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Abstract 

High-resolution algorithms for the detection and estimation of Directions Of Anival 

(DOA) such as MUSIC, lead to accurate results but require the computation of the 

noise-subspace through an expensive covariance matrix eigendecomposition. Adaptive 

estimators of the noise-subspace can be very useful in a non-stationary environment 

when the convergence is possible with a few number of snapshots. Some adaptive 

methods are presented showing that an indirect noise-subspace estimation through a 

signal subspace estimation can be advantageous both in terms of convergence rate and 

computation complexity during each update. Some computer simulations examples 

showing performances are provid~d. 
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1. Introduction 

High-resolution algorithms for the detection and estimation of Directions Of Arrival 

(DOA) lead to accurate results but require the computation of the noise-subspace 

through an expensive covariance matrix eigendecomposition. In applications using 

sensor array processing, the knowledge of the DOA's of the desired signals and 

interferences is important. Once DOA's are known with sufficient accuracy, there exist 

several efficient beamf om血gtechniques [ 1] that pem出 tosteer deep nulls towards 

interferences and narrow beams towards desired signals. Generally, this leads to an 

increase of the channel capacity with the possibility of frequency re-use for instance in 

cellular mobile communications. The most accurate DOA findings methods so far are 

the so-called eigenspace high-resolution algorithms such as MUSIC, ESPRIT, 

Weighted Subspace Fitting [8]-[10]. However, these techniques are based on off-line 

computation of the eigenvectors of an estimate of signal covariance matrix, making 

them unsuitable for adaptive processing needed in the tracking of varying parameters. 

In [2], some adaptive algorithms leading to an estimate of the signal or noise-subspace 

were derived. Adaptive estimators of the noise-subspace (used in particular, for the 

MUSIC algorithm) can be very useful in a non-stationary environment when the 

convergence is possible with a few number of snapshots. Eventhough some theoretical 

convergence rates were developed for the proposed algorithms, no complexity analysis 

was shown in terms of the min血umnumber of snapshots or sensors needed for the 

estimate of the subspace to yield satisfactory detections. In fact, it was stated that the 

relations of these parameters were too complicated for a useful analysis especially 

concernmg the number of snapshots. If this number is too large, a direct 
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eigendecomposition would be preferable, and there would be no need of an adaptive 

procedure in the first place. 

In this technical report, the adaptive signal eigenspace proposed in [2] is used to 

determine indirectly the noise-subspace of the MUSIC spectrum. In fact, it was found 

that a direct adaptive computation of the noise-subspace lead to poor convergence 

rates and even numerical problems as will be shown in the next section. The new 

approach is compared to the direct one and found more reliable especially for 

moderate and high values of the SNR. Furthermore, several computer simulations are 

provided for a specific sensor array system showing the performance of the adaptive 

MUSIC spectrum estimate for varying values of the number of sensors and SNR. In 

particular, the minimum number of snapshots resulting in adequate detection is derived 

for each sensor a汀aycommunications scenario leading to the computation of the 

number of operations for the proposed aproaches and compared to that of 

conventional adaptive methods. In the simulation examples, it is assumed that the 

number of impinging signals is fixed and signals are narrow-banded and non-coherent. 

Finally, a simple efficient beamforming technique is presented completing the proposed 

adaptive sensor array beamforming system. 

Notations 

Uppercase and lower case bold letters denote respectively matrices and vectors, the 

symbol superscript t means vector or matrix transpose conjugate. 
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2. Adaptive eigensubspace derivation techniques 

An array of m sensors receive d narrow-band plane waves from far-field emitters. 

The m -vector of sensor outputs is modeled by the following equation: 

x(t)=A(0)s(t)+n(t) (1) 

The real d -vector e corresponds to the unknown signal parameters and the columns 

of the m by d matrix A(0) are the array response vectors 

A(0)= (a(01) a(見）） (2) 

The d -vector s(t) contains the complex envelopes of the emitter signals and n(t) is a 

complex m-vector of additive white noise. Let N be the number of collected 

snapshots such that: 

X=(x(り） X(t N)) (3) 

The eigendecomposition of the sample correlation matrix leads to: 

~1 m 

R=—xxt= 
N 

こい';Vf
i=l 

(4) 

where 入; are the eigenvalues arranged in descending order and V; are the 

corresponding eigenvectors. It is known that the smallest m-d eigenvalues 

入d+I'・・・，入'm will be approximately equal, close to the noise power. Furthermore for 

non-coherent signals, the MUSIC spectrum defined by: 

S(S)= 
at (8)a(8) 

at (0)Vn V! a(S) 
(5) 

exhibits rninimae at the correct DOA's where Vn =(v d+t v m) (V yt is called the 
n n 

noise-subspace). The high-resolution capabilities pertain to the possibility of 

distinguishing closely spaced DOA's. 

