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Chapter I

General Introduction

Theoretical and experimental studies on nonlinear delayed feedback (DF) sys-
tems such as nonlinear optical cavities have shown the existence of a large variety of
multistable bifurcated oscillation modes leading to chaos [1]-[4]. Ikeda et al. {5] clar-
ified the hierarchical tree structure of the bifurcation of the oscillation modes excited
in a nonlinear optical ring cavity and suggested the applicability of the multistable
modes for data storage.

Following up this suggestion, Davis et.al. theoretically proposed that selective
excitation of the multistable modes, useful for optical signal generation and memory,
is possible by two complementary methods. The one is seeded bifurcation (SB)
switch [6] and the other chaotic search/switch (CS) [7]. The SB switch is a direct,
deterministic selection of a mode by injecting a seed signal. The CS is an approach
to selection of mode using chaotic mode transitions, which is complementary to
the SB switch and results in stochastic selection of a mode which satisfies a given
constraint. These proposals have for the first time given the concrete images for
making use of chaos and physical experiments for the proposals have been expected
to test the feasibility.

This report mainly summarizes the experimental works done by T. Aida and P.
Davis from 1988 to 1993 in ATR to test the feasibility of the functions proposed. The
success of the experiments is owing mainly to the good performance of the electro-
optical hybrid DF system, which has much larger delays, and thus more modes, and
better controllability of system parameters than previous systems.

In Chapter II, we first describe the design of the DF system for the experiments,
in particular the reason why we employed the combination of infrared (1.3pum) op-
tical communication components and waveguide modulator, and discuss the typical
stability of the bifurcated higher-harmonic oscillations of a non-ideal DF system
with large delay. We then describe the experiments of SB switch, in which the feasi-

bility of memory function using multistable nonlinear oscillation modes is confirmed

[8].



In Chapter I, we propose a new configuration of an optical loop memory us-
ing multistable nonlinear oscillation modes, and demonstrates the basic functions
for memory, ‘write’ and ‘érase’, using optical pulse sequences in an electro-optical
nonlinear ring resonator[9].

In Chapter IV, we demonstrates the CS experiments, in which the effectiveness
of making use of chaotic mode transitions for searching and switching among a large
number of multistable modes is confirmed. The coding of multistable and chaotic
oscillation modes and the quantitative characterization of chaotic mode transitions
are also described, related to the CS experiments [10][11][12].

In Chapter V, we describe a digital electronic system, designed for a real-time
simulator for systematic study of dynamics of nonlinear DF systems, and to test the

applicability of such a digital electronic system itself as a signal generator [13].
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Chapter II

Oscillation Modes of Laser Diode Pumped Hybrid Bistable
System with Large Delay and Application to Dynamical
Memory

Abstract

An electro-optical bistable system with a very large delay was constructed of state
of the art optical communication components and the self-oscillation phenomena of
the éystem were investigated from the point of view of application as dynamical
memory. Very large numbers of multistable self-oscillation modes were observed,
including 2nd order bifurcations of the 265th harmonic. The dynamical memory
function was demonstrated by locking 2nd order bifurcated modes to external clock
oscillations and performing WRITE and READ of binary data sequences in the
waveforms of the bifurcated modes. From the dynamical stability of the oscillations
used for memory, and of the mode switching, it was concluded that the nonlinear
bifurcation phenomena in this system are applicable for large capacity memory and
signal processing. Spurious preferential excitation of particular harmonic modes that
occurred in the system was related to the fine structure in the transfer spectrum
of the open loop associated with spurious resonances in the electro-optical (E-O)
modulator used as nonlinear element. It was demonstrated that missing harmonics
could be recovered by pumping with small sinusoidal signals of the corresponding

frequencies.



1 Introduction

Since the delay-induced oscillation and instability in the delayed feedback (DF) sys-
tem predicted by Ikeda[l][2] was for the first time experimentally confirmed in an
electro-optic hybrid bistable device with computer delay[3], theoretical and experi-
mental investigations of oscillation modes and their stability have been made with
various DF system implementations [2]-[14]. The nature of the oscillation leading
to chaos has been investigated in numerical simulations, and also in experiments in
DF systems with small delay [8]{9] and DF systems with large delay [2][3].

The main difference between the cases of large delay and small delay is the variety
of the modes of oscillation. For a large effective delay, where the delay time is much
larger than the response time, there is a fundamental oscillation mode which exhibits
period-doubling bifurcation and there arc also multiple harmonic oscillation modes
each of which exhibits a sequence of bifurcations leading to chaos [2][13][14]. On the
other hand, for a small effective delay, where the delay time is comparable to the
respouse time, neither harmonic oscillations nor clear period-doubling bifurcation of
the fundamental are observed before reaching the chaotic regime [8][9].

Ikeda et al. have clarified the bifurcation structure of oscillation modes of a
DF system and suggested potential applicability as a memory device, utilizing the
multi-stable modes of oscillation [14]. Following up this suggestion, Davis et al.
proposed a method called Seeded Bifurcation (SB) switch for selective excitation of
oscillation modes corresponding to binary coded input data, which could be used to
realize a versatile digitally controlled optical signal generator or a memory device
[15][16]. _

We have constructed an electro-optical (E-O) hybrid DF system, in which very
large effective delays of up to about 520 are possible, using state of the art com-
ponents for optical communication {17]. This system has fnuch larger delay, and
thus more modes, and better controllability of system parameters than previous
systems|3][7]-[9][12].

Selective excitation of modes in a DF system by the SB switch method not only
makes possible a memory function but also allows more systematic investigation of
modes and their stability than was previously possible. There is still no rigorous

theory for the existence of the many bifurcated harmonic modes that have been



found in numerical and physical experiments, and there is still much to be under-
stood about their stability. Previous experiments have shown that spurious small
nonlinearities in the system can significantly affect the stability of multistable modes
[7]. In our experiments, in addition to the experimental demonstrations of the SB
switch and the memory application, we have investigated the typical stability of the
bifurcated higher-harmonic oscillations of a non-ideal DF system with large delay.
In section II we first review the principles of the dynamical memory, including
coding of multistable oscillation modes, method of the SB switch and capacity of
the memory. We then in section III discuss the design of the DF system, in par-
ticular the reason why we employed the combination of infrared (1.3um) optical
communication components and waveguide modulator. We present in section IV
a quantitative characterization of the DF system, specifically the open and closed
loop characteristics. In section V we present the test of the application to memory
function. In section VI we discuss discrepancies in oscillation phenomena of the
DF system from the ideal model. Finally we summarize this paper and discuss the

prospects of high-speed, all-optical operation of the dynamical memory.

2 Principle of dynamical memory

In this section we briefly review the principle of the dynamical memory [16]. The
important points are the method to utilize multistable oscillation modes for memory
states with binary coding and the method to select a mode corresponding to a

particular binary code.

2.1 Coding of multistable oscillations

Oscillations with multistable modes applicable to dynamical memory are seen in
many systems with delayed nonlinear feedback. The dynamics of such a system are

described by the following class of delay-differential equations [13].

120 o) + (et - T)im), 1)

where p is the bifurcation parameter, and T, and T, are the response time and the
delay time of the nonlinear feedback, respectively. The function f has a nonlinearity

with at least one maximum or minimum to show period-doubling, as p is increased.



For an optical cavity with a dispersive medium, a typical model of the system,

f(z; ) takes the following form,

flz; ) = p(1 + 2Bcos(z — z,)), (2)
where p is proportional to the incident optical power, and dissipation B(< 1) and
bias z, are constant [13].

