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2 Overview 

The goal of the Statistical Parsing Group has been, and continues to be, the development of an 

accurate and fast parser of unrestricted English text which supplies grammatical analyses that are 
extremely detailed both syntactically and semantically. Our conviction has been that only such 

thoroughgoing linguistic analyses have a chance of being genuinely useful over the entire spectrum 
of language-based applications within Artificial Intelligence. To be as useful as possible to this set 
of applications is the purpose of the work of our group. 

The present report will describe and detail my contributions to the actions we have taken in 

our attempt to realize our goal of producing a fast and accurate parser for unlimited-domain, 

unrestricted English text. In particular it concentrates on a number of advances that have been 
made in the tagger. 
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The organization of this report is as follows: Section 3 describes comprehensively the decision 

tree tagger that is now intregral to the parsing software our group is developing. The section then 

moves on to the work we have been actively pursuing to improve the accuracy of our machine 

tagging. Our ME tagging framework is presented together with a several experiments designed to 

evaluate the utility of adding a wide selection of new features. Section 4 presents the extension 

of this work into the domain of language modelling where we have shown that extrasentential 

information from parse trees in previous sentences can provide assistance to a language model. 

Section 5 describes some work we are pursuing to utilise existing treebank in the production of 

treebank according to the ATR General English Grammar. Finally, Section 6 provides an early 

glimse at the theoritical underpinnings of the sementic and syntactic statistical transfer-based 

translation system ("Down and Out"). 

3 Predicting Word Meaning and Function: Tagging 

3.1 Introduction: Building On The Successes To Date In Part-Of-Speech Tag-

gmg 

Part-of-speech tagging―using computers to automatically associate the words of a text with their 

grammatical parts of speech-has been one of the success stories of the Natural Language Processing 
:fi eld to date. Computers have equalled human accuracy at tagging the Wall Street Journal, Brown 
Corpus, Associated Press, and Canadian Hansard corpora.,1 using the rudimentary, 45-tag UPenn 

Tagset,2 and stripped-down versions of the fuller CLAWS tagset. 

But what will the ability to tag with these relatively low-level tagsets do for complex applica-

tions such as machine translation, sophisticated document-searching, and open-vocabulary speech 

recognition? The logical next move for part-of-speech tagging is to build on its successes and 

undertake more complex and challenging tagging tasks. 

Three directions for expansion seem indicated: (1) tag using much more detailed tagsets, in-

eluding a large-scale semantic classification as well as more syntactic det叫l;(2) test performance 

on treebanks which reflect the huge gamut of domains, styles, functions, and usages found among 
real-world applications; and (3) understand the magnitude of the unknown-word and unknown-tag 

problems, then overcome them. 

One way to confront all these problems is to tag using the 1,100,000-word ATR/Lancaster 

Treebank of American English (Black et al., 1996). Divided into roughly 950 documents of length 

30-3600 words, this treebank achieves a high degree of document variation along many different 

scales-document length, subject area, style, point of view, etc. (See Table 1 for titles of nine typical 

documents.) Text is tagged and parsed using the ATR English Grammar (2720 different tags). Each 

verb, noun, adjective and adverb tag includes one of about 60 semantic categories intended for any 

Standard American English text in any domain. Even the syntax-only version of the tagset has 

443 different tags. (Compare 45, 76, and 16:3 tags for the tagsets used in (Brill, 1994; Weischedel et 

al., 1993; Merialdo, 1994; Black et al., 1992).) The unknown-word and unknown-tag problems3 are 

quantified below and turn out to be much more severe than one might have thought. Unknown-tag 

difficulties are sufficiently acute in ATR/Lancaster-Treebank test sets to form a spur to solving the 

problem. 

1(Brill, 1994; Weischedel et al., 1993; Merialdo, 1994; Black et al., 1992; Marcus et al., 1993) 
2(Marcus et al., 1993) 
3viz., the word to be tagged (a) has never been encountered in the training corpus (unknown-word); or (b) is in 

the training corpus, but not with the tag which it needs to be assigned in the case at hand (unknown-tag) 
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Empire Szechuan Flier (Chinese take-out food) 
Catalog of Guitar Dealer 
UN Charter: Chapters 1-5 

Airplane Exit-Row Seating: Passenger Information Sheet 
Bicycles: How To Trackstand 

Government: US Goals at G7 

Shoe Store Sale Flier 

Hair-Loss Remedy Brochure 
Cancer: Ewing's Sarcoma Patient Information 

Table 1: Nine Typical Documents From ATR/Lancaster Treebank 

3.2 Real-World Part-Of-Speech Tagging 

In Section 2, we document the problems of tagging with larger, more sophisticated tagsets (2.1), 
and of tagging unknown words and words occurring with a given tag for the first time in test data 
(2.2), and show why it is important to solve these problems. Section 3 describes the solution we are 

attempting, using decision-tree modelling and discarding the notion of a dictionary entirely (3.1); 
and presents experimental results and future research plans (3.2). 

3.2.1 Tag Using Tagsets Of Increased Size And Complexity 

This subsection seeks to convey a "feel" for the increasing levels of detail of the tagsets utHized so 
far in tagging work-including the new ATR tagsets. Then, specific cases are discussed of syntactic 

details captured in the ATR tagset but not in tagsets used for prior tagging experiments, and it is 
shown why these details matter. 

Exemplifying The Tagsets Used So Far Tables 2-5 display the full text of a 1989 Wall Street 

Journal article entitled, "Enserch Tender Offer Results", tagged using first the full 2720-tag ATR 
tagset (ATR-Full); then the 443-tag syntax-only version of the ATR tagset (ATR-Sリntax);then 
the 163-tag mapped-down version of the CLAWS tagset which was used in (Black et al., 1992); 
then finally the 45-tag UPenn tagset used in (Brill, 1994). 
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(See footnotes for glosses of ATR-Full, ATR-Syntax,4 mapped-down CLAWS,5 and UPenn6 

tagged versions.) 

Expanded Syntactic Detail: The ATR-Syntax Tagset The ATR-Syntax tagset is a revised 

and expanded version of the CLAWS tagset. Three areas of ATR-Syntax's increased syntactic detail 

vis-a-vis previously-utilized tagsets are now discussed. 

All CLAWS ditto tags are mapped out of both the (Merialdo, 1994) and (Black et al., 1992) 

experiments, so that no published experiments have appeared to date with tagsets featuring ditto 

tags. In (Black et al., 1992), the "ditto endings" are dropped, so that e.g. wellぷ N121beingぶ N122

becomes welLNNl being_NNl. It is not clear how ditto tags were handled in (Merialdo, 1994); in 

any case, the full mapped-down 76-tag tagset is exhibited in (Merialdo, 1994), and no ditto tags 

are included. 

What is the advantage of marking certain multiword le泣calunits, and why is it more useful to 

have explicit ditto tags than mapped-down ones as in (Black et al., 1992)? One answer concerns 

what happens when one runs a parse召ontagged text. Briefly, tagging e.g. in」131response.1132 

to.1133, tells the parser to treat the three words as a single preposition, and so to ignore possible 

breakdowns like: "He nodded (in response) (to show he was following)", of the the sentence con-

t叫ningthe phrase when so tagged. This can turn out to be a significant aid to parsing accuracy, 

if ditto tags appear frequently in correctly-tagged text, since large numbers of mistaken parses are 

eliminated which might otherwise be considered correct by the parser. 

Dropping the "ditto" sequence markers, i.e. mapping the above to in.JI response.JI to.JI, as 

was done in (Black et al., 1992), goes part-way towards the above goal, in that it prevents parsing 

4Gloss (ATR-Full in italics; ATR-Syntax in boldface); tags common to both in boldface: . period; , comma; 
APP$ possessive pronoun, pre-nominal: my, our; AT article, either singular or plural: the, no; ATl singular 
article: a, every; CC coordinating conjunction; CCAND "and"; CCOR "or"; CSN "than" as conjunction: nicer 
than I thought; CST "that" as conjunction: that he is here; DAR comparative after-determiner: more, less; 
DB before-determiner: all, half; DDl singular determiner: this, another; II preposition; IIFROM "from"; IIOF 
"of"; IION "on"; IITO "to"; JJVVN past participle used as adjective; JJVVNINTER-ACT "inter-.action": the 
deposed Shah, the stolen car; JJVVNCONTROL "control": unsecured notes, management-led buy-out; MC  digital 
cardinal number: 2, .3; MCWORD21, MCWORD22 two-part cardinal number, in words: six hundred, three 
dozen; MDATEWORD date, in words: Monday, April; NNUNUM number followed by unit of measurement: 
6cc, Sin.; NNl singular common noun; NN1COMP-B "complex_behavior": bankruptcy, research; NN1MONEY 
"money": grant, fine; NN1PERS-ATT "personaLattribute": ability, nose; NN1SYSTEM-PT "system_part": cabi-
net (meeting), precinct (caucuses); NN1VERBAL-ACT "verbaLact": (the) claim, revelation; NN2 plural common 
noun; NN2ABS-UNIT "abstract_unit": alternates, breaks; NPl singular proper noun; NP1CITYNM "cityname": 
Toronto; NP1FRMNM "firmname": GE, Hitachi; NP1INSTIT "instit": School, Club; NP1INSTITNM "institname": 
Harvard, 4-H; NP1POSTFRMNM "postfirmnname": Inc., Ltd.; NP1PREPLCNM "preplacenarne": St. (Louis), Los 
(Alamos); RR general adverb; RRDEGREE "degree": absolutely, approximately; RRINTER-ACT "inter_action": 
jointly, closely; TO pre-infinitival element: to (walk), to (go); VBDR were; VBI infinitive form of verb "be": be; 
VMPRES "present" modal auxiliary: can, will; VVD simple past verb; VSA YIN GD "saying": claimed, stated; 
VVDINCHOATIVE "inchoative": achieved, created; VVDVERBAL-ACTSD "verbal-act", takes sentential comple-
rnent: implied, mentioned; VVI infinitive verb; VVIALTER "alter": adjust, slacken; VVIPROCESSIVE "processive": 
continue, break; VVN past participle; VVNJNTER-ACT "inter_action": (It was) sold, (They were) arrested. 

5Gloss (non-obvious tags only): NNJ organization noun, neutral for number; NNLl singular locative~oun; 
NNO numeral noun, neutral for number; NNU unit of measurement, neutral for number; NPDl singular weekday 
noun; RG degree adverb; (NB: "in response to" would be tagged II31,II32,II33 (three-word preposition), using the 
CLAWS tagset, of which the present tagset is a mapped-down version). 

6G!oss (non-obvious tags only): CD Cardinal number; IN Preposition or subordinating conjunction; MD  Modal; 
NN  Noun, singular or mass; NNP Proper noun, singular; NNS Noun, plural; PRP$ Possessive pronoun・; RB 
Adverb; TO to; VB Verb, base form; WDT Wh-determiner. 

7 a device for automatically diagramming sentences 
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WUKD IA訊 Lane Upenn 
Enserch 

NNVRMPPVRC l! D褐t(PEOVRMOGERSRBRD2TNEFMAE1R) L-) MANCMT) SD) 
NPI NNP 

sCaoid rp. 
NNJ NNP 
VVD VBD 

about RG RB 
12 MC CD 
million MCWORD22 NNO CD 
， 

C， C(OR) 
l ， 

or cc cc 
93 CD 
％ NNUNUM NNU NN 
， 

IIA， T (OF) 
， ， 

of IO IN 
the AT DT 

ptruabdleicld y 
RJNJJAJRNP(VOP(2VJNF($ A N) T侶iESNR-TU-AENCR-TA) CT) 

RR RB 
VVN VBN 

units IT) NN2 NNS 
of IO IN 
its A $ APP$ PRP$ 
limited JNJNVlV(SNY(CSTOENMT-RPOTL) ) 

JJ JJ 
partnership NNl NN 
， ， ， ， 
Enserch 

NPl1~ P霊OSTF靡RM 

NPl NNP 
Exploration NNl NNl NNP 
Partners NPl NM NN2 NNP 
Ltd. NPl POSTFRMNMj JJ NNP 
， 

V＇ BDR V， BDR VBD were 
tendered 

V胃閥VN (~I) NETREBRA-L-A C T ) 
VVN VBN 

m II IN 
response ACT) II NN 
to II TO 
an ATl DT 
offer NNl(INTER-ACT) NNl NN 
that CST CST WDT 
expired VMVDDA(T INCHOATIVE) VVD VBD 
Monday EWORD NPDl NNP 

Table 2: Sentence 1・

WORD A'l'且 Lane Upenn 
Enserch 

VNVPlD((FVREMRNBMAL) -A CTSD) 
NPl NNP 

said VVD VBD 
the AT AT DT 
tendered 

JNVJNMV2PV(ARNEB(INS S-TER-ACT) 
.JJ VBN 

units UNIT) NN2 NNS 
will V S VM MD 
raise VAVPPI($ ALTER) VVI VB 
its APP$ PRP$ 
ownership ANIIT N(OlF(P) ERS-ATT) NNl NN 
of IO IN 
the AT DT 
partnership NN贔l〇(S）YSTEM-PT) NNl NN 
to II II TO 
n1ore D DAR .J.JR 
than CSN CSN IN 
99 CD 
％ NNUNUM NNU NN 
from II(FROM) II IN 
87 CD 
％ NNUNUM NNU NN 

Table 3: Sentence 2・ 

VVU.K,LJ A'且t Lane Upe1m 
About MRRC (DEGREE) RG RB 
900,000 MC CD 
units NNM2P (ABS-UNIT) NN2 NNS 
will V RES VM MD 
continue VVI(PROCESSIVE) VVI VB 
to TO TO TO 
be VBI VBI VB 
publicly V悩RRV~(NINN(I)TN ER-ACT) RR RB 
traded TER-ACT) VVN VBN 
on II IN 
the AT DT 
New 

NP!1!~ MN雷OSTN!TE躍Y)) M) 

NPl NNP 
York NPl NPl NNP 
Stock NNl NNl NNP 
Exchange NPl NNLl NNP 
， ， 

＇ 
， 

Enserch VNPVlD((FSRAMYNINMG) ) 
NPl NNP 

said VVD VBD 

Table 4: _Sentence 3・ 

WUKLJ IA訊 -Cane Upenn 
Enserch NPlD (FRMNM) NPl NNP 
had VH VHD VBD 
offered VVN (INTER-ACT) VVN VBN 
one-half DB DB NN 
a ATl ATl DT 
share NN富l(ABS-UNIT) NNl NN 
of II IO IN 
its A APP$ PRP$ 
common NN(lA(MN ONEY) NNI .JJ 
and CC D) cc cc 
＄ ＄ 
1 MPRICE NNU CD 
m 

II(N憫IN!(M R 
II IN 

cash N ONEY) NNl NN 
for II)  IF IN 
each D DDl DT 
unit NNl(ABS-UNIT) NNl NN 

Table 5: Sentence 4・ 

WS.J Article "Enserch Tender Offer Re-
sults", Tagged Using ATR-Full, ATR-
Syntax, Mapped-Down CLAWS, And 
UPenn Tagsets. 

