
Internal Use Only (非公開）

TR-SLT-0013

Multiling叫 Applicationusing Java:

Solution and Example

Nicolas Auclerc Yves Lepage

June 2002

This report describes solutions to create multilingual applications using Java. These

solutions aims at Natural Language Processing, and more precisely for the data

preparation. A Java Virtual Machine (JVM) is needed to run any Java program. A JVM

is embedded in the Java Runtime Environment (JRE) which defines the basic

environment of the JVM (default locale, default fonts, default security policy, etc .. .). A

default JRE installation does not contain enough settings and resources to handle

different languages to be input or displayed. Therefore, this report will describe how to

setup a chosen JRE to run correctly internationalized and localized multilingual

applications.

（株）国際電気通信基礎技術研究所
音声言語コミュニケーション研究所

〒619-0288「けいはんな学研都市」光台二丁目 2番地2TEL : 0774-95-1301

Advanced Telecommunication Research Institute International
Spoken Language Translation Research Laboratories
2-2-2 Hikaridai" Keihanna Science City" 619-0288,Japan

Telephone:+Sl-774-95-1301
Fax :+Sl-774-95-1308

c2002 (株）国際電気通信基礎技術研究所
c2002 Advanced Telecommunication Research Institute International

Contents

ー Background
1.1 Locales . .。 ．． ．． .. ．．

1.2 Characters and Codesets ．． ．．

1.3 Input method editing styles。........
1.4 The Unicode Standard and ISO /IEC 10646。．．．．

2

Java Platform: the Java Virtual Machine
2.1 Choice
2.1.1 Java 2 version 1.3 for IME support
2。1.2 IBM Java 1.3 for fonts

2.1.3 IM from Slangsoft
The Java Virtual Machine: Download & Installation
2.2.1 Java Virtual Machine Installation。...........
2.2.2 IBM Font Installation。．．．．
2.2.3 SlangSoft IME Installation

2.2

3

Test
3.1 MyTestApp ．．．．．．．．．．．．．．．．．．

3.2 Unicode String
3.3 Locale in Java。...........
3.4 Compiling and Running MyTestApp
3.5 MyTestApp.java
3.6 Going Further
3.6.1 Locale Constructors

3.6。2 Arguments .

3

3

3

4

4

6

6

6

7

8

 0

0

 2

2

4

4

4

5

6

8

9

9

0

l

l

l

l

l

1

1

1

1

1

1

1

2

List of Tables

2.1 Times New Roman WorldType Fonts

2.2 Monotype Sans Duospace WorldType Fonts

2.3 Slangsoft Input Methods

2.4 Developer Kit and Runtime Environment packages

3.1 Examples of correct Locale.

8

8

9

 0

0

1

2

11

List of Figures

2.1 Java 2 SDK, Standard Edition v. 1.3 7

3.1 MyTestApp: a screenshot 14
3.2 Command Line: java MyTestApp 21

3.3 Command Line: java MyTestApp fr FR。.. 21

3.4 Command Line: java MyTestApp ja JP 21

3.5 Command Line: java MyTestApp ko KR。. • . • 22
3.6 Command Line: java MyTestApp en US 22

lll

Introduction

This report describes solutions to create multilingual applications using Java.

These solutions aim at Natural Language Processing, and more precisely for

the data preparation. Nevertheless this proposal can be used for more general

internationalized and localized applications.

• To internationalize an application is to support different languages, like
Japanese or French, in displaying and editing.

• To localize an application is to be able to display menus and messages
in many languages as different users may have different mother tongues.

Nowadays, there are general methods for handling different languages

in the same application. The description of a particular language is done

by locale. However, locales create problems when mixing languages. For

example, an application in the Japanese locale can edit and display French

characters like c-cedille~, but the French locale cannot display and edit
Japanese characters.

Nevertheless, the only problem of the locale lies in the particular set

of character sets used to display its language. By using the ISO /IEC 10646

(unicode) character set, we simply且nda solution for most of the cases. Now,

a problem is to find a complete unicode font.

Of course in any multlingual application, we have to edit languages like

Japanese which have more characters than can fit on a standard alphabetical

keyboard. So the Japanese characters, like other Asian languages, are input

with special methods called input methods.

A Java Virtual Machime (JVM) is needed to run any Java program. A

JVM is embdded in the Java RunTime Environment (JRE) which defines the

basic environment of the JVM (default locale, default fonts, default security

policy, etc…) • A default JRE installation does not contain enough settings

ー

and ressources to handle different languages to be input or displayed. There-

fore, this report will describe how to setup a chosen JRE to run correctly

internationalized and localized multilingual applications.