3
 



Due to the considerable amount of computations needed to find the 

eigendecomposition (in this case, we need an order of m 3 operations), applications so-

far have been limited to off-line processing. Some family of adaptive algorithms to 

estimate the noise-subspace have been proposed in [2]-[5]. For moderate to high SNR 

(> 15 dB values which are very common in real situations), a large number of 

snapshots are generally needed for the convergence to occur. It is probably due to the 

fact that the noise-subspace is formed with the eigenvectors corresponding to the 

smallest eigenvalues入d+I'…A、m all closely equal to the noise power which in the case 

of moderate to high SNR will be negligible with respect to the signal eigenvalues. 

Consequently, the condition number (ratio of largest to smallest eigenvalue) of the 

covariance matrix would be large resulting in known numerical problems [6], [11] 

during the update process. For a sufficient convergence to take place, a significant 

increase in the number of updates will be needed therefore nullifying the original 

purpose of savings in the number of computations. On the other side, adaptive signal 

subspace techniques converging to the eigenvectors corresponding to the highest 

eigenvalues seem to result in accurate estimates in relatively much faster time. This is 

presumably due to the well-behaved numerical properties for the obtention of the 

highest eigenvalues. Moreover, in situations where d < < m, the number of signal 

eigenvectors (d) we have to compute is much less than the noise eigenvectors (m-d) 

so that an additional savings of computations result. The problem is how do we get 

from those eigenvectors the noise-subspace. The answer lies in the relationship 

between the ensemble of these eigenvectors. The collection of all eigenvectors 

V=(v1 v m) is in fact a unitary matrix due to the hermitian property of the 
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correlation matrix. This implies that: (V V 
v,t 

, " { t J = I (where I is the identity 
V 

matrix), thus Vn v: =1-V, V} and the MUSIC spectrum of equation (5) becomes: 

S(8)= 
at (8)a(8) 

at (8)a(8)-a t (8)Vs V} a(8) 
(6) 

Therefore, the MUSIC spectrum in equation (5) could be derived as well from the 

signal subspace, and in fact, it could be computationally and numerically more 

advantageous to do so in an adaptive algorithm. The adaptive method to obtain the 

signal eigenvectors follow that of [2] basically as it resulted in good estimates using 

two versions of the gradient approach. It can be shown that the maximum of the cost 

function J(V)=Trace{VtRV} subject to the constraint vtV=l where Vis m by d 

and R is the true correlation matrix, is obtained for V = Vs , the collection of 

eigenvectors corresponding to the highest eigenvalues. The optimization process can 

be accomplished via a constrained gradient search procedure such that 

v;(k)=Vs(k-l)+μV(k) with Vs(k) is obtained through the orthogonalization of the 

columns of v;(k) (by using standard procedures such as the Gram-Schmidt or the QR 

a 
factorization). The gradient of J(Vs) is:'v J =冠―{Tr{V}RVs}}=2RVs. In practice, 

we use the sample covariance matrix R instead of R . We update it in a non-stationary 

environment as follows: 

応k)=(l-a)応k-l)+ax(t k)ゞ（な） (7) 

where a is the forgetting factor satisfying O <a< 1 . 

2.1. First approach: 
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After replacing VJ(k)z2R(k)Vs(k-1) into the gradient equation, the signal 

eigenspace update becomes as follows v;(k)=(l+2成(k))Vs(k-1). In practice, we 

can still further simplify this update by using directly 

v;(k)=応k)Vs(k-l) (8) 

Result due to the fact that 1+2μR(k) and応k)have identical eigenvectors, then 

Vs (k) =first d columns of Q-rnatrix of the QR factorization of v;(k) (9) 

1 
Note: In a non-stationary case, letting a=-for k=l, ... ,N during the eigenspace 

k 

estimation procedure converges exactly at time t N to the sample correlation matrix 

shown in equation 4. 

