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We introduce a segmental feature model (SFM) that represents temporal relationships between 

feature vectors. A feature vector sequence can be divided into most likely periods by using the 

conventional HMM. In the conventional HMM, temporal relationships between these periods 

are represented, because the conventional HMM consists of plural states connected temporarily. 

However, temporal relationships between feature vectors in each period is not modeled. If the 

temporal relationships between the feature vectors are modeled, it is considered that feature vector 

sequences can be modeled more efficiently than the conventional HMM. 

The SFM calculate a probability of a fixed-dimension segmental feature vector, the segmental 

feature vector is extracted from a variable-length period that is allocated to each state in the 

SFM. We propose a segmental feature vector based on average values. The segmental feature 

vector can calculate temporal covariances. And, we propose a new SFM that has variances in 

a segment (period), to reduce missmatches between a feature vector sequence and a segmental 

feature vector. 

For the SFM using the segmental feature vector based on average values, we performed speech 

recognition experiments of a phoneme classification and a continuous phoneme recognition. The 

SFMs achieved higher recognition rates than conventional HMMs in the phoneme classification 

experiments. However, in the continuous phoneme classification experiments, the SFMs got lower 

recognition rates than conventional HMMs. It is considered that the SFM does not estimate 

phoneme boundaries rightly. 
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Chapter ー

Introduction 

An HMM is a model that represents non-stationary sig叫 ssuch as acoustic feature vector 
sequences by changing states, each state has one stationary distribution. Figure 1.1 is 
an example of a feature vector sequence modeled by using three stationary distributions. 
As equation 1.1, we can obtain a likelihood P(OJQ, 入） of the feature vector sequence by 
calculating a product of probabilities P(otJsi)-In the equation, let入beparameters of 
an HMM. Let Q be a state sequence { (bぃ釘）， (bぁ鴫・・・},where (bi, ei) represents that a 
state Si covers a period bi to ei in a whole feature vector sequence 0. Let Ot be a feature 
vector observed at time t. A likelihood outputted from an HMM depends on the state 
sequence. The feature vector sequence can be divided into most likely periods by finding 
a optimal state sequence that obtains a maximum likelihood. The optimal state sequence 
can be obtained simply by using a Viterbi algorithm. 

ei 

P(OIQ, 入)= II II P(otls』
i t=bi 

(1.1) 
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Figure 1.1: An example of a feature vector sequence modeled by three states. 

ー



A conventional HMM can calculate temporal relationships between the individ叫 pe-

riods, because a conventional HMM is a model that consists of plural states connected 

temporarily. However, temporal relationships between feature vectors allocated to a state 
are not modeled, since a probability outputted from the state is obtained by calculating 

a product of individual probabilities P(otls). If individual states are allocated for indi-
vidual feature vectors respectively, the temporal relationships can be also modeled by a 
conventional HMM. However, it is not a realistic solution, it has a problem of an increase 
of parameters. 

A segment model (SM) [Ostendorf 96] was proposed as a technique to model temporal 
relationships between feature vectors. The SM can represent the temporal relationships 
efficiently without using a large number of parameters. A conventional HMM is a model 
assuming that a mean value of a distribution is invariable in a state. However, the SM as-
sumes that the mean value varies with time. As equation 1.2, a probability outputted from 
a state depends on a temporal order of feature vectors allocated to the state. Therefore, 
it is considered that a likelihood outputted from the SM reflects temporal relationships 
between feature vectors. 

N(ot, μ(O), び）N(ot+1, μ(l), a)ヂN(ot+l,μ(0), a)N(ot, μ(l), び） (1.2) 

In this report, we introduce a segmental feature model (SFM)[Ostendorf 96] as a tech-
nique to represent temporal relationships between feature vectors efficiently. As equation 
1.3, each state in the SFM calculates a probability of a segmental feature vector. Where 
J represents a function for extracting fixed-dimension segmental feature vector from a 
variable-length feature vector sequence. It is considered that temporal relationships be-
tween feature vectors can be represented efficiently by choosing an appropriate extraction 
function f. 