Within "ATR" column, portions of a tag 
present in ATR-Full but not ATR-Syntax 
are parenthesized. 

Note tokenization (word-splitting) differ-
ences between ATR, CLAWS on one hand, 
and UPenn on other: 99% and $1 are one 
word for the former tagsets, two words for 
the latter. 
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mistakes like the one above. But it does nothing to block errors such as partitioning the phrase, 

"the comments he made in response to this question" as if it were of the form, "the options he chose 

from among (in this case)" or, "the option he chose from (among (in this case) five possibilities)", 

etc. 
An extremely frequent and potentially havoc-wreaking ditto-tag scenario occurs where a mul-

tiword adverb occurs at the end of a sentence, especially a long sentence. Locutions like, "as_RR21 

welLRR21", "a_RR21 lot且R22","by玉R31and_RR32 large_RR33" are common in this position. If 

we denature the ditto tags into a series of two or three adverbs, the number of otherwise-preventable 

spurious parses now open to an unsuspecting parser can be huge. Even among short sentences there 

are man、yvariations: He (paid ($5000 precisely) (wholly willingly)); (He (paid ($5000 precisely) 

unhesitatingly) sometimes); (He (spent money (terribly freely)) always); etc. 

Digit-Based And Number-Word-Based Lexical Units: Price, Time, Etc. Among 

the 276 ditto tags in the ATR tagset, 170 are for digit-based or number-word-based lexical units, 

e.g. MPRICE31, MTIMEWORD22, MZIP21. In addition, the set of standard (non-ditto-tag) 
ATR tags contains 21 other tags for single-word lexical units of this type. All 191 of these tags 

are identical for the ATR-Full and ATR-Syntax tagsets. That is, in both, a full panoply of tags 

for prices, times, zipcodes, and the like, is included, along with a variety of tags for "just plain 

numbers", e.g. fifty_MCWORD21 three_MCWORD22, 1ぶ1:Cl,next_MDWORD, 325-92_MC-MC 

(e.g. a 325-92 vote). The rationale here is that it is feasible for a tagger to learn to demarcate 

multiword price, time, zipcode, etc., expressions, and that specifying the internal structure of 

these expressions is probably of lesser utility in general. What is quite important is to locate the 

boundaries of these wordstrings, which often include highly frequent words which if not rendered 

harmless in this fashion, might encourage significant numbers of misparses. For instance, the "a" 
of "a hundred fifty", the "the" of'、Tuesdaythe 19th", and the "bits" of "two bits" ,8 need to be 

identified as occurring inside numerical lexical items, if they are not to sow confusion. 

Are these tags "syntactic"? Merely to pose this question suggests a need for at least ten years 

of "Wittgensteinian therapy". If anyone wishes, we can change the name "ATR-Syntax tagset" 

to "ATR-Syntax-With-Some-Semantics tagset". The point about numbers, prices, times, etc., is 

that in many kinds of document, they are devilishly frequent. Hence one could conceive of uses for 
a tagger which accurately assigns this class of tag, within applications such as document scanning 

and information retrieval, among other places. 

Verbal vs. Ordinary Adjectives And Nouns Arguably a problem with the tagsets which 

have been used so far in large-scale tagging_experiments, has been the lack of an adequate treatment 

of verbal (as opposed to ordinary) adjectives and no'U.ns (forms 1,5,9 of Table 6; contrast forms 

2,6,10).9 CLAWS conflates forms 1 and 2; 5 and 6; and 9 and 10. UPenn conflates 5 and 6. It 
assigns two different tags to 1 and 2, and to 9 and 10; however, the tag chosen for 1 is also the tag 

for 3,4,7,8; and the tag chosen for 9 is also the tag for 11 and 12. In contrast, the ATR tagsets 

feature different tags for cases 1 and 2; 5 and 6; and 9 and 10; the tag for case 1 differs from all of 

tags 2-12; and the tag for case 9 differs from all other cases 1-12. 

Thus ATR can, but the other tagsets cannot, distinguish between "of a retiring_JJVVG em-

ployee" and "of a retiring_JJ nature"; between "a forced_JJVVN march" and "a forced_JJ smile";10 

8 American slang for 25 cents 
, Uses participial adjectives and geru.ndial nou.ns vs. a必ectives,nou.ns. 

10 Again, the UPenn tagset does make these two distinctions, but then throws away their utility by using for case 
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-ing/-ed Form ATR CLAWS UPENN 

(1) The sleeping baby JJVVG JJ VBG 

(2) An interesting idea JJ JJ JJ 

(3) Ed is running away VVG VVG VBG 

(4) Tl 1e man running away VVG VVG VBG 

(5) A sleeping pill NVVG NNl NN 

(6) He makes a good living NNl NNl NN 

(7) Finding gold is hard VVG VVG VBG 

(8) Speaking softly helps VVG VVG VBG 

(9) The offered amendment JJVVN JJ VBN 

(10) A farced smile JJ JJ JJ 

(11) Ed has sold his farm VVN VVN VBN 

(12) The man given $5 VVN VVN VBN 

Table 6: Tagging Verbal Adjectives and Nouns With ATR, CLAWS and UPenn Tagsets 

and between "Hog calling...NVVG is a dying art" and "Bill has found his calling...NNl". Further, 

both senses of Chomsky's sentence "Flying planes can be dangerous" receive the same tagging by 

UPenn, but not by ATR (nor by CLAWS).11 

Why does this matter? One place it matters is in machine translation. It makes sense that 

cases 1 and 9 should be translated differently from cases 2 and 10, since the former can be thought 

of as reflecting "regular lexical processes", whereas the latter are the result of "lexicalization", 

hence highly idiosyncratic. It would be absurd, in a process as complex as translation, to cl叫m

that "form x in English is translated via form y in French". But what we do find is a tendency to 

translate the two forms using a different gamut of structures. 

Informant work in French, Japanese, and Korean suggests a tendency to translate case-1 forms 

(JJVVGs) via participles, and case-2 forms (J J sending in -ing, often "lexicalized") with adjectives. 

Further, one author conducted an informal test using the 1986 Canadian Hansard French/English 

database,12 in which 10 JJVVGs and 10 JJs ending in -ing were selected at random from the 

ATR Treebank。 Thefirst "adjectival" occurrence of each of these words in the 1986 Hansards was 

located, along with its French translation. The structural types of the translations were noted and 

tabulated. The "translation profile" which emerged of the -ing-form JJs was very different from 

that of the JJVVGs. Whereas in 4 cases, the JJs were translated via unambiguous adjectives, this 

never occurred for the JJVVGs. In both cases, 3 words were translated via present participles (-ing 

forms); but other than that, the entire profile was totally different for the two cases. 

1 the same tag as for cases 3,4,7,8, and for case 9 the same tags as for cases 11, 12, causing much potential confusion 
to a parser, e.g. with the Chomskian chestnut quoted below. 

11 Further, UPenn tags identically all three senses of e.g. "Singing lessons can be fun." In practice, the UPenn 
WSJ Treebank apparently fails to consistently capture any patterns over -ed and -ing adjectives and nouns. There is 
only mild correspondance between the tagging decisions prescribed for these forms in the UPenn Tagging Guidelines 
(199.5 edition; contact sparnum@unagi.cis.upenn.edu), and those actually made in the WSJ Treebank. What results 
is relatively patternless labelling. For instance, in a 14,900-word sample of latest-version (0.7.5) WSJ Treebank, 
taken from three widely separated places in the corpus, only 93 of 1.59 -ed and -ing adjectives and nouns (.58%) were 
correctly labelled with respect to the Tagging Guidelines. 
12supplied by the Linguistic Data Consortium (sparnum@unagi.cis.upenn.ec1u) 
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Covering Database Covered Database Category of Coverage Coverage 

UPenn WSJ Treeba.nk ATR Treebank wordlist 75% 

ATR Treebank UPenn WSJ Treebank 75% 

UPenn WSJ Treebank ATR Treebank running words 94% 

ATR Treebank UPenn WSJ Treebank 94% 

UPenn WSJ Treebank ATR Treebank sentences 69% 
CUVOALD92 Dictionary ATR Treebank 60% 

CUVOALD92 Dictionary ATR Treebank 80% 
+ UPenn WSJ Treebank 

Table 7: Mut叫 CoverageStatistics For ATR and UPenn Treebanks 

3.2.2 Confront The Unknown-Word And -Tag Problems 

We know of no attempts to date to quantify the unknown-word and unknown-tag problems (viz., 

the word to be tagged (a) has never been encountered in the training corpus (unknown-word); or 
(b) is in the training corpus, but not with the tag which it needs to be assigned in the case at hand 

(unknown-tag).) 
Table 7 shows the findings of a detailed exploration of the unknown-word problem involving 

the ATR Treebank and the UPenn WSJ Treebank. It just happens that the UPenn WSJ and 

ATR vocabularies each have 75% coverage of the other. (I.e. 75% of the different words (types) 

occurring in ATR figure on the list of types occurring in the UPenn WSJ Treebank.) We took 

great care to make the comparison as meaningful as possible, by (a) mapping all words to low-
ercase before comparing the two wordlists; (b) omitting consideration of plain numbers and digit 

sequences, digit-based words except meaningful ones like 9-foot, "non-words" of many stripes (e.g. 
black@itl.atr.co.jp, hellooooooo); and (c) compensating for any "tokenization" differences between 

the two treebanks (e.g. UPenn converts "$500" into "$ 500", while ATR leaves it as is). Still, for 
various reasons, we can only guarantee the first two figures cited to within 5%. 

・we were even more careful in calculating the coverage for running words. I.e. what percent of 

all the word occurrences (tokens) in the UPenn WSJ Tree bank (over 1 million) figure on the list 
of types in the ATR Treebank? And vice-versa. Here our answer, 94%, is estimated to within 1%. 

And here again, it just happened that the same answer applied in both directions. Thus, if one 

selects a word at random from, say, the UPenn WSJ Treebank, the chances are 94 in 100 that it is 

in the list of words occurring in the ATR Treebank. 
So far, the unknown-word problem may appear fairly harmless. However, a further finding 

remains. We calculated the distribution of unknown words among sentences in the ATR Tree bank. 
I.e. we calculated the percentage of ATR-Treebank sentences within which one or more words 

are unknown to the UPenn ,vsJ Treebank. (To ensure that the non-covered words were "real 

words", we also removed from consideration in this test all last names and names of cities. This 
represents a decision that e.g. "Martin" and "Nevada" are "words", whereas, say, "Hogs bristle" 

and "Oshkosh" are not.) That percentage, estimated to within 1%, was 69%! That is, about 3 of 
every 10 ATR-Treebank sentences are not "covered" by the UPenn WSJ Treebank! This suggests 

that in real-world tagging, the unknown-word problem is a serious one. 
Further, we tested the coverage provided by a "dictionary", in a more conventional sense of the 
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Figure 1: Percentage of running words in ATR and UPenn test corpora unknown in or having tags 

not used in the training set, as a function of training-set vocabulary size. Words consisting entirely 
of digits or punctuation are ignored. ATR tr叫ningset, thus purged, contains 271,852 running 

words and a vocabulary of 21,627; UPenn, 885010 and 35,756, respectively. 

term than the one often used in tagging research.13 That is, we tested the sentence-wise coverage 

of the ATR Treebank, by the CUVOALD92 Dictionary,14 an expanded, computer-usable version, 

containing inflected forms, etc., of the Oxford Advanced Learner's Dictionary Of Current English1.5 

Again we omitted all last and city names, and again we verified carefully that only "real words" 

were counted in the comparison process. Results were that 60% of ATR-Treebank sentences were 

covered by CUVOALD92. Finally, even when we used both the UPenn-WSJ Treebank and the 

CUVOALD92 Dictionary, coverage of ATR-Treebank sentences was still only 80%. One in five 

sentences is not covered using this "dictionary". 

We have made a start on a similar analysis of the unknown-tag problem; our results are shown 

in Figure 1. Crucially, we do not yet have figures on the distribution of unknown tags over (ATR-

and UPenn-Treebank) sentences. However, one can see the effect of increasing tagset size on the 

simple incidence of unknown tags. For the ATR-Full tagset, unknown tags represent 8% of running 

words; for the UPenn tagset, around 1%. 

3.3 The Non-Dictionary 

We have attempted to tag using a more-detailed tagset, on a comprehensive treebank, and to 

confront the叫 mown-wordand unknown-tag issues. What tools did we use, and how far did we 

get? 