Classes of oscillation modes excited in a system described by equations (1) and
(2) can be classified with harmonic number n and bifurcation order m [14)-[16]. For
bifurcated harmonics (n > 1,m > 1) there are multiple oscillation modes in the
(n,m) class, “isomers”, with different peak modulation patterns'. The dynamical
memory described in this paper utilizes a set of isomers of (n, m = 2) class oscillation
as memory states.

Figure 1 shows an example of (n = 7,m = 2) mode and its coding. In each 7,
interval there are m sub-intervals, where the signal varies slowly, i.e. de—zg(tﬂ = 0.
It follows from eguation (1) that the signals in sub-intervals separated by 7, are
approximately related by the following recurrence relation reduced from equation
&

z(t) =~ f(z(t = T,); p). . (3)
Such recurrence relations are known to exhibit period-doubling bifurcation [19].
After the m-th period-doubling bifurcation, the signal in each sub-interval, a peak
or valley of the oscillation, takes on one of 2™ levels, that is 2™! peak levels and
2m=1 valley levels. Different oscillation modes have different sequences of levels, that
is different peak and valley modulation patterns.

The recurrence relation between z(t) and z(¢ — T.) can be expressed by a dia-
gram in figure 2(a) for the case of second order (m=2) bifurcation [19]. There are
four peak and valley levels in m = 2 bifurcated oscillation. We assign 2-bit labels,
I; = 00,01,10, or 11, to the peak and valley levels, where 7 is an integer indicat-
ing a time interval. Then the waveform can be represented by a sequence of I;,
(-+- Loy, Lty Iipy, - +). Now, iy, is determined by I; in accordance with equation
(3). Therefore, we can completely identify an isomer of the (n, m = 2) class oscilla-

tion with an n-element code I = (Iy, I, -, I,) representing the signal levels in a 7T,

1Let us briefly explain the correspondence between the (n,m) notation and the notation used
by Vallée et al.{18]. They describe “periodic waveforms” and “frequency locked waveforms” labeled
by ¢P2™ and 1L2™, respectively. These modes correspond to different isomers in the (n,m) class

where ¢ = (n+ 1)/2.



interval. The peak and valley levels separated in interval T, appear in the cyclic se-
quence determined by equation (3), ---,01,10,00,11,01,10,00,- - -, and repeat with
period 47, as seen in figure 2(b).

We can also completely identify a (n, m = 2) waveform by assigning 1-bit binary
labels J; = 0 or 1 to the peak levels in a 27T, interval. There are n peak levels in a

2T, interval, and the oscillation is coded by an n-element peak code
J:(JlaJZa'“an)) (4)

This peak code J can be easily read by thresholding the output signal. The peak
levels in a 7, interval are related to the valley levels in the former 7, interval by
equation (3), as shown in figure 1. The relation between I and J is summarized by
the following equations.

For the elements of I indicating peak levels,

I; 1 =1J;, when 2i—-1<mn, (5)

for1=1,2,3,---,n. Where the second bit (the left bit) “1” means peak level.

For the elements of I indicating valley levels,
I2i—'n.—l =0 (1 - J,,) when 27-—-1 > n, (6)

fori=1,2,3,---,n. Where the second bit (the left bit) “0” means valley level.

As is clear from the cyclic sequence of the first bit (the right bit) of I;, the J
code is followed by the inverted J code in the next 27, interval. With an external
reference clock to identify the phase of the oscillation we can distinguish 2" isomers
in an (n,m = 2) class. That is, with ‘an external reference clock to distinguish
bit patterns which would otherwise be identical under a translation in time, the
number of different memory states is 2. With no reference clock, the number of
distinguishable (n,m = 2) modes is reduced, but at least 2"~'/n. For example in
the case of the (n = 3,m = 2) class, without identification of the phase of the
oscillation, there are only two distinguishable isomers in the class - the two modes
shown in figures 2(d) and (e). We can assign six different J codes to the first isomer,
(1,1,1),(1,1,0),(1,0,0),(0,0,0),(0,0,1), and (0,1,1), and two codes to the second
isomer, (1,0,1) and (0, 1,0).



2.2 Writing

Writing information into the oscillation waveform is done by a selective excitation of
the isomer of the (n, m = 2) class corresponding to input binary data. In this paper,
the WRITE is done by switching from a stationary state at g = p,f5 to an (n, m = 2)
oscillation state at u = u,, while injecting a seed signal, of length 7., corresponding
to the desired oscillation waveform. This is a type of seeded bifurcation (SB) ‘switch
[16]. We introduce a seed code S for the seed signal. The seed determines the peak

and the valley levels in a T, interval of the target oscillation, so the seed code
S:(Sly‘s2)"')5n)) (7)

where S; is a 2-bit binary label, just corresponds to the I code of the target oscil-
lation.

If the input data is given in the form of J code, it is necessary to convert J to
the seed code S. The conversion from J to S is done using equations (5) and (6).
Figure 3 shows a schematic example of the SB switch of (n = 7,m = 2) class with

the codes S, J and I, in which we can see the relations between the codes.

3 Design of a delayed feedback system with very
large delay

The two main requirements of a DF system to be used in a dynamical memory
experiment are the following.

One is stability of a large variety of multiple bifurcated high harmonic oscillation
modes excited in the DF system. In particular we require stability of (rn,m = 2) class
oscillations with large n. This is for large capacity memory. The other requirement
is controllability of parameters for changing the feedback gain and injecting signals
into the DF system loop. This is to facilitate control of the selective excitation of the
modes using the seeded bifurcation method, the SB switch. A DF system satisfying
the above requirements should have the following characteristics.

The DF system should have a large effective delay. The bit capacity of the system
increases with harmonic number n. Higher harmonics can be excited by increasing
the effective delay T, /T;.. A large effective delay can be achieved by employing a

long delay line and fast response components.

10



The frequency characteristic of the DF system should have a wide bandwidth.
A class (n,m = 2) oscillation has a principal frequency component (carrier fre-
quency) of n/(27;). A modulation frequency of n/(47T,) is required to distinguish
neighboring “1” and “0” peaks. Thus, the frequency band spread at least +n/(4T,)
around n/(27,) is necessary to support all the isomers of (n,m = 2) class oscilla-
tion. Moreover, the frequency characteristic should be smooth in this band to obtain
comparable stability for the different isomers which have different peak modulation
patterns and thus different frequency components.

The DF system should be designed so that the bifurcation giving rise to the
(n,m = 2) oscillations to be used as memory states, is achieved at low input optical
power. Input power, of the order of milliwatts, is desirable for control of the SB
switch with a laser diode (LD) pump. In addition, the range of bifurcation parameter
i, where p is proportional to the input optical power, should be wide enough for
the oscillations to be stable with respect to input power and loop gain fluctuations.

In the DF system, the range of parameter g supporting higher order bifurcations
decreases with increase of bifurcation order m only at a rate of order of the Feigen-
baum constant, 8o, /= 4.67 [20], which is less than an order of magnitude. With this
scaling factor stability of p parameter to support m = 2 bifurcation seems to be
achievable in a practical system. According to Vallée’s estimation with a stochastic-
difference equation and experimental results for an A-O hybrid system, the third
order (m=3) bifurcation is obscured by multiplicative noise of order of 1072 and ad-
ditive noise of order of 1072 [12]. So, the signal to noise ratio of the system should
be more than 20dB to support m = 2 bifurcation. This must be balanced with the
other requirement of a wide bandwidth, as a wider bandwidth in practice means a
higher noise level.