P(OIQ, 入)= IT P(j(Ot)lsり
i 

(1.3) 

We propose a segmental feature vector based on average values. The segmental feature 
vector can calculate a temporal covariance. Moreover, we propose a new SFM that has 
variances in a segment. These SFMs are evaluated by performing speaker-dependent 
experiments of a phoneme classification and a continuous phoneme recognition. 

In section 2.1 and 2.2, we introduce an SM and an SFM as techniques to model 
temporal relationships between feature vectors. In section 2.3, two new segmental feature 
vectors based on average values and a KL extraction are proposed. In section 2.4, these 
SFMs using proposed segmental feature vectors are evaluated in experiments of a phoneme 
classification and a continuous phoneme recognition. In section 3.1, we propose a new 

SFM using a likelihood of variances in a segment. The new SFM is evaluated in section 
3.2. Section 4 is a conclusion. 
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Chapter 2 

Segmental Feature Model 

In this section, we describe two techniques, a segment model (SM) and a segmental feature 

model (SFM), to model temporal relationships between feature vectors. Especially, we 

discuss the SFM that can model the temporal relationships more efficiently than the SM. 

2.1 Modeling of Temporal Relationships 

We introduce a segment model (SM) and a segmental feature model (SFM) as a technique 

to model temporal relationships. 

2.1.1 Segment Model 

The SM is a model that calculates temporal relationships between feature vectors e低

ciently. A mean value of a distribution in the SM varies with time, though the mean 

value is invariable in a conventional HMM. Figure 2.1 illustrates a concept of the SM. 

lLI8!0!i
芯
0
8

1st state 2nd state 3rd state 

Figure 2.1: A concept of the segment model. 

A linear regression and a polynomial function are utilized as a function of the mean 

value that varies with time, each state has the time-depended mean value individually. 

A probability outputted from a state in the SM is calculated as equation 2.1. When 
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a trajectory of a time-depended mean value is similar to a behavior of a feature vector 
sequence allocated to a state, a large likelihood is outputted from the state. The function 
佑 (L,T) calculates a mean value at a relative time T, the L means a duration length of a 
period allocated to a state. 

e; 

P(OIQ, 入)= II II P(o叫 (ei-b□ 1, t -bi), Si) 
i t==b; 

(2.1) 

A probability outputted from a state in the SM depends on a temporal order of feature 
vectors allocated to the state, since the state has a distribution with a time-depended 
mean value. Therefore, it is considered that a likelihood outputted from the SM reflects 
temporal relationships between feature vectors. Moreover, temporal relationships between 
feature vectors are modeled efficiently by using a few number of parameters without using 
lots of states in a conventional HMM. 

2.1.2 Segmental Feature Model 

A state in the SFM outputs a probability of a segmental feature vector, the segmental 
feature vector is extra.cted from a feature vector sequence allocated to the state. Figure 
2.2 illustrates a structure of the SFM. As equation 2.2, a likelihood outputted from the 
SFM is calculated. The f denotes a function for extracting a fixed-dimension segmental 
feature vector from a variable-length feature vector sequence. 

P(OIQ, ,¥)=II P(f (Og:)Jsi) 
i 

(2.2) 

In a difference between the SFM and the SM, a state in the SFM generates one fixed-
dimension segmental feature vector, though a variable-length feature vector sequence is 
generated from a state in the SM. It is considered that the SFM models temporal rela-
tionships between feature vectors more efficiently than the SM by choosing an appropriate 
function f. 

2.2 Segmental Feature Model 

A structure of the SFM is similar to a conventional HMM with a duration control 
[Ferguson 80]. Figure 2.3 illustrates a structure of a left-to-right SFM. A likelihood out-
putted from the SFM is calculated by using equation 2.3. 