Y.le call our approach the Non-Dictionary, or dictionaryless tagger. Why throw away the die-

tionary? Given the magnitude of the unknown-word and unknown-tag problems, well-developed 

means are necessary anyway of dealing with these cases of dictionary failure. More generally, the 

13viz., a list of all words in some tagged corpus, and the tags with、vhicheach word is associated once or more 
14produced by Roger Mitton; available from: ftp://black.ox.ac.uk/ota/dicts/710 
15Third Edition, Oxford University Press, 1974. 
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wider-ranging the treebank being tagged, and the larger and more detailed the tagset employed, 

the more quixotic it is to think that the universe of tags can be listed for a given word: "pumpkin" 

becomes an adjective when it is listed as the color of a sweater in the L.L. Bean catalog; "The" and 

"An" turn out to be first names in a text discussing the teaching of English As A Second Language 

in Southeast Asia; "As" shows up as a plural proper noun, on the sports page, as the name of a 

baseball team. It does not follow that the dictionary is a hindrance; but by pushing a dictionaryless 

approach as far as possible, we can concentrate on unknown-word and -tag issues, and later factor 

in a dictionary if we wish. 

So, we in effect consider every word for tagging to be an unknown word. Instead of asking 

which tags have been seen for the word being tagged-in our training set, in an online dictionary, 

or in either place-we ask about: parts of words (sometimes formal affixes, sometimes not); certain 
"whole words"; the words surrounding the word being tagged; characteristics of the overall sentence; 

tags (or features of tags) which the tagger has already assigned; etc. We attempt to capture "trends" 
in a tagged tree bank, trends which have to do with groups of words but which are much more varied 

and subtle than the tendency of specific part-of-speech trigrams to occur, or of a given word to have 

been tagged a certain way a certain percent of the time.16 (Brill, 1994; Black et al., 1992) exploit 

somewhat similar trends, but, in the first case, a different modeling approach is used, and in the 

second case, while a similar model to ours is used, crucially, (a) a dictionary is employed, (b) only 

self-organized questions are asked of the data (see below), and (c) a simpler tagset (mapped-down 

CLAWS) is employed. ・ 
So far the questions we have utilized are mainly aimed at doing syntactic tagging. We are 

at work, however, on many additional questions for use in syntactic-plus-semantic tagging. We 

generate questions both by hand and via self-organized methods, and we apply these questions 

to our training data by means of statistical decision trees. The outcome of the tagging process is 

essentially a probability distribution for each tag sequence for a sentence, over all tags in the tagset. 

3.4 The Model 

3.4.1 Mututal Information (MI) Bits 

In addition to asking about affixes, capitalization, etc. of words in isolation, we can ask whether 

a given word is a member of a particular class of words口 Wedefine word classes using the self-

organizing approach of (Brown et al., 1992)-automatic clustering on large, untagged corpora, in 

this case 20,000,000 words of Wall-Street-Journal text. We assign each of the 70,000 most frequent 

words in this database to its own class, then iteratively merge the two classes which are most often 

used in similar situations. Specifically, if c; represents the ith class, the mutual information of class 

bigram pairs is: 

I三 LP(C□2)log 
p(c1心）

叩 2 p(c1)p(c砂・
(1) 

We find the pair of classes whose merger into a single class will least decrease the mutual information 

(Ushioda, 1996). By keeping track of the order in which classes are merged, we can define a binary 

tree which spans all levels of detail from one class per word to a single class for all words. vVhen 

these classes are utilized for constructing a decision-tree tagging model (see below), the decision 

tree can determine what level of detail to exploit. 

16as is relied upon in e.g. (Merialdo, 1994) 
17In asking both manually-created and self-organized questions, we follow (Mager~an, 1994). 
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3.4.2 Decision Trees 

Decision trees are a formalization of the game of "20 questions" (Breiman et al., 1984; Black et 

al., 1992). The model consists of a tree-structured set of questions, with a probability distribution 

associated with each leaf of the tree. To estimate a conditional distribution using the tree, follow a 

path from the root to a leaf based on answers to the questions at each node. The leaf's associated 

distribution is the estimator. Training a decision tree model requires two steps: first, picking a 

question to ask at each node; and second, determining a probability distribution for each leaf, using 

the distribution of events in the training set which reach each node. As discussed in (Black et al., 

1992), at each node we choose from among all possible questions (that is, all possible bits describing 

the current word and its context) that question which maximizes entropy reduction. 

Assigning a tag is a two-stage process. First, a decision tree assigns one of 20 "generalized 

parts-of-speech"18 (GPOS's) to the word based on a large set of word(-part) and context questions. 

Second, a separate decision tree assigns a tag to the word based on an additional large set of word(-

part) and context questions as well as its predicted GPOS. In this second stage, there is a separate 

decision tree for each GPOS. Breaking the process up this way allows us to concentrate on different 
word characteristics and different aspects of the context for different classes of tag. 

3.4.3 The Tagging Process 

Tagging proceeds from left to right, with the goal of maximizing th: jojnt P¥obability of the tag 

sequence for the entire sentence. That is, we find the set of tags {t1, i2, …，tN }, where ii is the 
predicted tag for the ith word of the N word sentence w1 Wz ... WN, which maximizes 

P 三 p(i凸，…tNI W1, W2, ... W N) 
N 

= IT p(iilw1, ... , w応 i1,... , ii-1) 
i=l 

)
、
`
_
ノ

2

3

 

(
（
‘
 

Decision trees are used to extract relevant features from the conditions in these distributions. Note 

that we have not invoked the Markov assumption here-the predicted tag for even the last word 

of the sentence can, in principle, depend on the first word and its predicted tag. Wh鴫 erthis 

dependence in fact shows up in our models depends on whether the decision trees find it to be 
important for the training set. If we represent the deterministic process of using the answers to 
context-dependent questions to find a leaf in the tree as: 

L,i三 leafto which the context w1, …, WNぷ，…，ii-1leads, (4) 

and the probability distribution associated with leaf L as PL, then the decision trees approximate 
the required conditional distributions by 

p(iilw1, ... , WN, i1, …, ii-1)~ 狐 (ii)

and the function our search procedure tries to maximize is, 

N 

II匝 (ii戸 P
i=l 

(.5) 

(6) 

18 actually a value for the feature "pos" for the tag, as our tagset is feature-based 
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One final technicality is that we split the tagging process into two parts, first assigning a GPOS 

using one decision tree, then a tag using a separate decision tree specialized for the predicted GPOS. 

Thus in practice, the GPOS prediction uses the conditions above, while tag prediction uses these 

conditions plus the GPOS predicted for the current word. 

・when the first word of a sentence is considered, the context consists of the words and their 

arrangement in the sentence. The decision tree predicts the probability of each GPOS for this word 

in this context. Next, for each predicted "generalized part-of-speech", the appropriate decision 

tree is used to evaluate the probability of each possible tag. A search over this space determines the 

overall ranking for each tag. Then, the next word is considered. Relevant questions now include 

both the tag-independent questions used for the first word of the sentence, and questions which 

depend on the tag of the first word. For each different tag assigned to the first word, a set of 

GPOS's and then a set of tags are predicted. A search over the space of first-and-second-word 

tag-pairs determines overall ranking. This procedure continues until every word in the sentence 
has been tagged. 

Our overall choice of the "best" tag for each word is intended to maximize the joint probability 
of the entire set of tags. This means we must evaluate the probability for a set of tag sequences 

which grows exponentially with the length of the sentence. We can either exhaustively enumerate 

and score all the cases (which is reasonable for a small tagset such as UPenn), or use a stack 

decoder algorithm (Bahl et al., 1983; Jelinek, 1969; Paul, 1990) to search through the most probable 
candidates (as is necessary for the ATR-Full tagset). 

3.4.4 Example Questions 

Here is a sampling of decision-tree questions created by our team grammarian. 

Context Questions: (1) For the word being tagged: (a) position within sentence; (b) quadrant 

of sentence; (2) Final word of sentence: (a) question mark; (b) period or exclamation point; (3) 

Anywhere in sentence: (a) by (b) than; (4) For word sequences including word being tagged: (a) 

Specific ditto-tag words; (b) Any of large list of likely contexts for particular tag or GPOS; (c) Any 

of list of likely contexts for particular word used in particular sense— this for many words which 
share a semantic identity. 

Word Questions: (asked of all words within two positions of the word being tagged, plus the 

word itself): (1) How many letters long (2) Contains "at-sign" (for em叫laddresses, etc.) (3) any 

kind of determiner, article, pronoun; (4) ends in probable adjective suffix, yet not on exception list; 
(.5) adjective in -wide (complex set of conditions: either the word "wide"; or word ending in -wide, 
and having either a hyperbolic prefix, or a number in digits or words as a substring); (6) on list of 

words, signalling start of subject noun phrase (and not on exception list); (7) has "time-adverb" 

prefix; (8) contains hyphenated preposition as "midstring"; (9) on list of synonyms for "remember"; 
(10) contains name of wild animal. 

3.5 Experimental Results 

The focus of the research being reported here is tagging with the ATR tagsets, on the 

ATR/Lancaster Treebank. As a point of reference for our results, however, we have also tagged 

the one publicly-available corpus, the UPenn Wall-Street-Journal Treebank, for which there are 

results utilizing various tagging approaches. 

UPenn training and testing sets used consist ofrandom sentences from the UPenn WSJ Treebank19 

19Version 0.75; annotated by the Penn Treebank Project; copyright University of Pennsylvania 
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Figure 2: Histograms showing relative frequency of occurrence of words as function of number of 

distinct tags with which word is associated. Not shown: >25 (ATR-Full). 

(1,072,755 words of training, 133,293 smoothing, 49,624 testing data).20 The random-document 

sets consist of randomly-selected documents from the ATR Treebank (319,903 words of training, 

38,667 smoothing, 60,667 testing data). ATR random-sentence sets consist of randomly-selected 

sentences from the ATR Treebank (388,058 words of training, 43,189 smoothing, 12,150 testing 

data). Clearly, the random-document sets represent a fairer approximation of real-world tagging 

tasks. 

Obviously, it is harder to tag with the ATR-Full tagset than with the UPenn tagset, but how 

much harder? vVe have tried to quantify the inherent difficulty of the various tasks for comparison. 

Table 8 displays the results of a "trivial tagger", which uses the most frequently seen tag for 

each known word, and the most frequent overall tag for every unknown word.21 This provides a 

convenient baseline for judging the difficulty of the tagging tasks. The fast column of Table 8 gives 

the tagging accuracy for this trivial tagger; the second and third show the perplexity of the training 

and testing data with respect to this model. We interpret the difference between perplexities for 

the training and testing sets to mean that we are still in a data-limited regime. In other words, the 

estimates differ in the case of ATR-Syntax and ATR-Full because the sample sizes are not large 

enough to provide stable estimates, whereas for UPenn they are. As a final means of comparing 

tagging difficulty among the three tagsets, we display Figure 2, which shows relative frequency of 

words with N tags, for each of the tagsets. The largest number of tags for a single word in the 

UPenn training set is 7, accounting for 0.1% of the running words. By contra.st, 21.9% of the 

running words in the ATR-Syntax training set and 33.5% of the running words in the ATR-Full 

training set have more than 7 tags. The maximum for ATR-Syntax is 19 tags (1.9% of running 

words; 8.3% for ATR-Full). 

Results紅 eshown in Table 9, in several categories:22 For "% correct" the set is every word in 

20This includes every token that receives a tag. Approximately 200,000 of these are punctuation tags. 
21 We considered using a Hidden Markov Model for these comparisons, but felt it would not be informative because 

of the complexity of the task. 
22(EB 1999): Again, as noted at the beginning of this section, these results are out of elate. Our current :figures for 
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ta.gset corpus trivial perplexity perplexity 

% correct training set testing set 

UPenn UPenn 89.6 1.18 1.16 

ATR sentence 82.4 1.30 1.19 

Syntax document 83.6 1.30 1.26 

ATR sentence 69.3 1.73 1.36 

Full document 69.3 1.72 1.57 

Table 8: "Trivial tagger": results 

tagset corpus % correct KWT KWKT KWUT uw 

UPenn UPenn 96.0 96.7 99.6 61.0 91.9 

ATR sentence 92.6 94.7 95.2 52.2 82.9 

Syntax document 90.8 93.8 94.6 41.2 79.6 

ATR sentence 76.5 79.4 83.6 8.5 63.7 

Full document 71.8 76.8 81.7 8.2 53.9 

Table 9: Non-Dictionary tagger: results 

the test set; for KWT, only known words— those words which also appeared in the training set; 
for KWKT, only known words with known tags; for KWUT, only known words with an unknown 

tag; for UW, only unknown words. The results indicate that our methods work reasonably well on 

unknown words, and unknown tags for known words, although not on unknown tags for the ATR-

Full tagset. To date, our efforts have largely concentrated on the ATR syntax tagset; we expect 

that work on questions suitable for the semantic parts of the ATR tagset will improve performance 

there. 

All the results shown here use the mutual information bits described in 3.4.1. As shown in 

Table 10, we have found that incorporating these bits yields a statistically significant improvement, 

even though the vocabulary they use is specific to the WSJ corpus.23 

Our plans for further research include exploring methods of factoring "dictionary" information 
(i.e. tag distribution by word in tr血 ingdata) into our models; manual question-creation for 

ATR-Full, while improving ATR-Syntax questions; and possibly clustering a much larger dataset 

for improved MI questions.24 

ATR Full, document test set, is 85% on our "golden standard" test set (see Section 3). 
23The WSJ data from which our MI bits were created included the million words corresponding to the UPenn 

WSJ Tree bank. Hence the 0.7% contribution of the MI bits to UPenn Tree bank tagging results should be interpreted 
cautiously. However, the performance of these bits on ATR-Treebank tasks, e.g. the 0.9% contribution to our ATR-
Syntax score, suggests that most or all of the 0. 7% contribution to the UPenn score would stand if we reclustered 
omitting these million words from the 20-million-word dataset used. 
24(EB 1999): All of these means of improving results are currently being pursued, with the exception of further 

MI bit clustering. 
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Table 10: Percentage of running words tagged correctly for models which ignore mutual information 

bits or which use only mutual information bits. Results using both mutual—information and human-
created questions shown for comparison. The ATR results are for the document-random test set. 

