-ikt-i (t -1), µ~(t -1)) 

- ast-1stPstktN(µ~tkt(t); µ~tkt'~~tkJN(µ~(t); µ~(t -1), V) (2.3) 

where ast-ist is the state transition probability from St-l to St, and p砥 tis the mixture weight. 
The above formula gives the prior distribution of the set of speech and noise model parameter 

8(t) = { St, kt,µ~ 汰t(t)'μ!i (t)}. 
Furthermore, given observation Y1(t), assume that the transformation by (2.1) has modeling 

and measurement uncertainty in Gaussian distribution, i.e., 

Y1(t) =µ~tkt(t) + log (1 + exp (µ~(t) -µ~tkt(t))) + Wstkt(t) (2.4) 

where Wstkt (t) is Gaussian with zero mean and variance塁心t'i.e.,N(・； 0, 望心JThus, the likeli-
hood of observation Y1(t) at state St and mixture kt is 

p(Y1(t)l8(t)) = N(Y1(t); µ~tkt (t) + log (1 + exp (µ~(t) -µ~tkt (t))), ~~tkJ (2.5) 
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Refereeing to (2.3) and (2.5), the posterior distribution of 8(t) given Y1(t) is 

p(st, kt,µ~ 心t(t), µ~(t) I Y1 (t)) ex 

p(Y1 (t) I 8 (t))ast-istPstktl\「 (µ~tkt(t); µ~tkt' 区~tkt)N(µ~(t); µ~(t -1), V) (2.6) 

The time-varying noise parameter is estimated by MMSE, given as, 

瓜(t)= I瓜(t)I: /1 v(8(t)1Y1(0: t))dµ~tkt(t)dµ~(t) 
µ~(t) St,ktμstkt (t) 

(2.7) 

However, it is difficult to obtain the posterior distribution p(8(t)fYl(O: t)) analytically, since 
p(µ~ 心t(t),μ!i(t)fYl(t))is non-Gaussian inµ~ 心t(t)andμ!i(t) due to the non-linearity in (2.4). It is 
thus difficult, if possible, to assign conjugate prior ofμ!i(t) to the likelihood function p(Yl (t) I 8(t)). 
Another difficulty is that the speech state and mixture sequence is hidden in (2.7). We thus rely 
on the solution by computational Bayesian approach [23]. 

2.4 Time-varying noise parameter estimation by sequen-

tial Monte Carlo method 

We apply the sequential Monte Carlo method [23] for posterior distribution updating. At each 
frame t, a proposal importance distribution is sampled whose target is the posterior distribution 
in (2.7), and it is implemented by sampling from lower distributions in hierarchy. The method 
goes through the sampling, selection, and smoothing steps frame-by-frame. MMSE inference of 
the time-varying noise parameter is a by-product of the steps, carried out after the smoothing 
step. 

In the sampling step, the prior distribution given by speech models is set to the proposal 

importance distribution, i.e., q(8(t)18(t -1)) = ast-istPstkt、N(μしkt、(t);μ し幻,~しkJThe samples 
are then generated by sampling hierarchically of the prior distribution described as follows: set 
i = 1 and perform the following steps: 

(i) 
1. sample St ~ a (iJ St-1 St 

(i) 
2. sample ki ~ p Cil st kt 

l(i) 3. sampleμ り（．．．
' st kt ,)(t) ~ N(; µ~;i)k~i), ~ 互ilk~')), and set i = i + 1 

4. repeat step 1 to 3 until i = N 

where superscript (i) denotes the index of samples and N denotes the number of samples. Each 

sample represents certain speech and noise parameter, which is denoted as砂）(t) = (s(i)炒) l(i) l(i) 
t't'μ 亭kii)(t),μn

The weight of each sample is given by flt 
p(0(T)(i)炉(7))

T=l q(0(T)(i)[0(T-1)叫 . Refereeing to (2.6), the weight is 
calculated by 

13(i)(t) = p(Y1(t)IG(i)(t))N(μ 岱i)(t);μ岱il(t-1), V)$(il(t -1) (2.8) 
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where即 (t-1) is the sample weight from previous frame. The remaining part in the right side of 
above equation, in fact, represents the prediction likelihood of the state space model given by (2.2) 
and (2.4) for each sample (i). This likelihood can be obtained analytically since after linearization 
of (2.4) with respect toµ~(t) atμ 杷(t-1), an extended Kalman filter (EKF) can be obtained, 
where the prediction likelihood of the EKF gives the weight, and the updated continuous state of 

EKF givesμ 杷(t).
In practice, after the above sampling step, the weights of all but several samples may become 

insignificant. Given the fixed number of samples, this will results in degeneracy of the estimation, 
where not only some computational resources are wasted, but also estimation might be biased 
because of losing detailed information on some parts important to the parameter estimation. A 
selection step by residual resampling [23] is adopted after the sampling step. The method avoids 
the degeneracy by discarding those samples with insignificant weights, and in order to keep the 
number of the samples constant, samples with significant weights are duplicated. Accordingly, the 
weights after the selection _step are also proportionally redistributedこDenotethe set of samples 
after the selection step as 8 (t) = {ら(i)(t); i = 1・・ ・N}with weights f3(t) = {~(i)(t);i = 1 ・ ••N}.