N 

P(OIQ, 入） = II山(ei-bi+ l)bi(f (Ot)) 
i=l 

(2.3) 

A likelihood outputted from the SFM depends on a number of states, because a state 
in the SFM outputs one probability only. However the likelihood need to depend on 
time. We can obtain a likelihood that depends on time by calculating a power of T for a 
probability outputted from a state. 
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Figure 2.2: A structure of a segmental feature model. 
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Figure 2.3: A structure of the segmental feature model 
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Therefor, a probability of a duration control di(T) and a distribution bi (sv) are calculat-

ed as equation 2.5 and equation??. In this report, one dimensional gaussian distribution 

is used for a duration control. And multi-dimension gaussian distribution is done for a 

distribution. 

di(T) = N(T, μd(i), 四 (i))7 (2.4) 

bi(sv) = N(sv, μbじ），匂(i))T 

If a distribution is represented by using mixture gaussian distributions, there are 

two calculation ways as equation 2.6, l)SMIX (Segment MIXture) and 2)FMIX (Frame 
MIXture). Figure 2.4 illustrates concepts of the SMIX and the FMIX. In case of the 
SMIX, a power of T for each probability of a gaussian distribution is calculated. Then, 

a sum of these probabilities is done. In case of the FMIX, a sum of probabilities of each 
mixture component is calculated. Then a power of T for the sum is calculated. In this 
report, these caiculation ways are evaluated in speech recognition experiments. 

(2.5) 
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(SMIX) Mixture calculation for a segment 

l=b t=b+1 

Figure 2.4: Two mixture calculation ways 
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(FMIX) Mixture calculation for individual frames 

b,(sv) = {区嘉=lc,,,(i)N(sv, 凸 (i),am(i)r 

印~o 四犀=l Cm(i)N(sv, μm(i), 年 (i)) (FMIX: Frame l¥;f JXture) 

(SMIX: Segment J¥.!JJXture) 

(2.6) 

2.2.1 Optimal State Sequence 

To utilize the SFM for an actual speech recognition, we need to calculate an optimal 

state sequence. An algorithm obtaining the optimal state sequence is similar to Viterbi 

algorithm for a conventional HMM with a duration control. The optimal state sequence 

Q is obtained by following processes. Where入representsparameters of an SFM. And, 

let O be a feature vector sequence. 
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• Searching: 

-Initialization: (1~t~T) 

ふ(t) =出(t)b1(J(Oi))

妬(t) = 1 

-Recursion: (2~i~N), (1~t~T) 

c5i (t) 

叫t)

- m笠い(t-鳴（鳴(f(Oし））

- argm戸い(t-鳴（鳴(f(Oに））

• Backtracking: 

-Initialization: 

bN 応 (T)

eN = T 

-Recursion: (i = N -I,・・・, I) 

bi 叫(bi+l-1) 

ei bi+l -1 

2。2.2 Parameter Estimation 

Parameters of the SFM can be estimated by the EM algorithm [Dempster 77] as well as 
a conventional HMM. In this report, we simply introduce a Viterbi training. Where R 
represents a number of feature vector sequences for training. Let bi (r) and ei (r) be start 
frame number and end frame number of a period that is allocated to a state i for an 
feature vector sequence r. 

• Estep: 
In the E step, for a current model parameter入， optimalstate sequences Q is calcu-
lated by the Viterbi algorithm. 

• M step: 
In the M step, a new model parameter入isestimated by using the Q. 

1. Estimation for duration controls D. 

四(i) -

心(i) = 

こ芦(ei(r) -bi (r) + 1) (ei (r) -bi (r) + 1) 
~Z~=l 叫r) -bi(r) + l 

Z~=l(四 (i) -(ei(r) -bi(r) + 1))2(ei(r) -bi(r) + l) 
四~1 ei(r) -bi(r) + l 

7 



2. Estimation for distributions B. 
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Lf=l〈m(i)f(Ot!(r))(ei-bi+ 1) 

江f=l伍(i)(ei(r)-bi(r) + 1) 

区f=l(m(i)(μbA(i) -J(og;(r)))2(ei―bi+ 1) 

区~=1 伍 (i)(ei (r) -bi (r) + 1) 

(2.7) 

(2.8) 

-Segment Mixture (SMIX) 