Given the above design considerations, at present, a hybrid DF system seems
to be a better choice than an all optic DF system. In order to observe the period-
doubling bifurcation in an all-optic resonator, a nonlinear phase shift of more than
7 within a round trip is demanded [1]. The main problem with an all-optic system
is that there is a lack of material with high dispersive nonlinearity and need of high
input optical power, i.e. YAG or CO, lasers, to obtain the required phase shift
[21]-[23].

The hybrid DF system which we employed is an E-O hybrid ring resonator, essen-

11



tially consisting of a laser diode (LD), an E-O intensity modulator with waveguide
Mach-Zehnder (MZ) structure, a single mode optical fiber delay line and high—speed
video amplifiers as shown figure 4. Optical components of the E-O hybrid resonator
are components for optical communication at 1.3pm wavelength. The configuration
is described in more detail in Appendix L.

In the E-O hybrid DF system, the nonlinearity is due to the sinusoidal modula-
tion characteristic of the electro-optical (E-O) modulator. The half-wave voltage of
the modulator corresponds to the voltage causing the m-shift of phase in the optical
signal in one arm of the M-Z structure inside the modulator. In order to observe the
period-doubling bifurcation in the E-O hybrid DF system, a voltage swing of more

than the half-wave voltage is required. This condition is described as
1
E,
where V, is the half-wave voltage of the E-O modulator. P; is the input optical

PiLym(1 — =-)LoRZ;A, > Vi, (8)

power. L., is the insertion loss of the E-O modulator. E, is the extinction ratio
of the E-O modulation. L, is the propagation loss in FC-connectors and optical
fiber. R is the photosensitivity of the PIN diode. Z; is the input impedance of the
first stage amplifier. A, is the total electric voltage gain. The components of the
E-O hybrid system were chosen so as to satisfy this condition and also satisfy the
requirements mentioned earlier, namely, large effective delay, wide bandwidth, low
input optical power, and controllability for the SB switch. The half-wave voltage of
a waveguide E-O modulator is typically 6V, while that of a bulk E-O modulator is
about ten times larger. The power of the optical input to a waveguide modulator is
limited by the optical damage threshold, which is typically about 10mW for infrared
light, while only 0.01lmW for 0.63um (He-Ne laser) light. At the 1.3um wavelength,
optical fiber with negligibly small propagation loss can be used as a delay line.
This use of a waveguide modulator and 1.3um wavelength infrared light, allows
a combination of long optical delay line and electrical amplifiers with lower gain
and thus faster response, resulting in very large value of effective delay compared to
previous experimental works. Specifically, effective delay up to 520 has been realized,
with T, equal to 5.2usec in a 1km delay line, and T, equal to about 10nsec. This
is an order of magnitude larger than the effective delay in previous experiments
[6]-[12]. The effective delay was varied by introducing an electrical low pass filter
(LPF).

12



Moreover, the choice of optical components allows a laser diode (LD) to be
employed for the light source. With this configuration, the order of the input optical
power F; from the LD required to cause the period-doubling bifurcation is estimated
as follows. The values substituted into equation (8) are V; = 6V, L,, = 0.355
(= —4.5dB), E, = 100 (= 20dB) as typical extinction ratio or E, = 3.16 (= 5dB)
as degraded extinction ratio, L, = 0.708 (= —1.5dB), R = 0.87A/W, Z; = 50Q,
and A, = 708 (= 57dB). With these values P; > 0.784 x 102 for E, estimated
at 20dB or P; > 1.135 x 1073 for E, estimated at 5dB are obtained. Therefore,
the period-doubling bifurcation is expected to occur around the input optical power
of ImW, which can be achievable with LD power. The LD can be directly and
rapidly modulated, resulting in easy and quick control of the system gain parameter

to facilitate the SB switch.

4 Experimental results: Observations on
oscillation behavior

In this section we describe the open and closed loop characteristics of the DF system.
By measuring the open loop characteristics we could confirm that the operation of
the DF system is roughly consistent with the theoretical model and obtain the values
of the system parameters. The main concern in checking the closed loop behavior

confirmation of the stability of the oscillation modes to be used for memory states.

4.1 Open loop characteristics

The open loop characteristics of the DF system were measured by opening the loop
at port (c), driving the E-O modulator with an external voltage V; and measuring
the feedback voltage V. It was confirmed that the behavior was roughly consistent
with the following model equation,

av(t)

T, 2\
dt

= —V(t) + Vo + pF(Vi(t - T1)), ()

where V, is an accumulated offset bias voltage measured at the port (c), F' is the
E-O modulation characteristic of the E-O modulator, and p is the effective feedback
loop gain. p is proportional to the input optical power P; from the LD, and is given
by

u=PFPL,L,RZ;A,. (10)

13



The parameters T}, T, and function F’ were measured, based on the equation (9).
By driving voltage V; at the E-O modulator with a rectangular wave, parameters 7,
and T,,, respectively, were obtained as delay time and decay time of the V signal. T,
was 5.2usec. T, was 6nsec without the LPF and could be increased for example to
10nsec, 42nsec, - - -, by adjusting the LPF. F' was determined as the relation between
V and V;, when V; was modulated by a slowly-varying triangular wave with constant
input optical power P;. Figure 5 shows the measured F' curve, which shows some
discrepancy from the ideal sinusoidal curve. This discrepancy is due mainly to the
low extinction ratio of the input light from the LD.

The frequency characteristic of the open loop gain was obtained as the transfer
spectrum |G(w)| for constant input optical power P;. Transfer spectra for the sys-
tem with and without low pass filter (LPF) are shown in figure 6. The frequency
characteristic without the LPF was flat as shown in figure 6(a) with a slight peak
before falling off above 7T0MHz, a characteristic of the wide bandwidth amplifiers.
After introduction of the LPF the transfer spectrum decreased monotonically with
frequency as shown in figures 6(b)-(d). This is roughly consistent with the relaxation
characteristic expected in a system described by equation (9).

The large signal open loop behavior was investigated by driving the E-O modu-
lator with V; of large amplitude rectangular wave of frequency ranging from 50KHz
to more than 1IMHz. Typically, the output, V(t), was also rectangular. However,
when harmonics coincided with certain frequéncies (e.g.,r -+, 1.12MHz, 2.537TMHz,- - -
), small ripples with those frequencies were observed to appear on V(t) as shown in
figure 7. This behavior is not expected from the model. The ripples could be ob-
served in the modulated optical output of the E-O modulator. Many small abrupt
changes of about 1dB have been observed in the transfer spectrum of the open
loop gain as shown in figures 6(a)-(d), and some of the frequencies where these
occur have been confirmed to coincide with the ripple frequencies. We think that
this phenomenon might result from spurious resonance of the E-O modulator due
to piezo-electric vibration of the LiNbOj substrate [24]. So there appears to be
another mecha,hism in the system in addition to equation (9). Although this spuri-
ous property of the E-O modulator may not significantly impair performance in its
conventional use for high-speed digital modulation, it can significantly affect low-

frequency modulation and, as explained below, this turns out to have a non-trivial

14



influence on the closed loop behavior of the nonlinear resonator.