3.6 Experiments In Tagging Improvement (1) 

Nate: One of the directions we have pursued in our efforts to improve prediction of tag assignment 

in English text, is the use of information outside the sentence in which the word occurs which is 

being tagged. This subsection presents the first of two sets of experiments undertaken towards that 

end. The upshot of the two sets of experiments, both presented in this report, has been to encourage 

us in the direction of working extrasentential information into our routines for tag prediction, and 

based on the results of this first set of experiments, in parse prediction as well. The specific means 
we ultimately choose of incorporating such factors into our predictive software are currently being 

determined. In fine, expanding the sources of information which are interrogated in the effort to 

predict tag assignments is one theme of the work we will be pursuing in the successor laboratory 

to ITL, in order to fulfill our goal for the new research period, of realizing the potential of our 

linguistic analysis approach, by bringing prediction of tag and parse assignments up to near-human 

levels of accuracy. The original presentation of our experimental work follows immediately below: 

If a person or device wished to predict which words or grammatical constructions were about to 

occur in some document, intuitively one of the most helpful things to know would seem to be which 

words and constructions occurred within the last half-dozen or dozen sentences of the document. 

Other things being equal, a text that has so far been larded with, say, mountaineering terms, is a 

good bet to continue featuring them. An author with the habit of ending sentences with adverbial 

clauses of confirmation, e.g. "as we a.11 know", will probably keep up that habit as the discourse 

progresses. 
Within the field of language modelling for speech recognition, maintaining a cache of words 

that have occurred so far within a document, and using this information to alter probabilities 

of occurrence of particular choices for the word being predicted, has proved a winning strategy 

(Kuhn et al., 1990). Models using trigger pairs of words, i.e. pairs consisting of a "triggering" 

word which has already occurred in the document being processed, plus a specific "triggered" word 

whose probability of occurrence as the next word of the document needs to be estimated, have 

yielded perplexity25 reductions of 29~38% over the baseline trigram model, for a .5-million-word 

Wall Street Journal training corpus (Rosenfeld, 1996). 

This subsection introduces the idea of using trigger-pair techniques to assist in the prediction 

of rule and tag occurrences, within the context of natural-language parsing and tagging. Given 

the task of predicting the correct rule to associate with a parse-tree node, or the correct tag to 

associate with a word of text, and assuming a particular class of parsing or tagging model, we 

quantify the information gain realized by taking account of rule or tag trigger-pair predictors, i.e. 

25See Section 2. 
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pairs consisting of a "triggering" rule or tag which has already occurred in the document being 

processed, plus a specific "triggered" rule or tag whose probability of occurrence within the current 

sentence we wish to estimate. 

In what follows, subsection 4. 7 provides a basic overview of trigger-pair models. subsection 4.8 

describes the experiments we have performed, which to a large extent par叫lelsuccessful modelling 

experiments within the field of language modelling for speech recognition. In the first experiment, 

we investigate the use of trigger pairs to predict both rules and tags over our full corpus of around 

a million words. The subsequent experiments investigate the additional information g叫nsaccruing 

from trigger-pair modelling when we know what sort of document is being parsed or tagged. 

We present our experimental results in subsection 4.9, and discuss them in subsection 4.10. In 
subsection 4.11, we present some example trigger pairs; and we conclude, with a glance at projected 

future research, in subsection 4.12. 

3. 7 Background 

Trigger-pair modelling research has been pursued within the field of language modelling for 

speech recognition over the last decade (Beeferman et al., 1997; Della Pietra et al., 1992; Kupiec, 
1989; Lau, 1994; Lau et al., 1993; Rosenfeld, 1996). 

Fundamentally, the idea is a simple one: if you have recently seen a word in a document, then 
it is more likely to occur again, or, more generally, the prior occurrence of a word in a document 

affects the probability of occurrence of itself and other words. 

More formally, from an information-theoretic viewpoint, we can interpret the process as the 

relationship between two dependent random variables. Let the outcome (from the alphabet of 

outcomes Ay) of a random variable Y be observed and used to predict a random variable X (with 
alphabet Ax). The probability distribution of X, in our case, is dependent on the outcome of Y. 

The average amount of information necessary to specify an outcome of X (measured in bits) 
is called its entropy H(X) and can also be viewed as a measure of the average ambiguity of its 

outcome. .26 

H(,,~) = L -P(ぉ）log2 P(x) (7) 
xEAx 

The nmtual information between X and Y is a measure of entropy (ambiguity) reduction of X 
from the observation of the outcome of Y. This is the entropy of X minus its a posteriori entropy, 

having observed the outcome of Y. 

I(X;Y) = H(X)-H(XIY) 

= L L P(x,y)log2 P(x, y) 

ぉEAxyEAy P(x)P(y) 
(8) 

The dependency information between a word and its history rnay be captured by the trigger 

pair.27 A trigger pair is an ordered pair of words t and w. Knowledge that the trigger word t has 

26 A more intuitive view of entropy is provided through perpleぉity(Jelinek et al., 1977) which is a measure of the 
number of choices, on average, there are for a random variable. It is defined to be: 2H(X). 
27For a thorough description of trigger-based modelling, see (Rosenfeld, 1996). 
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occurred within some window of words in the history, changes the probability estimate that word 

w will occur subsequently. 

Selection of these triggers can be performed by calculating the average mutual information 

between word pairs over a training corpus. In this case, the alphabet Ax = { w, 而}, the presence 
or absence of word w; similarly, Ay = { t, t}, the presence or absence of the triggering word in the 
history. 

This is a measure of the effect that the knowledge of the occurrence of the triggering word 

t has on the occurence of word w, in terms of the entropy (and therefore perplexity) reduction 

it will provide. In all our experiments, the first term of equation (3) makes by far the largest 

contribution. Clearly, in the absence of other context (i.e. in the case of the a priori distribition of 

X), this information will be additional. However, once related context叫 informationis included 

(for example by building a trigram model, or, using other triggers for the same word), this is no 

longer strictly true. 
Once the trigger pairs are chosen, they may be used to form constraint functions to be used in a 

ma泣mum-entropymodel, alongside other constraints. Models of this form are extremely versatile, 

allowing the combination of short-and long-range information. To construct such a model, one 

transforms the trigger pairs into constraint functions f(t, w): 

f(t,w) = { 1 :e:,E:~;〗竺 ;nd
0 otherwise 

(9) 

The expected values of these functions are then used to constrain the model, usually in combina-

tion of with other constraints such as similar functions embodying uni-, bi-and trigram probability 

estimates. 

(Beeferman et al., 1997) models more accurately the effect of distance between triggering and 
triggered word, showing that for non-self-triggers,28 the triggering effect decays exponentially with 

distance. For self-triggers,29 the effect is the same except that the triggering eザectis lessened 

within a short range of the word. Using a model of these distance effects, they are able to improve 

the performance of a trigger model. 

vVe are unaware of any work on the use of trigger pairs in parsing or tagging. In fact, we have 

not found any previous research in which extrasentential data of any sort are applied to the problem 

of parsing or tagging. 

3.8 The Experiments 

3.8.1 Experimental Design 

In order to investigate the utility of using long-range trigger information in tagging and parsing 

tasks, we adopt the simple mutual-information approach used in (Rosenfeld, 1996). We carry over 

into the dom叫nof tags and rules an experiment from Rosenfeld's paper the details of which we 

outline below. 

The idea is to measure the information contributed (in bits, or, equivalently in terms of per-

plexity reduction) by using the triggers. Using this technique requires special care to ensure that 

information "added" by the triggers is indeed additional information. 

28i.e. words which trigger words other than themselves 
29i.e. words which trigger themselves 
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For this reason, in all our experiments we use the unigram model as our base model and we 

allow only one trigger for each tag (or rule) token.30 We derive these unigram probabilities from 

the training corpus and then calculate the total mutual information gained by using the trigger 

pairs, again with respect to the tra.ining corpus. 

¥N'hen using trigger pairs, one usually restricts the trigger to occur within a certain window 

defined by its distance to the triggered token. In our experiments, the window starts at the 
sentence prior to that containing the token and extends back W (the window size) sentences. The 

choice to use sentences as the unit of distance is motivated by our intention to incorporate triggers 

of this form into a probabilistic treebank-basecl parser and tagger, such as (Black et al., 1998; Black 

et al., 1997; Brill, 1993; Brill, 1994; Collins, 1996; Jelinek et al., 1994; Magerman, 1995; Marquez 

et al., 1997; Ratnaparkhi, 1997). All such parsers and taggers of which we are aware use only 

intra.sentential information in predicting parses or tags, and we wish to remove this information, 

as far as possible, from our results 31. The window was not allowed to cross a document boundary. 

The perplexity of the task before taking the trigger-pair information into account for tags was 

224.0 and for rules was .57.0. 

The characteristics of the training corpus we employ are given in Table 12. The corpus, a 

subset32 of the ATR/Lancaster General-English Tree bank (Black et al., 1996), consists of a sequence 

of sentences which have been tagged and parsed by human experts in terms of the ATR English 
Grammar, a broad-coverage grammar of English with a high level of a叫 yticdetail (Black et 

al., 1996; Black et al., 1997). For instance, the tagset is both semantic and syntactic, and includes 

around 2000 different tags, which classify nouns, verbs, adjectives and adverbs via over 100 semantic 

categories. As examples of the level of syntactic detail, exhaustive syntactic and semantic analysis 

is performed on all nominal compounds; and the full range of attachment sites is available within 

the Grammar for sentential and phrasal .modifiers, and are used precisely in the Treebank. The 

Treebank actually consists of a set of documents, from a variety of sources. Crucially for our 

experiments (see below), the idea33 informing the selection of (the roughly 2000) documents for 

inclusion in the Tree bank was to pack into it the maximum degree of document variation along many 

different scales-document length, subject area, style, point of view, etc. — but without establishing 
a single, predetermined classification of the included documents.34 

In the first experiment, we examine the effectiveness of using trigger pairs over the entire train-

ing corpus. At the same time we investigate the effect of varying the window size. In additional 

experiments, we observe the effect of partitioning our training dataset into a few relatively homo-

geneous subsets, on the hypothesis that this will decrease perple泣ty.It seems reasonable that in 
different text varieties, different sets of trigger pairs will be useful, and that tokens which do not 

have effective triggers within one text variety may have them in another.3.5 

To investigate the utility of partitioning the dataset, we construct a separate set of trigger pairs 

for each class. These triggers are only active for their respective class and are independent of each 

30By rule assignment, we mean the task of assigning a rule-name to a node in a parse tree, given that the constituent 
boundaries have already been defined. 
31This is not completely possible, since correlations, even if slight, will exist between intra-and extrasentential 

information 
32specifically, a roughly-900,000-word subset of the full ATR/Lancaster General-English Treebank (about 1.05 

million words), from which all 150,000 words were excluded that were tree banked by the two least accurate 
ATR/Lancaster tree bankers (expected hand-parsing error rate 32%, versus less than 10% overall for the three re-
maining tree bankers) 
33see (Black et al., 1996) 
八 swas done, say, in the Brown Corpus 
35Related work in topic-specific trigram modelling (Lau, 1994) has led to a reduction in perplexity. 
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1868 documents 

80299 sentences 

904431 words (tag instances) 

1622664 constituents (rule instances) 

1873 tags utilized 

907 rules utilized 

11.3 words per sentence, on average 

Table 11: Characteristics of Training Set (Subset of ATR/Lancaster General-English Treebank) 

other. Their total mutual information is compared to that derived in exactly the same way from 

a random partition of our corpus into the same number of classes, each comprised of the same 

number of documents. 

Our training data partitions naturally into four subsets, shown in Table 13 as Partitioning 

1 ("Source"). Partitioning 2, "List Structure", puts all documents which contain at least some 

HTML-like "List" markup (e.g. LI (=List Item))36 in one subset, and all other documents in 

the other subset. By merging Partitionings 1 and 2 we obtain Partitioning 3, "Source Plus List 

Structure". Partitioning 4 is "Source Plus Document Type", and contains 9 subsets, e.g. "Letters; 
diaries" (subset 8) and "Novels; stories; fables" (subset 7). With 13 subsets, Partitioning 5, "Source 

Plus Domain", includes e.g. "Social Sciences" (subset 9) and Recreation (subset 1). Partitionings 4 
and 5 were effected by actual inspection of each document, or at least of its title and/or summary, 
by one of the authors. The reason we included Source within most partitionings was to determine 

the extent to which information gains were additive.37 

3.9 Experimental Results 

3.9.1 Window Size 

Figure 1 shows the effect of varying the window size from 1 to 500 for both rule and tag tokens. 

The optimal window size for tags was approximately 12 sentences (about 13.5 words) and for rules 

it was approximately 6 sentences (about 68 words). These values were used for all subsequent 

experiments. It is interesting to note that the curves are of similar shape for both rules and tags 

and that the optimal value is not the largest window size. Related effects for words are reported in 

(Lau, 1994; Beeferman et al., 1997). In the latter paper, an exponential model of distance is used 

to penalize large distances between triggering word and t1、iggeredword. The variable window used 

here can be seen as a simple alternative to this. 

One explanation for this effect in our data is, in the case of tags, that topic changes occur in 

documents. In the case of rules, the effect would seem to indicate a short span of relatively intense 

stylistic carryover in text. For instance, it may be much more important, in predicting rules typical 

of list structure, to know that similar rules occurred a few sentences ago, than to know that they 

occurred dozens of sentences back in the document. 

