TR-O-0138

ţ.,

ミリ波マイクロストリップアンテナの開発

29

松井 一浩

1996. 3.21

ATR光電波通信研究所

ミリ波マイクロストリップ

アンテナの開発

目次

1.	まえがき	2
2.	アンテナの選定	2
3.	直線偏波矩形マイクロストリップアンテナの開発	3
	3.1 解析手法	3
	3.2 設計	7
	3.3 試作・評価プロセス	7
	3.4 試作計画	9
	3.5 第1回試作アンテナ	9
	設計	9
	測定結果1	1
	3.6 第2回試作アンテナ1	1
	設計1	1
	測定結果1	2
	3.7 第3回試作アンテナ1	7
	設計1	7
	測定結果1	7
4.	円偏波平面アンテナの開発1	8
	4.1 一点給電型円偏波方形マイクロストリップアンテナ1	9
	4.2 設計1	9
	4.3 試作アンテナ2	1
	設計2	1
	評価	2
5.	まとめと今後の課題3	5
謝	辞3	5
[参	≷考文献]3	6
[1	†録 A] + [付録 B]∶矩形マイクロストリップアンテナ設計プログラム	
[1	†録 C] : 直線偏波マイクロストリップアンテナ試作パラメータ	
[f	†録 D] : 円偏波マイクロストリップアンテナ試作パラメータ	

1. まえがき

ATR 光電波通信研究所では未来のパーソナル移動体通信システムの実現のために、光ファイバー通信技術とミリ波無線通信技術を融合し、高速で大容量の情報を伝送することを目的とした基礎技術の研究を進めてきた。今回、当研究所の10年目のプロジェクト終了に当たり、これまでの研究成果の取りまとめミリ波パーソナル移動体通信のモデルシステムを開発した。ミリ波パーソナル移動体通信では数メートルから数十メートルの半径のピコセル領域を網羅するように広い指向性を持ち、小型かつローコストなアンテナが望ましい。誘電体基板上に形成される平面アンテナは上記の特長を持ち、ミリ波パーソナル移動体通信用として相応しいアンテナである。

本レポートではミリ波パーソナル移動体通信のモデルシステム用のマイクロストリッ プアンテナの開発について述べる。

2. アンテナの選定

平面アンテナは既存のプリント基板上の回路やICのなどと同様の技術で製作できる平 面回路で、アンテナの小型化およびローコスト化が可能であり、ミリ波パーソナル移動 体通信システム用として最も有望なアンテナである。

平面アンテナとしてはマイクロストリップアンテナ、マイクロストリップスロットア ンテナ、プリントダイポールアンテナがあげられる。それらの比較を表1に示す [1]。

マイクロストリップスロットアンテナとプリントダイポールアンテナの2つはいわゆ る基板に接したダイポールアンテナであるために、電磁波を基板の両面に放射する。こ れらのアンテナは基板の裏面に反射板を置くことにより表面だけに電磁波を放射させる ことができるが、誘電体基板の深さ方向の1/4波長の距離に反射板を置く必要があるため、 アンテナの小型化には適さない。これに対して、マイクロストリップアンテナはパッチ 導体と誘電体基板を挿んで接地導体があり、パッチ導体のある片面だけに電磁波を放射 するので、他の2つのアンテナと比べて小型化が可能なアンテナである。また、ミリ波 パーソナル移動体通信システム用のアンテナは、システム全体としての小型化を計るた めに、その他のマイクロ波回路との一体化、即ち MMIC アンテナを目指す。MMIC アン テナではアンテナとその他のマイクロ波回路との相互干渉を避けるために、アンテナ面 とその他のマイクロ波回路面とを接地導体を挿んで分離することが多い。また、実際の 壁や天井に設置する基地局や移動局のアンテナは半球面状放射パターンを持つアンテナ が望ましい。したがって、我々はミリ波パーソナル移動体通信システム用のアンテナと して、半球面だけに電磁波を放射するマイクロストリップスロットアンテナを選んだ。

マイクロストリップアンテナのパッチ導体の形は色々なものがあるが、矩形マイクロ ストリップアンテナと円形マイクロストリップアンテナは解析手法、設計手法が成熟し ており、最も一般的である。この2つのマイクロストリップアンテナを比較[1]しても 特性の差はほとんどみられないが、矩形マイクロストリップアンテナは他の解析方法と 比べて簡単な伝送線路モデルに基づく手法[2]を利用できる点で有利である。

特性	マイクロストリップ アンテナ	ストリップライン スロットアンテナ	プリントダイポール アンテナ
厚み	薄い	余り薄くない	余り薄くない
製作	非常に簡単	簡単	簡単
偏波	直線偏波、円偏波	直線偏波	直線偏波
スプリアス	ある	ある	ある
帯域幅	1~5%	1~2%	$\sim \! 10\%$

表1.平面アンテナの比較

以上のことよりより、矩形マイクロストリップアンテナはミリ波パーソナル移動体通 信システム用のアンテナとして最も相応しいものと考え、試作を行った。

3. 直線偏波矩形マイクロストリップアンテナの開発

図1は矩形マイクロストリップアンテナの外観を示している。この矩形マイクロスト リップアンテナは、電磁波の伝送方向をxとし、x方向の長さをL、y方向の幅をWとす る矩形パッチ導体と、厚みtの誘電体基板を挿んで接地導体を持つ構造となっている。

3.1 解析手法

図1.矩形マイクロストリップアンテナ

- 3 -

図2.マイクロストリップアンテナの放射部の等価回路 (給電点:マイクロストリップ線路の開放端)

矩形マイクロストリップアンテナの理論解析のための伝送線路モデルに基づく手法につ いて説明する。

図2に示される矩形マイクロストリップアンテナは、放射素子部を幅W、長さLのマイクロストリップ線路で近似し、両端の開放部分を幅t(基板の厚さ)、長さWのスロットアンテナがあるものと仮定している。同図の下部に、左の開放端から給電した場合における矩形マイクロストリップアンテナを伝送線路モデルで近似した等価回路を示す。このとき入力アドミッタンスYinは、式(1)のようになる。

$$Y_{in} = G_r + jB + Y_0 \frac{(G_r + jB) + jY_0 \tan(\beta_g L)}{Y_0 + j(G_r + jB)\tan(\beta_g L)} \qquad (1)$$

ここで、

$$G_{r} = \begin{cases} \frac{W^{2}}{90\lambda_{0}^{2}} & \cdots W \leq 0.35\lambda_{0} \\ \frac{W}{120\lambda_{0}} - \frac{1}{60\pi^{2}} & \cdots 0.35\lambda_{0} \leq W \leq 2\lambda_{0} \\ \frac{W}{120\lambda_{0}} & \cdots 2\lambda_{0} \leq W \end{cases} \qquad (2)$$

$$\beta_{g} = k_{0}\sqrt{\varepsilon_{e}} \qquad \dots (3)$$
$$\therefore k_{0} = \frac{2\pi}{\lambda} \qquad \dots (4)$$

$$B = \frac{k_0 \Delta l}{Z_0} \sqrt{\varepsilon_e} = \frac{1}{60} \frac{\Delta l}{t} \frac{W}{\lambda_0} \varepsilon_e \qquad \dots (5)$$

$$Z_0 = \frac{1}{Y_0} = \frac{120\pi}{\sqrt{\varepsilon_e}} \frac{t}{W}$$
 (6)

$$\therefore \Delta l = 0.412 \cdot t \frac{(\mathcal{E}_{e} + 0.3) \left(\frac{W}{t} + 0.264\right)}{(\mathcal{E}_{e} - 0.258) \left(\frac{W}{t} + 0.8\right)} \qquad \dots (7)$$

$$:: \mathcal{E}_{e} = \frac{\mathcal{E}_{r} + 1}{2} + \frac{\mathcal{E}_{r} - 1}{2} \left(1 + 12 \frac{t}{W} \right)^{-\frac{1}{2}} \qquad \dots \quad (8)$$