4.2 Closed loop characteristics

For the closed loop configuration we replace V;(t — T;) for the open loop with V(¢ —
T.). Therefore, figure 5 can be regarded to be a recurrence relation between signals
V(t) and V(t — T,) separated in time by the interval of time T, required by the
signal to propagate through the feedback loop. The closed loop characteristic of the
DF system is modeled by the following delay differentiél equation,

dV (t)

I dt

==V(t)+ Vo +uF(V(t - T.)). (11)

This can be rewritten in the form of equation (1) with z replaced by V.

Figure 8 shows the closed loop resonance characteristic for effective delay 7T, /T, =~
124 obtained at a point just before the onset of self-oscillation. This was obtained us-
ing a network analyzer to measure a small signal transfer spectrum between the port
(b) for signal injection and the port (a) for signal detection. The resonance peaks
appear at about 95.3KHz and its odd harmonic frequencies, and the Ipeak heights of
the spectrum decrease with increase of frequency. This is consistent with the results
of the linear stability analysis (see Appendix II), which gives the frequencies of small

amplitude oscillations as

n T
1 —
2T, ( T,

fr =~ ). (12)

where n is an odd integer.

We confirmed that equation (12) derived for small amplitude oscillations also
gave the principal frequency components of the large amplitude osciliations when
T, < T.. Figure 9 shows the good agreement between the frequencies of the
fundamental mode f, for values of 7, /T, ranging from 18 to 520 and the values
given by equation (12).

With increase in g, the oscillation modes exhibit a sequence of bifurcations,
leading to chaos. Figure 10 shows the waveform of an (n,m)=(1,2) oscillation for
T./T,, ~124. The stable peak and valley levels of the n=1 oscillation for m=0,1,2
over a range of the input optical power P; are seen as a bifurcation diagram in figure
11. As explained in section II, these stable peak and valley levels are understood

from the recurrence relation between signal levels separated in time by T

V(@) =V, + uF(V(t - T)). (13)



The m=2 order bifurcation occurs at the input optical power P; of about 0.87mW,
which is roughly consistent with the value of 1ImW estimated in section III. For
T,/T,, =124 bifurcated harmonic modes up to m=2 and n=21 were observed to
stably oscillate. Stable (265,2) mode oscillations were observed as the highest stable
bifurcated harmonic mode when T, /T;, ~520. Figures 12(a) and (b), respectively,
show an example of waveform and spectrum of one of the (265,2) modes. From these
experimental results we confirmed that a huge variety of multiple stable modes suf-
ficient for the dynamical memory experiment can be excited in the DF system by
the LD power.

A preference in the excitation of harmonics was exhibited by the system. Though
modes with large harmonic number were observed, not all the intermediate values
of odd n were observed, as would be expected on the basis of numerical experiments
[13]. For example in our experimental setup with T, [/Tm = 124, only the modes
with n=1 and n=21 could be spontaneously excited by just increasing input optical
power P;. This phenomenon will be discussed in more detail later in section V1.

It can be seen from figure 11 that the range of input power corresponding to
(1,2) oscillation is about 0.04mW. The parameter range for the existence of the m-
th order bifurcated mode decreases as m increases. For a one dimensional map such
as equation (3) [19], where p,, denotes the u values for the m-th order bifurcation

point, the Feigenbaum scaling factor [20] has been defined as

5, = HEm — Hm-1 (14)
Mm4+1 — HBm

We defined p,, for the n-th harmonic as the minimum value of iﬁput power where
the (n,m) mode was stable. Figures 13 (a) and (b) respectively show bifurcation
diagrams for the n=1 and n=21 modes. From the diagrams we found 6, =3.3 for
n=1 and 6, ~2.3 for n=21. These values are of the same order as those estimated
by Vallée et al. for a system with A-O modulator, §;=4.5 for n=1 and §,=5.2 for
n=3 [12].

As seen in the bifurcation diagram in figures 13 (a) and (b), bifurcations for m >3
Wére indistinct. Higher order bifurcations are expected to be obscured by noise if
noise levels exceed certain values [25]. In our system dominant noise sources were
the LD noise, shot noise of the PIN diode and noise of the first stage video amplifier.
Of these the LD noise was the major noise source. For lmW input optical power, the

ratio of the total noise to the input optical power was about -18.5dB (= 1.4 x 107%).
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This noise behaved as a multiplicative noise for the system. In our experiment,
bifurcations up to second order were stable but the third order bifurcation could
not been seen with this noise level. Our result was consistent with Vallée’s result
for multiplicative noise [26].

Though the noise ratio in our system could have been improved by using an LD
with an optical isolator, it was sufficient for the demonstration of the dynamical

memory function that the m=2 oscillation modes were stable.

5 Experiments on dynamical memory

Having confirmed the stability of the m = 2 modes, we next examined the feasibility
of using these modes as memory states. First, we demonstrated that frequency-
locking of the (21,2) oscillations could be done to obtain phase stability. We then
executed writing and reading of 21-bit binary data sequences based on the scheme
described in section II. Figure 16 shows two examples of writing 21-bit binary data

to a (21,2) mode, and figure 18 shows an example of reading.

5.1 Locking

The appearance of resonance and frequency-locking phenomena in a DF system
as the result of input modulation has been previously reported [27][28]. For the
purpose of the dynamical memory function we checked that bifurcated modes could
be locked to external oscillations. We confirmed that the phase of an (n,m = 2)
mode could be locked to that of an external reference clock by weakly modulating
the LD with a sinusoidal signal at a frequency near n/(27%), the carrier frequency
of the free-running (n,m = 2) mode oscillation. Figure 14 shows frequency locking
curves for (7,2) and (21,2) modes with the modulation depth of 0.4%. The locking
ranges Increase roughly in proportion to the modulatioﬁ depth as shown in figure

15. Different isomers were found to have comparable locking ranges.

5.2 Writing

. The WRITE procedure is a selective excitation of the (n,m = 2) mode corresponding
to an input n-bit binary word in the form J code. The WRITE is done by the SB

switch described in section II. Parameter p is changed by increasing input optical
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power (LD power). The seed signal is injected by modulation of bias voltage V.

It was necessary to determine two voltage levels, corresponding to pofs and pon,
to be used in driving the LD. It was also necessary to determine four voltage levels of
the V, seed signal corresponding to the four levels of the stable oscillation waveform
at yon. |

The SB switch signals were generated in the following manner. Input data in
the form of J code was converted to S code according to the equations (5) and (6).
Then the S code sequence was converted to a V, seed signal of length T,.. The AFG
generated the signals for the modulation of V, and the LD. A personal computer
(PC) automatically controlled execution of the sequence of data conversion and input
signal generation so that a 21-bit data sequence keyed in from the PC keyboard was
written into the memory.

Figure 16 shows two examples of 21-bit data WRITE. The change of input
optical power P; corresponds to change of u from p,¢s to po,. The pattern of the
seed signal V, determines the (21,2) mode which is excited. It can be seen that the
stable asymptotic oscillation is similar to the initially excited oscillation, in which
21 bits of binary data are encoded.

In general, in the presence of noise, the shape of the seed signal injected into the
loop should be as close as possible to that of the waveform of the desired oscillation
mode. However, a degree of tolerance in the seed signal is possible due to the
dynamical stability of the oscillation modes. In our system we found tolerance of
more than £50% in the difference of the two peak(or valley) levels and about +50%
of T, /n in length of the seed signal. Figure 17 shows an example of writing, when
the shape of the seed signal had discrepancies of -30% in peak levels and +30% in
valley levels. Due to the dynamical stability of the mode, the input data was not
lost, although there was a long transient before the signal settled to the asymptotic
waveform. Too critical setting of the shape of seed signal results in long switching
times.