伽(i)= 
Cm(i)N(f (O見(r)),μ叫），Clm(i))7

口屈~l Cm(i)N(J(og;(r)), μ 叫），叩(i))T

cm(i) = 
ログ~l 品 (i)

R 

-Frame Mixture (FMIX) 

伍(i)= 
Cm(i)N(J(Og:(r)), μm(i), 年 (i))

四虚~=l Cm(i)N(J(O砂）），μm(i),Clm(i)) 

ら(i)= 
四~=l (土）(ei (r) -bi (r) + 1) 

四贔(ei(r) -bi (r) + 1) 

Parameters of the SFM can be estimated by performing the E step and the M step 
repeatedly. 

2.3 Segmental Feature Vector 

We propose a segmental feature vector based on average values and a segmental feature 
vector based on a KL extraction. 

2.3.1 Segmental Feature Vector based on Average Values 

We propose a segmental feature vector based on average values. The segmental feature 
vector consists of average values, each average value is calculated from a sub-period pか

Individual sub-periods are obtained by splitting a period b to e at eq叫 intervals,the 

period is a feature vector sequence allocated to a state. Figure 2.5 illustrates a concept 
of the segmental feature vector. In this figure, a split resolution used N = 3, and a 

number of dimensions of a feature vector sequence was D = 2. By using the way, the 

two-dimensional feature vector sequence is converted to the six-dimensional segmental 
feature vector. A length of the feature vector sequence is variable. 
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Figure 2.5: Segmental feature using average values 

(Y11, Y12, Y13心/21,リ22,訟） = J(Og) (2.9) 

This segmental feature vector can calculate temporal covariance. As equation 2.10, 
the temporal covariance can be calculated by using a beltlike covariance matrix, since 
a variable-length feature vector sequence is converted to N x D-dimensional segmental 
feature vector. 

Cn,ll Cll,12 C11,13 

゜゜゜C12,11 C12,12 C12,13 

゜゜゜C=I C13,ll C13,12 C13,13 

゜゜゜ (2.10) 

゜゜゜
C21,21 C21,22 C21 23 I ， 

゜゜゜
C22,21 C22,22 C22,23 

゜゜゜
C23,21 C23,22 C23,23 

2.3.2 Segmental Feature Vector based on a KL Extraction 

In case of above segmental feature vector based on average values, whenever a time reso-

lution N increases, number of dimensions of the segmental feature vector increases also. 
The augmentation of number of dimensions leads a degradation of an estimation accuracy 

of a model. We propose a segmental feature vector based on a KL extraction. 

The segmental feature vector is extracted from a segmental feature based on average 
values by using base vectors, the base vectors are obtained by performing KL extraction. 
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In this report, we evaluate speech recognition performance of SFMs using the segmen-
tal feature vector based on average values. 

2.4 Speech Recognition Experiments 

We have performed phoneme classification and continuous phoneme recognition experi-

ments to evaluate performance of a speech recognition using SFM. 

The ATR word speech database of Japanese important 5240 words uttered by a male 

speaker (MHT) is used. The half of odd-numbered 2620 words were used for training, and 

quarter of the even-numbered 655 words were used for testing. The phoneme categories 

for a recognition were /N, a, b, ch, d, e, f, g, h, i, j, k, m, n, o, p, Q, r, s, sh, t, ts, u, 

w, j, z/. 12 MFCCs, 12△ MFCCs, log-power and△ log-power extracted with 5ms frame 
period and 25ms frame length were used as an acoustic feature vector. 

We utilize the segmental feature vector based on average values. Each state in the 

SFM has a partial covariance matrix or a diagonal covariance matrix, a state with the 

partial covariance matrix can represent a temporal covariance. A probability outputted 

from state is calculated by using one, two and four mixture distribution. 

2.4.1 Phoneme Classification Experiments 

The TAUs in table 2.1 are results of the phoneme classification experiment. The ONE 

mentions later. 