36 All documents in our training set are marked up in HTML-like annotation. 
37For instance, compare the results for Partitionings 1, 2, and 3 in this regard. 
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Part. 1: Sou、rce Part. 4: Source Plus Document Type Part. 5: Source Plus Doma切

Class Name Sents Class Name Sents Class Name Sen 
1: Assoc. Press, WSJ 8851 1: Legislative (incl. Src.2) 5626 1: Recreation 35L 
2: Canadian Hansards 5002 2: Transcripts (incl. Src.4) 44287 2: Business 20t 
3: General English 23105 3: News (incl. most Src.l) 8614 3: Science, Techn. 40] 

4: Travel-domain dialogs 43341 4: Polemical essays 5160 4: Humanities 22~ 
Part. 2: List Structure 5: Reports; FAQs; listings 11440 5: Daily Living 8[ 

Class Name Sents 6: Idiom example sents 666 6: Health, Education 16~ 
1: Contains lists 14147 7: Novels; stories; fables 741 7: Government, Polit. 17( 
2: Contains no lists 66152 8: Letters; diaries 1997 8: Travel 26E 
Part. 3: Source Plu.s List Structure 9: Legal cases; cnsttutns 1768 9: Social Sciences 36] 

Class Name Sen ts 10: Idiom xmp. sents 6E 
1: Assoc. Press, WSJ 8851 11: Canad. Hansards 50( 
2: Canadian Hansards 5002 12: Assa. Press, WSJ 88t 
3: Contains lists (Gen.) 11998 13: Travel dialogs 433L 
4: Contains no lists (Gen.) 11117 

.5: Travel-domain dialogues 43341 

Table 12: Training Set Partitions 
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Figure. 3: Mutual information gain varying window size. 
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Partitioning Perplexity reduction for tags Perplexity reduction for rules 
Meaningful partition Random Meaningful partition Random 

1: Source 28.40% 16.66% 15.44% 6.30% 
2: List Structure 20.39% 18.71% 10.55% 7.46% 
3: Source Plus List Structure 28.74% 17.12% 15.61% 6.50% 
4: Source Plus Document Type 30.11% 18.15% 16.20% 6.82% 
5: Source Plus Domain 31.55% 19.39% 16.60% 7.34% 

Table 13: Perplexity reduction using class-specific triggers to predict tags and rules 

＃ Triggering Tag Triggered Tag I.e. Words Like These: Trigger Words Like These: 

1 NPlLOCNM NPlSTATENM Hill, County, Bay, Lake Utah, Maine, Alaska 
＼ 

2 JJSYSTEM NPlORG national, federal, political Party, Council, Departmen1 

3 VVDINCHOATIVE VVDPROCESSIVE caused, died, made, failed began, happened, became 
4 IIDESPITE CFYET despite yet (conjunction) 
5 DD PPH02 any, some, certain them 

6 PNlPERSON LEBUT22 everyone, one, anybody (not) only, (not) just 
7 ... MPRICE ...'.......'............. $452,983,000, $10,000 

8 IIATSTANDIN MPHONE22 at (sent.-final, + /-":") 913-3434 (follows area ed.) ， IIFROMSTANDIN MZIP from (sent.-:final, +/-":") 22314-1698 (postal zipcd.) 

10 NNUNUM NNlMONEY 25%, 12", 9.4m3 profit, price, cost 

Table 14: Selected Tag Trigger-Pairs, ATR/Lancaster General-English Treebank 

3.9.2 Class-Specific Triggers 

Table 14 shows the improvement in perplexity over the base (unigram) tag and rule models 
for both the randomly-split and the hand-partitioned training sets. In every case, the meaningful 

split yielded significantly more information than the random split. (Of course, the results for 
randomly-split training sets are roughly the same as for the unpartitioned training set (Figure 6)). 

3.10 Discuss1011 

The ma.in result of the work reported in this subsection is to show that analogous to the case of 

words in language modelling, a. significant amount of extra.sentential information can be extracted 
from the long-range history of a document, using trigger pairs for tags and rules. Although some 

redundancy of information is inevitable, we have taken ca.re to exclude as much information as 
possible that is already available to (intra.sentential-data-based, i.e. all known) parsers and taggers. 

Quantitatively, the studies of (Rosenfeld, 1996) yielded a total mutual information gain of 0.38 
bits, using Wall Street Journal data, with one trigger per word. In a parallel experiment, using the 

same technique, but on the ATR/Lancaster corpus, the total mutual information of the triggers 

for tags was 0.41 bits. This figure increases to 0.52 bits when tags further away than 135 tags (the 
approximate equivalent in words to the optimal window size in sentences) are excluded from the 
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＃ A Construction Like This: Triggers A Construction Like This: 

la』 Interrupter Phrase-> * Or - Sentence-> Interr. P+Phrasal Constit (No11-S) 

lb Example: *, - Example: * DIG. AM/FM TUNER 

2a VP-> Verb+lnterrupter Phrase+Obj/Compl Interrupter Phrase-> , 十Interrupter+,

2b Example: starring— surprise, surprise-men Example: , according to participants , 

3a Noun Phrase-> Simple Noun Phrase+Numerical Numerical-> Numcl +PrepP with Numcl Obj 

3b Eぉample:Lows around 50 Example: (Snow level) 6000 to 7000 

4a Verb Phrase-> Adverb Phrase+ Verb Phrase Auxiliary VP-> Model/ Auxilliary Verb+Not 
4b Example: just need to understand it Example: do not 

5a Question-> Be+NP+Object/Complement Quoted Phrasal Constit -> "+Phrsl Constit+" 

5b Example: Is it possible? Example: "Mutual funds are back." 

Table 1.5: Selected Rule Trigger-Pairs, ATR/Lancaster General-English Treebank 

# Triggering Tag Triggered Tag I.e. Words Like These: Trigger Words Like These: 

; 1 悶言誓~ I悶言雷悶 II 言悶~:言ごtakeI悶悶：］・ニ悶：：
For training噸 etdocument class Recreation (1) vs. for unpartitioned training set (2) 

31 VVOALTER I NN2SUBSTANCE II inhibit, affect, modify I tumors, drugs, agents 
4 JJPHYS-ATT NN2SUBSTANCE fragile, brown, choppy I pines, apples, chemicals 
For training-set document class Health And Education (3) vs. for unpartitioned training set (4) 

~, 訂闘嘉誓ぷFRMNM I ばば盆悶~~~ II 『:2~丸芯：:: こり~:~e I~:. 心~::s1:芯芦/:〗::g~:~c;;ices
For training-set document class Business (5) vs. for unpartitioned training set (6) 

こ I~~心 I~~2 . II~>;~1:lrnt, another, each I :~:~~~ 
For training-set document class Travel Dialogues (7) vs. for unpartitioned traznzng set (8) 

Table 16: Selected Tag Trigger-Pairs, ATR/Lancaster General-English Treebank: Contrasting 

Trigger-Pairs Arising From Partitioned vs. Unpartitioned Training Sets 
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history. For the remainder of our experiments, we do not use as part of the history the tags/rules 

from the sentence cont血 ingthe token to be predicted. This is motivated by our wish to exclude 

the intrasentential information which is already available to parsers and taggers. 

In the case of tags, using the optimal window size, the gain was 0.31 bits, and for rules the 

information gain was 0.12 bits. Although these figures are not as large as for the case where 

intrasentential information is incorporated, they are sufficiently close to encourage us to exploit 

this information in our models. 

For the case of words, the evidence shows that triggers derived in the same manner as the 

triggers in our experiments, can provide a substantial amount of new information when used in 

combination with sophisticated language models. For example, (Rosenfeld, 1996) used a maximum-

entropy model trained on 5 million words, with only trigger, uni-, bi-and trigram constr叫nts,to 

measure the test-set perpe泣tyreduction with respect to a "compact" backoff trigram model, a 

well-respected model in the language-modelling field. When the top six triggers for each word were 

used, test-set perple泣tywas reduced by 25%. Furthermore, when a more sophisticated version of 

this model38 was applied in conjunction with the SPHINX II speech recognition system (Huang et 

叫.,1993), a 10-14% reduction in word error rate resulted (Rosenfeld, 1996). We see no reason why 

this effect should not carry over to tag and rule tokens, and are optimistic that long-range trigger 

information can be used in both parsing and tagging to improve performance. 

For words (Rosenfeld, 1996), self-triggers—words which triggered themselves-were the most 
frequent kind of triggers (68% of all word triggers were self-triggers). This is also the case for tags 
and rules. For tags, 76.8% were self-triggers, and for rules, 96.5% were self-triggers. As in the case 

of words, the set of self-triggers provides the most useful predictive information. 

3.11 Some Examples 

We will now explicate a few of the example trigger pairs in Tables 15-17. Table 15 Item 7, for 

instance, captures the common practice of using a sequence of points, e.g. …….... , to separate each 
item of a (price) list and the price of that item. Items 8 and 9 are similar cases (e.g. "contact/call 

(someone) at:" + phone number; "available from:" + source, typically including address, hence 
zip code). These correlations typically occur within listings, and, crucially for their usefulness as 

triggers, typically occur many at a time. 

When triggers are drawn from a relatively homogeneous set of documents, correlations emerge 

which seem to reflect the character of the text type involved. So in Table 17 Item 5, the proverbial 

equation of time and money emerges as more central to Business and Commerce texts than the 

different but equally sensible linkup, within our overall training set, between business corporations 

and money. 

Turning to rule triggers, Table 16 Item 1 is more or less a syntactic analog of the tag examples 

Table 15 Items 7-9, just discussed. What seems to be'captured is that a particular style of listing 

things, e.g. * + listed item, characterizes a document as a whole (if it contains lists); further, 

listed items are not always of the same phrasal type, but are prone to vary syntactically. The same 

document that contains the list item "* DIG. AM/FM TUNER", for instance, which is based on 

a Noun Phrase, soon afterwards includes"* WEATHER PROOF" and"* ULTRA COMPACT", 

which are based on Adjective Phrases. 

Finally, as in the case of the tag trigger examples of Table 7, text-type-particular correlations 

emerge when rule triggers are drawn from a relatively homogeneous set of documents. A trigger 

38trained on 38 million words, and also employing distance-2 N-gram constraints, a unigram cache and a conditional 
bigram cache (this model reduced perplexity over the baseline trigram model by 32%) 
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pair of constructions specific to Class 1 of the Source partitioning, which contains only Associated 

Press newswire and Wall Street Journal articles, is the following: A sentence containing both 

a quoted remark and an attribution of that remark to a particular source, triggers a sentence 

containing simply a quoted remark, without attribution. (E.g. "The King was in trouble," Wall 

wrote. triggers "This increased the King's bitterness.".) This correlation is essentially absent in 

other text types. 

3.12 Conclus1011 

In this subsection, we have shown that, as in the case of words, there is a substantial amount of 

information outside the sentence which could be used to supplement tagging and parsing models. 

We have also shown that knowledge of the type of document being processed greatly increases the 
usefulness of triggers. If this information is known, or can be predicted accurately from the history 
of a given document being processed, then model interpolation techniques (Jelinek et al., 1980) 

could be employed, we anticipate, to exploit this to useful effect. 

Future research will concentrate on incorporating trigger-pair information, and extrasentential 
information more generally, into more sophisticated models of parsing and tagging.39 An obvious 

first extention to this work, for the case of tags, will be, following (Rosenfeld, 1996), to incorporate 

the triggers into a maximum-entropy model using trigger pairs in addition to unigram, bigram and 

trigram constraints. Later we intend to incorporate trigger information into a probabilistic English 
parser/tagger which is able to ask complex, detailed questions about the contents of a sentence. 

From the results presented here we are optimistic that the additional, extrasentential information 

provided by trigger pairs will benefit such parsing and tagging systems. 

3.13 Experiments In Tagging Improvement (2) 

Note (EB 1999): The work in the present subsection represents a followup to that of the previous 

subsection. Again, the upshot, for our work, is to encourage us to incorporate extrasentential 

inofrmation into our tag prediction, in one form or another, though not necessarily in any form 

directly linked to the work presented here. The original report of this work follows directly below: 

It appears intuitively that information from earlier sentences in a document ought to help reduce 

uncertainty as to a word's correct part-of-speech tag. This is especially so for a large semantic 

and syntactic ta.gset such as the roughly-3000-tag ATR Genera.I English Tagset (Black et al., 

1996; Black et al., 1998). And in fact, (Black et al., 1998) demonstrate a significant "tag trigger-

pair" effect. That is, given that certain "triggering" tags have already occurred in a document, 

the probability of occurrence of specific "triggered" tags is raised significantly-with respect to the 

unigram tag probability model. Table 17, taken from (Black et al., 1998), provides examples of the 

tag trigger-pair effect. 

Yet, it is one thing to show that extrasentential context yields a gain in information with respect 

to a unigram tag probability model. But it is another thing to demonstrate that extrasentential 

context supports an improvement in perple泣tyvis-a-vis a part-of-speech tagging model which 

employs state-of-the-art techniques: such as, for instance, the tagging model of a maximum entropy 

tag-n-gram-based tagger. 

The present subsection undertakes just such a demonstration. Both the model underlying a 

standard tag-n-gram-based tagger, and the same model augmented with extra.sentential contextual 

39(EB 1999): As stated in the opening note to this entire subsection, this work is ongoing. 
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＃ Triggering Tag Triggered Tag I.e. Words Li~e: Trigger Words Like: 

1 NPlLOCNM NPlSTATENM Hill, County, Bay Utah, Maine, Alaska 
2 JJSYSTEM NPlORG national, federal Party, Council 

3 VVDINCHOATIVE VVDPROCESSIVE caused, died, made began, happened 
4 IIDESPITE CFYET despite yet (conjunction) 

5 DD PPH02 any, some, certain them 
6 PNlPERSON LEBUT22 everyone, one (not) only, (not) just 
7 ．．． MPRICE ... , ....... , ・・・・・・・・・・・・・ $452,983,000, $10,000 
8 IIATSTANDIN MPHONE22 at (sent. —恥al) 913-3434 ， IIFROMSTANDIN MZIP from (sent.-final) 22314-1698 (zip) 
10 NNUNUM NNlMONEY 25%, 12", 9.4m3 profit, price, cost 

Table 17: Selected Tag Trigger-Pairs, ATR General-English Treebank 

information, are trained on the 850,000-word ATR General English Treebank (Black et al., 1996), 
and then tested on the accompanying 53,000-word test treebank. Performance differences are 

measured, with the result that semantic information from previous sentences within a document is 
shown to help significantly in improving the perplexity of tagging with the indicated tagset. 