ただし、

 $G_{r}: 仮定されたスロットアンテナの放射コンダクタンス成分 [3]$ B: 仮定されたスロットアンテナのサセプタンス成分 [1] $<math>Z_{0}: 放射素子部のマイクロストリップ線路の特性インピーダンス$ Y₀: 放射素子部のマイクロストリップ線路の特性アドミッタンス $<math>\mathcal{E}_{e}: マイクロストリップ線路における基板の等価比誘電率$ $\Delta l: 開放端でのエッジ効果の補正値$

アンテナの共振条件は入力アドミッタンスY_{in}の虚数部分が0となることから (9) 式のように表され、この式によってアンテナの所望の共振周波数から放射素子部のマイクロストリップ線路の長さLを求めることができる。

$$\tan(\beta_g L) = \frac{2Y_0 B}{G_r^2 + B^2 - Y_0^2} \qquad \dots \qquad (9)$$

給電点をマイクロストリップ線路の開放端に沿って移動させた場合の入力アドミッタンス Yin の変化は式 (10) のように表される。

$$Y_{in}(y) = 2G_r \left\{ \cos^2(\beta_g L) + \frac{G_r^2 + B^2}{Y_0^2} \sin^2(\beta_g L) - \frac{B}{Y_0} \sin(2\beta_g y) \right\}^{-1} \dots (10)$$

ただし、yは矩形導体の角から給電点までの距離である。

また、図3に示されるように給電点を放射導体の内部に選んだ場合の入力アドミッタン ス Y_{in}の変化は式 (11) のように表される [1]。

放射界はマイクロストリップ線路の両端に仮定された2つのスロットアンテナから放射 される放射界の合成として求められる。

- 5 -

図3.マイクロストリップアンテナの放射部の等価回路 (給電点:マイクロストリップ放射導体の内部)

$$Z_{in} = \frac{1}{Y_{in}}$$
 (11)

$$Y_{in} = Y_1 + Y_2$$

= $Y_0 \frac{(G_r + jB) + jY_0 \tan(\beta_g L_l)}{Y_0 + j(G_r + jB)\tan(\beta_g L_l)} + Y_0 \frac{(G_r + jB) + jY_0 \tan(\beta_g L_2)}{Y_0 + j(G_r + jB)\tan(\beta_g L_2)} \quad \dots (12)$

$$E(\vartheta) = -j4V_0Wk_0 \frac{e^{-jk_0R}}{4\pi R} \frac{\sin\left\{\frac{k_0t\sin\vartheta}{2}\right\}}{\left\{\frac{k_0t\sin\vartheta}{2}\right\}} \cos\left\{\frac{k_0L}{2}\sin\vartheta\right\} \qquad \dots (13)$$

$$H(\vartheta) = -j4V_0Wk_0 \frac{e^{-jk_0R}}{4\pi R} \frac{\sin\left\{\frac{k_0t\sin\vartheta}{2}\right\}}{\left\{\frac{k_0t\sin\vartheta}{2}\right\}}\cos\vartheta \qquad \dots (14)$$

ここで、V₀は仮定されたスロットアンテナに対する励振電圧で、この場合は開放端の 電圧である。

3.2 設計

* 設計仕様 ----

周波数帯域:Fc=43.95GHz Bw=50MHz (A 波)・

Fc=43.79GHz Bw=370MHz (A 波と B 波を併せて)

Fc=43.65GHz Bw=90MHz (B 波) ┘ Fc=48.55GHz Bw=50MHz (C 波)

*基板

低誘電率、低損失である石英基板を使用した(石英基板の電気特性は以下のとおり)。 石英基板の厚みは400 µmで、比較的厚いために、Qが下がり帯域幅は広くなる(後の 計算では、中心周波数が43.75GHzの設計値で、Qは約7.5、3dBの帯域幅は約6.7GHzで あった。)。ところが、後にこの基板を使ったマイクロストリップアンテナをアレイ化を するためにYおよびT分岐回路が必要になったが、基板厚が厚いために容量性の線路が できず、分岐回路が作成できないという問題が起こった。

石英基板(信越石英製 合成石英 VIOSIL)---

誘電率 Er:3.81 @30GHZ 誘電正接:0.0004 @30GHZ 基板厚:400 μ m

* 設計

図4は今回試作した直線偏波方形マイクロストリップアンテナのパターン図である。図 4の縦方向にたスリットを入れアンテナの入力インピーダンを 50Ω にしている。

設計は先に述べた伝送線路モデルに基づく解析方法をプログラム化して、各パラメー タを求めた。設計プログラムは付録 [A] に示す。

* 測定治具

マイクロストリップアンテナは図5に示すような真鍮製の治具に銀ペーストで張り付け、同軸のKコネクタに接続して測定を行う。

3.3 試作・評価プロセス

アンテナの評価は通常、まず反射損失を行い、その反射損失が所望の周波数周辺で十 分大きければ、次にアンテナ利得の測定を行うことができる。もし、反射損失が所望の 周波数周辺で十分大きくなければ、マイクロストリップアンテナのパッチの放射部自身 が共振し効率良く電波を放射できても入力した信号が反射してしまうために、次に行う アンテナ利得の測定、すなわち放射部の評価はできなくなる。したがって、試作・評価 プロセスとしては、まずは所望の周波数周辺である程度の反射損失とアンテナ利得が得 られてから、各パラメータを変え、アンテナ利得をしぼり込んでいくことになる。給電 点のインピーダンスは、共振周波数とマイクロストリップパッチの長さLと大体比例し ているので、放射部に大きな変化がなければ、マイクロストリップの端から給電点まで

- 7 -

^{亚 禹山}· 裏面 :ベタ

図4. 直線偏波矩形マイクロストリップアンテナのパターン図

図 5. L 型筐体

- 8 -

の距離L1とマイクロストリップ線路の長さLとの比で決まる。このことを利用すれば、 ある周波数で適当なあアンテナができれば、給電点の位置L1とマイクロストリップパッ チの長さLとの比を一定にして、Lを変えて、周波数を変えることができる。

3.4 試作計画

直線偏波のマイクロストリップアンテナの試作を3回行った。1回目の試作では、 43GHz帯のアンテナで、機械的設計精度と電気特性をみるために試作を行った。2回目 の試作は、1回目で試作した43GHz帯のアンテナの中心周波数の合わせ込みと、1回目 で試作のデータを元に48GHz帯のアンテナの最初の試作を行った。2回目の試作で 43GHz帯の試作は終了し、3回目の試作では、48GHz帯のアンテナのみのを試作した。

3.5 第1回試作アンテナ

設計

設計プログラム [A] による計算結果を示す。

Design Freq.=43.75 [GHz]

Material: $E_{r=3.81, t=0.400 [mm]}$

*Best Value Calculation

W=2.211 [mm], L=1.569 [mm]

*Best Feed Point from edge : x=0.583 [mm]

Yin= (0.019970,0.000131), Zin= (50.073847,-0.328384)

図 6. 給電点の位置と反射損失の関係

第1回目の試作では、Patchの大きさ(L,W)は変えずに、給電点の位置を1mmづつ変 えた8種類の43.75GHz帯のパッチアンテナを作成した。これは最初の計算では、誤りが あり、反射損失 20d B以上を達成する給電点の位置精度は約 1mm となったためである。 実際にも1mmの給電点の位置精度に反射損失の感度はなかった。図6はfc=43.75GHzの パッチアンテナの給電点を設計値からずらせたときの反射損失の変化を示している。こ れによると、約20dBの反射損失にはL×(±1.4%) ≒±0.02mm 程度の精度で給電点を 配置すればよいことがわかる。

Frequency [GHz]

42

40

図8. 治具のKコネクタを取付ける壁に電波吸収体を貼った時の #1PA1101 反射損失とアンテナ利得

44

46

測定結果

±0.004mmの範囲でしか給電点を変化させていないので特性に差はでなかった。図7に 設計中心のアンテナ(#1PA1101)の反射損失と利得の周波数特性を示す。利得の最大値は 約45.7GHzで約8dB、反射損失の最大値は約45.4GHzで16dBを得た。利得の測定結果で 41GHz付近に落ち込みがあるが、これは治具のKコネクタを取り付ける壁によって反射 した電磁波が直接波と干渉しているのではないかと考えられる。したがって、他の周波 数の利得の測定結果にもその干渉波の影響が出ていると考えられる。図8は治具のKコ ネクタを取り付ける壁に電波吸収体を貼った時の反射損失と利得の周波数特性である。後 のアンテナの測定では、すべての治具のKコネクタを取り付ける壁に電波吸収体を貼っ て行った。

3.6 第2回試作アンテナ 設計

利得の中心周波数とLは反比例関係にあるとして、第1回目の試作アンテナの測定結果 (fc=45.7GHz) より、L=1.640mmとした。Wについては、第1回目の試作パラメータから Er を逆算して求め、その Er=3.49 から W=2.288mm を得た。

Design Freq.=43.750 [GHz]

Material : **E**r=3.49, t=0.400 [mm]

*Best Value Calculation

W=2.288 [mm], L=1.640 [mm]

*Best Feed Point from edge : x=0.603 [mm] from edge.