After the selection step at frame t, these N samples are distributed approximately according 
to the posterior distribution in (2.7). However, the discrete nature of the approximation can 
lead to a skewed importance weights distribution, where the extreme case is all the samples 
have the same 8(t) estimated. A Metropolis-Hastings smoothing [24] step is introduced in each 
sample where the step involves sampling a candidate 8*(i) (t) given the current砂）(t) according 
to the proposal importance distribution q(8*(t)I〇(i)(t)).The Markov chain then moves towards 

8*(i)(t) with acceptance possibility as min{l p(e*CiJ炉(t))q(邸） l~*Cil) 
'p(E>(i叩 (t))q(e*CiJ向）｝, otherwise it remains at邸）．

To simplify calculation, we assume that the importance distribution q(8*(t)IS(i)(t)) is symmetric, 
and after some mathematical manipulation, it is shown that the acceptance possibility is given 

巴竺位by min{l, 即 (t)}. Denote the obtained samples as 8(t) = {恥(t);i = 1・ ・ ・N} with weights 

的）＝｛砂(t);i=l ・ ••N}.
Noise parameterµ~(t) is estimated via MMSE over the samples, i.e., 

N 即 (t)
瓜(t)= L 犀 (t)

i=l謬凰(j)(t) 

whereμ 杷(t)is the updated continuous state of the EKF in the sample after the smoothing step. 
Once the estimate瓜(t)has been obtained, it is plugged into (2.1) to do non-linear transformation 
of clean speech models. 

2.5 Experimental results 

2.5.1 Experimental setup 

Experiments were performed on the TI-Digits database down-sampled to 16kHz. Five hundred 
clean speech utterances from 15 speakers and 111 utterances unseen in the training set were used 
for training and testing, respectively. Digits and silence were respectively modeled by 10-state 
and 3-state whole word HMMs with 4 diagonal Gaussian mixtures in each state. 
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The window size was 25.0ms with a 10.0ms shift. Twenty-six filter banks were used in the 
binning stage. The features were MFCC +△ MFCC. The baseline system had a 98.7% Word 
Accuracy under clean conditions. 

We compared three systems. The first was the baseline trained on clean speech without noise 
compensation, and the second was the system with noise compensation by (2.1) assuming station-
ary noise [22]. They were each denoted as Baseline and Stationary Compensation. The sequential 
method was un-supervised, i.e., without training transcript, and it was denoted according to the 
number of samples and variance of the environment driving noise V. Four seconds of contami-
nating noise was used in each experiment to obtain noise mean vectorµ~in (2.1) for Stationary 
Compensation. It was also for initialization ofμ 切(0)in the sequential method. The initialμ 杷(0)
for each sample was sampled from N(µ~(O), 0.01) + N(µ~(O) + ((0), 10.0), where ((0) was flat 
distribution in [-1.0, 9.0]. 

2.5.2 Speech recognition 1n simulated non-stationary noise 

White noise signal was multiplied by a Chirp signal and a rectangular sig叫， sothat the noise 
power of the contaminating White noise changed continuously, denoted as experiment A, and dra-
matically, denoted as experiment B. As a result, signal-to-noise ratio (SNR) of the contaminating 
noise ranged from OdB to 20.4dB. We plotted the noise power in 12th filter bank versus frames 
in Figure 2.2, together with the estimated noise power by the sequential method with number of 
samples set to 120 and environment driving noise variance set to 0.0001. As a comparison, we 
also plotted the noise power and its estimate by the method with the same number of samples 
but larger driving noise variance to 0.001. 

By Figure 2.2 and Figure 2.3, we have the following observations. First, the method can track 
the evolution of the noise power. Second, the larger driving noise variance V will make faster 
convergence but larger estimation error of the method. In terms of recognition performance, 
Table 2.1 shows that the method can effectively improve system robustness to the time-varying 
noise. For example, with 60 samples, and the environment driving noise variance V set to 0.001, 
the method can improve word accuracy from 75.30% achieved by "Stationary Compensation", 
to 94.28% in experiment A. The table also shows that, the word accuracies can be improved by 
increasing number of samples. For example, given environment driving noise variance V set to 
0.0001, increasing number of samples from 60 to 120, can improve word accuracy from 77.11 % to 
85.84% in experiment B. 

2.5.3 Speech 
．． 

recognition 1n real noise 

In this experiment, speech sig叫 swere contaminated by highly non-stationary Machinegun noise 
in different SNRs. The number of samples was set to 120, and the environment driving noise 
variance V was set to 0.0001. Recognition performances are shown in Table 2.2, together with 
"Baseline" and "Stationary Compensation". It is observed that, in all SNR conditions, the method 
can further improve system performance, compared to that obtained by "Stationary Compensa-
tion", over "Baseline". For example, in 8.86dB SNR, the method can improve word accuracy from 
75.60% by "Stationary Compensation" to 83.13%. As a whole, the method can have a relative 
39.9% word error rate reduction compared to "Stationary Compensation". 
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Figure 2.2: Estimation of the time-varying parameterμ!i(t) by the sequential Monte Carlo method 
at 12th filter bank in experiment A. Number of samples is 120. Environment driving noise variance 
is 0.0001. Solid curve is the true noise power. Dash-dotted curve is the estimated noise power. 