Table 2.1: Speaker-Dependent Phoneme Classification Experiments 

Diagonal Covariance Partial Covariance 

Conventional FMIX SMIX FMIX SMIX 

Mixtures HMM ONE TAU ONE TAU ONE TAU ONE TAU 

1 83.5% 85.3% 82.9% 85.3% 82.9% 87.6% 86.5% 87.6% 86.4% 

2 89.9% 89.4% 88.8% 89.5% 89.2% 91.6% 90.9% 91.1% 90.7% 

4 92.5% 92.9% 92.4% 92.8% 91.9% 92.6% 92.7% 92.3% 92.0% 

8 94.2% 95.4% 94.8% 95.2% 94.6% 93.4% 92.8% 93.6% 92.6% 

From this results, the FMIXs and SMIXs generally got the same recognition rates. 

In case of a distribution with partial covariances, one, two and three mixture SFMs got 

higher recognition rates than the conventio叫 HMMs.And, In case of a distribution with 

diagonal covariances, four mixture SFMs got higher recognition rates than the conven-

tional HMMs. 

A counting may of a segmental feature vector in the ONE differ to that in the TAU. 

Number of counts in the TAU uses a weight of e -b + l like equation 2.7 and equation 
2.8. In other hand, a weight of 1.0 is used in the ONE. The ONE can be calculated by 
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using equation 2.11 and equation 2.12. The ONE is not based on the maximum likelihood 

criterion. 

SFMs trained by the ONE got higher recognition rate than the TAU. About this 

reason, it is under examination now. 

凶 (i) = 区~-1 (土）f(O砂））
(2.11) 

口~1(m(i)

叫i) = 
区~1 品 (i)(叫i)-J(O心(r)))2

(2.12) 
四~=l 伍 (i)

2.4.2 Continuous Phoneme Recognition Experiments 

We have only to evaluate SFMs trained by the ONE, since the SFMs trained by the ONE 

got higher recognition rate than the TAU in the phoneme classification experiments. And, 

one and two mixture SFMs are evaluated. 

Figure 2.6 illustrates results of speaker-dependent continuous phoneme recognitions. 

The One-Pass Viterbi algorithm [Bridle 82] was used for decoding. In the "Label train-

ing", each recognition rate of an SFM is trained by using label informations. On other 

hand, the "Embedded training" means recognition rates of SFMs that are trained by 

using embedded-extimation. 

100 

80 

60 

40 

20 

に 1mixture models 
● 2 mixture models 

HMM Diagonal Partial Diagonal Partial 
II 

Label training Embedded training 

Figure 2.6: Experimental results in continuous phoneme recognitions. 

The SFMs got lower recognition rates than the conventio叫 HMMs.And, the hand-

labeled SFMs got higher recognition rates than the embedded-estimated SFMs. It is 

considered that phoneme boundaries are not estimated rightly. Each variance value of a 
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duration control of a phoneme model is illustrated in figure 2.7. The variances got larger 

values than label informations. 

700 

600 

-eoさ
O
:
J
U
O
!
l
e
.
m
p
 4
:
J
B
e
 J
O
J
 s
e
:
J
U
B
!
J
B
 >
 

500 

400 

300 

200 

100 

゜

□ Hand-labeled data 
国 Embedded-estimatedSFM 

w y z z
 Individual phonemes 

Figure 2.7: Each variance of a duration control. 
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Chapter 3 

Segmental Feature Model with 

Variances in a Segment 

In section 2, we proposed an SFM using a segmental feature vector based on average 

values. The SFMs got high recognition rates compared with conventional HMMs in 

phoneme classification experiments. However, phoneme boundaries were not estimated 
rightly in continuous phoneme recognitions. 

In this section, we propose an SFM with variances in a segment, to improve an esti-
mation accuracy of phoneme boundaries. In section 3.1, we study a cause which phoneme 

boundaries can not be estimated rightly. Then, we propose the SFM with variances in a 

segment as technique to solve the problem. The SFM is evaluated by speech recognition 

experiments in section 3.2. 