Yin= (0.020055,0.000308), Zin= (49.851510,-0.765207)

また、この Er を使用して 48.75GHz のパッチアンテナを設計した。

Design Freq.=48.75 [GHz] Material : **Er**=3.49, t=0.400 [mm] *Best Value Calculation W=2.054 [mm] , L=1.447 [mm] *Best Feed Point from edge : x=0.530 [mm] Yin= (0.020029,0.000286) , Zin= (49.916871,-0.712175)

この設計値を中心としてLを0.01mm (約300MHz相当) づつ変えて各周波数のパッチア ンテナを9種類づつ作成した。 測定結果

*43.75GHz帯のパッチアンテナ

試作した43.75GHzのパッチアンテナのうち、仕様に最も近いもの (#2PA1103) とその 周辺の2つのもの (#2PA1101, #2PA1102) の反射損失とアンテナ利得の周波数特性を、そ れぞれ図9,10,11に示す。#2PA1103の反射損失と利得の最良値の周波数は一致している。 したがって、これを最終的な43.75GHz帯のパッチアンテナとする。

43.75GHz帯パッチアンテナの特性

#2PA1103 中心周波数 fc=43.75GHz アンテナ利得 =4.5dBi @fc 3dB 帯域幅 =5.0GHz 43.79 ± 0.100GHz(仕様帯域)のアンテナ利得≧ 4.5dBi

#2PA1101の利得の中心周波数 (43.0GHz) での放射パターンを図 12 (a), (b) に示す。 #2PA1103の放射パターンは測定していないが、同様な定在波の立つ利得の中心周波数で は同様な放射パターンを生じるので、#2PA1101の放射パターンで#2PA1103の放射パ ターンとする。

*48.75GHz帯のパッチアンテナ

図13に設計中心のパッチアンテナ (#2PA1201)の反射損失とアンテナ利得の周波数特性を示す。図14は第2回目の48.75GHz帯の試作パッチアンテナ中でLの最も大きいもの(#2PA1209)の反射損失とアンテナ利得の周波数特性を示す。試作した48.75GHzのパッチアンテナの反射損失の最大値はどれも50GHz以上の周波数にあった。また、アンテナ利得は測定器の周波数限界である50GHzまで単調増加し、その最大値は50GHz以上の周

図 9. #2PA1103 の反射損失とアンテナ利得

図 10. #2PA1101 の反射損失とアンテナ利得

図 11. #2PA1102の反射損失とアンテナ利得

- 13 -

図 12 (a) . #2PA1101のH-面放射パターン

図 12 (b) . #2PA1101 の E- 面放射パターン

図 13. #2PA1201 の反射損失とアンテナ利得

図 14. #2PA1209の反射損失とアンテナ利得

図 15. 反射損失の最大値の周波数とLとの関係

図 16. 図 15. における L=1.451mm 上の周波数と Wの関係

波数にあるようである。利得のデータが得られないので、反射損失の最大値の周波数と Lの関係から所望の周波数に相当するLを求める(図15)。

3.7 第3回試作アンテナ

第3回試作では、48GHz帯のマイクロストリップアンテナのみを試作した。 設計

第2回試作の43GHz帯のアンテナのデータより

1/48.55 [GHz] : L [mm] =1/43.75 [GHz] : 1.610 [mm]

... L=1.451 [mm]

を得る。図15からL=1.451mm上の周波数とWの関係をプロットしたものを図16に示す。 これより、48.55GHzに当たるWを求めると、2.130mmを得る。

W=2.130 [mm], L=1.451 [mm]

この設計値を中心としてWを0.01mm (約200MHz相当) づつ変えて各周波数のパッチ アンテナを8種類を作成した。

測定結果

#3PA1206と#3PA1208の反射損失とアンテナ利得の周波数特性をそれぞれ図17と図18 に示す。#3PA1206は49.5GHzを中心周波数とし、その周波数で6dBiの利得が得られ、 48GHz帯の仕様帯域でも5dBi以上の利得があり、モデルシステムのアンテナとして使用 可能である。#3PA1206と#3PA1208の差はWが0.02mmであるが、これは約400MHzに

図 17. #3PA1206の反射損失とアンテナ利得

図 18. #3PA1208の反射損失とアンテナ利得

相当し、#3PA1208の中心周波数は49.1GHzと推定できるが、実際の測定値の中心周波数は49.5GHzであった。

48GHz帯のパッチアンテナの特性

#3PA1206
中心周波数 fc=48.75GHz
アンテナ利得 =6.0dBi @fc
3dB 帯域幅:未計測
48.55 ± 0.025GHz(仕様帯域)のアンテナ利得≥ 5.0dBi

4. 円偏波平面アンテナの開発

移動体通信においても、周辺の構造物で信号波は反射を繰り返し、複雑な経路で伝搬 する信号波の干渉は伝送品質の劣化を招き、大きな問題となっている。円偏波による信 号伝送は、このようなマルチパス波の抑圧に有効である [4]。また、円偏波は直線偏波の ように偏波面を一致させる必要がなので機動性を必要とする携帯機には有利である。こ のような理由から、モデルシステムへの円偏波アンテナの適用が望ましく円偏波平面ア ンテナの開発を行う。

当初は「3. 直線偏波矩形マイクロストリップアンテナの開発」で述べた直線偏波矩形 マイクロストリップアンテナを複数組み合わせた円偏波アンテナの作製を計画していた。 直線偏波のアンテナを複数組み合わせるときに分岐回路が必要になる。しかし、誘電率 が低く、波長に対して十分薄くない基板の上に、分岐回路の整合をとるための容量性の マイクロストリップ線路を作製することは困難で、良好な特性を持つ分岐回路できなかっ た。そのために、分岐回路の必要のない一点給電型円偏波方形マイクロストリップアンテ ナを作成した。

4.1 一点給電型円偏波方形マイクロストリップアンテナ

マイクロストリップアンテナは放射素子に何らかの摂動を与えると、共振周波数がわず かに異なり直交する2つの偏波を同時に励振することができる。したがって、位相差90 度で振幅の大きさが等しくなるよう、摂動の量と給電点の位置を選ぶことによって一点か らだけの給電で円偏波を励振することができる。

4.2 設計

設計仕様は直線偏波方形マイクロストリップアンテナと同じである。

図19は今回試作した一点給電型円偏波方形マイクロストリップアンテナのパターン図 である。この図のような摂動の与え方と給電点の位置によって左旋円偏波が励振される。 矩形パッチ導体の大きさの決定は直線偏波の矩形マイクロストリップアンテナと同様に 行い、そのパッチ導体の大きさと無負荷Qから摂動の大きさを決定する(式(15)~(21) 参照)。一点給電型円偏波方形マイクロストリップアンテナの設計プログラムを付録[B] に示す。

* 無負荷の Q の算出

$$Q_0 = \frac{2Q_r R_T}{R_r}$$
 (15)