As shown in figure 12 stable harmonic (n,m = 2) modes up to n=265 have been
observed in this system when 7;./T;, = 520. However, our experimental setup for
injecting seed signal at present cannot handle seed signals for n=265. The writing
of data into the dynamical memory with bit capacity of 265 bits remains a task for

the future.
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5.3 Reading

The READ operation is done by thresholding peak levels of the oscillation at the
output detector (DET in figure 4). Figure 18 shows an example of reading 21-bit
binary data from a (21,2) mode oscillation locked to an external reference clock. The
timing pulse Pt, used for identifying the first bit of the cyclic 42-bit pattern (21-bit
pattern, followed by the inverted 21-bit pattern), was generated by 1/42 frequency

division of the external reference clock.

5.4 FErasing

Erasing of the data is done simply by switching input power from the value cor-
responding to p,, back to the value for porr. The value for p,ss should be set to
be nearly zero for quick decay within the 1-bit time (7, /n). Figure 19(a) shows an
example of erasing of (21,2) mode. With a larger non-zero value of sy, a transient
of a few T, in length was observed, as shown in figure 19(b). Critical setting of pi0y
near the bifurcation point of m=1 could cause near-critical slowing down, resulting

in long erasing time.

5.5 Stability

It was observed that the modes were most stable when the input optical power was
set to an optimum level ranging roughly from midway between the m=2 and m=3
bifurcation points to just below the m=3 bifurcation point. As can be seen from the
bifurcation diagrams in figure 13, this requires determination of the input optical
power and loop gain with less than about 2% control error. Appendix III contains
a discussion of some control considerations specific to our particular system. Note
that, in principle, if the detector threshold level for reading binary data is set midway
between levels of peak and valleys originating with m=2 bifurcation, onset of m=3
or higher order bifurcations initially does not significantly affect the stability of the

binary data, because they only cause higher order modulations of the waveform.
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6 Observations on preferential excitation of
harmonics

In this section we discuss a major discrepancy of the system from the model. The
model described by the delay-differential equation (11) shows a staircase dependence
of stable harmonics on g [13][14], in the sense that when g is increased, there are
transitions between odd harmonic modes in the sequence 1, 3, ---,n,n + 2,---.
However, the behavior of the experimental system differs from the ideal model in
regard to the stability of harmonic modes. The staircase was incomplete, with a
preference for oscillation at certain harmonics. Figure 20 (a) shows plots of primary
oscillation frequency versus p for T,/T,, =124, obtained by sweeping input optical
power FP; (ox p) up and down. There was a jump directly from n=1 to the high
harmonic n=21, and a return directly to n=1 from n=21.

Missing intermediate harmonic oscillations were excited using the SB switch
method to systematically investigate their stability. A 7th harmonic branch, n=7,
was found by SB switch. All other intermediate harmonic branches were unstable
in the sense that stable oscillations could not be found even by SB switches with
very careful choice of seed, though n=3 and n=>5 oscillations had rather long life-
times. Table 1 summarizes the stability of harmonics excited in the resonator for
T /Ty = 124. This preferential harmonic excitation could not be understood from
the experimentally obtained small signal resonance characteristic in figure 8.

Fach missing harmonic could be recovered by pumping into the loop from port
(b) a small sinusoidal signal at a frequency near that of the missing harmonic. An
example of the recovery of n=11th harmonic is shown in figures 20(b)-(g). Figure
21 shows a corresponding phase diagram of mode excitation drawn in the space of
input optical power versus pump intensity. The region where the 11th harmonic
appeared to stably oscillate became larger with increase of pump intensity. For the
case for T, /T, ~2124 we confirmed that all missing odd harmonics, and their m = 2
bifurcations, for n up to n=27 could be recovered by the pumping.

As described in section IV, small sharp variations of about 1dB were observed
in the transfer spectrum of the open loop gain (figures 6(a)-(d)). These seemed to
result from spurious resomnances, especially piezo-electric vibration of the LiNbO;

substrate, in the E-O modulator [24]. These small variations in the open loop
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gain could affect the stability of the oscillation modes, resulting in the preferential
harmonic excitation. Derstine et al. also observed that stability of harmonic modes
was extremely sensitive to spurious nonlinearities in the E-O device [7].

In order to test this hypothesis, we examined the relation between the fine struc-
ture of the open loop gain and the strengths of pump signals which were necessary
to make the harmonics stable. Figures 22(a) and (b) show the transfer spectrum
of the open loop gain expanded around the frequency 25MHz near the 265th har-
monic, and threshold pump intensities, respectively, for T, /T,, = 520. In this range
of frequencies, differences in the the open loop gain could be regarded to result only
from the fine structure, because the systematic decrease of the open loop gain with
frequency increase originating from the relaxation characteristic was negligible, as
seen in figure 6(b). For T, /T, =520, the 265th harmonic was the highest harmonic
which could be observed without pump signal, and other harmonics near the 265th
harmonic could be made stable with pump signals. The threshold pump intensity,
which is necessary to make each harmonic stable, is indicated in figure 22(b). The
larger the open loop gain the smaller the threshold pump intensity. These observa-
tions seemed to confirm that, for large effective delay, excitation of harmonics was
very sensitive to the loop gain and even less than 1dB difference in the loop gain
affects the excitation of harmonics in the closed loop.

The delay-induced oscillations in the closed loop have many frequency compo-
nents, which can couple to spurious resonances in the E-O modulator. Therefore,
the existence of complex fine structure in the open loop transfer spectrum might
correspond to promotion or suppression of specific harmonics, thus resulting in the
preference in harmonic excitation.

A smooth frequency characteristic of the system is required so that such prefer-
ence of harmonic excitation can be avoided. However it is worth noting that from a
certain point of view, it could be advantageous to introduce such frequency-selective
mechanisms [12] in the system, in order to increase the stability of particular har-

monic modes used as memory states.

7 Conclusion

A delayed-feedback system with a very large effective delay was designed for the

experimental test of a novel memory function utilizing large numbers of multi-stable
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nonlinear modes of oscillation.

The requirements of the system demanded for the experiment are made the
following. Large effective delay is necessary to excite high harmonic oscillations.
Smooth monotonicity of the frequency characteristic of the system is necessary to
ensure uniform stability among different memory states. And controllability of the
optical input power and loop gain is necessary to facilitate the SB switch control.

Large effective delays of up to 520 were realized by employing state of the art
components for 1.3pgm optical communication as the key components of the system.
This made it possible to obtain a large variety of stable modes. The behavior of
the system was confirmed to be roughly consistent with that exhibited by a model
delay-differential equation and previous experimental systems with shorter delays.
Order m=2 bifurcations of high harmonic modes were found to be stable. The
highest harmonic oscillation modes observed to be stable were those with harmonic
number n=21 for effective delay of T;./T;, =124 and those with harmonic number
n=265 for T, /T;, ~520.

It was found that the stability of the harmonic modes for large effective delay was
very sensitive to spurious resonances in the system, which resulted in preferences in
the excitation of harmonics. Missing harmonics and their m=2 bifurcations could be
stabilized by pumping small sinusoidal signals into the feedback loop. The presence
of spurious resonances, which might be caused by piezoelectric vibration of LiNbOj
substrate of the E-O modulator, was indicated by small sharp features in the transfer
'spectrum of the open loop gain. A correspondence between the loop gain and the
threshold intensity of the pump signal needed to make a mode stable confirmed
that the small sharp features, though even less than 1dB in magnitude, significantly
affected the stability of the harmonic modes.