2.2. Second approach: 

Letting a= 1 results in an instantaneous LMS-type gradient estimator 

▽ 21(k)z2x(k)y¥k) where yt(k)=ゞ (k)V.(k-1). Following the choice of the step 

size of [2], we obtain the normalized LMS-type algorithm 

V;(k)= Vs(k-1)+2x(k)yt (k)M(k) (10) 

where M(k) is a d by d diagonal matrix whose elements are M;(k)=μIL! 笠1and 
Y;(k) 

y ;(k) is the i th element of the d by 1 vector y (k) . In the simulation examples, we 

2 
usedµ= — suggested in [6] and the QR factorization to orthogonolize v;(k). 

3m 

3. Computational complexity analysis 
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As in Reference [2], we counted the multiplication of two complex numbers as one 

operation and a multiplication of a real number by a complex number as one-half 

operation. We will not provide the approximate convergence rates since they are 

already developed in [2], rather we will emphasize the dependence of the resulting 

signal-subspace estimates with respect to the number of used snapshots. 

First approach: 

The required number of operations per adaptation cycle is as follows: 

3m m * for the updated covariance matrix in equation (7): -—+-
4 2 

* for the adaptation equation (8): m湿

* for the orthogonalization procedure in equation (9) either Gram-Schmidt or the QR 

factorization method could be used as both of them require mが operations.In our 

case, we preferred using the QR method since it tends to be numerically more robust 

and also, lends itself more easily to parallel implementations [7] which will make the 

throughput rate even higher. 

Second approach: 

In this case, the updated covariance step is not needed as the instantaneous data 

snapshots are used directly in the adaptation equation. Therefore, we need: 

* 2md + 2d operations in equation (10) 

* similarly as before, mが operationsfor the QR transform. 

For both approaches, the count of operations is for one adaptation cycle and for a 

correct comparison with a direct eigendecomposition in terms of computational 

complexity, one has to multiply the previous numbers by the minimum required number 
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of adaptation cycles in order for the convergence towards the eigenspace estimate to 

take place. Taking into account the number of snapshots N, the total computation cost 

is for the first approach (二竺 2
4 2 

+m d+md JN , and for large m, the do皿nantterm 

4 
is m2 dN. This can be compared to a minimum of -m3 operations [11, Chapter 11] 

3 

for a direct eigendecomposition. It is clear that as long as dN < m then this approach 

直 htbe useful. In the second approach, the operation count is (2md+2d+md2)N 

and the method is useful for d2 N <m2. 

An analytical relationship between the rate of convergence and the required parameters 

m , d and the SNR is often difficult to formulate. It is known that, in the case of the 

general convergence properties of the LMS algorithm [6], the larger will be the 

condition number (ratio between largest to smallest eigenvalue) of the correlation 

matrix, the poorer will be the convergence rate, which will mean having to increase the 

number of snapshots. 

In the next section, some simulations examples are presented showing the variations of 

the number of adaptation cycles with respect to m , the SNR for both methods. 

4. Simulations 

We assume a uniform linear array with half-wave-length spacing containing m sensors; 

the number of signals is fixed to d = 5 impinging from respective DOA's A0°, -20°, 

28°, 30°and 60°. The signals denoted s;(t) for i = 1, ... ,5 are assumed uncorrelated 

with respective power s; and the additive noise is assumed white with powerず．
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Several scenarios will be assumed, in each one the noise-subspace is estimated with 

algorithms implemented in the software package Matlab 4.2c.1, then a search 

procedure for the rninimae of the estimated MUSIC spectrum is initiated using the 

Matlab frnin.m function which is a uni-dimensional minimization routine based on a 

golden section search and parabolic interpolation. In each simulation, we generate 

Monte-Carlo-type experiments consisting of 100 realizations. 

Following the notation given in [2] and for ease of discussion, the first and the second 

proposed approaches are named respectively B 1 and B2 as compared to the direct 

noise-subspace estimates A2 and A3 used in [2]. 