2.6 Summary 

We have presented a sequential Monte Carlo method for Bayesian estimation of time-varying 
noise parameter, which is for sequential noise compensation applied to robust speech recognition. 
The method uses samples to approximate the posterior distribution of the additive noise and 
speech parameters given observation sequence. Once the noise parameter has been inferred, it 
is plugged into a non-linear transformation of clean speech models. Experiments conducted on 
digits recognition in simulated non-stationary noises and real noises have shown that the method 
is very effective to improve system robustness to time-varying additive noise. 

Table 2.1: Word Accuracy (in %) in simulated non-stationary noises, achieved by the sequential 
Monte Carlo method in comparison with baseline without noise compensation, denoted as Base-
line, and noise compensation assuming stationary noise, denoted as Stationary Compensation. 

Experiment Baseline Stationary # samples = 60 # samples = 120 
Compensation V V 

0.001 0.0001 0.001 0.0001 

A 48.19 75.30 94.28 93.98 94.28 94.58 

B 53.01 78.01 82.23 77.11 85.84 85.84 
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Figure 2.3: Estimation of the time-varying parameterµ~(t) by the sequential Monte Carlo method 
at 12th filter bank in experiment A. Number of samples is 120. Environment driving noise variance 
is 0.001. Solid curve is the true noise power. Dash-dotted curve is the estimated noise power. 

Table 2.2: Word Accuracy (in %) in Machinegun noise, achieved by the sequential Monte Carlo 
method in comparison with baseline without noise compensation, denoted as Baseline, and noise 
compensation assuming stationary noise, denoted as Stationary Compensation. 

SNR (dB) Baseline Stationary Compensation #samples = 120, V = 0.0001 
28.86 90.36 92.77 97.59 

14.88 64.46 76.81 88.25 

8.86 56.02 75.60 83.13 

1.63 50.0 68.98 72.89 



Chapter 3 

Generative Factor Analyzed HMM  for 
Automatic Speech Recognition 

3.1 Abstract 

We present a generative factor a叫 yzedHidden Markov model (GFA-HMM) for automatic speech 
recognition. Traditional HMM models observation vectors by mixtures of Gaussian (MoG) asso-
ciated with discrete-valued hidden state sequences. In this work, in addition to the hidden state 
sequences, the observation vectors are also represented by continuous-valued latent vectors. On 
contrary to principle component analysis (PCA) and factor analysis (FA), the continuous-valued 
latent vectors are dependent on acoustic units for recognition. Accordingly, the distributions of 
the latent vectors are MoGs associated to discrete state sequence. To model the correlations of the 
latent vectors, a further latent representation is introducted by factor analysis. Our experiments 
on digits recognition showed that GFA-HMM could consistently outperform traditional HMM 
with the same amount of training data. 

3.2 Introduction 

In automatic speech recognition (ASR), system is presented with multi-dimensional observation 
vectors which may have varies order of statistics. Normally, mixture of Gaussian (MoG) with 
diagonal covariances are used to model the distributions of the observation vectors, which result 
in implicit modeling of the correlations of the vectors. To account for dynamics of the distribution, 
the MoGs are assumed to be dependent on discrete state sequence, which accounts for semantic 
information of the speech. This gives rise to the traditional Hidden Markov model (HMM) for 

ASR. 

Recently, continuous-valued latent representation of the observed vectors is found to be useful 
for pattern recognition, since they can provide compact representation of the correlations of 
the observation vectors. For example, the latent representation can be carried out by principle 
component analysis (PCA) [25] and factor analysis (FA) [26], which find various applications in 
image processing [27] and speech recognition [28]. The above works assume that the vectors in 
the introduced latent space, denoted as X, are distributed in Gaussian N(•; 0, I), i.e., zero mean 

29 
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Figure 3.1: Graphical model of the generative factor analyzed HMM. 

and unit diagonal covariance. 

Instead of the single Gaussian distribution N(・; 0, I), of the latent vectors, other important 
works of continuous-latent representation include independent component analysis (ICA) [29] 
assume non-Gaussian distribution of the latent vectors. As a result, higher-order statistics of the 
observation vectors can be modeled. 

Since speech observation vector is dynamic, it might be beneficial to consider the vector in 
the continuous-valued latent space as acoustic-unit dependent, and, as a result, it is no longer 
distributed in N(•; 0, I) as PCA and FA. Furthermore, instead of assuming independence of the 
vector elements as in ICA, these elements in the latent vectors can be considered as correlated 
with each other. To model the correlations, a further latent representation can be introduced. 

Based on above considerations, in this work, we propose to model speech observation by a 
generative factor-analyzed Hidden Markov models (GFA-HMMs). The key to our approach lies in 
the introduction of acoustic-unit-dependent latent representation vector功 ERL of the observation 
vector Yt E RN and a further acoustic-unit-independent latent representation vector Zt E RK of 
the latent vector Xt- Since Zt is acoustic-unit independent, it could be considered as generative 
source to acoustic-unit dependent latent vector Xt via a acoustic-unit dependent loading matrix. 
The model is related to factor analysis since there are noises in both of the observation vector Yt 
and latent vector叩・

3.3 Generative factor analyzed HMM  

Figure 3.1 shows the graphical model of the generative factor analyzed HMM. Round circle and 
rectangular square each denotes continuous-and discrete-valued node. Shaded nodes denote 

observations. Qt= {1, ・ ・ ・, S} denote discrete state at time t. Q(T) = (qぃ...,qぃQt+l,・・・，・・・，位）

is the discrete state sequence with first-order state transition probability apq from state p to state 
q, which accounts for semantic sequence in speech. Two continuous-valued variables, Xt and Yt, are 
dependent on the discrete state sequence, whereas Zt is independent of the discrete state sequence. 