In an experimental test of the dynamical memory function, WRITE and READ
of up to 21 bits of binary data using coded oscillation modes locked to an external
reference clock was successfully executed. In the WRITE process, tolerance of more
than £50% in the difference in peak (or valley) levels and about +50% of T;/n
in length of seed signal could be allowed, due to the dynamical stability of the
oscillation modes.

The m=2 mode, at least, should be stable enough for functional applications,

if the signal to noise ratio of the system is more than 20dB. This noise ratio is an
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achievable value in practical systems.

The stability of the loop gain, that is the stability of the input optical power,
demanded to maintain the stability of the memory mode (m = 2 bifurcation) was
about +2%. This is the most demanding aspect of the system design, but it is not
an impractical value.

Due to the intrinsic stability of the modes used, the dynamical memory, though
of simple structure, realizes a function similar to that of a conventional delay line
memory with regeneration. The intrinsic stability of data stored as stable nonlinear
oscillation modes is an important advantage of this dynamical memory compared
to a conventional delay line memory which stores data as a cyclic pulse pattern in a
delay line with a separate regeneration mechanism to compensate pulse decay and
suppress intensity and phase noise.

The dynamical memory can in principle be realized in all optical nonlinear res-
onators with simple structure, such as optical fiber loops [21] and solid-state optical
resonators [29], though the performances of all optical systems reported so far have
not reached a level which is practical for the implementation of the dynamical mem-
ory, due mainly to the need for large optical power. In this context, a low threshold
nonlinear sagnac switch [30], which consists of a combination of an optical fiber and
a high gain erbium doped fiber amplifier, seems to be a good candidate for realizing
a practical all optical dynamical memory with fast response.

It is envisioned that this type of dynamical memory will be suited to specific uses
such as temporary ring storage or fiber logic functional units in future high-speed
optical fiber networks [31][32]. The possibility of cascading, using the output of one
resonator to seed another, and majority logic operations, by superposition of seed
signals, are also of great interest from the point of view of future all optical signal

processing applications.
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Appendix I

Some details of the experimental setup which are used in this paper are described
in this appendix. The setup comnsists essentially of a controller of the SB switch
and a DF system with very large effective delay. The former, an arbitrary function
generator LeCroy 9100 (AFG) controlled by a personal computer (PC), generates
signals for the SB switch. The latter is a hybrid electro-optic ring-resonator. The
details of the components are as follows.

The LD (Mitsubishi FU-11SLD-N) can be directly modulated as fast as 600Mbits/sec.
Direct modulation of the LD allows easy control of the feedback loop gain, which
is proportional to the input optical power. The electro-optic (E-O) intensity mod-
ulator (Ericsson PGS6211) is a LiNbO; waveguide of Mach-Zehnder configuration
with about 4.5dB insertion loss and a half-wave voltage of about 6 volts. The optical
fiber delay line is a 1.3um single mode optical fiber with 0.2dB/km propagation loss.
The length of the fiber is 1000m, cdrresponding to 5.2usec propagation delay. The
photo-detector (Mitsubishi FU-13PD-N) is a pin photo diode for long-wavelength
infrared light, with photosensitivity of 0.87A/W and bandwidth of 1.5GHz. All of
the optical components are connected using FC-connectors which introduce negligi-
ble fluctuation of propagation loss in the optical path. The amplifiers are high-speed
video amplifiers with 3dB bandwidth from DC to more than 150MHz. Total elec-
tronic gain in the feedback loop is 57dB. The input and output ports of all these
electronic devices are adjusted to 50§ impedance so that waveform distortion origi-
nating from impedance mismatching, which might cause irregular change in the fre-
quency characteristic of the loop, is minimized. The response time of the feedback
T, 1s increased from about 10nsec to more than 270nsec by introducing capacitors
in parallel in the loop to act as a low pass filter (LPF) as shown in figure 4.

A DC offset bias voltage V) is added at the input port of the first stage amplifier

to select an appropriate range of the nonlinear E-O modulation.

Appendix 11

We derive equation (12) from equation (11) by linear stability analysis.

Ton—"==V([)+ V. + pF(V(t - T,)). (15)
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For small p, that is low input optical power from the LD, there is a stable state
of the loop corresponding to a constant intensity signal V*, an equilibrium value of

V(t) as described by the following equations and inequality.

ﬂ%ﬁ =0, (16)
V=V, 4 uF(V7), (17)

and
—g—fF/—(V*) <0, (18)

With increase in pu, this state becomes unstable and there arises stable self-
oscillation in the loop. Near V*, the dynamical behavior of V' is understood with

the following linearization of equation (11) [8].

V(t) = V* +o(t), (19)

dv(t)
dt

where v(t) is a small signal. By expressing the linear term v(t) as v(t) = € exp(st),

1, 20 o) 4w (V)olt - 1), (20)

where € and s are the small amplitude and the complex phase of v(t) respectively,

the following characteristic equation is obtained,

oF .
sTy, = ——-1—!—;1,8—1-/—(1/ ) exp(—sT5). (21)

By comparing real and imaginary parts of equation (21) we obtain following

equations as,

N 1= M%(V*) exp(—A\T)cos(wTy), (22)
and
oF .
wTl, = ——;LW(V*) exp(—AT,)sin(wT}), (23)

where A = Re(s) and w = Im(s).
By dividing equation (23) by equation (22) we obtain

wly,

— " — ¢ T.). 2
N 11 an(wT;) (24)

Oscillation occurs if s has a positive real part. So, V(t) begins to be unstable

and to oscillate around V* at A = 0. By substituting A = 0, equation (24) becomes

wlhy, = —tan(wT,). (25)
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On the assumption that the period of oscillation is near 27, or 2T, /n, where n

1s integer, we expand right term of equation (25) around w7, = n7 as,
wl, ~ —(wT, — n7). (26)

Under the condition 7, <« 7, and inequality (18), we obtain the oscillation

frequency f.(=w/(27)) as

n T
~ —_— _-—.m e . 27
fa T (1 T ), n = odd (27)

Appendix III

In our experiment, poor reproducibility of the input optical power F; level for a
given loop gain was an issue. This was due mainly to the following causes.

Firstly, the loss in the optical path could change as much as +0.5dB (£12%)
with reconnection of the FC-connectors.

Secondly, it was observed that the loop gain was relatively sensitive to the tem-
perature of the atmosphere around the Im long polarization maintaining (PM) fiber
pigtail of the input port of the E-O modulator. The light from the LD was ellip-
tically polarized light with low extinction ratio (~5dB) which seemed to be due to
the birefringence of the cylindrical lens mounted in the LD module. The LD light
was fed directly to the PM fiber of the E-O modulator. The principal axis of the
polarization ellipse in the PM fiber could change due to change of birefringence of
the PM fiber with temperature variation of the atmosphere, resulting in intensity
variation of the field component to be modulated in the E-O modulator. This could
cause variation of loop gain in spite of a constant LD optical power. Under typical
laboratory conditions at room temperature £1°C, the gain varied less than 2%.

However, we believe that these are not intrinsic problems for engineering models
of the dynamical memory, because they can be overcome with countermeasures,
such as permanently fixing the optical connection points, shortening the PM fiber
pigtail and using a fiber-type polarizer to improve the extinction ratio of the input

light.
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Table1 Preferencein harmonicmode excitation for T /T,, =~124.