In what follows, subsection 4.14 provides a basic overview of the tagging approach used (a 
ma豆mumentropy tagging model employing constraints equivalent to those of the standard hidden 

Markov model). Section 4.15 discusses and offers examples of the sorts of extrasententially-based 
semantic constraints that were added to the basic tagging model. Section 4.16 describes the ex-

periments we performed. Section 4.17 details our experimental results. Section 4.18 glances at 
projected future research, and concludes. 

3.14 Tagging Model 

3.14.1 ME  Model 

Our tagging model is a maximum entropy (ME) model of the following form: 

K 

p(tlh) ='Y II叶k(h,t)Po 

k=O 

where: 

-t is tag we are predicting; 

-h is the history (all prior words and tags) of t; 

--y is a normalization coefficient that ensures: 泣。-yTIに。a{k(h,t)Po= l; 

-L is the number of tags in our tag set; 

-ak is the weight of trigger fぃ

-f k are trigger functions and f廷{O,l}; 
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-p0 is the default tagging model (in our case, the uniform distribution, since all of the infor-

ma.ti on in the model is specified using ME constraints). 

The model we use is similar to that of (Ratnaparkhi, 1996). Our baseline model shares the 
following features with this tagging model; we will call this set of features the basic n-gram tagger 

constraints: 

l. w=X&t=T 

2. L1 = X & t = T 

3. L2L1 = XY & t = T 

where: 

-w is word whose tag we are predicting; 

-t is tag we are predicting; 

-L1 is tag to the left of tag t; 

-L2 is tag to the left of tag L1; 

Our baseline model differs from Ratnaparkhi's in that it does not use any information about 
the occurrence of words in the history or their properties (other than in constraint 1). Our model 

exploits the same kind of tag-n-gram information that forms the core of many successful tagging 
models, for example, (Kupiec, 1992), (Merialdo, 1994), (Ratnaparkhi, 1996). We refer to this type 

of tagger as a tag-n-gram tagger. 

3.14.2 Trigger selection 

We use mutual information (MI) to select the most useful trigger pairs (for more details, see 
(Rosenfeld, 1996)). That is, we use the following formula to gauge a feature's usefulness to the 

model: 

where: 

MI(.s,t) = P(.s,t)logP(tls) 

+ P(.s, t) log PP(i_ttls) ) 

+ P(百，t)log血P(t) 

+ P(百，t)log皿J'(t) 
P(t) 

-t is the tag we are predicting; 

-s can be any kind of triggering feature. 

For each of our trigger predictors, s is defined below: 

Bigram and trigram triggers : s is the presence of a particular tag as the first tag in the bigram 

pair, or the presence of two particular tags (in a particular order) as the first two tags of a 

trigram triple. In this case, t is the presence of a particular tag in the final position in the 

n-gram. 
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(_(Please_RRCONCESSIVE Mention_VVIVERBAL-ACT this_DD1 coupon_NN1DOCUMENT 

訂hen_CSWHENordering_VVGINTER-ACT 

OR_CCOR ONE_MC1¥nJDRD FREE_JJMONEY FANTAIL_NN1ANIMAL SHRIMPS_NN1FDDD 

Figure 4: Two ATR Treebank Sentences from Chinese Take-Out Food Flier (Tagged Only -i.e. 

Parses Not Displayed) 

Extrasentential tag triggers : sis the presence of a particular tag in the extrasentential history. 

Question triggers : s is the boolean answer to a question. 

This method has the advantage of finding good candidates quickly, and the disadvantage of 

ignoring any duplication of information in the features it selects. A more principled approach is to 

select features by actually adding them one-by-one into the ME model (Della Pietra et al., 1997); 
however, using this approach is very time-consuming and we decided on the MI approach for the 

sake of speed. 

3.15 The C onstraints 

To understand what extrasentential semantic constraints were added to the base tagging model 
in the current experiments, one needs some familiarity with the ATR General English Tagset. 

For detailed presentations, see (Black et al., 1998; Black et al., 1996). An apercu can be gained, 

however, from Figure 7, which shows two sample sentences from the ATR Treebank (and orig-

inally from a Chinese take-out food flier), tagged with respect to the ATR General English 

Tagset. Each verb, noun, adjective and adverb in the ATR tagset includes a semantic label, 

chosen from 42 noun/adjective/adverb categories and 29 verb/verbal categories, some overlap ex-
isting between these category sets. Proper nouns, plus certain adjectives and certain numerical 

expressions, are further categorized via an additional 35 "proper-noun" categories. These seman-

tic categories are intended for any "Standard-American-English" text, in any domain. Sample 

categories include: "physical.attribute" (nouns/adjectives/adverbs), "alter" (verbs/verbals), "in-

terpersonal.act" (nouns/adjectives/adverbs/verbs/verbals), "orgname" (proper nouns), and "zip-

code" (numericals). They were developed by the ATR grammarian and then proven and refined via 

clay-in-clay-out tagging for six months at ATR by two human "treebankers", then via four months 

of tagset-testing-only work at Lancaster University (UK) by five treebankers, with daily interac-

tions among treebankers, ancl between the treebankers and the ATR grammarian. The semantic 

categorization is, of course, in addition to an extensive syntactic classification, involving some 165 

basic syntactic tags. 

Starting with a basic tag-n-gram tagger trainecl to tag raw text with respect to the ATR 

General English Tagset, then, we aclded constraints defined in terms of "tag families". A tag family 

is the set of all tags sharing a given semantic category. For instance, the tag family "MONEY" 

contains common nouns, proper nouns, adjectives, and adverbs, the semantic component of whose 

tags within the ATR General English Tagset, is "money": 500-stock, Deposit, TOLL-FREE, 

inexpensively, etc. 
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One class of constraints consisted of the presence, within the 6 sentences (from the same 

document)40 preceding the current sentence, of one or more instances of a given tag family. This 

type of constraint came in two varieties: either including, or excluding, the words within the sen-

tence of the word being tagged. Where these intrasentential words were included, they consisted 

of the set of words preceding the word being tagged, within its sentence. 

A second class of constraints added to the requirements of the first class the representation, 

within the past 6 sentences, of related tag families. Boolean combinations of such events defined this 
group of constraints. An example is as follows: (a) an instance either of the tag family "person" or 

of the tag family "personal attribute"(or both) occurs within the 6 sentences preceding the current 

one; or else (b) an instance of the tag family "person" occurs in the current sentence, to the left of 

the word being tagged; or, finally, both (a) and (b) occur. 

A third class of constraints had to do with the specific word being tagged. In particular, the 
word being classified is required to belong to a set of words which have been tagged at least once, 
in the training tree bank, with some tag from a particular tag family; and which, further, always 

shared the same basic syntax in the training data. For instance, consider the words "currency" 
and "options". Not only have they both been tagged at least once in the training set with some 

member of the tag family "MONEY" (as well, it happens, as with tags from other tag families); 
but in addition they both occur in the training set only as nouns. Therefore these two words would 

occur on a list named "MONEY nouns", and when an instance of either of these words is being 

tagged, the constraint "MONEY nouns" is satisfied. 

A fourth and final class of constraints combines the first or the second class, above, with the 

third class. E.g. it is both the case that some avatar of the tag family "MONEY" has occurred 
within the last 6 sentences to the left; and that the word being tagged satisfies the constr叫nt

"MONEY nouns". The advantage of this sort of composite constraint is that it is focused, and 
likely to be helpful when it does occur. The disadvantage is that it is unlikely to occur extremely 

often. On the other hand, constraints of the first, second, and third classes, above, are more likely 
to occur, but less focused and therefore less obviously helpful. 

3.16 The Experiments 

3.16.1 The Four Models 

To evaluate the utility of long-range semantic context we performed four separate experiments. 

All of the models in the experiments include the basic ME tag-n-gram tagger constraints listed in 

subsection 4.15. The models used in our experiments are as follows: 

(1) The first model is a model consisting ONLY of these basic ME tag-n-gram tagger constraints. 

This model represents the baseline model. 

(2) The second model consists of the baseline model together with constraints representing ex-

trasentential tag triggers. This experiment measures the effect of employing the triggers 

specified in (Black et al., 1998) -i.e. the presence (or absence) in the previous 6 sentences of 
each tag in the tagset, in turn-to assist a real tagger, as opposed to simply measuring their 

mutual information. In other words, we are measuring the contribution of this long-range 

information over and above a model which uses local tag-n-grams as context, rather than 

40(B!ack et al., 1998) determined a 6-sentence window to be optimal for this task. 
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measuring the gain over a naive model which does not take context into account, as was the 

case with the mutual information experiments in (Black et al., 1998). 

(3) The third model consists of the baseline model together with the four classes of more sophis-

ticated question-based triggers defined in the previous section. 

(4) The fourth model consists of the baseline model together with both the long-range tag trigger 

constraints and the question-based trigger constraints. 

We chose the model underlying a standard tag-n-gram tagger as the baseline because it rep-

resents a respectable tagging model which most readers will be familiar with. The ME framework 
was used to build the models since it provides a principled manner in which to integrate the diverse 

sources of information needed for these experiments. 

3.16.2 Exp errmental Procedure 

The performance of each the tagging models is measured on a 53,000-word test treebank hand-
labelled to an accuracy of over 97% (Black et al., 1996; Black et al., 1998). We measure the model 

performance in terms of the perplexity of the tag being predicted. This measurement gives an 

indication of how useful the features we supply could be to an n-gram tagger when it consults its 

model to obtain a probablity distribution over the tagset for a particular word. Since our intention 

is to gauge the usefulness of long-range context, we measure the performance improvement with 
respect to correctly (very accurately) labelled context. vVe chose to do this to isolate the effect of 

the correct markup of the history on tagging performance (i.e. to measure the performance gain 
in the absence of noise from the tagging process itself). Earlier experiments using predicted tags 

in the history showed that at current levels of tagging accuracy for this tagset, these predicted 

tags yielded very little benefit to a tagging model. However, removing the noise from these tags 

showed clearly that improvement was possible from this information. As a consequence, we chose 

to investigate in the absence of noise, so that we could see the utility of exploiting the history when 

labelled with syntactic/semantic tags. 

The resulting measure is an idealization of a component of a real tagging process, and is a 

measure of the usefulness of knowing the tags in the history. In order to make the comparisons 

between models fair, we use correctly-labelled history in then-gram components of our models as 

well as for the long-range triggers. As a consequence of this, no search is nescessary. 

The number of possible triggers is obviously very large and needs to be limited for reasons of 

practicability. The number of triggers used for these experiments is shown in Table 18. Using 

these limits we were able to build each model in around one week on a 600MHz DEC-alpha. The 

constraints were selected by mutual information. Thus, as an example, the 82425 question trigger 

constraints shown in Table 18 represent the 82425 question trigger constraints with the highest 

mutual information. 

The improved iterative scaling technique (Della Pietra et al., 1997) was used to train the 

parameters in the ME model. 

3.17 The Results 

Table 20 shows the perplexity of each of the four models on the testset. 
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Description Number 

Tag set size 1837 

Word vocabulary size 38138 
Bigram trigger number 18520 

Trigram trigger number 15660 
Long history trigger number 15751 

Question trigger number 82425 

Table 18: Vocabulary sizes and number of triggers used 

I # I Question Description I MI (bits) I 
1 Person or personal attribute word in full history 0.024410 

2 Word being tagged has taken NNlPERSON in training set 0.024355 

3 Person or personal attribute word in remote history 0.024294 

4 Person or personal attribute or other related tags in full history 0.020777 

5 Person or personal attribute or other related tags in remote history 0.020156 

Table 19: The 5 triggers for tag NNlPERSON with the highest MI 

＃ Model Perplexity Perplexity Reduction 

1 Baseline n-gram model 2.99 0.0% 

2 Baseline + long-range tag triggers 2.76 7.6% 

3 Baseline+ question-based triggers 2.41 19.4% 

4 Baseline + all triggers 2.35 21.4% 

Table 20: Perplexity of the four models 

30 



The ma泣mumentropy framework adopted for these experiments virtually guarantees that mod-

els which utilize more information will perform as well as or better than models which do not include 

this extra information. Therefore, it comes as no surprise that all models improve upon the baseline 

model, since every model effectively includes the baseline model as a component. 

However, despite promising results when measuring mutual information gain (Black et al., 1998), 

the baseline model combined only with extrasentential tag triggers reduced perple沿tyby just a 

modest 7.6% . The explanation for this is that the information these triggers provide is already 

present to some degree in the n-grams of the tagger and is therefore redundant. 

In spite of this, when long-range information is captured using more sophisticated, linguistically 

meaningful questions generated by an expert grammarian (as in experiment 3), the perple泣ty

reduction is a more substantial 19.4%. The explanation for this lies in the fact that these question-

based triggers are much more specific. The simple tag-based triggers will be active much more 

frequently and often inappropriately. The more sophisticated question-based triggers are less of a 

blunt instrument. As an example, constraints from the fourth class (described in the constraints 

section of this paper) are likely to only be active for words able to take the particular tag the 

constraint was designed to apply to. In effect, tuning the ME constraints has recovered much 

ground lost to the n-grams in the model. 
The final experiment shows that using all the triggers reduces perplexity by 21.4%. This is a 

modest improvement over the results obtained in experiment 3. This suggests that even though 

this long-range trigger information is less useful, it is still providing some additional information 

to the more sophisticated question-based triggers. 