The continuous-valued nodes, Yt, Xt, and Zt are hierarchical. In the highest hierarchy, vector 
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叩 isconsidered to be generated from Zt through factor analyzer [28] by Cq, the state-dependent 
loading matrix with dimension L x Kin state q, i.e., 

均~p(zt) = N(zt; 0, I) 
功=CqZt + (qt 

(3.1) 

(3.2) 

where vector知 denotesnoise in space X. The noise is modeled by mixture of Gaussian 

{N((qt; l叩'Vqj)}j=l,…，Mず， withcomponent weight Cqj・ル isdiago叫 Mtdenotes number of 
the mixture components for state q in space X. 

Since elements in diagonal covariance Vqj are not restricted to have the same value, the above 
functions are factor analysis on叩 ineach component j E {1, ・ ・ ・, Mx} at state q. The observation 
Yt is related to Xt by the following model. 

叩~Model 
FA-HMM 

Yt = A凸+Vqt 

(3.3) 

(3.4) 

where the observation noise Vqt is distributed according to mixtures of Gaussian { N(Vqt; μ 叩 9喜m)}m=l, .. ・,M: 忍

with mixture weight 1fqm・ ~ 忍isthe number of mixture components in state q in space Y. 喜m
is diagonal with a for element (n, n). Value of aに isnot restricted to be the same for qmn 

Vn E {1, • • •, N}. Aq is state-dependent loading matrix with dimension of N x L. 
It is seen through Figure 3.1 that, without the link from叩 toYt and the link of Aq, the model 

is the traditio叫 HMM.FA-HMM [28] can be obtained from Figure 3.1 by adding a direct link 
from Zt to Yt and deleting link from Xt to yか

Functions (3.1) and (3.2) are compact representation of Xt・Since Zt is semantic independent, 
it can be considered as source stimulus. By the state-dependent Cq working as a "vocal tract 
filter", semantic dependent叩 isgenerated. For this reason, we denote our model as generative 
factor-analyzed HMM. 

3.4 Maximum likelihood parameter estimation of the GFA-

HMM  

Since the sequences Q(T), X(T), Z(T), M(T), and J(T) are hidd en maximum likelihood estima-
tion of the model parameter 8 may be carried out iteratively by EM algorithm [30]. In the EM 
algorithm, the auxiliary fuりctionis defined as the average of the joint log-likelihood calculated on 
current model parameter 8 over posterior probabilities of the hidden sequences calculated from 
previous model parameter 8, i.e., 

Q(8, 8) = Ee[log IT P(Yt, x□ t, qt, m贔も）］
t=l 

T 

Ee[log IJ {ii如 1qtii-qtmt} Dqm (t)] 
t=l 

+ Ee[log IJ {p(zt)cqdtP(叫Zぃqt,jt; 8)}知(t)l
t=l 
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T 

+ Ee[log II {P(Ytlxt, qぃ叫；8)}伍 (t)l (3.5) 
t=l 

where c5qmj(t) is calculated given previ~us mo?el parameter 8. ~ince components in the right 
of (3.5) are functions of {a⑪ 9介qm},{Cq, c叩,~qj, Vqj} and {flqm, ~qm}, respectively, parameter 
estimation can be carried out on them separately. Solving the auxiliary function requires their 
posterior statistics. 

3.4.1 Posterior statistics 

The likelihood at state q, mixture component m in space Y, and mixture component j in space 
X at time tis given as, 

P(YtJq, m, j; 0) = N(yt; μqm + A心；均m+ふ(Vqj+ CqCnA~) (3.6) 

where superscript T denotes transpose. By marginalizing, likelihood P(Ytlq, m) and P(Ytlq) can be 
obtained. 

Given previous model parameter 8, the posterior probability of being in state q, mixture com-
ponent min space Y and mixture component j in space X at time t, rqmj(t) = p(qmjlY(T); 8), 
can be obtained by forward-backward algorithm with the above likelihood, i.e., 

"/qmJ (t) = 
'lf"qmCqjP(Ytlq, m,j; 8) 

江芯Tl,I: 汀qmCqjP(Ytlq,m, j; 8) 
(3.7) 

Marginalizing of the above posterior probability can give posterior probability in state q and 
mixture component m, %m(t), and the posterior probability in state q, ryq(t). 