We assume in this case a stationary environment with equi-powered (s;(t) = 1 Vi) 

signals impinging from respective fixed DOA's at -40°, -20°, 28°, 30°and 60°. The 

signals and the noise are randomly Gaussian generated in Matlab with respectively 

unit-variance, and a fixed variance defined by the inverse SNR for the noise. The 

probability of detecting the signals at 28°and 30°will measure the performance of the 

algorithms. In fact, when the algorithms failed, due to the closeness of the two DO A's, 

only a single minimum was detected, approximately in the middle way between the two 

DOA's. In the case of correct detection, there were always two minimae at the actual 

DOA's, thus it was sufficient to look only at outcomes for the DOA at 28°. In all 

simulations, the other DOA's were always correctly detected. In the first experiment, 

we fixed SNR = 15 dB, varied the number of sensors from 10 to 40, and measured the 

minimum number of snapshots N for which the probability of correct detection was 

over 95 %. We estimate the values of N using the following simple simulation 

technique. For a fixed value of the given parameter (m or SNR), we randomly generate 

100 sets of data according to the model shown in equation (1) and (3) with N 
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snapshots, then measure the probability of correct detection. We increase N, and the 

value for which this probability exceeded 95 % is the resulting estimate of minimum 

number of necessary snapshots. 

The following table, corresponding to Fig. 1 was obtained: 

m 

N 

10 

350 

15 

60 

20 

30 

25 

18 

30 

12 

35 

10 

4
0
-
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Next, for a fixed m=40 and an SNR varying from 3 dB to 50 dB; the following 

number of snapshots with the same probability of correct detection are obtained (see 

Fig. 2): 

SNR (dB) I 3 

N I 22 

7
-
1
5
 

11 

11 

5

-

8

 

ー 2
0
-
7
 

0

-

6

 

3
 

5
0
-
5
 

A direct eigendecomposition of the sample covariance matrix under the same 

constraints on the same number of snapshots and values of m and SNR resulted in a 

MUSIC spectrum with the same probabilities of correct detection. Consequently, the 

first adaptive approach B 1, having similar high-resolution capab~lities, at least in the 

simulation examples could be compared to it in terms of computational complexity. 

Repeating the same simulation under the same constraints for a direct noise-subspace 

adaptive solution using the gradient estimator V 1 of the adaptive algorithm A2 of [2] 

result in the following data. For SNR=15 dB (Fig. 1): 
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m 20 25 30 35 40 

N 125 70 50 45 40 

For m=40 (Fig. 2): 

SNR (dB) I 3 7
 

15 20 30 50 

N I 35 35 40 40 45 45 

The number of snapshots actually increases as the SNR increases and this is consistent 

with the previous explanations since for higher SNR, the noise eigenvalues入d+l'…，入m

tend to get closer to the noise power, smaller compared to the signal ones, resulting in 

larger numerical errors as compared to method B 1 above. Moreover, the actual 

number of operations for the method A2, as shown in table I in [2], is 

（デ享＋厨(m-d)+m(m-d)'JN.For the case when m-d≫d, clearly, A2 requires 

more operations than the proposed B 1. 

For the second approach B2, for a fixed SNR=15 dB, we obtain the data (shown also 

in Fig. 1): 

m 1 10 I 15 I 20 25 30 35 40 

N I 2000 I 600 I 150 90 50 40 35 

and for a fixed m=40 (Fig.2): 
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SNR (dB) I 3 7
 

11 15 20 30 50 

N I 95 50 38 35 34 33 32 

Those values could be compared to the LMS-type with the gradient estimator V 2 

direct noise-subspace adaptive algorithm A3 of [2] for which the following tables are 

obtained. We point out that in this case, setting the normalizing matrix M(k) in 

equation (10) to the identity matrix leads to better convergence especially for higher 

SNR because the elements of the matrix M(k) can not be estimated with accuracy due 

to their direct relationship to the smaller eigenvalues [2]. For SNR=15 dB (Fig. 1): 

m 20 I 25 I 30 I 35 40 

N 400 I 250 I 140 I 100 90 

For m=40 (Fig. 2): 

SNR(dB)I 3 I 7 I 11 15 20 30 50 

N I 130 I 135 I 100 90 85 80 80 

Figure 3 and Figure 4 show plots of the approximate estimated computational costs for 

the different approaches, when m or SNR varies, respectively for SNR=15 dB and 

m=40. Clearly, the indirect signal subspace estimate approach, not only result in faster 

estimates as it requires less snapshots but also each update is less costly because of the 

savings in computations for this case (m-d<<d). Method B2 seems to result in fewer 

operations for m>25 when SNR=15 dB in Fig.3; B 1 outperforms a direct 
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eigendecomposition approach for m=40 and SNR greater or equal to 15 dB (Fig. 4), 

otherwise if SNR=15 dB then the number of sensors has to exceed 40 as shown in Fig. 

