
TR-0-0096 2<'1 
A High Resolution Algorithm for Detection-estimation 

of Narrow-band Signals using Sensor Arrays without 

Eigendecompositions of Data Correlations 

Abdesselam Klouche-Djedid 三浦龍

1996. 1.30 

ATR光電波通信研究所

.. 
" 



A HIGH RESOLUTION ALGORITHM FOR DETECTION-ESTIMATION 

OF NARROW-BAND SIGNALS USING SENSOR ARRAYS 

WITHOUT EIGENDECOMPOSITIONS OF DATA CORRELATIONS 

Technical report 

by 

Abdesselam Klouche-Djedid and Ryu Miura 

ATR 

Optical and Radio Communications Research Laboratories 



ABSTRACT 

High resolution algorithms in sensor arrays lead to accurate results but with expensive 

eigendecompositions making its use in real-time applications such as mobile 

communications relatively difficult. In this technical report, a trade-off between accuracy 

and computational load is accomplished through a simplified algorithm which instead of 

eigendecompositions, uses the robust QR factorization for which many efficient parallel 

(systolic, wavefront array) implementations exist. First, a simple detection scheme is 

presented and, through simulations, is shown to work very well for sufficient SNR, even 

when signals are coherent. Outputs of the detection process include simultaneously 

estimates of signals Direction Of Arrivals (DOA's) and a simple beamformer vector 

resulting in an estimate of the desired signal. 

Extensive simulations are performed assuming different scenarios of variations in SNR, 

DOA's leading to discussions on the possibilities and limitations of the proposed solution. 
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PRELIMINARIES AND GENERAL DESCRIPTION OF A PARAMETER DETECTION 

AND ESTIMATION ALGORITHM 

An algorithm with computational advantages is designed for the detection of multiple 

narrow-band superimposed signals (with sufficient power) in sensor arrays and the 

simultaneous estimation of some specific signal parameters with a specific digital signal 

processing scheme on the sensor outputs. 

A multidimensional parameter estimation procedure is proposed that can be applied to 

arbitrary known array geometrical structure and signal correlation. A Gauss-Newton type 

algorithm is suggested for the minimization of some defined cost function towards the true 

parameters with fast quadratic convergence if the initialization is close enough. 

The parameters could be the azimuth or elevation angle characterizing the Direction Of 

Arrival (DOA) of the signals, their carrier frequencies, their power, any parameter that 

relates directly or indirectly to the emitter signals with respect to the array response. In the 

rest of this report, we will concentrate our presentation principally on the DOA's. 

The importance of the knowledge of values of these parameters is sometimes crucial such 

as in the case of DOA's where some very narrow beams could be formed with the present 

technology resulting in a substantial capacity increase in some communications systems 

where the allocated spectrum is being rapidly saturated such as cellular 

telecommunications or satellite communications. Moreover, this knowledge could be used 

effectively for a spatial localization especially in cellular telephone systems where hand-

overs are often needed. 

Applications of the proposed algorithm are in the fields of radio, undeNi1ater and seismic 

array signal processing. 

We assume an array of sensors of arbitrary geometry but with known array manifold over 

the range of parameters of interest; in other words, the response of each sensor to a unit-

wavefront signal should be known (through mathematical modeling or experimental 

measurements) for all possible values of the signal parameter of interest in the specified 

range. 

The number of sensors is assumed greater than the number of present signals (or at least 

the dominant signals in terms of power) impinging on the sensor array. Moreover, the 

signals are supposed narrow-band in the sense that the source (envelope) signals 



remains essentially unchanged in value in the time it takes the plane wave to travel 

accross the array. 

The output signal sensors will depend on the array sensors respons_es to the signals as 

well as independent, internally generated noise due principally to thermal noise. Using the 

spatial filtering or beamforming capabilities of an array of sensors [1 ], it is possible to 

imagine steering deep nulls towards the DOA's of signals such that the output of the 

sensor array will not contain power due to signals but only noise. Since the noise 

generated in the sensors is usually a white noise (even in the case where it is not, we can 

always prewhiten our data through the inverse estimate of the noise correlation) and its 

contribution to the output power does not depend on signal parameters, its value 

depending rather on the steering vector norm which is constant, the total beamformer 

output power is always minimal equal to that resulting from noise only. Anytime one or 

more signals is not nullified (which means that the number of present signals is 

underestimated), or steered nulls are not done correctly (incorrect DOA value), would 

result in some contribution of signal power always adding to that of the noise. 

This fact is the basic idea which we exploit to detect and estimate the signal parameters 

leading to the following claims. 

Claim 1 

Detect the number of signals with relevant power and arbitrary correlation (even 

coherency) impinging on an array of sensors. 

It is known that an array consisting of m sensors has, in general the capacity to generate 

(m-1) nulls which means that, at least (m-1) signals coming from different DOA's (in theory 

more, if some signals are coming from identical DOA's) can be simultaneously nullified. In 

the case when d<m signals are present, it can be deduced that there are at least (m-d) 

independent sets of m coefficients (steering vector) for which the sum of the products with 

the sensors outputs nullify the signals at exactly the d DOA's . 

This implies that in order to find the correct number and values of DOA's, a 

multidimensional search over the optimal space generated by these vectors has to be 

used. By measuring the total output power produced by these beamformers for different 

possible values of number and values of DOA's, the corre.ct choice is that for which this 

power is minimal. 
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The corresponding algorithm is therefore a multidimensional search which can be solved 

efficiently in terms of convergence speed by using a Gauss-Newton type algorithm. For 

this type of algorithm, the computation of the first and second deriv?tive with respect to 

the parameters to estimate of the defined power cost function is necessary. These 

quantities, respectively the so-called gradient and hessian matrix can be fortunately, well 

approximated in closed-form formulas. The modified variation projection algorithm 

combined with a Marquardt-Levenberg step size choice was found to be very successful 

in converging towards the global minimum when initial estimate were close enough. 