2

Chapter 1

Background

1.1 Locales

A locale is determined by the application at runtime and describes the user's

environment: the local conventions, culture, and language of the user's ge-

ographical region. A locale is made up of a unique combination of a lan-

guage and a country. Two examples of locales are: French/Canadian and

English/U.S.

1.2 Characters and Codesets

The 8-bit ISO 8859-1 codeset has special characters needed to handle the

major European languages. However, in many cases, the ISO 8859-1 font

is not adequate. The 16-bit JIS 0208-0 (1983) codeset is used for Japanese.

Hence each locale will need to specify which codeset they need to use and

will need to have the appropriate character handling routines to cope with

the codeset. This part of the locale constitutes the main use for multlingual

application, because one of the main function of multlingual application is

to draw characters.

• The ANSI standard uses only a single byte to represent each character,
so it is limited to a maximum of 256 character and punctuation codes.

Although this is adequate for the French or German, it doesn't fully

support other languages.

3

• The Double Byte Character Set (DBCS) is used in most parts of Asia.
It provides support for many different East Asian language alphabets,

such as Chinese, Japanese and Korean. DBCS uses the numbers O to

128 to represent the ASCII character set. Some numbers greater than

128 function as lead-byte characters, which are not really characters but

simply indicators that the next value is a character from a non-Latin

character set. In DBCS, ASCII characters are only 1 byte in length,
whereas Japanese, Korean, and other East Asian characters are 2 bytes

in length.

• Unicode is a character-encoding scheme that uses 2 bytes for every
character1. The International Standards Organization (ISO) defines a

number in the range of O to 65,535 for every character and symbol in

every language. Although both Unicode and DBCS have double-byte

characters, the encoding schemes are completely different.

1.3 Input method editing styles

Each platform (Unix/X, Macintosh, Windows) supports the input of several

Asian languages (e.g., Japanese, Chinese, Korean) through a special system

service called an Input Method. An input method is a software component

that converts keystrokes into text input which cannot be typed directly. In-

put methods are normally used to input text for languages which have more

characters than can fit on a standard keyboard. Input methods are com-

monly used for Japanese, Chinese and Korean, but also show up in other

languages, like Thai and Hindi. There are four basic styles of input method

editing: on-the-spot, over-the-spot, off-the-spot, and root-window2.

1.4 The Unicode Standard and ISO/IEC 10646

The Unicode Standard is fully compatible with the international standard

ISO/IEC 10646-1:2000, Information Technology-Universal Multiple-Octet

Coded Character Set (UCS)-Part 1: Architecture and Basic Multilingual

Plane, which is also known as the Universal Character Set (UCS). The Uni-

code Standard also specifies a numeric value and a name for each of its

1To be exact, 21 bits.
2see Paper [Auclerc & Lepage 96]

4

characters. In addition to character codes and names, some other informa-

tion is proposed: a character's case, directionality, and alphabetic properties.

The Unicode Standard also provides case mapping tables and mappings to

the repertoires of international, national, and industry character sets.

The Unicode Standard, Version 3.0, contains 49,194 characters. Scripts

include the European alphabetic scripts, Middle Eastern right-to-left scripts,

and scripts of Asia. The unified Han subset contains 27,484 ideographic

characters defined by national and industry standards of China, Japan, Ko-

rea, Taiwan, Vietnam, and Singapore. In addition, the Unicode Standard
includes punctuation marks, mathematical symbols, technical symbols, ge-

ometric shapes, and dingbats. The Unicode Standard reserves 6,400 code

values in the basic 16-bit encoding for the Private Use Area, which may

be used to assign codes to characters not included in the repertoire of the

Unicode Standard.

Unicode provides for two encoding forms: a default 16-bit form and a

byte-oriented form called UTF-8 (Unicode transformation format) that has

been designed for ease of use with existing ASCII-based programming sys-

tems. Using a 16-bit encoding means that code values are available for more

than 65,000 characters. While this number is sufficient for coding the char-

acters used in languages, the Unicode Standard and ISO/IEC 10646 provide
the UTF-16 extension mechanism (called surrogates), which allows for the

encoding of as many as 1 million additional characters without any use of

escape codes.