3. For both methods A2 and especially A3 of [2], which could not be shown in both 

Fig. 3 and 4 because of an exceedingly large number of required operations, a direct 

eigendecomposition is always preferable given the particular assumptions on the 

simulation example. 

5. Proposed beamforming technique 

As mentioned in the introduction, the knowledge of the DOA's permit us to do 

efficient beamforrning. In what follows, we propose a simple beamfom血gscheme 

where the DOA of the desired signal as well as those of the interferences are known. 

The previous adaptive DOA tracking could be used for an estimate of the impinging 

DOA's; additional information is though required to decide on which DOA is the 

desired or the interference one. We assume that the array response in equation (2) is 

known for all possible values of the DO A parameters 0 = (0 1 …見） and also that 

見isthe desired DOA and the others are interferences. We arrange the array response 

A(0)= (a(的… a(見）） in such a way that the desired array response to DOA 0 d 

correspond to the last column of A(S) then perform a QR factorization on 

A(8)~(Q, Q,e•)~Q凡 where (Q, Q,) is unitary with Q, being of 

゜
dimension m by d, Q2 m by m-d, R1 is ad by d upper triangular matrix and O is the 

m-d by d zero matrix. From equation (1), it can be readily derived that: 

R;1Q; x(t)=s(t)+ R;1Qi n(t) (11) 

13 



The last row of s(t) corresponds to the desired signal and if we neglect the internal 

noise, it is equivalent to the last row of R~1Q;x(t). However, the matrix R1 being 

upper triangular, so is its inverse R~1, therefore, if we let wt =q; where q; is the last 

row of Qi (or qd the last column Q1) and wt being the proposed beamfom血g

coefficient vector, we get: wtx(t)~ksd(t) where k=(R1td the last diagonal element 

of the matrix R1 and s d (t) is the desired signal. Since the whole QR factorization on 

A(0) takes only an order of md2 operations [11], it is comparable to the adaptive 

eigenspace estimation computational load and appears an attractive beamforming 

option. The count, actually is much less since only a single vector of the Q1 matrix is 

needed for this case. 

We performed a computer simulation to compare the performance of the proposed 

beamfom血gapproach to the reference signal method where the reference signal is 

assumed perfect (i.e. sd(t) itself). The DOA's estimates outputs from the previous 

adaptive algorithm B2 in the same communications scenario were taken to feed the 

proposed beamformer. Figures 5 show the ratio between the output Signal to 

Interference plus Noise Ratio (OSNIR) and the input Signal to Interference plus Noise 

Ratio (ISNIR) for the two different methods for an SNR of 3 dB for different values of 

the number of sensors. OSNIR and ISNIR are defined respectively as: 

OSINR= E~7'a(Sふ (t)「｝
研w「＋苔E{I而a(0ぶ (t)「｝

and ISINR= . 
卓(0ふ (t)「｝

d 

が＋苔中(0占 (t)「｝
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E{.} denotes the statistical expected value and wt the corresponding steering vector. 

The difference between these two quantities represent the improvement in the signal 

estimation procedures by using adaptive beamforming. 

We see that the performances are comparable and the proposed method could be used 

due to its simplicity for high-resolution DOA estimation followed by signal estimation. 

6. Conclusion 

Two adaptive algorithms for the determination of the noise-subspace of the MUSIC 

spectrum having some potential for a real-time implementation in sensor arrays, were 

derived. It was shown that this spectrum, characterized with known high-resolution 

capabilities to distinguish between two closely spaced DOA's, can be determined in a 

straightforward manner from the adaptive estimation of the signal-subspace requiring 

no additional computations. It was suggested that in situations of moderate to high 

SNR (> 15 dB), where the signal eigenvalues are much higher than the noise 

eigenvalues, it is numerically more efficient and faster to estimate the signal-subspace 

rather than the noise-subspace, especially in cases where the number of impinging 

signals is much less than the number of sensors. 