© :stable (can be observed by only varying «), O : stable (can be observed by choice of
careful initial condition), & : unstable(long lifetime after exc1tat10n with suitable initial
condltmn) X : unstable(could not be observed)

Harmonic
nulnber n 1 3 5 7 9 ----------------- 19 21 23 ..............
Stability | © | & | & | O < o v




Figure 1: Schematic example of (n = 7,m = 2) mode and its coding. In each T,
interval there are 7 sub-intervals. In each sub-interval there is a peak or valley
of the oscillation. The four different peak and valley levels are indicated by 2-bit
labels, 00,01,10,11. The oscillation waveform is identified with a 7-element code
I = (10,01,11,00,11,01,10) indicating peak and valley levels in a T}, interval or a
7-element code J = (0,1,1,0,0,1,0) indicating peak levels in a 27, interval. The J
code is followed by the inverted J code in the next 27 interval.

Figure 2: Coding of the oscillation waveform. (a)Diagram of the recurrence relation
between z(t) and z(t — T) expressed by equation (3). (b)Cyclic sequence of 2-bit la-
bel I; assigned to peak and valley levels separated in time interval 7, . (c)Oscillation
waveform of (n = 1,m = 2) mode with peak code J. (d),(e)Oscillation waveforms
of (n = 3,m = 2) mode with peak code J. The first bit of label I; enclosed by
dashed line corresponds to 1-bit binary element of peak code J. Peaks (valleys) are
mapped to valleys (peaks) in T later according to the cyclic sequence of label I;, as
indicated by dashed arrows.
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Figure 3: Schematic example of the SB switch of (n = 7,m = 2) mode with the
codes S and J. The upper signal is the seed signal and the lower signal is the
oscillation waveform.

Figure 4: Experimental setup.

LD:laser diode (wavelength A = 1.3um, optical output power P, ~ 1lmW) E-O
modulator:Ericsson PGS6211 LiNbO; waveguide intensity modulator (halfwave
voltage V; = 6V) optical fiber:1.3um single mode optical fiber (length~1000m)
PIN:pin photo diode (photo sensitivity =~ 0.87A/W) LPF:low pass filter ATT: at-
tenuator (attenuation = -6dB) P:power divider (insertion loss = -6dB) AMP:video
amplifier (-3dB bandwidth~150MHz, 15dB gain in the final stage and 20dB in the
other stages) PC:personal computer AFG:LeCroy9100 arbitrary function generator
SG:timing signal generator DET:detector (threshold circuit)



Figure 5: Shape of the nonlinear E-O modulation characteristic. This curve shows
the relation between V and V; where V =V, 4+ pF(V;) with constant V, and p.

Figure 6: Transfer spectrum |G(w)| of the open loop gain. This was measured
with small amplitude sinusoidal signal V;, where G(w) is defined in terms of the
Fourier transforms of V and V; as V(w) = G(w)Vi(w). : (a) without low pass filter
(LPF), (b) with LPF (T, /T,, ~520), (c) with LPF (T, /T,, ~124), and (d) with LPF
(T, /T, =63).

Figure 7: An example of ripple on V() observed when the system is driven with
rectangular wave V; in the open loop configuration for T,./T;, ~124.
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Figure 8: Small signal resonance characteristic of the nonlinear resonator for
T./T =124. (a)frequency range from 0 to 2.0MHz, and (b)from 2.0 to 4.0MHz.

Figure 9: Dependence of frequencies of fundamental mode f; on effective delay
T. /Ty Solid line shows values calculated from equation (12) for n=1 and dots show
experimental values.

Figure 10: Oscillation waveform of (n,m)=(1,2) mode for T} /T, ~124.

Figure 11: Bifurcation diagram for T /T, ~124. This diagram shows bifurcation of
levels of n=1 oscillation for 7, /T, =124 obtained by slowly varying input optical
power Pj(oc p) at about 10Hz and observing P; and V in the X-Y mode of the
oscilloscope.

Figure 12: Oscillation of one of the (n,m)=(265,2) modes for T,/T;, =520. (a)
waveform, and (b) power spectrum.

Figure 13: Bifurcation diagrams of (a) n=1 and (b) n=21 modes for T} /T, ~124.
These diagrams were obtained by the same method as for figure 11. The propagation
loss in the optical path and E-O modulation curve in this measurement were slightly
different from those for figure 11, due to reconnection of FC-connectors in the optical

path.

Figure 14: Frequency locking characteristics for 7;./T;, ~124 at the modulation
depth of input optical power P; of 0.4%. (a) (7,2) mode, and (b) (21,2) mode.

Figure 15: Dependence of frequency locking range on modulation depth of input
optical power P;, for T, /T, ~124.

Figure 16: Two examples of 21-bit data WRITE to dynamical memory. (i) bit
sequence ‘110001100010000010101" (ii) bit sequence ‘101010101010101010101".

(a) The change of p from p, 45 to fton corresponds to change of input optical power P;.
The increase of the input optical power AP; was about 0.25mW. (b) V,(t) modulated
by the seed signal, (c) the excited oscillation V'(t), one of the (21,2) modes. (d) The
stable asymptotic state of the oscillation V(t), observed a long time (> 10°T.) after
WRITE.

Figure 17: An example of transient waveform observed in the WRITE procedure
when the shape of the seed signal has discrepancies of -30% in peak levels and +30%
in valley levels from the optimum levels. The optimum levels were slightly different
from those for figure 16, due to reconnection of FC-connectors in the optical path.
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Figure 18: Example of 21-bit data READ from dynamical memory locked to an
external reference clock. Pt: Timing pulse (period 47;), V': Stable oscillation
(proportional to V), Dt: Binary data read from V' by thresholding.

Figure 19: Two examples of the erasure of a (21,2) mode. Erasing begins T, after
switching p back to p,s¢, due to the delay line. (a) Erasing when the value of p,ss
was set to be nearly zero. (b) Erasing when u,s; was a larger non-zero value. A
switching transient of a few 7, in length is observed.

Figure 20: Dependence of oscillation mode on input optical power P; and pump in-
tensity for T, /T, ~124. (a) Oscillation modes without pumping signal, and (b)~(g)
oscillation modes for increasing intensity of pumping signal at 1.0482MHz showing
recovery of n=11 mode. (1,1),(1,2),(11,1), - - denote oscillation mode classifications
(n,m) and (C) denotes chaotic oscillation. The propagation loss in the optical path
and E-O modulation curve in this measurement were slightly different from those
for figure 11, due to reconnection of FC-connectors in the optical path.

Figure 21: Phase diagram of mode excitation obtained from figure 20 drawn in input
optical power P; - pump intensity space.