Table 19 shows the five constraints with the highest mutual information for the tag NNlPERSON 
(singular common noun of person, e.g. lawyer, friend, niece). All five of these constraints happen 

to fall within the twenty-five constraints of any type with the highest mutual information with 

their predicted tags. Within Table 19, "full history" refers to the previous 6 sentences as well as 

the previous words in the current sentence, while "remote history" indicates only the previous 6 

sentences. A "person word" is any word in the tag family "person", hence adjectives, adverbs, and 

both common and proper nouns of person. Similarly, a "personal attribute word" is any word in 

the tag family "personal attribute", e.g. left-wing, liberty, courageously. 

3.18 Conclusion 

・our main concern in this subsection has been to show that extrasentential information can provide 

significant assistance to a real tagger. There has been almost no research done in this area, possibly 

due to the fact that, for small syntax-only tagsets, very accurate performance can be obtained 

labelling the Wall Street Journal corpus using only local context. In the experiments presented, 

we have used a much more detailed, semantic and syntactic tagset, on which the performance is 

much lower. Extrasentential semantic information is needed to disambiguate these tags. ¥Ve have 

observed that the simple approach of only using the occurrence of tags in the history as features did 

not significantly improve performance. However, when more sophisticated questions are employed 

to mine this long-range contextual information, a more significant contribution to performance is 

made. This motivates further research toward finding more predictive features. Clearly, the work 

here has only scratched the surface in terms of the kinds of questions that it is possible to ask of 

the history. The maximum entropy approach that we have adopted is extremely accommodating 

in this respect. It is possible to go much further in the direction of querying the historical tag 

structure. For example, we can, in effect, exploit grammatical relations within previous sentences 

with an eye to predicting the tags of similarly related words in the current sentence. It is also 
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possible to go even further and exploit the structure of full parses in the history. 

3.19 Experiments In Tagging Improvement (3) 

The set of features used by any predictive model is of pivotal importance to its performance. In 

this paper we show the utility and quantify the effect of adding features consisting of arrangements 

of words and tags (selected by an expert grammarian) in the local context of a trigram tagger. vVe 

look in detail at the effect, on tagging with a large semantic tagset, of adding these features. We 

show that the addition of a set of such features improves the the error rate of a trigram tagger by 

about 11%. 
To perform these experiments we constructed ma泣mumentropy (ME) trigram taggers similar 

to the one used by (Ratnaparki, 1996). Two different taggers were constructed within the same ME 
framework. Both taggers used the beam search algorithm to find the best tag sequence. The first 

tagger employed only features equating to the standard set of features used in a trigram tagger, 

that is: {(w, t), (L1, t), (t_2L1, t)}. The features used in the augmented tagger included in addi-

tion: {(w-2w-1w,t), (w-1ww1,t), (ww1w2,t), (w-1w,t), (ww1,t), (t-2,t), (t_1w1,t), (L1ww1,t), 
(w_1w1,t), (w-1,t), (w1,t), (t_1w,t), (L2L1w,t), (w-2w-1,t), (w1w2,t)}. Where: w is the word 
whose tag we are predicting; t is the tag we are predicting; L1 is the tag to the left of tag t; L2 is 
the tag to the left of tag L1; w_1 is the word to the left of word w; w_2 is the word to the left of 

word w_1; w1 is the word to the right of word w; and w2 is the word to the right of word w1・

Both models were trained on the 8.50,000-word ATR General English Treebank. The ATR 

tagset is very detailed, containing around 3000 possible tags, each with a syntactic and semantic 

component; for details see (Black, 1998). The taggers were tested on the accompanying .53,000-
word test treebank. Although the fea,ture types were chosen by a human expert, the number of 

possible features is so high that, a reduced set is produced by machine. Only those features with a 

high mutual information with t were used in the model. The trigram only tagger gave an accuracy 

of 76.24%, whereas the enhanced model gave an accuracy of 78.8%. Table 1 lists the effect of each 

of the features when introduced separately into a base model containing only the (w, t) features. 

The most significant features in the model were the identity of the previous (76.9%) and the next 
(76.9%) word. Surprisingly, these features improved the model more than the commonly used 

tag-trigram features (highlighted in bold). 
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Trigger Type Number of triggers Test set PP Accuracy(%) 

(w, t) 73162 3.59 75,06 

(W, t) + (W_2W-1 W, i) 73162+15957 3.56 75.30 

(W, t) + (W_1 WW1, t) 73162+16667 3.54 75.90 

(w,t) + (ww匹 2,t) 73162+ 16345 3.54 75.60 

(w,t) + (w-1w,t) 73162+14708 3 . .51 76.12 

(w, t) + (ww1, t) 73162+15789 3.47 76.52 

(w,t)+(tー1,t) 73162+ 18520 3.1.5 76.14 

(w,t) + (L1,t) + (t_2L1,t) 73162+18520+15660 3.11 76.24 

(W, t) + (L 1 W1 , t) 73162+ 12302 3.40 76.26 

(w,-l) + (L1WW1,t) 73162+21564 3.51 76.12 

(w,t)+(w-1叫，t) 73162+12496 3.47 76.14 

(w,t) + (1v_1,t) 73162+28415 3.33 76.90 

(W, t) + (W1 , t) 73162+27380 3.34 76.78 

(w,t) + (L1w,t) 73162+14212 3.44 75.78 

(w, t) + (L2L1 w, t) 73162+ 18699 3.47 75.40 

(w,t) + (w-2w-1,t) 73162+9811 3.53 75.92 

(w,t)+(w位 2,t) 73162+9733 3.52 76.01 

ALL 3.07 78.80 

Table 1: Experimental Results of Tagging Using Det叫ledLocal Constraints 

4 Application to Language Modelling: Upper-Bound Experi-

mentation 

4.1 Introduction 

In this section we prnsent two sets of experiments, one in speech recognition and the other 

in speech synthesis—which represent inquiries into how much help our software could be to these 
two Artificial Intelligence tasks, assuming for a moment that our predictions were totally accurate. 

By asking the question in this mode (i.e. as a so-called "upper-bound experiment"), we focus 
specifically on the value of the information that is delivered by our linguistic analyses, when the 

right analysis is found. That is, we inquire how valuable our particular way of "milking" the 
information in text is, in principle, for two major applications within Artificial Intelligence. If the 

answer is that a great deal of value would be contributed, if only our prediction were extremely 

accurate, then we are justified in continuing our work toward achieving just this degree of accuracy. 
If not, we may not be so justified. In fact, the results show very clearly the overwhelming benefit to 

these applications of the information we provide. The bulk of this section det叫lsthe experimental 

work on the speech recognition application. At the end of the section, we refer the reader to 

the original published article presenting the extremely successful work on the speech synthesis 
application. Taken tog叫ier,these two sets of experimental results furnish compelling justification 

for the continuaton of our effort to achieve extremely high prediction accuracy in our parsing and 

tagging. Below, then, is the original report of these experiments: 

It appears intuitively that information from earlier sentences in a document ought to help reduce 
uncertainty as to the identity of the next word at a given point in the document. (Rosenfeld, 1996) 

and (Lau et al., 1993) demonstrate a significant "word/word trigger-pair" effect. That is, given 
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that certain "triggering" words have already occurred in a document, the probability of occurrence 

of specific "triggered" words is raised significantly. 

The present section undertakes to demonstrate that semantic/syntactic part-of-speech tags, and 

parse structure of previous sentences of the document being processed, can add trigger information 

to a standard n-gram language model, over and above the improvement delivered by word/word 

triggering along the lines of the work by Rosenfeld and Lau et al.41 vVe formulate "linguistic-

question" triggers which query either: (a) the tags of the words to the left of, and in the same 

sentence as, the word being predicted; or (b) parse structure and/or tags within any or all of the 

previous sentences of the document to which the word belongs that is being predicted; or both of 

(a) and (b) together. Each of these questions then triggers a particular word in the vocabulary, i.e. 

raises the probability of that word's being the next word of the document. 

As the source of both tags and parses in the present experiments, we use a 181,000-word subset 

of the approximately-1-million-word ATR General English Treebank (Black et al., 1996). This 

treebank subset consists exclusively of text drawn from Associated Press newswire and Wall Street 

Journal articles. The 181,000 words are partitioned into a training set of 167,000 words and a test 

set of 14,000 words. We utilize this portion only of the tree bank, as opposed to the entire corpus, in 

order to match the text type of the raw data set used to train our baseline n-gram language model, 
which is AP and'WSJ text in roughly the same proportions as in our treebank, and of course not 

including any portion of our training or test text. 

We train (i) a baseline 200-million-word n-gram language model; (ii) a model combining this 

baseline plus a word/word trigger model trained on a 10-million-word subset of the larger training 

corpus; and finally (iii) a model combining both (i) and (ii) with linguistic-question triggers trained 

as just indicated. Performance differences of (i/ii/iii) are measured, with the result that model (iii) 

is shown to yield a significant perplexity reduction vis-a-vis models (i) and (ii). 

In what follows, subsection 6.2 provides a basic overview of the language modelling techniques 

employed; subsection 6.3 discusses and offers examples of the linguistic questions of model (iii); 

subsection 6.4 describes the language-modelling experiments we performed, and presents our ex-

perimental results; and subsection 6.5 discusses our results and indicates future research directions. 

4.2 The Language Model (LM) 

4.2.1 ME  Model 

Our language model is a maximum entropy (ME) model of the following form: 

K 

P(叫h)='Y II叶k(h,w)凡（叫ho)

k=O 

where: 

-w is the word we are predicting; 

-h is the history of w; 

(11) 

41 (Chelba et al., 1998) explore the problem of utilizing the parse structure of the sentence in which the word to be 
predicted occurs. The current work can be viewed as complementary to the line of research of Chelba and Jelinek, 
in that we ignore, to a fair extent, the syntactic structure of the sentence in which the word occurs that is being 
predicted, and we focus instead on the syntactic and semantic information contained in the sentences prior to the 
one featuring the word being predicted. 
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-1 is a normalization coefficient; 

-1(is the number of triggers; 

-ak(k = 0, 1, ・ ・ ・, K) is the weight of trigger fk; 

-fk(i = 0, 1, ・ ・ ・, K) are trigger functions. fk E {O, 1}; 

-Pb(wlho) is the base language model. 

In our experiments we use as base language models both a conventional trigram model and the 

extension of this model with long history word triggers. The improved iterative scaling technique 

(Della Pietra et al., 1997) is used to train the parameters in the ME model. 

4.2.2 Trigger selection 

The linguistic-question information is embodied in our model in the form of "triggers". A 

trigger pair qw = (q, w) constists of a triggering question q together with a triggered word w. The 
number of possible triggers is the product of the number of questions with the number of words 

in the vocabulary. This gives rise to too many features from which to build an ME model in a 

reasonable time. We therefore select only those trigger pairs which can be expected to provide the 

most benefit to the model. We use mutual information (MI) to select the most useful trigger pairs 

(for more details, see (Rosenfeld, 1996)). That is, we use the following formula to gauge a feature's 

usefulness to the model: 

where: 

MI(q,w) = P(q,w)log~ 叫

+ P ( q 国 ） l o g 堕烈どPPPP ((((切w叫叫） ) 
+ P(q,w)log 
+ P(q国）log 

-w is the word we are predicting; 

-q is a triggering feature (e.g. the answer to a linguistic question). 

In the final trigger set, we use only those trigger pairs having the highest mutual information. 

4.3 Linguistic Information 

The experiments reported here consist in adding "linguistic-question constraints"42 to a baseline 

n-gram language model. To understand the linguistic questions used, one needs some familiarity 

with the ATR General English Treebank and the the ATR General English Grammar and Tagset. 

For detailed presentations, see (Black et al., 1998; Black et al., 1997; Black et al., 1996). Briefly, 

however, each verb, noun, adjective and adverb in the ATR tagset includes a semantic label, 

chosen from 42 noun/adjective/adverb categories and 29 verb/verbal categories, some overlap ex-

isting between these category sets. Proper nouns, plus certain adjectives and certain numerical 

叫 swell as "word/word triggers" 
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expressions, are further categorized via an additional 3-5 "proper-noun" categories. These seman-

tic categories are intended for any "Standard-American-English" text, in any domain. Sample 

categories include: "physical.attribute" (nouns/adjectives/adverbs), "alter" (verbs/verbals), "in-

terpersonal.act" (nouns/adjectives/adverbs/verbs/verbals), "orgname" (proper nouns), and "zip-

code" (numericals). The semantic categorization is, of course, in addition to an extensive syntactic 

classification, involving some 16-5 basic syntactic tags. 

The ATR English Grammar is unrestricted in its coverage, and particularly detailed and com pre-

hensive, vis-a-vis other existing grammars. For instance, complete syntactic and semantic analysis 

is performed on all nominal compounds. Again, see the above-cited references for details. 

Each parse of the ATR Treebank was entered by hand by a professional expert in parsing and 

tagging with the ATR English Grammar (Black et al., 1996). This Treebank is used as training 

data for an unrestricted-coverage parser of English (Black et al., 1997). 

One can get a feel for the type of linguistic-question triggers we defined via Table 27, which 

shows three triggers with high mutual information with the word "Mrs.", and three for "added". 

The trigger with the highest mutual information with the word "Mrs." among all linguistic-
question triggers does not ask either about tags or parse structure, but simply makes good use, 

over raw text, of our "Question Language", the fie泣blelanguage for formulating grammar-based 

and lexically-based questions about Treebank text, which we normally use to compose context叫
questions about text which we are parsing with our probabilistic parser.43 Specifically, the question, 

defined over raw text, determines whether any reference has been made to a female, within the last 

12 sentences of the current document. 

A question which asks about tags is question 2a of Table 27. It queries the semantic portion 
of tags within the entire history of the document, and determines whether tags have frequently 

occurred which label nouns, adjectives or adverbs of saying, writing, objecting, or other verbal 
activities. A "yes" answer to this question turns out to raise the probability of the word "Mrs." as 

the next word of a document. 
Finally, question 3b queries the complex parse structure of previous sentences of the document. 