Regarding the posterior distribution of the continuous-valued hidden sequence X(T), according 
to Bayes rule, it is given as, 

p(叫Yt,q,m,j;8)= 
P(Yt!Xt, q, m; 8)p(叫q,j;8) 

P(Ytlq, m, j; 8) 
(3.8) 

Since each component in the above function is Gaussian, the posterior distribution is Gaus-
sian as well. It can be verified that the posterior distribution, p(叫Yt,q, m, j; 8) is given as 

N(x噂 mit),鱈叫， where,

碍mj(t)

wx . 
qmJ 

恥［叫Yt,q, m,j] 

叩mj[(Vqj+ CqC[)―1知 +Ar図己（初一 μqm)l

Ee[c5xぷ f!Yt,q, m, j] 

[(Vqj + CqC[)―i +A戸冨盆心］ー1

(3.9) 

(3.10) 

Denote Ee[XtX『IYt,q, m, j] as cp~ 五/t). It is given as, \]互~mj・十 c/>~mj(t) c/>贔mj(t) T. Marginalizing 
of (3.9) and (3.10) can give posterior mean cf>石(t)as区j/qmj (t)の；mj(t), and posterior variance 

W石(t)=~jrqmj\]はいt). Similarly for勾(t)and四(t).
Since p(zt) ~ N(zt; 0, I) and p(叩 lzt,q, m, j; 8) is Gaussian, the posterior distribution of Zt is 

also Gaussian N(zt; c/>~mit), W~mj(t)). Thus, only the first-and second-order statistics are needed. 
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This simplifies calculation of the posterior statistics for Zt, since the posterior mean vector of xぃ
c/>;mj (t), can be taken as the "observation vector" of叩 toFunction (3.1) and (3.2). Thus, in the 
same way as (3.9) and (3.10), the posterior statistics of Zt is 

c/Jim/t) = Ee[ztlxぃYt,q, m,j] 

ー叩叫t)G[亨（心(t)-~qj) 

叩叫t)= Ee[6zぷfixゎYt,q,m,j]

- [I +c[v; 五心］―1

Denote Ee[ztzflyt, q, m, j] as呪mj(t),which is given as四m/t)+ c/Jimj(t)cpimj(t)T. 

3.4.2 Parameter est1mat1on 

(3.11) 

(3.12) 

EM algorithm for updating model parameters 8 involves summation over the above posterior 
statistics. Re-estimation formulae are shown in appendix. 

3.5 Experimental results 

3.5.1 Experimental setup 

The proposed GFA-HMM was compared with the traditional HMM in this paper by experiments 
on Aurora 2 database [31], a down-sampled TI-Digits database to 8kHz sampling rate. 

Features for recognition were 39-dimensional MFCC plus CO and its first-and second-order 
coefficients. One thousand utterances in clean training set of the database were used for training 
acoustic models. Testing was conducted with 1,000 clean utterances from the testing set of the 
database. 

Acoustic models in all of the systems were trained by EM algorithm with six iterations. In all 
the acoustic models, state number was ten for digits and three for silence model. 

Traditio叫 HMMcould only adjust its number of mixture components~ 忍. Accordingly, 
number of free parameters (NoFP) for a model was S x (2N) x~ 忍.The structure of GFA-HMM 
is more flexible. In this work, we varied the number of mixture component in space X, M; and 
the dimension of space X, L. The dimension of space Z was set to one, and the number of mixture 
component~ 忍wasset to one. Latent parameters { Aq, 畠恥，Cq}are shared among states for 
each acoustic models. For a word model by GFA-HMM, NoFP was S x (2N) + (N + 1) x L + 
(2 XL) X~ ば・

Mixture components in space Y and X were incrementally obtained by mixture splitting [32]. 
In the training stage, Vqj and~qm were floored to 1.0 and 0.001, respectively. 

3.5.2 Results 

Table 3.1 shows results by traditional HMM. The highest word accuracy (W.A.) was 88.93% by 
setting M, 忍to4. In such a case, N oFP arrived to 2496 for a word model. 

Performances by GFA-HMM were shown in Table 3.2. It is seen that GFA-HMM could achieve 
higher recognition accuracy over traditional HMM with the same amount of training data. For 
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Table 3.1: Number of free parameters (NoFP) for a word model and word accuracy (in %) in 
testing set by traditional HMM as a function of number of mixture component in space Y, ~ 忍

MY 
__g_ 

NoFP 

W.A. 

1 2 3 4 

624 1248 1872 2496 

88.05 85.04 87.96 88.93 

example, word accuracy increased consistently by increasing mixture component in space X while 
keeping L = l. The best W.A. was 90.93% by setting L =land Mx = 4. Moreover, the NoFPs 
could be much lower than those by traditio叫 HMMs.For example, in this situation, the NoFP 
was 672, whereas the NoFP was 2496 for traditional HMM to achieve its best performance. 

Table 3.2: Number of free parameters (NoFP) for a word model and word Accuracy (in %) in 
testing sets by generative factor-analyzed HMM (GFA-HMM) as a function of number of mixture 
components in space X, Mt, and dimension in space X, L. 

Dimension L Ma X 1 2 3 4 
1 NoFP 666 668 670 672 

W.A. 88.80 89.73 90.30 90.93 
2 NoFP 708 712 716 720 

W.A. 86.44 89.09 89.73 89.66 

3.6 Conclusions and discussions 

We propose to model speech observation vectors by a generative factor-analyzed HMM. Continuous-
valued latent representation, which is also dependent on discrete hidden state sequence, of the 
observation vectors is introduced in this model. The model can achieve more compact represen-
taion of observations compared to traditional HMM. Our experimental results on digits recognition 
show that the proposed model could achieve better performance than traditional HMM with the 
same amount of training data. 