5

Chapter 2

Java Platform: the Java
Virtual Machine

2.1 Choice

2.1.1 Java 2 version 1.3 for IME support

The Java 2 platform, Standard Edition (J2SE) provides cross-platform com-
patibility and safe network delivery. In addtion, Java introduced an Input

Method Engine Service Provider Interface that enables the development of

input method engines in the Java programming language and the use of

Below-the-spot text input, which uses a separate composition window that
is positioned automatically to be near the point where the text is to be

inserted after being committed.

Java also provides the Remote Method Invocation (RMI) interface that

makes it possible to create distributed Java applications, in which the meth-

ods of remote Java objects can be invoked from other Java virtual machines,

possibly on different hosts. In addition, Jav;,:L proposed the Java Native Inter-

face (JNI), which is the native programming interface for Java. JNI allows

Java code that runs within a Java Virtual Machine to operate with applica-

tions and libraries written in other languages, such as C, C++, and assembly.

The invocation API also allows you to embed the Java Virtual Machine into

your native applications.

6

,,::::·-.·.-:·.-.-:·.-.-:·.-.-:·.·;:·.-.-:·.·.-:·.-.-:·.-.-:·.-.-:·.-.-:·.-.-:·.-.-:·.-.-:·.-.-:·.-.-:·.·.--=·•: そ； ·:::·:::·:::·:::·:::·:::·.·::·:::·.·::·.·.-:·.·::·~':":"·::::,·.:::.-:cそ：：—•

； 紐雑i.. 9_:t::-=_:/).¥U:/::¥::_:;::{:¥-):ht:¥:¥:¥/:-'{:-¥:-¥¥'¥//i-¥//>j , ・:.-:::_-.:. ・・・・・・・・・・・ ¥.・. ぶぶ... .-. ふ：；ヽヽダ・；、＇ふ:,-:,;_-:.;.-:.;.-;;.-苫：；.;.-:.;.-孔・:.;.-:.;.-;;.-:.;ふ：砂.-:.;_-:.;_-:.;.-;.;.-;ふ・・・'・'-''・・・ャ・・--・--・・,.. ,,,,., 心:,•＇ぶ'、;;;，:,,;.-芯：：.裕；．ぷ：；．；ぷ，•:.;ぶ，＇，＇ふ,:.;,ぷ：；．；．涵．ぷ：；；．ぷ.-;;.-:.;ふ・,,,,.-.>'

卜

ト ・・
f:

，．

Figure 2.1: Java 2 SDK, Standard Edition v. 1.3

2.1.2 IBM Java 1.3 for fonts

The IBM Developer Kit for Linux, Java 2 Technology Edition, Version 1.3

is a development kit and runtime environment that contains IBM's just-in-

time compiler and Java 2 virtual machine. The IBM Developer Kit for Linux

passes Sun's Java compatibility test.

The IBM Developer Kit for Linux is provided in the following packages:

• Software Developer Kit package (SDK): The Developer Kit package is
used to develop and run Java applications and applets.

• Java Runtime Environment package (JRE): The Runtime Environment
package is used to run Java applications and applets or to include a

Java runtime environment with your application.

In addition, with this release of the Developer Kit for Linux, IBM offers sev-

eral font packages. The font packages provide additional double-byte charac-

ter set (DBCS) support. The font packages are provided because Java is able

to display all Unicode characters, but most versions of Linux install only the

fonts needed to display the country-specific font. The font packages do not

replace the system fonts.

7

There are two types of font packages available: Times New Roman World-

Type fonts (Table 2.1) and Monotype Sans Duospace World Type fonts (Table

2.2). There is a country-specific font for each font type.

Font File Name Country

Times New Roman WT J tnrwLj.ttf Japan and other countries

Times New Roman WT K tnrwt」Lttf Korea
Times New Roman WT SC tnrwt_s.ttf China (Simplified Chinese)

Times New Roman WT TC tnrwt_t.ttf Taiwan (Traditional Chinese)

Table 2.1: Times New Roman WorldType Fonts

Font File Name Country

Monotype WT J mtsansdj. ttf Japan and other countries

Monotype WT TK mtsansdk. ttf Korea

Monotype WT SC mtsansds.ttf China (Simplified Chinese)

Monotype WT TC mtsansdt. ttf Taiwan (Traditional Chinese)

Table 2.2: Monotype Sans Duospace WorldType Fonts

2.1.3 IM from Slangsoft

Slangsoft offers Spirus, a package of Input Methods and Virtual Keyboards

that allow text input of non-English characters into all Java text components

according to the Input Method Framework specifications of the Java 2 Stan-

dard edition version 1.3. Spirus jar files are 100% pure Java Input Methods

and Virtual Keyboards for 42 National Languages, allowing text input into

all Java text components of Java programs running in Java 1.3 Run Time

Environment (JRE), regardless of the Operating System being used.