The question tests whether frequently in the history of the document, sentences occurred with 

a human subject and a main verb of verbal activity, e.g. "Mr. Smith stated…" In addition, it 

tests the current sentence to see whether a human subject has just been received, and a verb now 

appears to be likely to occur. The expectation, thus, is that a verb of saying will now occur. This 

expectation turns out to be realized for the verb "added", as there is a relatively high correlation 

between a "yes" for this question and the occurrence of the word "added". 

4.4 The Experiments 

4.4.1 Experimental Procedure 

We used the well-known trigram LM as the base LM for our experiments. This model was 

selected because it represents a respectable language model which most readers will be familiar 

with. The ME framework was used to build the derivative models since it provides a principled 

manner in which to integrate the diverse sources of information needed for these experiments. 

In all models built for these experiments we use a word vocabulary of 20001 (the 20000 most 

frequent words plus a token for words not in the vocabulary). vVe used a corpus of newspaper text 

drawn from 1987-1996 Wall Street Journal and Associated Press Newswire in equal proportion. 

43For details, see (Black et al., 1997). 

36 



＃ Question Description MI (bits) 

la Any reference to a female within the last 12 sents of doc 0.001210 

2a Many nouns, adj or adv of verbal action (e.g. statement) within last 100 sen ts 0.000803 

3a Many nouns, adj or adv of helping (e.g. assistance) within last 100 sen ts 0.000737 

lb Any subject pronoun to the immediate left 0.000579 

2b Subject of current sentence is a person and verb is likely 0.000407 

3b Many recent sents had person subjects and "saying" main verbs AND 

Subject of current sentence is a person and verb is likely 0.000:314 

Table 21: Selected triggers from top-20-highest-MI linguistic-question triggers for the words 

"Mrs." and "added" 

Model 

umgram 

bigram 
trigram 

Tri20M.k4 

20001 

395663 
527782 

Tri100M.k4 Tri200M.k8 

20001 20001 

1230040 

2724346 
1204727 
2492309 

Table 22: Trigram model size varying dataset size 

Certain types of words were mapped to generic tokens representing the class of word. These were: 

words representing time of day (e.g. 12:21), dates (e.g. 11/02/ 64), price expressions (e.g. $100) and 
year expressions (e.g. 1970-1999). The mapping was done using simple regular-expression pattern 

matching. The substitutions were implemented to assist the trigram model, which is unable to 
ask questions about the internal structure of words and cannot be expected to form useful n-

grams from this class of words. The linguistic questions, however, being able to query the word's 

internal structure, were more effective on the raw words themselves and were used in that way. 

The vocabulary, and therefore the words being predicted, was constructed from data in which 

these tokens had been mapped. 

The training set used to train the linguistic question-based triggers for all experiments was 

approximately 167,000 words of hand-labelled and -parsed ATR treebank, drawn from Wall Street 

Journal and Associated Press texts. The test set consisted of 14,000 words of hand-labelled and -

parsed ATR treebank, again drawn in the same proportion from ¥Vall Street Journal and Associated 

Press. We measure the test set perplexity (PP) to gauge the q叫 ityof the models produced. 

4.4.2 Effect of Dataset Size 

In this experiment we used base trigram models of three differing sizes. The three models: 

Tri20M.k4 (k4 = cutoff of 4), Tri100M.k4 and Tri200M.k8 were built from 20M, 100M and 200M 
words of training data, respectively. Table 22 shows the number of n-grams we used in our models. 

Table 23 shows the reduction in perple泣ty.Note that here we used 33000. question-based triggers 

and the question set size from which the triggers were produced was 396. 

In Table 23, "Base" is the perplexity of the base trigram model before any ME training. "Base 

+ Q's" is the perplexity of the full ME model after training. "Change" is the perplexity reduction 

resulting from using our question triggers. 
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Model 

Tri20M.k4 
Tri100M.k4 

Tri200M.k8 

Base PP 

153.0 
117.8 

108.0 

Base+Q's 

142.7 
110.0 

101.0 

Change(%) 

6.7 
6.6 

6.5 

Table 23: Effect of varying dataset size 

Model 

Base (Tri200M.k8) 
Base + WTModel 
Base+ Q1s 

Base + WTModel + Q's 

PP Change(%) 

108.0 

94.4 12.6 

95.8 11.3 
84.6 21.7 

Table 24: The effect of combining the models 

Notice that increasing the q叫 ityof the underlying trigram LM has little effect on the change 

in perplexity resulting from adding the information from linguistic questions. This indicates that 
the additional information will be useful to any trigram LM and that simply improving the LM by 

adding more data is no substitute for this information. 

4.4.3 Effect of Adding Word Triggers 

In this experiment we measure the effect of using long-range word triggers on our corpus together 
with the effect of combining these with our question-based triggers. 39367 long history word triggers 

are chosen by mutual information from 200 million words of data. Due to the prohibitively long 
training times needed to train models using word triggers we restricted the training set for the ME 
training to lOM words. The base language model was trained on the full 200M word corpus. ¥?Ve 

then used the ME model built by adding word-triggers to the base model as the base model for a 
second ME model which incorporated our question-based triggers. We found this approach effective 

in dealing with the large number of triggers involved. The number of question-based triggers used 

was 110,000 and the question set size from which the triggers were produced was 6,659. The results 

are shown in Table 24. 

4.5 Discuss1011 

Them邸 imumentropy framework adopted for these experiments virtually guarantees that 

modelsvヽhichutilize more information will perform as well as or better than models which do not 

include this extra information. Therefore, it comes as no surprise that all models improve upon 
the baseline model, since every model effectively includes the baseline model as a component. The 

experiments presented here have focused on showing that that we can glean useful information 
from the parse structure and part-of-speech tags in the history of the word being predicted. Our 

main result is that this information is useful, and is of similar magnitude to that provided by the 
long-range word triggers used by (Rosenfeld, 1996). Moreover, when these triggers are used in 
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conjunction with a model incorporating long-range word triggers, almost all of the perplexity gain 

is inherited by the new model. This indicates that the information we are providing is largely new 

and complementary. This is in line with our intuition, given the nature of the questions we ask. 

Furthermore, we obtained this gain from a very small 167,000 word training corpus (as opposed to 

the 10 million word corpus used to train the long-range word triggers). It is reasonable to expect 
significant improvement on domains where more data is available to train from. 

This work is a first attempt at exploiting the parse structure in the extrasentential history to 

assist a language model. A major practical concern is that the predictions are being made from 

correctly analysed text rather than the output of a parsing device. Our intention in this paper was 

to show that there is useful information in the parses in the history. In further research, we intend 

to incorporate a real parsing device. 

When a real parser is used, the system (including the grammarian writing the questions) will 

need to overcome the errors made by the parser/tagger. However, one point in favour of this 
approach is that if we train from the output of the parser (one way to learn to predict from only 

the reliable parts of the parse), we will have a much larger corpus from which to train the question-
based component of the LM. Additio叫 ly,although we are currently able to ask quite sophisticated 

questions of the structure of parses in the history, we feel that we can realize considerable gain by 
further developing the language we are using to ask these questions, and thereby improving their 

expressive power. 

5 Using Another'Ireebank to Aid'Ireebank Prodcution 

This contribution of this section is to illustrate the utility of exploiting data parsed according to 

one grammar in the construction of a treebank of data parsed according to a different grammar. 
The most compelling way to assist treebank production, is to process some of the data by 

machine. The advantage of this approach is clear; the process of validating the output of a parser 

is considerably less time-consuming than constructing a detailed parse tree over each sentence by 

hand. In this paper, however, we intend to go one stage further than this, and explore the idea that 

data already tree banked in some other manner, might be easier to parse by machine, and therefore 

offer us more accurate machine parsed data to be used as a starting point by human treebankers. 

In (Black et al., 1991), it was shown that, modulo certain more or less cosmetic alterations, 

the parses of the majority of well-known broad-coverage grammars of English for a sentence of 

English selected at. random were consistent, in the technical sense that no constituent in Grammar 

A's parse of the sentence starts inside, but ends outside, any constituent of Grammar B's parse 

of the sentence. In other words, the labels on the nodes in the parse trees differ, but the phrasal 

structure is basically the same. The main differences among the grammars, on this level, arose 

from the varying levels of detail captured by the grammars. 

For the experiment outlined in this paper we use parsed data from the UPENN corpus (Marcus 

et al., 1993) to generate data parsed according to the ATR General English Grammar. We use 

the UPENN parse of the sentence as a set of constraints on the ATR parse of the sentence. The 

constraints are of the following form: for each constituent in the UPENN parse we impose the 

constraint that no constituent in the ATR parse is allowed to start inside this constituent and end 

outside it. 

To perform the machine parsing of the data, we trained a decision tree parser (Black et al., 

1997) on appro泣matelythe entire ATR General English treebank. This treebank consists of 1 

million words of English text drawn from a wide selection of domains. The parser used was a chart 
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parser, and was modified to ensure that no parses which violated the constrahlts derived from the 

UPENN parse of the sentence was placed in the cha.rt (I.e. these parses were simply not considered 

as legal by the parser). 

The output of the parser was then checked by a human expert. The test set for this experiment 

consisted of 100 previously unseen sentences. 84% of the sentences were parsed by the trained 

probabilistic parser, whereas the remaining 16% of the sentences received no parse, principally 

because they were blocked from outputting any parse by the "filter" deriving from the UPENN 

treebank parse. 

Crucially, 88.1 % of the entire body of sentences that were parsed, were judged to be either 
perfect parses (77.4%), parses which could be made perfect by a human treebanker working with 

appropriate editing tools, in extremely minimal time compared to the time it would take to parse 

the sentence from scratch (10.7%). The remaining 11.9% of the sentences were judged to require a 

longer repair. This result alone, we feel, justifies this approach, since if all of these sentences are 
simply checked by the treebanker, they can be placed directly in the output treebank, or at worst be 

first cosmetically altered by hand. The remaining 16% of sentences obviously need to be tree banked 

by hand. The net time savings attributable to this approach is the difference, for fully two-thirds 

of the sentences in the source-treebank sample, between a treebanker merely reading through a 

parse of a sentence, and sometimes then touching up the parse; and a treebanker undertaking to 

parse each of the same sentences by hand, from scratch. 

6 Down and Out Translation 

This section describes a statistical translation framework that combines a top-down model for 

parsing with an alignment-based translation model between nonterminals and terminals in the 

source and target language parse trees. When sketching the generation process, we draw top down 

derivations of the candidate parse, with alignments going "outside" the parse to non-terminals or 

terminals in the input parse (using a backward channel model), so we call the translation scheme 
down and out translation. 

vVe note that after several discussions we decided not to pursue the "up and over" translation 

approach. The primary reasons for this were that we felt up and over would require a much more 

complicated decoder, similar to that used for Magerman's "grammarless" SPATTER parser, and 

also that this approach would be more prone to "blind alleys" where a candidate partial parse 

cannot be extended into a fully grammatical parse. A top-down parser is conceptually simpler, and 

will always lead to grammatical output. 

6.1 Approach 

The ma.in idea is to combine two previously-developed approaches: the history-based grammar 

framework for statistical parsing, and IBM alignment-based models for statistical translation. 

History-based grammars model the parse in terms of a top-down, left-most derivation. Each con-

stituent in a parse tree is represented in terms of several basic features: 

l. Ride R. For us this will the rule name in the ATR grammar. 

2. Syntax S. This will be a syntactic label for the constituent, or alternatively the syntactic 

component of the tag for the primary lexical head of the constituent. The later may be 

preferable if there is limited bilingual parse treebank, but more parallel data that is tagged. 
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3. Semantics 11!f. Similar to above, a semantic feature for the constituent 

4. Lexical heads H. One or two headwords. These are generated according to the probabilistic 

model, but of course in parsing they are percolated from the bottom up. 

Our thinking is that the language model will be very similar to the HBG model described in 

(Black et al., 1993b). Here, decision trees (possibly together with n-gram models) are used to 

model the features F = (R, S, M, H) in a constituent as 

p(FI Fp,I) = p(R I Fp,I)p(S IR, Fp,I)p(M Is, R, Fp,I)p(H I J¥ll, S,R,Fp, I) 

where Fp are the features of the parent constituent, and J is the "index" of the nonterminal, that 

is whether it's the first, second, etc. child of the parent. Each of the conditional models on the 

righthand side can be estimated using decision trees from parsed data, in a way that is very similar 

to the current ATR statistical parsing system. 

This comprises the "down" part of the model. In the "out" part, we generate the features for a 

constituent in the input (French) parse. A simple, but potentially effective model for this is to use 

a model analogous to IBM Model 2 or 3, generating the features independently. That is, we have 

p(Fj I Fe) = p(Rj I Re) p(SJ I Se) p(MJ I Me)p(HJ I He) 

together with some kind of distortion (Model 3) or alignment (Model 2) model, that, for example 
depends on the depth of the source and target constituents. These models can be trained using the 

EM algorithm from parallel data, in a way that is similar to the the standard Model 2 or 3. We can 

also make good use of whatever parallel data we have. For example, the probabilities p(H f I He) 

are analogous to the usual translation parameters t(f I e), and can be trained on parallel data for 
which there is no parse or tag information. Similarly, the syntactic and semantic feature models 

p(S1 I Se) could possibly be trained only on parallel data that has been tagged, but not parsed. 
However the rule translation probabilities will require parallel treebank. 

A simple approach to training the translation models is to treat the source and target parses as 

just tuples of features (Fi,Fz, ... ,Fm) and (Eぃ恥，．．．，励）. We would then use the above trans-

lation model, that predicts the components of each feature independently, forming an alignment 

between the feature tuples as in the word-based alignments used by the IBM models. The actual 

structural information in the parse would only be used explicitly in the distortion model. 

While this may seem fairly crude, ignoring a lot of contextual information in the parse, it might 

form a pretty strong baseline from which to development more sophisticated translation models in 

the future, once a working system is implemented. Because we are working in a source-channel 

framework, predicting the actual input parse, the crude independence assumptions made by this 

model should prove justifed. 
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