Claim2 

Estimate the values of the DOA's of present signals. This is a direct consequence of the 

previous multidimensional search. The correct values of DOA's are those for which the 

total power previously described is minimal. This minimum should be the global one, so 

that special care should be taken in order for the algorithm to converge to the global 

minimizer. Several DOA initializations at different values of the prescribed range would 

increase the probability of global convergence. 

Claim3 

Estimate the values of power of present signals. This is also a by-product of the 

calculation of the gradient and the Hessian matrix mentioned above. In the earlier 

reasoning, steering nulls towards the signals to be able to locate their parameters leads to 

an ouput power with ideally no signal contribution. The substraction of sensor output 

before and after null steering should contain more signal information; some additional 

simple signal processing will be sufficient to separate and identify all present signals. 

Indeed, it is shown with the help of computer simulations that for sufficient SNR, the 

performance of this simple method is acceptable and actually, nearly as efficient as a 

computationally involved estimation operation such as the Linearly Constrained Minimum 

Variance (LCMV) and behaves better than other simple estimation method like the 

reference signal method with the additionnal advantage that it can be used in a coherent 

signal environment. We remind briefly here the beamformer weight for both conventional 

methods, more details can be further examined in [1 ]: 

for the LCMV method: W = R:1c(ct町c)―1fsuch that ctw = f 
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for the reference signal method: w = R立xd

where Rx is the data correlation, C is the constraint matrix, f is the response vector and 

rxd is the cross-correlation between the data and the reference signal: 

The main advantage of the proposed algorithm is in the efficient computation of the 

steering vectors by using the so-called QR transform of the matrix formed by collecting the 

array responses to different signal scenarios. Mathematically speaking this transform 

consists of the decomposition of the array response into the product of a unitary matrix Q 

with a matrix R having a special structure in that its last (m-d) rows are null whereas its d 

first rows correspond to a triangular matrix, revealing by that the rank of the array 

response which is equal to the number of signals. The popularity of the QR transform is 

also enhanced by the fact that, not only very fast algorithms (parallel, multiplierless…) 

could be used for its implementation but also it benefits from its well-known numerical 

robustness [2]. A multidimensional algorithm is used to converge to the correct Q matrix 

and therefore to the correct DOA's and could be described in the following two major 

steps of computations: 

First step 

Assuming some initial minimum number of present signals and initial values of DOA's, we 

use the Newton-Gaussian type search on the DOA's (further explained in section 3) for 

which the minimum power is obtained in the last (m-d) rows of the corresponding matrix R 

which is our cost function. Next, we increment the number of supposed signals and repeat 

the same operations as long as the rate of decrease in the value of this minimum is 

continuing. 

The correct number of signals is set as the minimum value for which this rate was 

decreasing monotonously. 

Second step 

Actually, during this step, we just collect some quantities already evaluated in the previous 

one. Among the quantities computed during the minimization process for the 

approximation of the gradient and the Hessian matrix are the actual values of the 

parameters to be estimated and the estimates of the signals themselves which are 
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approximated using the new simple beamformind method. This new estimation approach 

was described in Claim 3 and is further explained in detail in section 3. 

The algorithm was implemented in the mathematics software package Matlab for 

Windows, Version 4.2c1 since routines that perform the required signal processing such 

as as the QR transform, the matrix product, sum, inverse and Schur product are already 

implemented. Given the matrices dimensions, the dominant matrix operation in terms of 

time consumption is the QR transform which can be implemented much faster than the 

eigendecomposition of data correlations used in other conventional high resolution 

detection-estimation algorithms. 

The algorithm could also be performed by using a direct hardware implementation that 

could increase sensibly the speed of execution in a real system especially that there exist 

parallel numerical architectures for the realization of all required matrix operations. 

The organization of the next development is as follows. First, in section 1, the problem at 

hand is described and mathematical models and assumptions are made for a sensor 

array. Section 2 follows with the introduction of the new detection scheme which is 

continued in section 3 by the proposition of the DOA and signal estimation procedure. In 

section 4, extensive Monte-Carlo simulations are done assuming various possible 

scenarios, and discussions are developed showing the strengths and limitations of the 

proposed method. In section 5, we describe the possibility of using several efficient signal 

processing schemes for an implementation of the proposed method for a trade-off 

between the accuracy and the speed of the system. 
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SECTION 1 INTRODUCTION 

m sensors receive d (d < m) narrow-band plane waves with center frequency偲.The 

sensor signals can be represented as: 

xi (t) = f(t) cos(mo (t +巧）＋妨十n;(t); i-denotes the time required for the plane wave front 

to travel from the origin to the /h sensor. 