Input Method : This consists of Java classes that map single keys or

combinations of keys toじnicodecharacters. Input Method classes correctly

interpret the input on the QWERTY keyboard for each language as well as

providing a Virtual Keyboard for the convenience of the user. For languages

where a character takes on different forms depending on its position in a word,

8

the Input Method classes provide the logic required to convert the characters

into their correct form, as well as language and conversation dictionaries.

Virtual Keyboard : This is a window in which a keyboard with fully-

functional keys is displayed. Virtual Keyboards allow users to type freely in

any language, even if their local keyboards do not support it.

Spirus contains a set of Java classes that are organized into language

groups, housed in jar files. These jar files (Table 2.3) include the functio叫 ity

of Input Methods and Virtual Keyboards.

File name Content

European.jar contains the IME for the European language set

Hebrew Arabic.jar contains the IME for the Hebrew and Arabic language set

Chinese.jar contains the IME for the Chinese language set

Japanese.jar contains the IME for the Japanese language set

Korean.jar contains the IME for the Korean language set

Table 2.3: Slangsoft Input Methods

，

2.2 The Java Virtual Machine: Download &

Installation

The IBM Developer Kit package and Runtime Environment package for

Linux can be downloaded for free from the IBM website (http:/ /w四.ibm. com/j ava/jdk).

Each package is available in an installable RedHat Package Manager (RPM)

file and in a compressed tape archive (TAR) file. All of the files mentioned are

also available on the Java Basic Software CDROM, proposed and distributed

by the Aleph Group of Department 3 of SLT.

2.2.1 Java Virtual Machine Installation

Package file name

Package I Installable RPM file name I Compressed TAR file name I
Developer Kit I IBMJava2-SDK-l.3-l.O.i386.rpm I IBMJava2-SDK-13.tgz'
Runtime Environment I IBMJava2-JRE-l.3-l.O.i386.rpm IBMJava2-JRE-13.tgz

Table 2.4: Developer Kit and Runtime Environment packages

All of the files mentioned in table 2.4 are available on the Java Basic Soft-

ware CD ROM, proposed and distributed by the Aleph Group of Department

3 of SLT, in the directory linux/java/ibm ..

Installable RPM packages

To install an installable RPM package:

• Download the installable RPM package to any directory.

• Use the rpm command to install the package, as follows:

rpm -i filename. rpm

where filename is the file name of the package.

10

The package is installed, by default, in the /opt/usr/IBMJava2-13 direc-

tory. If you want to install it in a different directory, use the -prefix option

on the rpm command, as follows:

rpm -i --prefix dirname filename.rpm

where filename is the file name of the package and dirname is

the directory where you可antto install the package.

If you use the -prefix option, the package is installed in the directory

IBMJava2-13, which is created in the directory you specified.

Compressed TAR packages

To install a compressed TAR package:

• Download the compressed TAR package to the directory where you
want to install it.

• Use the tar command to unpack the file, as follows:

tar -zxvf filename.tgz

甘herefilename is the file name of the package.

The package is installed in the directory IBMJava2-13, which is created

in the directory where you unpack the package.

11

Package directory structure

IBMJava2-13

← bin SDK only
~lib SDK only
← include SDK only
←→ demo SDK only
'-------+ docs SDK & JRE
← ~jre SDK & JRE
'------+ bin SDK & JRE
'-------+ lib SDK & JRE
'-----+ ext SDK & JRE
'-+ images SDK & JRE
'--+ audio SDK & JRE
←→ crnrn SDK & JRE
'-------+ fonts SDK & JRE
← • security SDK & JRE

2.2.2 IBM Font Installation

To install a font, put the font file (Tables 2.1 and 2.2) in the /opt/IBMJava2-

13/jre/lib/fonts directory. If you have installed the Java Virtual Machine in
a different directory, then put the file in the IBMJava2-13/jre/lib/fonts of
this directory. Please refer to Tables 2.1 and 2.2, to know which file to install.
All of the files mentioned in Tables 2.1 and 2.2 are on the Java Basic Soft-
ware CD ROM, proposed and distributed by the Aleph Group of Departement
3 of SLT, in the directory linux/java/ibm/font。

2.2.3 SlangSoft IME Installation

To install SlangSoft IME:

• uncompress the Spirus.zip file, using unzip.