The model can be considered as a generalization of several models recently proposed for speech 
recognition. Without the latent representation of Xt by均， ourmodel reduces to the factor a叫 yzed
HMM by [33]. The model reduces to the model by [28] without latent representation of Xt by 
Zt and a further assumption of single Gaussian N(xt; 0, I) in space X. Without the continuous 
latent representation of Yt, the model is the traditional HMM. 

Further work will investigate various sharing schemes of the latent representation parameters 
and automatic decision of the dimension of the latent vector and number of mixture components. 
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.1 Approximation of the environment effects on speech 

features 

The derivation is on normal Mel-Filter Cepstral Coefficients (MFCCs). In each filter bank in 
the linear frequency domain, channel distortion and additive noise have effects on speech power, 
which can be approximated by [5] [6] 

び;(j) = /'J; (j) X /'Jえ(j)+ (J~(j) (13) 

enotes o servat10n power, speech power, channel dis-where叶(j),叶(j),叶(j)and叶(j)each d b 
tortion power, and additive noise power in filter bank j. 

MFCC extracts the power or the amplitude for later stages by logarithm compression to log-
spectral domain and discrete Cosine transform (DCT) to the cepstral domain. In case that the 
amplitude is used, following equations can be used to approximate the channel and noise effects 
on speech in the log-spectral domain. 

log(✓叶(j) X a詞+a;(j)) 

1 
- -[log叶(j)+ log叶(j)+ log(l + 

叶(j)
2 _?/~ ・＼、、一2/.:、)］

1 1 
- -log叶(j)+ -log叶(j)+ 

2 2 
1 1 

2 
-log(l + exp 2 x -(log a~(j) -logび;(j)-log aえ(j)))

2 

(14) 

Substitute xt =今loga;(j),and similarly n;, h;, and Yj for去logaえ(j),½logal(j) andみloga;(j), 
respectively. The above function can be written as, 

砂＝吋＋尻 +~log(l + exp(2(n; —吟ー尻））） (15) 

In a similar way, the following function is obtained to approximate the environment effects in 
log-spectral domain on speech feature extracted from the power in the linear frequency domain. 

砂＝吟＋尻+log(l + exp(叫一吟ー閏）） (16) 

.2 The objective function of the sequential Kullback prox-

imal algorithm 

The sequential Kullback proximal algorithm [19] is a sequential version of the Kullback proximal 
algorithm [34] for maximum-likelihood estimation. In the sequential Kullback proximal algo-
rithm [19], the cost function for the iterative procedure is given as the log-likelihood function 
(shown in function (1.5)) regularized by a Kullback-Leibler divergence, i.e., 

lt (入N(t))-f3tlt(入t(t);入N(t))= (17) 

lt (入N(t))-It(入t(t);入N(t)) -(f3t -1) It (入t(t);入N(t))
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where It(入N(t);ふN(t))is the Kullback-Leibler divergence between the posterior distribution of 
state sequences given observation sequence y(t) and noise parameter sequence (AN(t-1), 入N(t))
and that by the noise parameter sequence入N(t)till frame t, which is given as, 

where 

Iパ峠(t);入N(t))= 
区P(S(t)!Y(t), (A叫ー 1),心(t)))
S(t) 

log 
p(S(t) IY(t), (AN(t -1), 入t(t)))

P(S(t)IY(t), (AN(t), 入N(t)))

- lt(パ(t))+ L P(S(t) IY(t), (A叫ー 1),心(t)))
S(t) 

P(S(t) !Y(t), (AN(t -1), 入t(t)))
log 

P(Y(t), S(t)l(AN(t), 入N(t)))

- -Qt(入~(t); 入N(t))+ lt(入N(t))
+ L P(S(t) IY(t), (AN(t -1), 峠(t)))

S(t) 

log P(S(t) !Y(t), (AN(t -1), 入~(t)))

Qt(入7'r(t)ぶ叫））＝

区p(S(t)IY(t), (A叫ー 1),入7'r(t)))
S(t) 

logp(Y(t), S(t) I (AN(t), 入N(t)))

Substituting above equation into (18), we obtain, 

lt (入N(t)) -f3tlt (入~(t); 入N(t))
- Qt(入~(t); 入N(t))-(店ー l)It(入~(t); 入N(t))+ Z 

(18) 

(19) 

(20) 

where Z is a function without relation to応(t).We thus obtain (1.10) as the objective function 
for the sequential parameter estimation. 

.3 Properties of the sequential Kullback proximal alga-

rithm 

.3.1 Sequential EM  algorithm is a particular case of the sequential 

Kullback proximal algorithm 

（^（）） When f3t = 1.0, according to (20), the objective function ltぶ t -/3山（入Jv(t);入N(t))to be 
maximized is equivalent to maximization of Q心Jv(t);入N(t)),which is the objective function to 
be maximized by sequential EM algorithm. 
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.3.2 Monotonic likelihood property 

According to the objective function defined by the sequential Kullback proximal algorithm, it has, 

lt囚(t))-lt(ぶ(t-1)) 

＞店It(入N(t-1); 入N(t))-f3tlt(入N(t-1); 入N(t-1)) 

= f3山（ふ「(t-1); ぶ「(t)) (21) 

Since f3t E R+, It(入N(t-1); 入N(t-1)) = 0 and It(入N(t-1); 入N(t))2:: 0, we prove that the 
sequential Kullback proximal algorithm can achieve the objective function (1.4). 