The source (envelope) signal f(t) is a real-valued slowly varying function of time, and 

叫t)represents additive noise at the /h sensor. The terminology narrow-band implies 

that f(t) remains essentially unchanged in value in the time it takes the plane wave to 

travel accross the array. Using conventional signal processing techniques, the sensor 

signals are first frequency down-shifted to baseband frequencies. This entails the 

multiplication of each of the sensor signals by the sinusoids cos(叩） and sin(叩） and 

then low-pass filtering the m product signal pairs. The outputs of each low-pass filter pair 

are given by respectively the in-phase component f (t + ti) cos(o.. もti+外） and the 

quadrature component f(t + 7;) sin(o.. も巧+~) where f (t + 7;) = f (t) by using the narrow-

band approximation. In the case where d signals are present then the delay巧willboth 

have a dependence on the sensor・position as well as the direction of the plane wave 

source i.e. ti,k with i = 1, ... , m and k = 1, …，d. Then, the m-vector sensor outputs may be 

conveniently represented by the complex-valued array vector: x(t) = A(かs(t)+ n(t) where 

Sk(f) = fk(f)砂 isthe kth . signal present and A pn (z) = e屈 z-pn is the response at the pth 

sensor of an unit-wave signal with the same plane wave direction as the dh signal. 

For the simplicity of the presentation, assuming all directions of travel of plane waves are 

contained in a plane surface and the sensor array is a linearly uniform array then it can be 

derived from physical principles that ちn= p/sin(乳） where / is the distance between 

adjacent sensors and 0n is the angle between the direction of arrival of the plane wave of 

interest and the normal to the line formed by the array of sensors at the pth sensor; in 

what follows we will assume that the vector collecting all DO A's &= (6• ・・ 0d) will be 

the parameter to be estimated thus we will emphasize the dependance of the array 

response A(6'directly on 0. On the other hand, s(t) and n(t) are taken as respectively 

6
 



the d-vector signal and m -vector white noise with equal power d; the signal and noise 

vectors are supposed uncorrelated. 

Therefore, N measurements snapshots are collected such that: 

where S = (s(t1) 

and for large 

X = (x(t1) 

s(tN)) and N。=(n(t1) 

x(tN)) = A(11s + N。

n(t砂）

(1) 

1 
N, the autocorrelation sample matrix Rx= -xxt 

N 
becomes 

凡：：：：：ARが+di where Rs is the signal autocorrelation. 

In our approach, the array manifold is also supposed known through measurements or 

mathematical modeling of the array response: But, instead of eigendecomposition of the 

data correlation, we derive a noise subspace via a computationnally efficient QR transform 

on A(~= Q(d, ~R. For simplicity, we will drop the 0 and (d, ~factor from A= QR. 

R1 
Due to the special structure of R = (。J,where R, is d by d triangular matrix and o is 
the (m -d) by d zero matrix, the following transformation on the received data 

Qtx(t) = Rs(t)+Qtn(t) has its last (m-d) components depending on the noise only (the 

symbol t meaning the transpose conjugate matrix transformation). Supposing that the 

array is unambiguous i.e. A(~has full rank for all distinct 0; of interest, the unitary matrix 

Q for which the last (m -d) channels have minimum power will correspond to the correct 

DOA's. 

1 1 
The Frobenius norm of (0 l)Qtx = 

✓N(m-d) -JN(m-d) 
O!X (where (0 1) selects the 

last (m-d) elements of otx therefore O = (01 02) , 01 with d columns, 02 with 

(m -d)) is set as the cost function V(fl,d) to be minimized. Observe that the cost function 

approaches d the noise power assumed constant at each channel at the global 

minimum (i.e. at d and 0 respectively the correct number of detected signals and the 

correct DOA's) as the number of data becomes large: Vmin (fl,d)"" d. 
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SECTION 2 DETECTION SCHEME 

In this section, we develop the detection algorithm based on the valuE;, of the cost function 

at the minimizer. Suppose the detected number of signals d̂ 
is under-estimated, the 

minimum of the cost function will forcingly depend not on noise only but also on signals 

which will also contribute. Indeed, at凡a""atAR5がQ+ di and to simplify the analysis, 

we will assume uncorrelated signals having comparable power (Rs ""〈sりIwhere〈sりis

the average signal power) and values of minimum cost functions occuring for fJ belonging 

to a d -subset of {~. 令…， &d}.Without loss of generality, we set fl={~.~.... , 伶｝，
therefore: 

at凡Qz(R1

(R• 

ata(fJ.) 
d+1 

ata(な）

ata( 名）~s

ata(Gd)r + di 

R¥ 
where R'=(。Jwith R'1 triangular d by d matrix and O is the m_~d by d zero matrix. 

At the global 
.. 
minimum the cost function is approximated by: 

（八＋盃噂；1Trace{a,a/砂｝）
attained when the sum in the previous equation is null i.e. when 

have a
 

lesser contribution therefore 

where 

a
 

ai =a(~). Obviously, the minimum 

differential cost function 

cl= d. This 

between 

庁 is 

works 

especially well for high SNR; for lower SNR, the second term in the approximation will 
． 

successive 

detection measurements will be less affected by the d factor and is shown empirically to 

work better. Instead of measuring the minimum of the cost function for different values of 

d, we compare its slope with respect to increasing value of cl, and the detected number 

of signals corresponds to the value for which this slope decreases as compared with the 

previous one. In summary, the proposed algorithm could be viewed as a minimization over 

the number of signals calling another minimization over the signal parameters to estimate 

as described by the following relation. 

呼げ{V(d,6!}} = ")罰［叶N(m1-d) 11(0 心x11:}} 
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The first minimization is a brute force uni-dimensional search over increasing discrete 

values of d; for each value of d, next a sub-routine is called and performs the multi-

dimensional search over the space of signal parameters (in this case, the DOA's 0) that 

permits to converge to some minimal cost function value (because of the multidimensional 

aspect, careful initializations have to be done). This value is compared to the two previous 

ones to find the maximum decreasing slope for which the decision of correct detection is 

made. Initializations for both minimizations are necessary; notes 1 and 2 below give some 

general guidelines for the choice of initial values respectively for the first and the second 

minimization procedures. 