Some approximate computational costs in terms of the necessary multiplications were 

shown for both approaches and compared with the conventional direct noise-subspace 

adaptive algorithms. The performance of the proposed algorithms was verified through 

computer simulations for a simple sensor array communications system and compared 

to the traditional adaptive solutions. Under the constraints on the SNR and the ratio 

between the number of sensors and the number of signals with appreciable level of 
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power, conditions that are not too restrictive, the proposed solutions clearly lead to a 

significant decrease of the number of calculations. 

In addition, although the adaptive approaches are more suitable to a real non-

stationary communications environment, sometimes the number of snapshots necessary 

for the convergence to a sufficiently close MUSIC spectrum can become prohibitively 

so large that a direct eigendecomposition on the sample covariance matrix could be as 

well used. This has been demonstrated in the computer simulations for the provided 

examples especially for a low number of sensors; for a number of sensors larger than 

some threshold value which will depend on the particular communications system used 

in practice, the adaptive update approach could become attractive. 

Finally, a simple beamforming technique relying on the DOA's knowledge was derived. 

Its cost in terms of the computations needed to derive the beamformer coefficients was 

shown to be sufficiently low as compared to the previous adaptive tracking algorithms 

and its performance superior to that of a reference signal method. 
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%Software listings used in the simulations to determine the minimal number of 

%snapshots needed in the different adaptive algorithms for less than 5% detection 

筑failureDOA_est_beam.m 

clear 

%Set the number of impinging signals d 

d=5; %Fixing number of signals 

teta=[28 30 -20 -40 60]*pi/180; %Fixing values of DOA's 

m=input('Number of sensors'); %Set the number of sensors m 

SNR=input('SNR'); %Set the SNR in dB 

gain= 1/1 O"(SNR/20); 

num_exp=lOO; %Set the number of experiments 

id=eye(m); 

mu=213/m; %Set the step-size for the LMS-type algorithms 

randn('seed',87634); %Set the Gaussian random generator seed 

rand('seed',8764); %Set the uniform random generator seed 

%Function computing the array manifold given m, d and DOA's 

aa=arr_man(teta,m,d); 

snap_min=input('Minimal number of snapshots'); 

snap_max=input('Maximal number of snapshots');count=O; 

meth_choi=menu(℃ hoose which algorithm','B 1','B2','A2','A3'); 

for N=snap_min:snap_max 

count=count+ 1; 

cor_det=O; %Initialize the number of correct detection 

for lex= 1 :num_exp 

%Randomly generate the signals and noise 

s=randn(d,N)*exp(i*(2*rand(N)-ones(N))*pi); 

nn=gain *randn(m,N) *exp(i *(2 *rand(N)-ones(N)) *pi); 

%Generate the data according to the ULA model 

x=aa*s+nn; 

%1nitialiaze covariance matrix and signal or noise-subspace 

noi_sub=id(:,1:m-d);sig—_sub=id(:, 1 :d);auto_cov=zeros(m); 

for l=l:N 

%Adaptive algorithm Bl or B2 or A2 or A3 

if meth_choi== 1 

bl; %Method Bl 

end 

if meth_choi==2 

b2; % Method B2 

end 

if meth_choi==3 

a2; % MethodA2 

end 

if meth_choi==4 

a3; % MethodA3 

end 

end 

%Routine to compute the approximate MUSIC spectrum then find the minimae 
mus皿 n・

end 

end 

res(count)=cor_det; %Probability of correct detection 
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%Function routine to compute the array manifold of a uniform linear array with 
%m  sensors and half-wavelength spacing arr _man. 加
function am=arr_man(angl,m,dsig) 

for 11=1:m 

end 

for 111=1 :dsig 

am(ll,111)=exp(-j*(ll-1)*pi *sin(angl(lll))); 
end 
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%Routine for the simulation of method Bl bl.m. 
for l=l:N 
%Define the forgetting factor 

alpha=l/1; 
% Update the covariance matrix 

auto_cov=(l-alpha)*auto_cov+x(:,l)*x(:,l)'*alpha; 