.4 Sequential Kullback proximal algorithm can be viewed 

as a constrained maximum problem 

When f3t 2: 1.0, since Iパ様(t);入N(t))2: 0.0, maximization of the function (20) corresponds to 
the constrained maximum problem, i.e., 

subject to 

入N(t)= argmaxQt(峠；AN(t)) 
入N(t)

Iパ峠(t);心(t)):s; C 

(22) 

(23) 

where CE R+. The larger the f3t, the stronger the constraint in (23). This means that estimate 
by the sequential Kullback proximal algorithm will be "pulled close to"入t(t).

Another situation is that O <店く 1.0.In such a case, f3t -l.O :S 0.0. Define~t = 1.0 -f3か
Function (20) can be written as, 

1 
It(入~(t); 入N(t))+ -Qt(入~(t); 入N(t))+ -

z 
＆＆  

Maximization of the function thus can be seen as a constrained optimization given by, 

subject to 

入N(t)= argmaxlt(入t(t);ぶ(t))
入N(t)

-Q心t(t);心 (t))さC

(24) 

(25) 

(26) 

where C E R+. Since lt→ 0.0 when店→ 1.0, constraint in (26) thus will be very tight in 
this situation. On the contrary, when f3t→ 0.0, the constraint will be very loose. As a result, 
the estimate by sequential Kullback proximal algorithm will be far away from that provided by 
sequential EM algorithm. 
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.5 Derivation of the Sequential Kullback proximal algo-

rithm applied for environment parameter estimation 

The first-and second-order differential of the K-L divergence of (18) are given respectively as, 

Assume that 

叫誓）ぶ(t))

狐N(t)

0仙（入1v(t);入N(t)) alt(入N(t))
＋ 

0枯 (t) [)心(t)

びIt(,.¥ N (t)ふ(t))

狐パt)2

[)2Qい1v(t);ぶ(t)) 訊（入N(t))

0ふ(t)2
＋ 

8心 (t)2

叫誓）；枯(t))I 
8応(t) 心(t)=や(t)

= 0 has been achieved and it thus holds 

叫心(t))
I 

⑰（入い）心(t))
応 (t) ぶ(t)=誓）＝応(t) I入N(t)=誓）

(27) 

(28) 

(29) 

With the second-order Taylor series expansion of the objective function (17) at入Jv(t),the 
updating of environment parameter is given as, 

8(lt(入N(t))-f3tft(入t(t);入N(t)))

応(t) ←—入N(t -1) -
狐N(t)

鱈（ふ(t))-f3山（誓）ふ(t)))Iふ (t)=ふ (t-1)

8ふ(t)2

By (28) and (29), the updating is given as, 

入N(t) ←—入N(t -1)-

的

匹 t(入t(t);ふ(t))

応 (t)

麟（入和(t)ふ (t))

応 (t)2

+ (1-店）8叫ふ(t))l>..N(t)=枯 (t-1)
狐N(t)2

(30) 

(31) 

The derivation of the updating formulae for the auxiliary function Q心叫ー1);入N(t))can be 

seen in [20]. We briefly describe the derivation in this paper. Since 

Qt(入パt-1); 入N(t))= 

L P(S(t)IY(t), Ax, (A叫ー 1)ぶ叫— 1))) . 
S(t) 

log[P(S(t -1) IY(t -1), Ax, AN(t -1))・ 

as(t-1)s(t) bs(t) (y (t))] 

L P(S(t -1) IY(t -1), Ax, AN(t -1)) 
S(t-1) 
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Iogbs(t-1)(y(t -1)) 

+ L P(s(t) IY(t), Ax, (AN(t -1)ぶ叫— 1)))
s(t) 

Iogbs(t)(y(t)) + Z 

where Z is not a function of入N(t).Denote Qt-1(入N(t-2); 入N(t))= Ls(t-1) P(S(t -1) IY(t -

1),Axぷ (t-1))logbs(t-1)(y(t-l)). Assume that入N(t-1)has made aQい（入》〖；2)心 (t))I杯(t)=応(t-1)= 

0. We thus obtain the first-and second-order derivative of the auxiliary function with respect to 

the noise parameter, which are shown in (1.15) and (1.16), respectively. 