The detection algorithm is outlined below. 

Summary of the algorithm: 

1) Initialize a to some value; also, initialize or compute the minimal value of the cost 

function V(d, 6} = for d = d -1 and d = d-2 (more details about 
N(m-d) F 
1 ll(o心x112

how to make the initialization choices are developed in note 1). 

2) Minimize over fJ= {~. 名，…，伶｝ the cost function 

Vmin(d, ~ 
A 1 2 

=minV(d, ~=min 
8 8 N(m-d) 

1¥(0心XI¥
F 

3) Null Hypothesis H。:d=d 

4) If Vmin (d, ~-2Vmin (d -1, ~< -Vmin (d -2, ~then 

reject H。,let d = d + 1 and go to 2 

else accept H。stop

Note 1 

For applications of repetitive nature where reception of signals is continuous, the initial 

value for a could be set as the minimal number of present signals expected at any time. 
For example, in mobile communications radio systems, each mobile in a cluster is 

assigned one particular frequency so that interferences can come only from mobiles of 

neighboring clusters using the same frequency; since in usual cluster architectures, six (6) 

，
 



adjacent interiering clusters exist, we could initialize d = 7 (1 desired signal plus 6 

interierers). The actual correct number usually is larger due to additional non-adjacent 

interiering clusters plus multipath effects. In the case where no a-priori information about 

the number of present signals exist, a brute force computation of initial cost function 

values for cf= 1, cf= 2 and cf= 3 would be necessary to start running the proposed 

algorithm. 

Note 2 

Because of the multi-dimensional nature of the parameter minimization procedure, initial 

estimates have to be close to actual ones (in the simulations presented in Section 4, it 

was found that initial values of DO A's different from the actual ones by at most 10 degrees 

lead to global convergence). Some guesses could be made for these initial values for 

some applications where the receiver knows approximately the directions of interferences 

and desired signal. For example, in mobile radio communications systems, due to 

geometrical considerations, positions of interfering cluster cells with respect to the base-

station imposes some fixed interval for possible variations of interfering DOA's. In the case 

where no guesses can be made, then it is possible also to run several times the 

parameter minimization procedure for different initial values and choose the outputs with 

the smallest minimum cost function. Another advantage that we exploit is that since the 

search procedure is repeated for increasing values of d, we can use the output estimates 

of the previous minimization process as initial values for the present one which, because 

of the increase of the problem dimension requires an additional initial value that can be set 

according to the previous scheme. This is an application of the alternating projection 

algorithm discussed in more details in [3]. 

It is noteworthy to point out that, at the end of the detection scheme, we have available 

not only the number of present signals but also the DOA's, the noise power and values of 

matrices Q and R , hopefully at the correct detected number of signals and at the correct 

DOA's, that will be used in the signal estimation process. In section 4, a simulation 

example is provided testing the performance of this detection scheme. 
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SECTION 3 DOA AND SIGNAL ESTIMATION 

In the previous detection scheme, although no eigendecompositi_on is performed, a 

multidimensional search procedure is needed to look for the global minimizer of the cost 

function. The modified variable projection algorithm, which converges quadratically in 

O(md2) multiplies [4] when initialized closely enough to the global minimizer, is used. 

Similarly as in [4], the following operations are needed during the optimization process. 

• QR decomposition 

A=(O, a,{ R1 。） (2) 

• Intermediate variables that are needed in the course of computing the gradient and the 

hessian matrix during the optimization process 

汲 d0,)o-(da(11,) … da(&,) 

(Here we point out that the computation of the QR factorization as well as D could be 

available ahead of time since A is required to be known a-priori through measurements 

or mathematical modeling) 

1 
where M=  

,jN(m-d) 
X. 

<I>= ato 

甲 =MtQ2

Q=酎OtM

(3) 

(4) 

(5) 

The expressions in equations (4) and (5) can be interpreted physically as respectively the 

error funtion whose power has to be minimale at the correct parameter values and the 

outputs of estimated signals as will be shown later in this section. 

• Criterion function V, gradient V', Hessian matrix H and search direction s correspond 

after some mathematical manipulations to: 

V~Traceドり (6) 

V'= 2Re{diag(Q甲<I>)} (7) 
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H~2Re{ (<I> t <I> }19臼バ｝
H .. = H .. (1 +μk) 
If II 

s = H-1v• 

the estimate is iteratively computed as: 

0k+1 =名一 S

(Sa) 

(Sb) 

(9) 

(10) 

where the symbolRrepresents the Schur product; moreover, μk was chosen according 

to the Levenberg-Marquardt step length technique [2]. It consists of choosing the 

particular step size in such a way that the minimization process behaves as the steepest 

descent method when the method is far from the minimum and as an inverse-Hessian 

method when the minimum is approached. Practically, we increaseμk by a factor of 10 

when the cost function increases and decrease it by a factor of 1 O when the cost function 

decreases (see [2, Chapter 15] for more details). 

The initialization process can be enhanced using the alternating projection [3] algorithm 

which is an application of the relaxed optimization principle ("one parameter at the time") 

to the optimization problem [4]. In our case, it can be naturally applied since the search 

procedure is repeated for increasing values of d so that we can use the output estimates 

of the previous minimization process as initial values for the present one which, because 

of the increase of the problem dimension requires an additional initial value chosen 

according to Note 2 in section 2. In any case, the optimization is the bottle-neck problem 

in terms of computation cost since the eigendecomposition is not used. The resulting 

algorithm is described in the flow graph of Fig. 1. 