ここで、

$$R_{\rm T} = \frac{R_{\rm r}}{2} + R_{\rm d} + R_{\rm c} \qquad (16)$$

$$R_r = \frac{1}{G_r} \qquad \dots (17)$$

$$R_{d} = \frac{30 \cdot \tan \delta}{\varepsilon_{r}} \frac{t \lambda_{0}}{LW} Q_{r}^{2} \qquad \dots (18)$$

$$R_{c} = 0.00027 \sqrt{f_{r}} \frac{L}{W} Q_{r}^{2} \quad (f_{r} \text{ in GHz}) \quad (19)$$

$$Q_{\rm r} = \frac{c\sqrt{\mathcal{E}_{\rm e}}}{4f_c t} \qquad \dots \tag{20}$$

ただし、

R_r:仮定されたスロットアンテナの放射抵抗

R_d:誘電体損の等価抵抗

R_c:導体損の等価抵抗(式では導体金属が銅の場合)

Qr: 放射抵抗に関する Q ファクター [5]

* 摂動の大きさの算出

$$S = \frac{\sqrt{L}}{2 \cdot Q_0}$$

.... (21)

* 測定治具(筐体)

直線偏波のパッチアンテナの評価で使用したものと同じ治具(横から見た形がL字なので、L型治具とする。)と、図20に示すような治具(横から見た形がL字なので、U型治具とする。)を使用した。U型治具はL型治具がなくなったために使用することになったが、アンテナ平面と垂直な壁によって反射した電磁波が直接波と干渉するので、同じアンテナを付けた治具でも周波数特性が異なった。

図 19. 左旋円偏波矩形マイクロストリップアンテナのパターン図

図 20. U 型筐体

4.3 試作アンテナ

設計

直線偏波のマイクロストリップアンテナと同様な設計でアンテナにスリットを入れて 給電点を変えようとしたが、一点給電型円偏波マイクロストリップアンテナでは給電点 の位置は摂動の入れ方で決まっている。したがって、評価の際には、銀ペーストでこの スリットを埋めて行った。

付録 [B] の矩形マイクロストリップアンテナアンテナ設計プログラムによる各パラ メータは以下に示す。

*Design Freq.=43.79 [GHz]

Material : Er=3.49, t=0.416 [mm] *Calculation Result L=1.663 [mm] , Q0=6.97, S=0.445 [mm] *Design Freq.=43.79 [GHz] Material : Er=3.49,t=0.416 [mm] *Calculation Result L=1.663 [mm] , Q0=6.97, S=0.445 [mm]

*Design Freq.=43.79 [GHz] Material : **E**r=3.49, t=0.416 [mm] *Calculation Result L=1.663 [mm] , Q0=6.97, S=0.445 [mm]

*Design Freq.=48.55 [GHz] Material : Er=3.49, t=0.416 [mm] *Calculation Result L=1.479 [mm], Q0=6.97, S=0.418 [mm]

- 21 -

設計中心周波数が, 43.65, 43.79, 48.95, 48.55GHz のアンテナをLとSを±5, ±10% 変化させて試作した。

評価

実際に試作したアンテナの多くは円偏波の励振が可能な周波数が設計値とかなりずれ ており、設計周波数において軸比の良い円偏波は全く得られなかった。また、反射損失 の最大値または極大値の周波数においても円偏波は得られなかった。そこで、周波数に 対する軸比を測定したところ、軸比1dB以下の円偏波の励振される周波数を摂動が設計 値以上のもの(Sの設計中心、+5%,+10%)について見つけることができた。

*43GHz帯のパッチアンテナ

試作した43GHz帯のパッチアンテナうち、仕様に最も近い周波数で円偏波を励振でき るL型治具のものは#4PA3307Lであった。#4PA3307Lの軸比の周波数特性を図21、アン テナ利得を図22、軸比の指向性を図23、放射パターンを図24、反射損失を図25に示す。 また、#4PA3307Lと設計中心周波数が0.1GHz違い、U型治具の#4PA107Uの軸比の周波 数特性を図26、アンテナ利得を図27、軸比の指向性を図28、放射パターンを図29、反射 損失を図30に示す。この2つのアンテナの設計中心周波数は0.1GHzの差であるが、治具 の違いで0.85GHzの中心周波数に差が出ている。この2つの各特性について表にまとめ た。#4PA3307Lは中心周波数が43.75GHzで、軸比1dB以下の帯域は0.4GHzで周波数特 性の点では仕様を満足している。しかし、2つのアンテナは共にV面の軸比の指向性が悪 く、軸比が3dB以下の角度は10度以内である。これはアンテナ平面と垂直な壁によって 干渉波が起こるためであろうと考えられる。V面の軸比の指向性を改善するには壁を取り 去ってしまうことが最善の方法であるが、これは給電方法を変えることで根本的な再設 計を意味する。V面の軸比の指向性を改善するためには、少なくとも壁を低くし、パッチ アンテナの放射部から遠ざける必要がある。

*48GHz帯のパッチアンテナ

試作した48GHz帯のパッチアンテナうち、仕様に最も近い周波数で円偏波を励振でき るのものは#4PA3402Uであった。#4PA3402Uの軸比の周波数特性を図31、アンテナ利得 を図32、軸比の指向性を図33、放射パターンを図34、反射損失を図35に示す。

#4PA3402Uは中心周波数が48.8GHzで、軸比1dB以下の帯域は0.2GHzである。再度、 中心周波数を仕様のものと合わせ込む必要がある。図36は軸比が3dB以下が得られたも のの中心周波数とLの関係をプロットしたものである。図36中の実線と破線はそれぞれ L型筐体とU型筐体の回帰直線である。これより48GHz帯の中心周波数の48.55GHzに相 当するL=1.405mmを得る。

また、43GHz帯のパッチアンテナ同様の軸比の指向性に問題があるので、筐体の改造が必要である。

図 21. #4P3307L の軸比の周波数特性

図 22. #4P3307L のアンテナ利得の周波数特性

図 23 (a).#4P3307Lの軸比の指向性

図 23 (b) . #4P3307L の軸比の指向性

図 24. #4P3307Lの放射パターン

図 25. #4P3307L の反射損失の周波数特性

図 26. #4P3107U の軸比の周波数特性

図 27. #4P3107U のアンテナ利得の周波数特性

図 28 (b) . #4P3107U の軸比の指向性

図 29 (b).#4P3107Uの放射パターン

図 30. #4P3107Uの反射損失の周波数特性

図 31. #4P3402U の軸比の周波数特性

図 32. #4P3402Uのアンテナ利得の周波数特性

1

図 33 (b) #4P3402Uの軸比の指向性

Î

図 34 (b) . #4P3402Uの放射パターン

図 35. #4P3402Uの反射損失の周波数特性

I

図 36. 軸比の中心周波数とLとの関係

- 34 -

項目	条件			#4PA3307L (L型筐体)		#4PA3107U (U型筐体)		#4PA3402U (U型筐体)	
ibit He	中心周波数[GHz	:]	43.	43.75		42.9		8	
甲田工工	1dB帯域幅[GHz]		0.4		0.4		0.2		
	[dBi]@軸比の中	5.0		6.0		4.5			
アンテナ利得	軸比の1dB帯域内での 最小値[dBi]		4.5		5.5		4.0		
	軸比3dB以下の放射角[deg.]		-18	-4	-11	-7	-28	-7	
軸比指向性	H面	V面	~+32	~+6	~+37	$\sim \pm 0$	~+7	~+5	
アンテナ指向性	軸比3dB以下の放射角内の 最低受信レベルと 正対面の受信レベルとの差[dB]		-1.0	-0.6	-5.0	-0.8	-5.0	-1.0	
	H面	V面							
反射損失 軸比1dB帯域内での最小値[dB]				11	2	0		12	

表2. 試作した円偏波矩形マイクロストリップアンテナの特性

5. まとめと今後の課題

マイクロストリップアンテナはミリ波移動体通信システム用のアンテナとして最も相応しい平面アンテナと考えられる。このマイクロストリップアンテナをミリ波移動体通信システムのモデルシステムに適応するために直線偏波矩形マイクロストリップアンテナを試作した。

43GHzと48GHzの2つの周波数帯で、直線偏波矩形マイクロストリップアンテナの試作を3回行った。43GHz帯の直線偏波マイクロストリップアンテナは所望の特性が得られた。48GHz帯の直線偏波マイクロストリップアンテナは仕様中心周波数が合っていないが、帯域幅が広いために仕様帯域を十分網羅している。43GHz帯と48GHz帯共にほぼ完成したアンテナができたと言える。

また、移動体通信ではマルチパスの除去や移動機の機動性の要求から、それらの対策 に有効な円偏波アンテナとして一点給電型円偏波矩形マイクロストリップアンテナを試 作した。現時点では、試作した円偏波の平面アンテナは若干不十分な点があり、今後、 48GHz帯のパッチアンテナの周波数の調整、43GHz帯と48GHz帯共に筐体の改造による 軸比の改善等の課題がある。

謝辞

このアンテナの開発に当たり、数々の助言をして頂いた村上氏(元 ATR 光電波通信研究 所・現東芝電気(株))に深く感謝します。また、日頃からご指導頂くATR 光電波通信研 究所猪股社長、小川室長、ならびに今井主任研究員に深く感謝します。 [参考文献]

[1] Bahl and Bhartia, "Microstrip Antennas," Artech House

[2] R. E. Muson, "Conformal Microstrip Antennas and Microstrip Phased Arrays," IEEE Trans., AP-22, pp.74-78, Jan. 1974.