• put all of the .jar files into the IBMJava2-13/jre/lib/ext directory, as
follows:

12

unzip Spirus.zip

where Spirus.zip is the real file name of the Slangsoft IME.

The IME jar files are created in the same directory where you unpack

the Spirus.zip archive. To install an IME, put the IME file (Table 2.3) in

the /opt/IBMJava2-13/jre/lib/ext directory. If you have installed the Java
Virtual Machine in a different directory, then put the file in the IBMJava2-

13/jre/lib/ext of this directory. Please refer to Table 2.3, to know which file

to install.

All of the files mentioned in Table 2.3 are available on the Java Basic Soft-
ware CD ROM, proposed and distributed by the Aleph Group of Departernent

3 of SLT, in the directory java/SlangSoft.

13

Chapter 3

Test

In this chapter, we propose a simple example. Our aim here is to introduce

you to multilingual programming. We are going to step through the con-

struction of the application piece by piece, and then, once it is all together,

make it a little more interesting.

3.1 MyTestApp

The example that we are going to build will have two text components: a

label and a text edit component. In this first try, the application does not

have any menu or toolbox. The label component aims to show a static word.

Figure 3.1: MyTestApp: a screenshot

3.2 Unicode String

In Java, the char type denotes characters in the Unicode encoding scheme.

The familiar ASCII/ ANSI code that is used in C programming is a subset of

14

Unicode. More precisely, it is the first 255 characters in the Unicode coding

scheme. Thus, character codes like'a','1', and']'1 are valid Unicode charac-

ters. Unicode characters are most often expressed in terms of a hexadecimal

encoding scheme that runs from'¥uOOOO'to'¥uFFFF'(with'¥uOOOO'and

'¥ uOOFF'being the ordinary ASCII/ ANSI characters). The ¥ u prefix indi-

cates a Unicode value, and the four hexadecimal digits provide the Unicode

character.

In Java we can instantiate a label component and set its caption like this:

// create the label component

j Label 1 = new j avax. swing. JLabel () ;

// set the caption of the label component with Unicode

// character

jLabel1.setText("¥u4ECA¥u65E5¥u306F");

The caption "¥u4ECA ¥u65E5¥u306F" represent the word"今日は".

3.3 Locale in Java

We have already explained that Locale (see section 1.1) embraces a specific

language in combination with a given cultural, geographical, and political

region. In Java, in addition to the language and formatting information such
as date and currency (, FF R, EUR), localeincludes :

• Names of the months

• Days of the week

• The first day of the week

• Collation seque~ces (sort order)

• Time zone information

In Java, locale information is maintained in the j ava. util. Locale object

and represents:

1 Note that'H'is a character and "H" is a string containing a single character.

15

• A language

• A country or a region

Java objects and methods that modify thier behavior based on the locale

are considered to be locale-sensitive. For example, DateFormat is a class for

date/time formatting that formats and parses dates or time in a language-

independent manner, e.g., depending on the locale given as an argument.

I I retrieve a DateFormat object for the default locale
DateFormat df;

Locale locale=Locale. getDefaul t ();

df= DateFormat.getDateinstance(DateFormat.FULL,locale);

// get a new instance of a text edit component

j TextPane1 = new j avax. swing. JTextPane () ;

// set the text of the text edit component with a date using

// the DateFormat object

jTextPane1. set Text (df. format (new Date()));

3.4 Compiling and Running MyTestApp

There are two programs for compiling and launching a Java program:

• j avac program is the j ava compiler。Itcompiles the file MyTestApp.java
into the file MyTestApp.class.

• The j ava program is the Java interpreter.'It interprets the bytecodes
that the compiler placed in the class file.