In the next section, different possible scenarios of locations of sources and SNR are 

examined through computer simulations using the mathematics software Matlab. Results 

give satisfactory detection and estimation outputs as long as the SNR is greater than 

some threshold and the signal's separation is enough. For cases where these conditions 

are not satisfied and especially when two DOA's become very close to each other, a more 

accurate initialization procedure is necessary. In a mobile communications system 

context, since locations of sources do not move too far between detection operations, a 

better initialization process can be made by taking previous DOA's estimations as initial 

estimates of next ones. When DOA's are well separated, our algorithm produces 
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estimates that are precise enough to be fed as initial values for the next estimation 

procedures and a better convergence is obtained in terms of DOA resolution. 

Next, since the basic contribution of this work is to simplify calculatior:is. without degrading 

too much performances, a simple beamforming method is proposed and tested. From 

equations (1) and (2), Rt01X = S + R~1Q1N where S is the signals snapshots, an 

approximation is proposed such as S = R~1Q1X . Another advantage in this estimate is that 

it is already available from equation (5) in the detection process so that no additionnal 

calculation is required. 

It is shown in the simulation section that when SNR is high enough and when DOA's are 

not too close, our estimation procedure is as performant as such computation-involved 

estimation procedures such as the Linear Constrained Minimum Variance (LCMV) method 

or the reference signal method [1]. To compare different beamforming performances, the 

input SNR and SINR (signal to noise plus interference ratio) are measured at the first 

sensor with response a1(63 whereas the output SNR and SINR are measured using the 

proposed beamforming estimators. 

The input signal to noise plus interference ratio (ISINR) and the output signal to noise plus 

interference ratio (OSINR) are defined respectively as: 

ISINR = 
E徊(~)s1(t)「｝
a 
ダ心E他(&ic)sk(t)i2
k=2 

｝ 

E~w*a(~)s1(t)「｝
OSJNR = 

and 

4 

ぶwl2心吋w*a(4)sk(t)「｝
E{.} denotes the statistical expected value and w・the corresponding steering vector. 

The difference between these two quantities represent the improvement in the signal 

estimation procedures by using adaptive beamforming. 
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SECTION 4 SIMULATION 

In this section, some simulation examples are provided to test the acQuracy of the present 

method estimates as compared with WSF ones under different scenarios. 

An 8-element half-wavelength spaced linear uniform array is assumed and 4 signals with 

equal power are located at different DOA's. Each signal and noise vector is independently 

generated in the computer using the Matlab random Gaussian generators initialized with 

different seeds. In each experience, the data vector dimension is 100 corresponding to the 

supposed number of snapshots and each point in the figures resulting from averaging 200 

signals and noise realizations. For the case of coherent signals, corresponding data 

vectors are initialized with the same seed value in the random generator thus assuming 

identical signals. 

Example 1 

In this case,_ the detection scheme using the proposed approach is tested assuming 

stationary DOA's at -30°, 20°, 30°and 60°. The cost function evaluated in dB at the 

minimizer DOA's is plotted against increasing values of d for SNR between -10 dB to 20 

dB in Fig. 2. As expected, for each SNR > 8 dB, the minimum cost function is obtained for 

the correct number of signals d = 4, and detecting this minimum could be sufficient for 

such SNR's. But, by using the scheme described in section 2 where values of the slope of 

the cost function versus successive detected number, even under lower SNR > -6 dB, the 

detection is possible. The algorithm has worked equally well for both uncorrelated and 

completely correlated (coherent) signals. For the coherent case, the signals at 20°and 

30°are assumed exactly the same. 

Example 2 

In this case, assuming that the correct number of signals is detected, with the same 

stationary experiment as before where DO A's are at -30°, 20°, 30°and 60°, the 

performance of our DOA estimation procedures is plotted in Fig. 2. In Fig. 3(a), the 

standard deviation error of the signal coming at DOA 30°is shown against the variation of 

SNR for the incoherent case, and the present method is compared to the WSF method. In 
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the range of SNR shown and for the given DOA's separation, the WSF and proposed 

approaches have comparable performances. In Fig. 3(b), we observe similar 

performances for the coherent case. 

Example 3 

In the next experiment, for both our method and the WSF one, one source location was 

varied between 20°and 26°(the others kept constant) and we repeated measurements of 

the detection failure percentage for each value of SNR between -5 dB and 1 O dB. 

Resulting data were too lengthy to include in this paper and instead comments on their 

significance with respect to variations in SNR values or DOA positions follow. In particular, 

the detection failure is less than 15 % for a difference between DOA's greater than 5°; 

when this is less than 4°, the failure can be as large as 80 % for the proposed approach. 

For comparison, the WSF detection failure does not exceed 50 % for a DOA separation 

greater than 2°and an SNR > 3 dB, and is always less than 20 % for a DOA separation 

greater than 4°. 

It was found experimentally that the main reason for the detection failure for close DOA's 

was poor initial estimates. Since in real applications, the estimation process is continuous 

and DOA's do not vary too much between estimations, the following initialization was 

used. Results of DOA's outputs of the previous estimation process become・the initial 

estimates of the present one. In the computer simulation, the DOA location to estimate is 

supposed to move 1°at each estimation procedure starting from the initial position of 20° 

with the 3 other DOA's fixed at -30°, 30°and 60°. In this case, the results of the 

simulations, consisting also, for each scenario, of averages of 200 experiments, have 

proved a detection failure of less than 10% for a DOA difference greater than 4°and an 

SNR between -5 dB and 10 dB. 