[3] J. R. James, et al, "Microstrip Antenna Theory and Design" IEE Electromagnetic waves Series 12, 1981.

ſ

[4] T. Manabe, et al, "Polarization Dependence of Multipath Propagation and High-Speed Transmission Characteristics of Indoor Millimeter-Wave Channel at 60GHz," IEEE Trans. on Vehicular Tech., Vol. 44, No. 2, May 1995.

[5] Vandesande, J., H. Pues and A. Van de Capelle, "Calculation of the Bandwidth of Microstrip Resonator Antennas," Proc. 9th European Microwave Conference, 1979, pp. 111-115

付録[A]と[B]のC言語プログラムは1つに統合した。直線偏波矩形パッチアンテナを設計すると きにはmain()内のpolaを0にし、円偏波矩形パッチアンテナを設計するときにはpolaを1にする。 /*------

* Program for Designing Rectangular Patch Antenna.

*H (Transmission Line Hodel)

K. Matsui 20th March 1996

(i)

#include <stdio.h>
#include <math.h>
#include <fcntl.h>
#include <fcntl.h>
#include <kazum2:Development:Potch Antenna Design:DCOMPLEX.H>

#define C0 3.00E+8 0 #define Pai 3.14159 /*#define Si 1.00E-6*/

struct Material {double er,thick,tand;};

struct Solutions

double U; double L; double e1; double d1; double Bg; double Y0; dcomplex Yrod; dcomplex Yin; double Qt; };

/*dcomplex calc_Yrad2(freq,materiol,Sol)
 double freq;
 struct Material material;
 struct Solutions Sol;

付錄[A], 付錄[B]

dcomplex colc_Vin2(freq,material,Sol)
 double freq;
 struct Material material;
 struct Solutions Sol;*/

/*----*/ dcomplex calc_Yrad(freq,material,Sol) double freq; struct Material material; struct Solutions Sol; {

double lw,t,W,el,dl,B; dcomplex Yrad;

lw=CO/freq; U=Sol.U; el=Sol.el; dl=Sol.dl; t=moterial.thick;

B=1.0/60.0*di/t*W/1w*el; Yrad.i=B;

if (∐<=l⊎*0.35)

{

}부

}

Yrad.r=pow(U/1w,2.0)/90.0;
}
else
{
{
f
 if (U<1w*2.0)
 {
 Yrad.r=U/1w/120.0-1.0/60.0/pow(Pai,2.0);
 }
}</pre>

} else

(H if (2*1⊎<=W) Yrad.r=U/1⊎/120.0;

(ii)

付錄[A], 付錄[B]

{

}

return(Yrad);)부

/*-----*/ dcomplex calc_Yin(freq,material,Sol) double freq; struct Material material; struct Solutions Sol:

dcomplex iu; //* Imag_unit */

dcomplex Yrad,Yin; double lw,L,Bg,Y0;

dcomplex c1,c2,c3,c4; double a1,a2;

iu=Complex(0.0,1.0); lw=CO/freg;

L=Sol.L; Bg=Sol.Bg; Y0=Sol.Y0; Yrad=Sol.Yrad;

/*Yine=Yrad+Y0*(Yrad+iu*Y0*ton(Bg*L))/(Y0+iu*Yrad*tan(Bg*L));*/
c2=RCmul(tan(Bg*L),iu); /* iu*tan(Bg*L) */
c3=Cadd(Yrad,RCmul(Y0,c2)); /* Yrad+Y0*c2 */
c4=Cadd(Complex(Y0,0),Cmul(Yrad,c2)); /* Y0+Yrad*c2 */
c1=RCmul(Y0,Cdiv(c3,c4)); /* Y0*c3/c4 */
Yin=Cadd(Yrad,c1); /* Yin=Yrad+c1 */
return(Yin);

/*======*/ dcomplex calc_Yfeed(x,freq,material,Sol) double x,freq; struct Material material; struct Solutions Sol;

(iii)

付録[A], 付録[B]

{

dcomplex iu;부/* Imag_unit */ int ch,i,n;

dcomplex Yrad,Yfeed; double lw,L,Bg,Y0;

dcomplex c1,c2,c3,c4; double a1,a2;

iu=Complex(0.0,1.0); lw=CO/freq;

L=Sol.L; Bg=Sol.Bg; Y0=Sol.Y0; Yrad=Sol.Yrad;

/*c1=Y0*(Yrad+iu*Y0*tan(Bg*x))/(Y0+iu*Yrad*tan(Bg*x));*/
c2=RCmul(tan(Bg*x),iu); /* iu*tan(Bg*x) */
c3=Cadd(Yrad,RCmul(Y0,c2)); /* Yrad+Y0*c2 */
c4=Cadd(Complex(Y0,0),Cmul(Yrad,c2)); /* Y0+Yrad*c2 */
c1=RCmul(Y0,Cdiv(c3,c4)); /* Y0*c3/c4 */

/*c2=Y0*(Yrad+iu*Y0*tan(Bg*(L-x)))/(Y0+iu*Yrad*tan(Bg*(L-x)));*/
c2=RCmul(tan(Bg*(L-x)),iu); /* iu*tan(Bg*(L-x)) */
c3=Cadd(Yrad,RCmul(Y0,c2)); /* Yrad+Y0*c2 */
c4=Cadd(Complex(Y0,0),Cmul(Yrad,c2)); /* Y0+Yrad*c2 */
c2=RCmul(Y0,Cdiv(c3,c4)); /* Y0*c3/c4 */

/*Yfeed=c1+c2*/ Yfeed=Cadd(c1,c2);

/*printf("x=%f[mm] from edge.\n",x);
printf(" Yin@feed point=(%f,%f)\n",Yfeed.r,Yfeed.i);*/
return(Yfeed);
}

(iv)

付録[A], 付録[B] 付録[A], 付録[B] if (Cabs(Csub(Yin,Complex(1.0/z0,0.0))) double Fd_poinnt(freq,material,Sol,z0) Cabs(Csub(Yin_bst,Complex(1.0/z0,0.0)))) double freq; struct Material material; Yin_bst=Yin: struct Solutions Sol; x_bst=x: double z0; }垾 x≖x+Sx; dcomplex iu;4/* Imag_unit */ /*DISP ""x="";x*1000.0;""[mm] Yin="";Yin_i"*/ int ch, i, n; } dcomplex Yrad,Yin,Yin_bst,Zin_bst; Zin_bst=Cdiv(Complex(1.0,0),Yin_bst); double lw,L,Bg,Y0; printf("*Best Feed Point:x=%f[mm] from edge.\n",x_bst*1000.0); printf(" Yin=(Xf,Xf), double x, Sx, x_bst; Zin=(Xf,Xf)\n",Yin_bst.r,Yin_bst.i,Zin_bst.r,Zin_bst.i); return(x_bst); dcomplex c1,c2,c3,c4; } double o1,a2; iu=Complex(0.0,1.0); double calc_Qt(freq,material,Sol) lw=C0/freq; double freq; struct Naterial material; L-Sol.L; struct Solutions Sol; Bg=Sol.Bg; { Y0=Sol.Y0; dcomplex iu; # /* Imag_unit */ Yrad=Sol.Yrad; double tand; x=0.0; double t,er,Ee,Iw,L,U,Bg,Y0; Sx=1.0E-6; dcomplex Yrad,Zrad; n=floor(L/2.0/Sx); double Rc,Rd,Rrad,Rrad2,Rt; Yin_bst=Complex(10000.0,10000.0); double Qc,Qd,Qrad,Qrad2,Qt; x_bst=0.0; iu=Complex(0.0,1.0); /*PRINT 1, Y0, Bg, Ye*/ lw=C0/freq; for (i=1;i<=n;i++) { L=Sol.L; W=Sol.U; Yin=calc_Yfeed(x,freq,material,Sol); Ee=Sol.el; t=material.thick; (v) (vi)

er=material.er; tand=material.tand; Yrad=calc_Yrad(freq,material,Sol); /*printf("L=Xf, U=Xf, Ee=Xf, t=Xf, er=Xf, tand=Xf\n",L,H,Ee,t,er,tand);*/