3.1 Variances in a Segment 

A segmental feature vector extracted from a feature vector sequence does not represent 

a trajectory of the feature vector sequence rightly. In other words, the segmental feature 

vector does not represent nice behavior of the feature vector sequence, since an average 

value of a sub-period is used. In figure 3.1, a behavior of the feature vector sequence differ 

to a trajectory of the segmental feature vector extracted from the feature vector sequence. 

To reduce the mismatches, we propose an SFM with variances in a segment. The 

variances in a segment means a penalty for the mismatches between a feature vector 

sequence and a segmental feature vector. The variances can be calculated by equation 

3.1. Let sv = (y1,1, y1,2, ・ ・ ・, YD,N) be a segmental feature vector, the D is a number of 

dimensions of a feature vector and the N means a time resolution of the segmental feature 

vector. Then, let Pi be a frame numbers { b, b + l, b + 2, ・ • • , e} of a feature vector sequence 

allocated to a state i. Theμ8 and (J8 represents mean and variance values for segmental 

feature vector, and the CJ f means a variance in a segment. The ry is a weight for the 

penalty. 
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Figure 3.1: Mismatch among trajectories for a feature vector sequence and segmental 

feature vector 

D N 

b(sv) = N(sv, μsぶ）b-e+l(II II II N(Yd,i, μs(d, i), 町(d,i)))'(3.1)
d=l i=l tEp; 

By using the equation, we can calculate a penalty for the mismatch between a feature 

vector sequence and a segmental feature vector. 

3.2 Speech Recognition Experiments 

We performed experiments of a phoneme classification and a continuous phoneme recog-

nition for the SFM with variances in a segment. 

3.2.1 Phoneme Classification Experiments 

Table 3.1 shows results of phoneme classification experiments. The same experimental 

conditions described in section 2.4.1 are used. 1 = 2.0 was used from a preliminary 

experiment. 

These SFM with variances in a segment got higher recognition rates than the conven-

tional HMM. Moreover, these SFMs got higher recognition rates than an SFM without 

variances in a segment. It is considered that speech signals are modeled efficiently by 

using variances in a segment to an SFM. 

3.2.2 Continuous Phoneme Recognition Experiments 

For the SFM with variances in a segment, continuous phoneme recognition experiments 

were performed. Figure 3.2 shows the results. The SFM with variances in a segment got 

higher recognition rates than an SFM without the variances. However, the SFM with 

variances in a segment go lower recognition rates than the conventional HMM. 

14 



Mixtures 

1 

2 

4 

8 

Table 3.1: Speaker-Dependent Phoneme Classification Experiments 

Diagonal Covariance Partial Covariance 

Conventional FMIX SMIX FMIX SMIX 

HMM 

83.5% 

89.9% 

92.5% 

94.2% 
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ONE TAU ONE 

85.6% 83.1% 87.6% 

90.0% 89.5% 91.3% 

92.8% 93.7% 94.0% 
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巨 1mixture models 
瓢 2mixture models 
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Figure 3.2: Results of continuous phoneme recognition. 
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Figure 3.3 shows variance values, each box represents a variance value of a duration 

control in the SFM. Like this figure, the SFM with variances in a segment got smaller 

variances than the SFM without the variances. However, the variance values are larger 

than the conventional HMM. 
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Figure 3.3: Variances for each duration control 
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Chapter 4 

Conclusion 

In this report, we proposed a segmental feature vector based on average values. To e-
valuate performance of a speech recognition, we performed experiments of a phoneme 
classification and a phoneme continuous recognition. In the phoneme classification ex-
periments, the SFM got higher recognition rates than the conventional HMM. In the 
continuous phoneme, the SFM got lower recognition rates than the conventional HMM. 
It is considered that an estimation performance of phoneme boundaries is lower than the 
conventional HMM. 

To solve the problem, we proposed an SFM with variances in a segment. The SFM 
got higher recognition rates than the SFM without the variances. However, the SFM with 
the variances got lower recognition rates than the conventional HMM also. 

Future works include improving a estimation performance of phoneme boundaries and 
evaluating speaker-independent speech recognition experiments. 
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