Example 4 

Now, the signal estimation method presented in section 3 is tested under different SNR 

and DOA's constraints and compared to the LCMV and the reference signal method 

approaches. First, similarly as before, we assume SNR=O dB, 3 fixed DOA's at at -30°, 
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30°and 60°and the last one moving from 20°to 26°. The ISNIR, under these conditions is 

approximately constant close to -6 dB, the resulting OSNIR is plotted in Fig. 4(a), where 

the moving signal is estimated versus various DOA's locations for the coherent (in this 

case the same signal is also coming from at 30°) and incoherent cases. It was observed 

that the estimation performance is practically the same for the coherent and incoherent 

cases for the proposed and the LCMV methods; of course, the reference signal method 

produced useless estimates under coherent signals so that only results from the non-

conherent case were plotted. The gain that can be attained by using the adaptive array 

antenna for this case varies between 14 and 7 dB and for the sake of comparison, in the 

same experiment, plots of the reference signal method (the reference signal is supposed 

perfect in the simulations) and the LCMV method are also included. Results show 

comparable performances in the range of SNR at hand; for lower SNR's, the performance 

degrades appreciably in the proposed method, and this is expected since the DOA's 

estimation becomes inaccurate in this case. The advantage in using DOA's detection 

based algorithms as compared to the reference signal method is, in addition to the fact 

that the reference signal performance is very poor under coherent signals, the knowledge 

of DOA's which can be very useful in a cellular mobile communications systems especially 

when hand-overs occur. The proposed method could be seen as a trade-off between the 

LCMV method which also provides for the DOA's values but require expensive 

computations and the reference signal method which can be computationnally attractive 

but lacks DOA information. 

In Fig. 4(b), the same experiment is repeated for an SNR of 10 dB where ISNIR=-5 dB 

and of course, the performance is better, a maximum and a minimum gain of respectively 

22 dB and 16 dB are possible for a DOA difference of 1 O and 4°respectively. 
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SECTION 5 SIGNAL PROCESSING DESCRIPTION 

In our development of signal processing architectures, we have attem,pted to keep in mind 

two main constraints for digital real-time applications. First, the speed of the operation 

execution resulting from parallel, pipelinable structures and second, the accuracy of the 

numerical results by using robust well-conditioned algorithms. The degree to which a 

system of linear equations is ill-conditioned is determined by the condition number of the 

coefficient matrix. The condition number of a matrix Y , Cn(Y) is the ratio of its largest to 

its smallest singular value; the larger Cn(Y) is, the more ill-conditioned will be the problem 

to solve. 

The signal processing units (SPU) that we need in our algorithm can be divided in the 

following parts. 

Part 1: SPU to get the data ready for digital signal processing after reception by the array. 

We have opted to use directly the data matrix instead of computing the autocorrelation Rx 

[5]. In fact, it is numerically advantageous since Cn(X) = .Jen面〗

Part 2: SPU to QR decompose A and get the values for Q1, Q2 and R1 and R汽or

different values of initial DOA's and number of detected signals. 

Two possible algorithms for efficiently implementing such a transform are the so-called 

Given's and Householder's which we describe here briefly since they are well documented 

[5] and [6]. 

The Given's rotation applied to the left (respectively the right) of a matrix combines 2 rows 

(respectively 2 columns) to zero one component in the following form. 

（こ：：）(~ x
l
y
i
 

0

0

 
::)=(> 1

x
,
0
 

0

0

 

ヽ

ノ
k

k
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,

 

x

y

 where the rotation coefficients c and s satisfy 

-sxi +cyi =0 

ざs+c・c=1

c• = C 

A sequence of such elimination operations may be used to triangularize a matrix Y (with 

dimensions n1 by n2). If n1 > n2, then they are performed to the left of Y and successive 

multiplications create zeros on columns of Y from bottom to top, and from left to right. 
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2m-d-1 
Such a transform is applied to the QR decomposition of A and d planar 

2 

rotations are needed to obtain the form of equation (2). It is notew?rthy to mention the 

existence of multiplierless efficient algorithms to perform rotations [7]; moreover, the 

Given's algorithm can be naturally applied in a parallel pipelinable architecture such as 

those described in [5],[6] for an increase of throuput. 

The second algorithm that can be used to implement the QR decomposition is the 

uu 
Householder's. The transform is a unitary, symmetric matrix P = I -2-such that 

utu 

Px = llxlle1 with u = x士llxlle1.Therefore, it may act on some column to simulaneously zero 

all elements below some row until the whole triangularization is complete. For a parallel 

and pipelinable structure, the Given's algorithm is preferable since it leads to simpler 

processing units as compared with the Householder transform. 

Part 3: The basic linear operations needed in the optimization procedure are expressed in 

equations (2) through (10). We have 8 matrix multiplications, the most computationally 

involved of them takes an order of o(md2) complex operations. This may be compared to 

the QR decomposition that consumes also the same order of calculations. We have also 

to perform 2 matrix inversions, one of them a triangular matrix inversion with O(dり

operations and a Shur-product withが operations.

Since it is always assumed that m > d then the cost of signal processing in terms of 

complex operations is dominated by the o(md2) term for the proposed method which can 

be compared with o(m3) operations for a usual eigendecomposition. For the sake of 

illustration, Fig. 5(a) and (b) show the gain in computatinal savings by using the QR 

decomposition (mが operations)instead of the eigendecomposition (m切perations)

assuming first that d = 7 then d = m -2 , in both cases m is varying between 8 and 20; 

the gain is especially significant when d is small as compared with m as shown in Fig. 