% Update the signal-subspace 
v=auto _cov*sig_sub; 

%0rthogonolize the signal-subspace (with the QRfactorization) 
[q,r]=qr(v); 
sig_sub=q(:,1:d) 

end 
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%Routine for the simulation of method B2 b2.m. 

for 1=1:N 
% Update the covariance matrix 

dummy=x(:,l)'*sig_sub; 

sca_mat=mu*inv(diag(abs(dummy/dummy(d)))); 

% Update the signal-subspace 
v=sig_sub+x(: ,l)*dummy* sca_mat; 

%0rthogonolize the signal-subspace (with the QRfactorization) 
[uq,r]=qr(v); 

sig_sub=uq(:, 1 :d); 
end 
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%Routine for the simulation of method A2 a2.m.. 
for 1=1:N 

%Define the forgetting factor 
alpha=l/1; 

% Update the covariance matrix 
auto_cov=(l-alpha)*auto_cov+x(:,l)*x(:,l)'*alpha; 

% Update the signal-subspace 
v=noi_sub-mu *auto_ cov*noi_sub; 

%0rthogonolize the signal-subspace (with the QRfactorization) 
[q,r]=qr(v); 
noi_sub=q(:, 1 :m-d); 

end 

25 
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%Routine for the simulation of method A3 a3. m. 
for l=l:N 

% Update the covariance matrix 
dumrny=x(:,l)'*noi_sub; 

sca_mat=mu*inv(diag(abs(dummy/dummy(d)))); 

% Update the signal-subspace 
v=noi_sub-x(: ,l)*dummy*sca_mat; 

%0rthogonolize the signal-subspace (with the QRfactorization) 
[uq,r]=qr(v); 
noi_sub=uq(:, 1 :m-d); 

end 

•
ー
~
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%Routine to compute the approximate MUSIC spectrum then search its minimae 
mus mm.m. 
if meth_choi==l I meth_choi==2 

music_spec=eye(m)-sig_sub*sig_sub'; 
else 

music_spec=noi_sub*noi_sub' 

end 
%Minimize the MUSIC spectrum around the angle intervals [26, 29] and [29, 32] 
%passed to the matlab function fmin.m where the string'f'contains the name of 
%the objective function to be minimized (maximum number of iterations 20) 
[dummy(l) ol]=fmin('f,26,29,[0 .0001 .000100 0 0 0 0 0 0 0 0 20],music_spec,m); 
[dummy(2) o2]=fmin('f ,29,32,[0 .0001 .000100 0 0 0 0 0 0 0 0 20],music_spec,m); 
if 01(10)<21 & 02(10)<21 

cor_det=cor_det+ 1; %Increment number of correct detection 
end 
if input('Do you want to beamform ?')='y' 

beam_form 
end 
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%'f'is a string containing the name of the objective function to be minimized f m. 
function [q, options]=f(tet,p,m) 
a=arrmana(tet*pi/180,m,1,0); 
q=real(a'*p*a); 

ー

28 



%Routine to simulate the proposed beamforming method compared to a reference 
%signal method beamJorm. 加
%Estimated DOA's (arranged in an array such that the desired signal is its last 
%element 
teta=input('Enter estimated DOA"s (in degree・s) desired DOA last element')*pi/180; 

%Compute the array manifold according to the estimated DOA's. 
aa=arr_man(teta,m,d); 

%Find the beamformer elements for the proposed approach wl and the reference 
signal method w2 
[q,r]=qr(aa); 
wl=ql(:,d)'; 

rx=x*x'/N; 
rd=x*s(S,:)'/N; 
w2=inv(rx)*rd; 

%Sample covariance matrix 
%Sample cross-correlation matrix 

w=input('Which beamforrning method wl or w2'); 

%Compute the Output and the Input Signal to Interference plus Noise Ratio 
for inc=l:d 

sig_aft_beam(inc)=abs(w'*aa(:,inc)*s(inc,:))."2; 
sig_bef_beam(inc)=abs(aa(:,inc)*s(inc,:))."2; 

end 
osinr=sig_aft_beam(d)/(sum(sig_aft_beam(1 :d-l))+g"2 *w'*w); 
isinr=sig_bef_beam(d)/(sum(sig_bef_beam(l:d-l))+g"2); 
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