Qrad=C0*sqrt(Ee)/(4*freq*t); printf(" Ee=%f, er=%f, Qrad=%f\n",Ee,er,Qrad); /* if (er >=2.8) { Qrad2=3.8/8.8*er*C0/freq/t; } else {

Qrad2=Pai*Pai*sqrt(er)/(4.0*Pai*Pai-16.0*sqrt(er))*C0/freq/t;
}
Qd=1.0/tand;

Qc=t*sqrt(Pai*freq*5.8E7*4*Pai*1.0E-7);

Qt=1.8/(1.8/Qrad2+1.8/Qd+1.8/Qc);
printf(" Qc=Xf, Qd=Xf, Qrad2=Xf, Qt=Xf\n",Qc,Qd,Qrad2,Qt);
printf(" Antenna Efficiency=X.1f\n",Qt/Qrad2*100);
*/

Rc=0.00027*sgrt(freq/1.0E9)*L/U*Qrad*Qrad; printf(" Yrad.r=Xf, Yrad.i=Xf\n",Yrad.r,Yrad.i); Rd=30*tand/er*t*C0/freq/L/U*Qrad*Qrad;

Zrad=Cdiv(Complex(1.0,0.0),Yrad);

Rrad=1.0/Yrad.r; Rrad2=Rrad/2.0; Rt=Rd+Rrad2+Rc; printf(" Rc=%f, Rd=%f, Rrad=%f, Rt=%f",Rc,Rd,Rrad,Rt); printf(" Qrad=%f\n",Qrad); Qt=Qrad*Rt/(Rrad2); printf(" Antenna Efficiency=%.1f\n",Rrad2/Rt*100); printf(" BW=%f[GHz](-10dB USUR=2.0)\n",1.0/Qt/sqrt(2.0)*freq/1.0E9);

(vii)

or

付錄[A], 付錄[B]

return(Qt);

}.

/*----*/ main() {

int ch, i;

int n;

int pola; /* defined 1 for circular polarization. */

double x; dcomplex Yin_fp; double zin;

/*---- Declaration for Initial Calculation ----*/ dcomplex iu;^H/* Imag_unit */ double Si,freq,lw; double er,t;

struct Material material; struct Solutions Sol_ini, Sol_i,Sol_last; struct Solutions *S_p;

double W,L,eI,dI,Bg,Y0; dcomplex Yrad,Yin;

/*---- Declaration for Best L Calculation ----*/
double L_min,U_min,el_min,dl_min,Bg_min,Y0_min;
int i_min;
dcomplex Yrad_min,Yin_min;

/*---- Declaration for Perturbation Calculation ----*/

(viii)

double ds,da;

lu=Complex(0.0,1.0); Si=1.0E-6;

pala=1; zin=50.0;

freq=18.55E+9; material.er=3.19; material.thick=1.16E-1; material.tand=1.0E-4;

/*req=1.0E+9;
material.er=9.8;
material.thick=0.00127;
material.tand=0.0005;*/

er=material.er; ^{||} t=material.thick;^{||}

/*----*/

printf("***************** Patch Antenna Design **********************\n\n"); printf("Design Freq.=%f[GHz]\n", freq/1.0E+9); printf("Haterial: er=%f, t=%f[mm]\n\n",er,t*1000.0);

lw=C0/freq;

/*-----Initial Calculation-----*/
W=Iw/2.8/sqrt((er+1.8)/2.0);
el=(er+1.8)/2.8+(er-1.8)/2.0*pow(1.8+12.8*t/W,-8.5);
dl=.412*t*(el+.3)/(el-.258)*(W/t+.264)/(W/t+.8);

(ix)

付錄[A], 付錄[B]

L=1w/2.0/sqrt(e1)-2.0*d1;

/*printf("iw=%f, el=%f\n",iw,el);*/ /*rintf("*Initial Calculation\n"); printf(" U=%f[mm], L=%f[mm]\n",U*1000.0,L*1000.0);*/

Bg=2.0*Pai*sqrt(el)/lw; Y0=sqrt(el)/(120.0*Pai)*∐/t;

/* Input the data into the Solution structure */
Sol_ini.U=U;
Sol_ini.L=L;
Sol_ini.el=el;
Sol_ini.Bg=Bg;
Sol_ini.Y0=Y0;
/*S_p=&Sol_ini;*/
/*Sol_ini.Yrad=Yrad;
Sol_ini.Yin=Yin;*/

Yrad=calc_Yrad(freq,material,Sol_ini); Sol_ini.Yrad=Yrad;

Yin=calc_Yin(freq,material,Sol_ini); Sol_ini.Yin=Yin; /*printf("\nU=Xf, L=Xf, Bg=Xf,\n",U,L,Bg); printf(" Y0=Xf, Yrad=(Xf,Xf)\n\n",Y0,Yrad.r,Yrad.i);*/ /*printf(" Yin edge=(Xf,Xe)\n\n",Yin.r,Yin.i);*/

/*-----Best L Calculation -----*/ printf("*Best Value Calculation\n"); n=floor(L/Si/3.0); L=floor(L*5.0/6.0/1.0E-6)*1.0E-6;

Yin_min=Complex(0.0,100000.0); Y0_min=0.0; Bg_min=0.0; Yrad_min=Complex(0.0,0.0); L_min=0.0;

(x)

1

}

H_min=8.8; i_min=9; Y0=0.0; Yrad=Complex(10000.0,10000.0); Yin=Complex(10000.0,10000.0);

for(i=1;i<=n;i++)</pre>

else { U=1w/2.0/sqrt((er+1.0)/2.0);

el=(er+1.0)/2.0+(er-1.0)/2.0*pow(1.0+12.0*t/U,-0.5); di=.412*t*(el+.3)/(el-.250)*(U/t+.264)/(U/t+.8); Bg=2.0*Pai*sqrt(el)/lw; Y0=sqrt(el)/(120.0*Pai)*U/t;

/* Input the data into the Solution structure */
Sol_i.U=U;
Sol_i.el=el;
Sol_i.dl=dl;
Sol_i.Bg=Bg;
Sol_i.Y0=Y0;

Yrad=calc_Yrad(freq,material,Sol_i); Sol_i.Yrad=Yrad; Yin=calc_Yin(freq,material,Sol_i); Sol_i.Yin=Yin;

if (abs(Yin.i) < abs(Yin_min.i))
{
 Yin_min=Yin;
 Y0_min=Y0;</pre>

Bg_min=Bg;

(xi)

付録[A], 付録[B]

Yrad_min=Yrad; L_min=L; H_min=H; i_min=i;

)부

L=L+Si;

}

Sol_last.U=U_min; Sol_last.L=L_min; /*Sol_last.H=2.16*0.001; Sol_last.L=1.451*0.001;*/ /*Sol_last.el=el_min;*/ el=(er+1.0)/2.0+(er-1.0)/2.0*pow(1.0+12.0*t/U_min,-0.5); Sol_last.el=el; /*Sol_last.dl=dl_min;*/ Sol_last.dl=.412*t*(el+.3)/(el-.258)*(U_min/t+.264)/(U_min/t+.8); /*Sol_last.Bg=Bg_min;*/ Sol_last.Bg=2.0*Pai*sqrt(el)/lu; /*Sol_last.Y0=Y0_min;*/ Sol_last.Y0=sqrt(el)/(120.0*Pai)*H_min/t; /*Sol_last.Yrad=Yrad_min:*/ Sol_last.Yrad=calc_Yrad(freq,material,Sol_last); /*Sol_last.Yin=Yin_min;*/ Sol_last.Yin=calc_Yin(freq,material,Sol_last);