5(a). 

This cost could be decreased by using parallel architectures such as the wave-front array 

of [8) for the computation of the matrix multiplication or matrix inversion as well as the QR 

decomposition. Another possible choice would be the systolic array of [5] for the triangular 

matrix inversion as well as the QR decomposition. 
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CONCLUSION 

A method for the detection-estimation problem in antenna arrays, having high resolution 

capabilities for SNR > -5 dB, was presented. The method which works also for coherent 

signals does not require eigendecompositions which leads to higher execution processing 

and is easily implemented using parallel processing techniques. Instead of an 

eigendecomposition of the data autocorrelation taking an order of o (m勺 complex

operations, a proposed efficient complex Householder or Given's decomposition of A(0) 

takes O(mdりoperationsand even less when parallel processing such as systolic and 

wave front arrays are used. A multidimensional search procedure is required to find he 

minimum power for the selected channels. In the special context of cellular mobile 

communications, an initialization of DOA's based on previous estimates in the optimization 

process resulted in more accuracy and resolution in the detection method. 

A simple signal estimation method whose processing is done during the detection 

procedure is shown to lead to accurate estimates in some SNR range interval and DOA's 

separation in space as compared to some expensive estimation methods such as the 

LCMV. 
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LIST OF CAPTIONS 

Fig. 1 Flow Graph diagram of the proposed QR based detectio~­

estimation algorithm. 

(a) BOX 1: Flow Graph diagram of the detection of the 

number of present signals. 

(b) BOX 2: Gauss-Newton type search algorithm. 

Fig. 2 Plots of inverse cost function versus number of detected 

signals for values of SNR ranging from -10 dB to 20 dB in 

steps of 2 dB. 

Fig. 3 Variation of standard deviation of selected DOA estimate 

with respect to SNR using the WSF method and the 

proposed method 

(a) incoherent signals 

(b) coherent signals 

Fig. 4 Variation of the Output SINR for different estimation method 

with respect to DOA location of selected signal (closest 

signal location at 30 degrees) 

(a) SNR=O dB 

(b) SNR=10 dB 

Fig. 5 Rough comparison of the computational cost between the 

proposed and the eigendecomposition approaches 

(a) d = 7 , m varying between 8 and 20 

(b) d = m-2 , m varying between 8 and 20 
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%Software program written in Matlab for Windows version 4.2c.1 
%Detection of the number of signals impinging in a ULA half-wave 
%spaced and estimation of the Direction Of Arrival for each signal 
%using the proposed method based on a QR factorization of the array 

%manifold. 
clear 
nurn_sig_real=('Input the actual number of signals'); 
%Input the locations of the DOA's in ascending order 
teta=[-30 20 30 60]*pi/180; 
SNR=input('Signal to Noise Ratio'); 
gain= 1 O/¥(-SNR/20); 
rn=input('Nurnber of sensors'); 
N=input('Nurnber of snapshots'); 
%Initialize DOA's 
init=[-20 15 40 70 0 -50 -70 50] *pi/180; 
fprintf('Minirnurn Guessed Number of Signals less than %2d',nurn_sig_real) 
nurn_sig_min=input("); 
det_choi=menu(℃ hoose a Detection Method','Differential Detection','Minirnal Detection'); 
num_exp=l; %Set the number of experiments 
%Initialize the uniform and normal random number generators 
randn('seed',273841);rand('seed', 86977); 
%Function computing the array manifold given m, d and DOA's 
a=arr_rnan(teta,rn,nurn_sig_real,O); 

sig_coun=O; %Initialize signal counter 

ram when co斤ectdeczszon zs made pro_end=l; %Flag to stop the prog 
d=nurn_sig_rnin; 

while pro_end==l 
sig_coun=sig_coun+ 1; 
for lex= 1 :nurn_exp 

%Randomly generate the signals and noise 
s=randn(nurn_sig_real,N)*expU*(2*rand(N)-ones(N))*pi); 
nn=gain*randn(rn,N)*expU*(2*rand(N)-ones(N))*pi); 

%Generate the data according to the ULA model 
x=(a*s+nn)/sqrt(N); 

%Initialize cost function 
cos_fun=2e30; % Cost funtion initialization 

%Flag to stop the multidimensional search after convergence or failure 
dfail=l; 

%Function for the multidimensional search over the DOA space 
%using the QR transform of the array manifold a 

end 

DOA_sear 
if d>nurn_sig_real 
durnmy=nurn_sig_real; 

else 
dummy=d; 

end 
res_DOA(sig_coun, 1 :d)=ang 1; 
res(lex)=cos_fun; 

%Routine to check if the correct number of signals has been 
%detected using two approaches: the differential and the minimal 
%method. The first one more accurate consists in detecting the 
%largest decrease of slope in the value of the cost function, in 
%the second one, the minimum value of the cost function is detected. 

end 

DOA_det 
clear res; 
d=d+l; 
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%Display results 

disp('The number of detected signals is') 

sig_num 

disp('The mean values of DOA"s are (in degrees)') 

res_DOA_fin(sig_coun-1, 1 :sig_num)* 180/pi 

if input('Do you wantto beamforrn ?')=='y' 

beam_form 

end 
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%Function routine arr_man.m to compute the array manifold of a uniform linear array with %m sensors and 
half-wavelength spacing 
function am=arr_man(angl,m,dsig,par) 

ifpar==O 
% Compute array manifold 
for 11=1:m 

end 
else 

for lll= 1 :dsig 
am(ll,lll)=exp(-j*(ll-1)*pi*sin(angl(lll))); 

end 

% Compute array manifold derivative with respect to DOA's 
for kk=l:m 
for kkk=l ;dsig 

am(kk,kkk)=—j*(kk-1)*pi*cos(angl(kkk))*exp(-j*(kk-1)*pi*sin(angl(kkk))); 
end 

end 
end 
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%Routine DOA_sear.m to perform the multidimensional search of the DOA's %using a Levenberg-Marquardt 

method 

count=O; 