The remaining is how to calculate . 狐（ふ(t))

8枯 (t)2
. Define forward accumulated likelihood at state 

i and mixture m as at(i, m; 入N(t))= P(Y(t), s(t) = i, k(t) = mlAx, (/¥」v(t-l),fN(t))), and 

accordingly the forward accumulated likelihood at state i, at (i; 応(t))= Lm伍 (i,m;入N(t)).They 

have relations shown below as 

Y 

叫i,m心 (t))= z: 如 (l心 (t-l))a砂 imに (y(t))
l=l 

Since ltい(t))=log区imat(i, m; ぶ (t)),it has 

叫叫））
応 (t) Iふ(t)=入N(t-1)

8log 江に区岱~1 叩(i,mぶ(t))
応 (t) Iふ(t)=ふ(t-1)

By (1.13) and (32), it has, 

Y 
Li=l Lm=l 

M 知 (i,m心 (t))

8枯 (t)

幻~1 江益~1 at(j・， m;心(t))

如 (i,mぶ (t))

応 (t)

I杯(t)=ふ(t-1)

A a log bim (Yt) 
叫i,m;心(t))

ぬN(t)

Substituting the above equation into (33), we have, 

狐(~N(t))
応 (t)

y M 

I応(t)=入N(t-l)= 

A 8 log bim (Yt) 
区と叫i,m;ぶ (t))
i=l m=l 応 (t) I入N(t)=ぶ(t-1)

(32) 

(33) 

(34) 

where叫i,m;ふN(t))= 
叫 i,m;枯 (t))

区lm

h 
叫 l,m;入N(t))- , representmg t e posterior probability at state i and mix-

ture m given observation sequence Y(t) and noise parameter sequence (A叫— 1)' 入N(t)). We 
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thus obtain, 

訊（応(t)) y M ＾ 
とと ＾ 

五(i,m;心(t))ologbim伽）
＝ 

応 (t)2 i=l m=l OAN(t) aJN(t) 
y M 

+ LL訊i,m;入N(t))
A 82 log bim伽）

i=l m=l 0汎(t)
(35) 

Notice that'Yt(i, m; ぶ(t))= 叫 i,mふ (t))
ゃい区~=l at(i,k; 入N(t)),and refereeing to (34), we have, 

的 (i,m;入N(t)) fJlogbim(Yt) 

OAN(t) 
＝叫i,mぶ (t))[ 

応 (t)
y M 

—ここ叫l, k; 枯 (t))
A fJlogbzk(Yt) 

］ 
l=l k=l f)応(t)

(36) 

Substituting above equation into (35), we have, 

訊（心(t)) Y M A fJlogbim(Yt) 2 

ぬ州）2
=LL叫i,m;入N(t))[()

i=l m=l 応 (t)

＋ 
82 logbim伽）

応 (t)2
］ 

y M 

-(LL叫i,m;心(t))
A 8 log bim伽） 2 

） 
i=l m=l f)入N(t)

(37) 

.6 Gaussian PDFs 

Since p(zt) ~ N(O, I) and p(叫q,Zt, j) is Gaussian, by marginalizing of Zt, the density of Xt in 

state q and mixture component j is N(x氏く釘,Vqj + CqCf). 
Since the density of Yt given叩 instate q an? observation component mis given by 

P(YtlXt, q, m) = (38) 
1 1 

exp(--(Yt -μqm -Aq叩）冗己(Yt-μqm -Aq叩））
✓(21r)立qml 2 

, by marginalizing of Xt, we obtain the density function for Yt at state q, mixture component m 
in space Y and mixture component j in state X as that in (3.6). 

.7 EM  algorithm for GFA-HMM 

By setting the first order derivative of the auxiliary function with respect to flqm, f=qm and心to
zero, we obtained the following re-estimation formulae. 

Lrqm(t)均~Aq呵m(t)
t 
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— L ,qm(t)旱 (Yt-μqm)c/J如(tf
t 

1 
伍= L rqm(t)[Yt -A虞m(t)]

Lt冨 (t) t 

1 
喜n= diag 区冨(t)[(Yt-μqm)(Yt -μqmf 

Lt rqm(t) t 

Aqcp~m(t)(yt -μqmf -(Yt -μqm)c/J贔n(tfA~+ Aq<I>~m(t)A~] 
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The loading matrix Aq has to be estimated row by row [33]. The nth row vector ;qn of the 

new loading matrixふcanbe written as, 

入qn - kT G―1 qn qn (42) 

where the L by L matrices Gqn and L dimensional vector are defined as follows, 

1 
叫=I: "/qm(t) 2 年 (t)

t ゜
qmn 
1 

kqn = L冨 (t) (Ytn -μqmn)c/>: 叫）T

t 0-2 
qmn 

(43) 

(44) 

where y切 andμqmれ are,respectively, the nth element of the current observation and the observa-

tion noise mean vectors. 

Taking c/J~mj(t) as the "observation vector" in space X, re-estimation formulae for {心畠応｝
are similarly derived as above. The formulae are given as, 

6q[I:~ い(t)<[>~j(t) l = 
t J 

I:~[的(t) -~qj]屹(tf
t J 

1 
邸＝ 区叫t)(cp~j(t) -Cqcp~j(t)) 

E心 j(t) t 

1 
°Vqj = diag 区冗(t){嶋 (t)-~qj -C心 (t)]

区trqj (t) t 

[cp~j(t) -~qj -Cqcp~j(t)t + Cqw~j(t)Cf} 

(45) 

(46) 

(47) 

The loading matrix仇shouldbe calculated row-by-row similarly as that forふby(39). 

Maximization auxiliary function (3.5) with respect to mixture component weights arrives at 

the following updating formulae, 

乃m -

Cqj -

こ心"lqmj(t)

こぷmLj "lqmj(t) 

こぶm"lqmj(t) 

Lt区mLj・1qmj(t)

(48) 

(49) 
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