/*prt_sol:!*/

printf(" U=Xf[mm], L=Xf[mm]\n",U_min*1000.0,L_min*1000.0); printf(" Yin edge=(Xf,Xe)\n",Yin_min.r,Yin_min.i); printf(" Zin edge=Xf[ohm]\n",1/Yin_min.r); printf("\n"); /*exit(1);*/

/*----- Feed Point Calculation -----*/

(xii)

	· · · · · · · · · · · · · · · · · · ·
·錄[A], 付錄[B]	付録[A], 付録[B]
it (pola == 0) (dcomplex Usert(dcomplex z);
Fd_point(freq, naterial, Sol_last, zin);	dcomplex Humul(double x, dcomplex a);
print(("\n");	
/*	/* traditional - K&K */
printi("*Quality Factor Calculation\n");	
Sol_last.Qt=calc_Qt(freq,material,Sol_last);	dcomplex (add();
print((" Qt=%f\n",501_last.Qt);	dcomplex (Sub();
/* Perturbation Calculation*/	dcomplex Cmul();
ds=(Sol_last.L*Sol_last.L)/2.0/Sol_last.Qt;	dcomplex Complex();
da=sqrt(ds);	dcomplex Conjg();
/*printf(" %f %f %f\n",Sol_last.L,Sol_last.Qt,ds*10E6);*/	dcomplex Cdiv();
if (pola==1) {	double Cabs();
<pre>print f("\n");</pre>	dcomplex Csqrt();
printf("*Perturbation Calculation\n");	dcomplex RCmul();
print((" d==%f[mm^2] da=%f[mm]\n\n",d=*10E6,da*1000);	
}	*endif /* ANSI */
)	
/**************************************	<pre>#endif /* _NR_DCOMPLEX_H_ */</pre>
Header File for Functions for omplex Calculation	
=======================================	/*=====================================
	Functions for Complex Calculation
*ifndef _NR_DCOMPLEX_H_	***************************************
≭define _NR_DCOMPLEX_H_	"include <math.h></math.h>
#ifodef _DCONPLEX_DECLARE_T_	typedef struct DCOMPLEX {double r,i;} dcomplex;
tupedef struct DCOMPLEX {double r,i;} dcomplex;	
"define _DCOMPLEX_DECLARE_T_	<pre>#if defined(STDC) defined(RNSI) defined(NARNSI) /* ANSI */</pre>
<pre>#endif /* _DCOMPLEX_DECLARE_T_ */</pre>	
	dcomplex Cadd(dcomplex a, dcomplex b)
if defined(STDC_!) !! defined(ANSI) !! defined(NRANSI) / ANSI */	
	dcomplex c:
december Cadd(december a, december b);	c.r=d.r+b.r:
decemplex could decemplex a, decemplex b);	c.i=q.i+b.i:
december Caul(december d, december b);	return c:
ucomptex cmullucomptex o, ucomptex o/;	}
dcomptex comptex(double re, double im/;	
ocomplex conjg(ocomplex Z);	dependent Coub(dependent all dependent b)
dcomplex Udiv(dcomplex d, dcomplex D);	acomplex csub(acomplex a, acomplex b)
double Cabs(dcomplex Z);	
(xiii)	(xiv)

dcomplex c; c.r=a.r-b.r; c.i=a.i-b.i; return c; }

dcomplex Caul(dcomplex a, dcomplex b) ł

dcomplex c; c.r=a.r*b.r-a.i*b.i; c.i=a.i*b.r+a.r*b.i; return c; }

dcomplex Complex(double re, double im) ł dcomplex c; c.r=re; c.i=in; return c;)

dcomplex Conjg(dcomplex z) { dcomplex c; c.r=z.r; c.i = -z.i; return c;

)

dcomplex Cdiv(dcomplex a, dcomplex b) { dcomplex c; double r,den; if (fabs(b.r) >= fabs(b.i)) { r=b.i/b.r; den=b.r+r*b.i;

c.r*(a.r+r*a.i)/den;

付録[A], 付録[B]

}

c.i=(a.i-r*a.r)/den; } else { r≖b.r/b.i; den=b.i+r*b.r; c.r=(a.r*r+a.i)/den; c.i=(a.i*r-a.r)/den; }. return c; double Cabs(dcomplex z) { double x,y,ans,temp; x=fabs(z.r); y=fabs(z.i); if (x == 0.0)ans=y; else if (y == 0.0) ans=x; else if (x > y) { temp=u/x;

ans=x*sqrt(1.0+temp*temp); } else { temp=x/y; ans=y*sqrt(1.0+temp*temp); }

return ans; 3

dcomplex Cagrt(dcomplex z) 1

dcomplex c; double x,y,w,r; if ((z.r == 0.0) && (z.i == 0.0)) { c.r=0.0; c.i=0.0; return c; } else { x=fabs(z.r);

(xvi)

(xv)

付録[A], 付録[B] y=fabs(z.i); if (x >= y) { r=y/x; w=sqrt(x)*sqrt(0.5*(1.0+sqrt(1.0+r*r))); } else { r=x/y; w=sqrt(y)*sqrt(0.5*(r+sqrt(1.0+r*r))); 3 if (z.r >= 0.0) { C.r=#; c.i=z.i/(2.0*w); } else { c.i=(z.i >= 0) ? w : -w; c.r=z.i/(2.0*c.i); } return c; } 1 dcomplex RCaul(double x, dcomplex a) { dcomplex c; c.r=x*a.r; c.1=x*a.1; return c; 3 ≖else /* ANSI */

(xvii)

/* traditional - K&R */

dcomplex Cadd(a,b)
dcomplex a,b;
{
 dcomplex c;
 c.r=a.r+b.r;
 c.i=a.i+b.i;
 return c;

}

付錄[A], 付錄[B]

dcomplex Csub(a,b)
dcomplex a,b;
{
 dcomplex c;
 c.r=a.r-b.r;
 c.i=a.i-b.i;
 return c;
}

dcomplex Cmul(a,b)
dcomplex a,b;
{
 dcomplex c;
 c.r=a.r*b.r-a.i*b.i;
 c.i=a.i*b.r+a.r*b.i;
 return c;
}

dcomplex Complex(re,im)
double im,re;
{
 dcomplex c;

c.r=re; c.i=im; return c; }

dcomplex Conjg(z)
dcomplex z;
{
 dcomplex c;
 c.r=z.r;
 c.i = -z.1;
 return c;
}

dcomplex Cdiv(a,b) dcomplex a,b;

(xviii)

付録[A], 付録[B]	付録[A], 付録[B]
{	
dcomplex c;	dcomplex c:
double r, den;	double x u m p:
if $(fabs(b,r) \ge fabs(b,1))$ {	$\frac{1}{16} \left(\frac{1}{2} + $
r=b.i/b.r:	$(1, (2.1) - 0.0) \approx (2.1 - 0.0))$
den=b.r+r*b.i;	c i=0.0,
c.r=(a,r+r*a,i)/den:	
c.i=(a.i-r*a.r)/den:) also (
} else {	
r=b.r/b.i;	u=(aba(z,i);
den=b.i+r*b.r:	y = 1005(2, 1);
c.r=(a.r*r+a.i)/den:	
$c_i = (a_i + r - a_i r)/den;$	r = g(x)
}	<pre>w=sqr((x)*sqr((0.3*(1.0*sqr((1.0*r*r)));) = len {</pre>
return c:	
	r = x/y;
,	w=sqr((y)+sqr((0.5*(r+sqr((1.0+r*r)));
double Caba(z)	
donanie z:	(1 (Z.r)= 0.0) (
{	c.r=u;
double x u goa teao:	c.i=z.i/(2.0*w);
v = (ab + (z - n))	
	c.i=(z.i ≥= 0) 7 w ; -w;
g = 1003(2.17);	c.r=z.i/(2.0*c.i);
a_{13} - g_{13}	return c;
eise (1 (y 0.0)	
dis-x;	
(emp=y/x;	dcomplex RCmul(x, a)
dhs=x+sqrt(1.0+temp*temp);	dcomplex a;
) else {	double x;
temp=x/y;	
ans=y*sqrt(1.0+temp*temp);	dcomplex c;
	c.r≈x*a.r;
return ans;	c.i=x*a.i;
)	return c;
)
dcomplex Csqrt(z)	
dcomplex z;	= #endlf /* ANSI */
(xix)	· (xx)

.