%DOA and increment initializations 
ang=init(l :d); 

ss=ones(d,1); 

lamda=.001; 

while count<20 & max(abs(ss))>le-4*pi/180 & dfail==l 

count=count+ 1; %Number of loops 

aa=arr_man(ang(l :d),m,d,O); %Intermediate array manifold 

% QR factorization on the array manifold 
[q,r]=qr(aa); 

q2=q(:,d+l:m); 
q 1 =q(:, I :d); 
if cond(r(l :d,:))> I e I 0 

dfail=O; 

else 

%Intermediate variables calculation 

rl=inv(r(l :d,:)); 

dd=arr_man(ang(l :d),m,d,1); 

phi=q2'*dd; 

gamma=rl *ql'*x; 

hessk=2*real((phi'*phi).*(gamma*gamma').'); 

end 

if cond(hessk)> 1 e6 I dfail==O 

count=40; 

dfail=O; 

else 

hessk=hessk+lamda*diag((diag(hessk))); 

pa=x'*q2; 

vpri=2*real(diag(gamma*pa*phi)); 

ss=inv(hessk)*vpri; %DOA increment 

if max(abs(ss))<le-3 

dfail=l; 
end 

% Update of the cost function 
nornew=real(trace(pa'*pa)); 

if nornew<cos_fun 

cos_fun=nornew; 

lamda=lamda/1 O; 

% Update of the DOA values 

end 

end 

ang(l :d)=ang(l :d)+ss'; 

else 

lamda= 1 O*lamda; 
end 

%For given value of number of signals, values of estimated DOA's 
ang1 =sort(ang(l :d)); 
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%Routine DOA_det.m to collect relevant quantities to start the detection process. 

%Measure the cost function at the minimizer for increasing number of signals 
res_cos_fun(sig_coun)= 1 O*log 1 O(mean(res)/(m-d)); 

%Saves values of the cost function and DOA'sat the minimizers 
if sig_coun> 1 
res_DOA_fin(sig_coun, 1 :d)=mean(res_DOA); 

else 

if sig_coun==l 

end 
end 
if det choi==l 

res_DOA_fin(sig_coun, 1 :d)=res_DOA; 

%D珈rentialmethod (test the cost function slope) 
if sig_coun>2 

if res_cos_fun(sig_coun)-2*res_cos_fun(sig_coun-1)>-res_cos_fun(sig_coun-2) 
sig_num=si g_coun-1; 

pro_end=O; %Stops the program 
end 

end 
else 

%Minimal method (test the cost function minimum) 
if sig_coun> 1 

end 
end 

if res_cos_fun(sig_coun)>res_cos_fun(sig_coun-1) 

sig_num=sig_coun-1; 

pro_end=O; %Stops the program 

end 
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%Routine beam」orm.mto simulate the proposed beamforming method compared %to a reference signal and the 
LCMV methods. 
% Compute the array manifold according to the estimated DOA's. 
aa=arr_man(res_DOA_fin(sig__coun-1, 1 :sig_num),m,d,0); 
k=input('Position of desired DOA angle'); 
iden=eye(k); 

%Find the beamformer elements for the proposed approach wl, the reference signal method w2 and the LCMV 
method w3 
[q,r]=qr(aa); 
dummy=inv(r(l :sig_num,:))*q(:, 1 :sig_num)'; 
wl =dummy(k,:) 
irx=inv(x*x'/N); 

rd=x*s(k,:)'IN; 
w2=irx*rd; 
f=iden(:,k); 
w3=irx *aa*inv(aa'*irx*aa)*f; 

%Inverse sample covariance matrix 

%Sample cross-corre血tionmatrix 

w=input('Which beamforming method wl (proposed), w2 (signal reference) or w3 (LCMV)'); 
%Compute the Output and the Input Signal to Interference plus Noise Ratio 
for inc=1 :sig_num 
sig_aft_beam(inc)=abs(w'*aa(: ,inc) *s(inc,:)). A2; 
sig_bef_beam(inc)=abs(aa(: ,inc)* s(inc,:)). A2; 

end 

% Compute the values of the output and input SINR 
osinr=sig_aft_beam(k)/(sum(sig_aft_beam(1 :k-1))+sum(sig_aft_beam(k+ 1 :))+ gA2*w'*w); 

isinr=sig_bef_beam(k)/(sum(sig_bef_beam(1 :k 
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Figure 1 (a) BOX 1: Flow Graph diagram of the detection of 
the number of present signals. 



'................................ ~ 

! Feed values of updated ! 
＾ : value of d from BOX 1 : 

! (see Fig. 1 (a)) : 
- - - -- - -•• -- ••• - - ••• - - - • -- -- - - • - • J 

Initialize 

0°= (01 ... 0 J) 
set k=O 

R1 
A(が）=(Qt叫。）
V'= 2 Re{ diag(Q輝）｝

H=2Re{(心<I>)@(国）T} 
Hii=Hii(l+μk) 
9k+l = 9k -H―iv, 

Figure 1(b) BOX 2: Gauss-Newton type search algorithm where 
V'and H are the approximate gradient and the hessian matrix. 
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