To compile our example, please execute these two command lines:

j avac MyTestApp. j ava

j ava MyTestApp

To run a java program using the j ava command, you only need to specify

the class name. For example, in this case it would be MyTestApp and not

the class file name MyTestApp.class. Be sure that the j avac and the j ava

16

commands are in your path. To test it: ニC

Be sure that the j avac and the j ava commands which are in your path

are the ones you have just installed. To check it, you can ask for the version

of the java interpreter, as follows:

I j ava -version

And the answer might be:

java version 111.3.011

Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.0)

Classic VM (build 1. 3. 0, J2RE 1. 3. 0 IBM (JIT enabled: j i tc))

17

3.5 MyTestApp.java

import java.text.DateFormat;

import java.util.Locale;

import java.util.Date;

import java.awt.BorderLayout;

public class MyTestApp extends javax.swing.JFrarne {

public MyTestApp () {

// create the label component

j Label 1 = new j avax. swing. JLabel () ;

// set the caption of the label component with Unicode

// character

jLabel1.setText("¥u4ECA¥u65E5¥u306F");

// retrieve a DateFormat object for the default locale

DateFormat df;

Locale locale=Locale. getDefaul t ();

df= DateFormat.getDateinstance(DateFormat.FULL,locale);

// get a new instance of a text edit component

jTextPane1 = ne訂 javax. swing. JTextPane () ;

// set the text of the text edit component with a date

// using the DateFormat object

jTextPane1. set Text (df. format (new Date()));

getContentPane () . add (j Label1, BorderLayout. NORTH) ;

getContentPane (). add(jTextPane1 ,BorderLayout. CENTER);

pack ();

｝

18

public static void main (String args[]) {

new MyTestApp (). show ();

｝

private j avax. swing. JLabel j Label 1;

private javax.swing.JTextPane jTextPane1;

｝

In this example, the date will always appear in the language defined by

the Java Virtual Machine (JVM), and so by the operating system. In the

next section, we will change that.

3.6 Going Further

In this section we are going to modify our example MyTestApp. The aim

is to choose directly on the command line in which language we want the

date to appear. In the previous example, the DateFormat object takes the

locale from the method getDefaul t () of the Locale class. By changing the

default locale of the JVM, the MyTestApp class is not updated. The main

method is just modified.

public static void main (String args[]) {

if (args.length == 2)
Locale.setDefault(ne甘 Locale(args[O],args[1]));

new MyTestApp () . show () ;

｝

3.6.1 Locale Constructors

Two constructors for creating Locale objects are provided. They are:

• Locale(String language, String country)

• Locale(String language, String country, String variant)

19

In this new version, we work with the first constructor, in which you spec-

ify the IS0-639 language code (in lowercase) and the IS0-3166 country code

(in uppercase). The Unicode website [http://www.unicode.org/unicode/onlinedat/]

provides a complete listing for each of these codes.

I Language I Language code j Country 三r_y_~ode]
Japanese Ja Japan JP

French fr France FR

French fr Canada CA

Korean ko Korea KR

chinese zn China CH

English en USA us
English en United Kingdom GB

Table 3.1: Examples of correct Locale.

3.6.2 Arguments

We grab the first two arguments from the command line and use them as

language and country code, respectively, to create a Locale object. We use

this new object to set the JVM Def叫 tLocale. If there are more or fewer
than two arguments, we do not change the JVM Default Locale. Here are

some examples of how you should use MyTestApp.

j ava MyTestApp

j ava MyTestApp fr FR

j ava MyTestApp j a JP

j ava MyTestApp ko KR

java MyTestApp en US

20

Screenshots

2001年8月27日

Figure 3.2: Command Line: java MyTestApp

今日は
l undi

I

27aout 200:J

Figure 3.3: Command Line: java MyTestApp fr FR

2001年8月27日

Figure 3.4: Command Line: java MyTestApp ja JP

21

2001'.::! 8世 27世世丘世

Figure 3.5: Command Line: java MyTestApp ko KR

；・,:::; ご・; ・,: 又こ‘：こ;:;:・ら・・,へ 、••,;'('::' .

" ,:

L .. ・ ヽ ヽヽヽ・ヽ

今日は
August 271 2001

Figure 3.6: Command Line: java MyTestApp en US

22

Summary

In this report, we have installed, setup and tested the Java Virtual Machine.

We have also explained and manipulated the Locale, which is a fundamental

Java object for localizing a program. To know more about internationaliza-

tion and localization of Java program, we recommend to read the Java Inter-

nationalization book from O'Reilly. This book also convers topics like fonts

and text rendering for internationalized applications and input methods (and

the Java Input Method Framework).

23

Bibliography

[Auclerc & Lepage 96] Nicolas Auclerc & Yves Lepage
Boardedi t: a Multilingual Board Editor

From Interactive Tree Editing To Analysis by Analogy

ATR report TR-IT-0306, Kyoto, September 1999.

24