·

.

付録[C]

第1回	矩形マイ	ク	ロス		IJ	ッ	プ	7	ン	テ	ナ	試化	乍
-----	------	---	----	--	----	---	---	---	---	---	---	----	---

43GHz带:中心周波数43.75GHz

	/		
DSN No.	W[mm]	L[mm]	F*[mm]
1PA1-101	2.211	1.569	0.583
1PA1-102	2.211	1.569	0.579
1PA1-103	2.211	1.569	0.580
1PA1-104	2.211	1.569	0.581
1PA1-105	2.211	1.569	0.582
1PA1-106	2.211	1.569	0.584
1PA1-107	2.211	1.569	0.585
1PA1-108	2.211	1.569	0.586
1PA1-109	2.211	1.569	0.587

F*: High Accuracy is required(<0.001mm)

A=1.1

第2回矩形マイクロストリップアンテナ試作

43GHz带:中心周波数43.75GHz

48GHz带:中心周波数48.55GHz

DSN No.	W[mm]	L[mm]	F*[mm]				
2PA1-101	2.288	1.640	0.603				
2PA1-102	2.288	1.600	0.603				
2PA1-103	2.288	1.610	0.603				
2PA1-104	2.288	1.520	0.603				
2PA1-105	2.288	1.530	0.603				
2PA1-106	2.288	1.550	0.603				
2PA1-107	2.288	1.560	0.603				
2PA1-108	2.288	1.570	0.603				
2PA1-109	2.288	1.580	0.603				

DSN No.	W[mm]	L[mm]	F*[mm]
2PA1-201	2.054	1.447	0.503
2PA1-202	2.054	1.407	0.503
2PA1-203	2.054	1.417	0.503
2PA1-204	2.054	1.427	0.503
2PA1-205	2.054	1.437	0.503
2PA1-206	2.054	1.457	0.503
2PA1-207	2.054	1.467	0.503
2PA1-208	2.054	1.477	0.503
2PA1-209	2.054	1.487	0.503

F*: High Accuracy is required(<0.001mm)

A=1.1

付録[C] 第3回矩形マイクロストリップアンテナ試作

DSN No.	W[mm]	L[mm]	F*[mm]	
3PA1-100	2.288	1.610	0.603	
3PA1-201	2.090	1.451	0.528] ← 43GHz帝:中心周波数43.75GHz]
3PA1-202	2.100	1.451	0.527	
3PA1-203	2.110	1.451	0.526	~ 48GHz带:中心周波数48.55GHz
3PA1-204	2.120	1.451	0.524	
3PA1-205	2.130	1.451	0.523	
3PA1-206	2.140	1.451	0.521	
3PA1-207	2.150	1.451	0.519	
3PA1-208	2.160	1.451	0.517	

ĩ

F*: High Accuracy is required(<0.001mm)

A=1.1

[付録D]

ì

Ĩ

第1回一点給電型円偏波矩形マイクロストリップアンテナ試作 43GHz帯:中心周波数43.65GHz

1

#	L[mm]	S[mm]	F[mm]	W[mm]	T[mm]	D[mm]
4PA3-100	1.669	0.446	0.606	0.560	0.880	0.000
4PA3-101	1.502	0.401	0.545	0.560	0.880	0.000
4PA3-102	1.586	0.424	0.576	0.560	0.880	0.000
4PA3-103	1.752	0.468	0.636	0.560	0.880	0.000
4PA3-104	1.836	0.491	0.667	0.560	0.880	0.000
4PA3-105	1.669	0.401	0.606	0.560	0.880	0.000
4PA3-106	1.669	0.424	0.606	0.560	0.880	0.000
4PA3-107	1.669	0.468	0.606	0.560	0.880	0.000
4PA3-108	1.669	0.491	0.606	0.560	0.880	0.000
4PA3-109	1.669	0.446	0.606	0.560	0.880	-0.100
4PA3-110	1.669	0.446	0.606	0.560	Ö.880	0.100
4PA3-111	1.669	0.446	0.606	0.560	0.880	0.200
4PA3-112	1.669	0.446	0.606	0.560	0.880	0.300

43GHz带:中心周波数43.80GHz

#	L[mm]	S[mm]	F[mm]	W[mm]	T[mm]	D[mm]
4PA3-200	1.663	0.445	0.604	0.560	0.880	0.000
4PA3-201	1.497	0.401	0.544	0.560	0.880	0.000
4PA3-202	1.580	0.423	0.574	0.560	0.880	0.000
4PA3-203	1.746	0.467	0.634	0.560	0.880	0.000
4PA3-204	1.829	0.490	0.664	0.560	0.880	0.000
4PA3-205	1.663	0.401	0.604	0.560	0.880	0.000
4PA3-206	1.663	0.423	0.604	0.560	0.880	0.000
4PA3-207	1.663	0.467	0.604	0.560	0.880	0.000
4PA3-208	1.663	0.490	0.604	0.560	0.880	0.000
4PA3-209	1.663	0.445	0.604	0.560	0.880	-0.100
4PA3-210	1.663	0.445	0.604	0.560	0.880	0.100
4PA3-211	1.663	0.445	0.604	0.560	0.880	0.200
4PA3-212	1.663	0.445	0.604	0.560	0.880	0.300

43GHz带:中心周波数43.95GHz

#	L[mm]	S[mm]	F[mm]	W[mm]	T[mm]	D[mm]
4PA3-300	1.656	0.444	0.601	0.560	0.880	0.000
4PA3-301	1.490	0.400	0.541	0.560	0.880	0.000
4PA3-302	1.573	0.422	0.571	0.560	0.880	0.000
4PA3-303	1.739	0.466	0.631	0.560	0.880	0.000
4PA3-304	1.822	0.488	0.661	0.560	0.880	0.000
4PA3-305	1.656	0.400	0.601	0.560	0.880	0.000
4PA3-306	1.656	0.422	0.601	0.560	0.880	0.000
4PA3-307	1.656	0.466	0.601	0.560	0.880	0.000
4PA3-308	1.656	0.488	0.601	0.560	0.880	0.000
4PA3-309	1.656	0.444	0.601	0.560	0.880	-0.100
4PA3-310	1.656	0.444	0.601	0.560	0.880	0.100
4PA3-311	1.656	0.444	0.601	0.560	0.880	0.200
4PA3-312	1.656	0.444	0.601	0.560	0.880	0.300

[付録D]

48GHz带:中心周波数43.55GHz

#	L[mm]	S[mm]	F[mm]	W[mm]	T[mm]	D[mm]
4PA3-400	1.479	0.418	0.538	0.575	0.795	0.000
4PA3-401	1.331	0.376	0.484	0.575	0.795	0.000
4PA3-402	1.405	0.397	0.511	0.575	0.795	0.000
4PA3-403	1.553	0.439	0.565	0.575	0.795	0.000
4PA3-404	1.627	0.460	0.592	0.575	0.795	0.000
4PA3-405	1.479	0.376	0.538	0.575	0.795	0.000
4PA3-406	1.479	0.397	0.538	0.575	0.795	0.000
4PA3-407	1.479	0.439	0.538	0.575	0.795	0.000
4PA3-408	1.479	0.460	0.538	0.575	0.795	0.000
4PA3-409	1.479	0.418	0.538	0.575	0.795	-0.100
4PA3-410	1.479	0.418	0.538	0.575	0.795	0.100
4PA3-411	1.479	0.418	0.538	0.575	0.795	0.200
4PA3-412	1.479	0.418	0.538	0.575	0.795	0.300

Ĺ