Figure 22: Relation between transfer spectrum of the open loop gain and thresh-
old pump intensity required to stabilize missing harmonics. (a) Transfer spectrum
|G(w)]| of the open loop gain for T, /T, ~520 expanded around the frequency of the
265th harmonic, and (b) threshold pump intensity required to stabilize the corre-
sponding harmonic. The 265th harmonic spontaneously oscillates, and the 261th
harmonic oscillates after initial excitation with pump signal.
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Figure 1: Schematic example of (n = 7,m = 2) mode and its coding. In each T,
interval there are 7 sub-intervals. In each sub-interval there is a peak or valley
of the oscillation. The four different peak and valley levels are indicated by 2-bit
labels, 00,01,10,11. The oscillation waveform is identified with a 7-element code
I =(10,01,11,00,11,01,10) indicating peak and valley levels in a T, interval or a
7-element code J = (0,1,1,0,0,1,0) indicating peak levels in a 2T interval. The J
code is followed by the inverted J code in the next 27, interval.
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between z(t) and z(t—T;) expressed by equation (3). (b)C
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bel I; assigned to peak and valley levels separated in time interval T . (c)Oscillation
waveform of (n = 1,m = 2) mode with peak code J. (d),(e)Oscillation waveforms
of (n = 3,m = 2) mode with peak code J. The first bit of label I; enclosed by
dashed line corresponds to 1-bit binary element of peak code J. Peaks (valleys) are
mapped to valleys (peaks) in T; later according to the cyclic sequence of label I, as

indicated by dashed arrows.
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oscillation waveform.
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Figure 4: Experimental setup.
LD:laser diode (wavelength A = 1.3pum, optical output power P, ~ ImW) E-O
modulator:Ericsson PGS6211 LiNbO; waveguide intensity modulator (halfwave
voltage V, = 6V) optical fiber:1.3um single mode optical fiber (length~1000m)
PIN:pin photo diode (photo sensitivity = 0.87A/W) LPF:low pass filter ATT: at-
tenuator (attenuation = -6dB) P:power divider (insertion loss = -6dB) AMP:video
amplifier (-3dB bandwidth~150MHz, 15dB gain in the final stage and 20dB in the
other stages) PC:personal computer AFG:LeCroy9100 arbitrary function generator
SG:timing signal generator DET:detector (threshold circuit)



Figure 5: Shape of the nonlinear E-O modulation characteristic. This curve shows
the relation between V' and V; where V =V, + pF(V;) with constant V, and p.
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Figure 7: An example of ripple on V() observed when the system is driven with
rectangular wave V; in the open loop configuration for 7, /T;, =124.
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Figure 11: Bifurcation diagram for T /T, ~124. This diagram shows bifurcation of
levels of n=1 oscillation for T,/T;, ~124 obtained by slowly varying input optical
power P;(occ p) at about 10Hz and observing P; and V in the X-Y mode of the
oscilloscope.
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Figure 12: Oscillation of one of the (n,m)=(265,2) modes for T,/T;, ~520. (a)
waveform, and (b) power spectrum.
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loss in the optical path and E-O modulation curve in this measurement were slightly
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Figure 17: An example of transient waveform observed in the WRITE procedure
when the shape of the seed signal has discrepancies of -30% in peak levels and +30%
in valley levels from the optimum levels. The optimum levels were slightly different
from those for figure 16, due to reconnection of FC-connectors in the optical path.
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Figure 18: Example of 21-bit data READ from dynamical memory locked to an
external reference clock. Pt: Timing pulse (period 47;), V': Stable oscillation
(proportional to V'), Dt: Binary data read from V' by thresholding.
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Chapter III

Storage of Optical Pulse Data Sequences in A Loop
Memory using Multistable Oscillations

Abstract

A new configuration for a loop memory using multistable nonlinear oscillation
modes was proposed. The basic functions of the proposed loop memory have been
confirmed with experimental demonstration of “write” and “erase” using optical

pulse sequences in an electro-optical hybrid nonlinear ring resonator.
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1 Introduction

A nonlinear ring resonator, such as an optical bistable system with delayed-feedback,
can have a huge variety of multistable oscillation modes [1]-[3]. We have previously
performed an experiment on an electro-optical (E-O) hybrid nonlinear ring resonator
in which we demonstrated selective switching of multistable oscillation modes and
examined the feasibility of utilizing the modes for data storage [4](5]. The intrinsic
stability of data stored as stable oscillation modes is an important advantage of the
loop memory compared to a conventional optical delay line memory. As there is an
intrinsic regeneration mechanism in the nonlinear oscillation to compensate pulse
decay and suppress amplitude and phase noise the proposed memory can have simple
structure. This simplicity of structure should be of considerable merit in future high-
speed optical communication systems, where buffer loop memories could be used in
switching nodes [6].

In the previous experiment on the nonlinear ring resonator for memory [5],
switching of modes corresponding to memory states was done by simultaneously
changing a control parameter, the cw laser pump power, and injecting a seed signal.
A unipolar return-to-zero (RZ) binary data pulse train was easily obtained as output
by thresholding peak levels of the oscillation waveform. The seed signal, a “write”
signal coded from input binary data, was a four-level signal including negative levels.
The need for negative level input signals posed problems for control and cascading in
application of the memory function to a conventional optical communication system
using unipolar binary data pulses.

In this letter, we make a proposal of a configuration for using the memory func-
tion which solves the above mentioned problem, and report experimental results of
“write” and “erase” using optical pulse data, which confirm the feasibility of the
proposed configuration. The possibility of all-optical operation of the memory is

also mentioned.

2 Configuration and principle of the loop
memory

Figure 1 shows the proposed configuration of the loop memory. The nonlinear ring

oscillator is formed by an optical fiber loop of round-trip time 7}, including an active



nonlinear element with response time T3,. Couplers dedicated to “write”, “erase”,
“read” and “locking” ports are attached to inject or to detect signals. The delayed
feedback of the “read” output to “write” is used for the “erase” operation. The
active nonlinear element is assumed to have a sinusoidal type relationship between
input intensity and output intensity. An all-optical element could in principle be
achieved with a Kerr switch [7]. In a hybrid electro-optical implementation, the
nonlinear element could be a laser with an E-O intensity modulator [5].

With large effective delay (round-trip-time T /response-time T}, >>1), many dif-
ferent modes can oscillate stably in the ring. The modes can be classified into classes,
each class labeled by (n,m) where n is an odd harmonic and m is a bifurcation or-
der [3]. Examples of (21,2) modes are shown below in figure 3. The relationship
between the modes and data stored in the waveform is as follows. A mode in the
(n,2) class can be considered as a carrier oscillation of period 2T, /n, whose peaks
(and also valleys) are modulated in two levels, a high “1” level and a low “0” level.
The peak modulation pattern corresponds to a cyclic 2n-bit pattern. Data stored
in the modulation peak pattern can be read by thresholding the peak levels. The
resulting “read” signal is a periodic RZ binary optical pulse train, corresponding to
a sequence of n bits of information in a time interval of length 2T, followed by the
inverted n-bit sequence. Different modes in the (n,2) class have different peak mod-
ulation patterns. With phase identification, there is an (n,2) oscillation for every
n-bit sequence, and the capacity of the memory using the (n,2) class of oscillations
is n bits.

The important feature of this proposal is that “write” and “erase” of data can be
executed using the same sort of RZ binary pulse train which is obtained as “read”
signal. The “write” is executed by injecting an n-bit RZ binary optical pulse train
into the loop through the “in” coupler. Input pulses should have both width and
separation of about 7. /n. An n-bit input pulse train has total length 27,. The
“erase” operation can be executed by injecting a “read” signal of length 27, back
into the loop after a delay of 2T,, which corresponds to superposed “write” of the
1nverse bit-pattern to cancel the n-bit pattern stored in the oscillation waveform.
Phase identification is achieved by locking the oscillation to an external reference
oscillation through the “locking” port. All timings of the memory operations can

be identified with locking to the external reference oscillation.
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3 Experimental results

The experimental setup used to confirm the feasibility of this proposal is shown in
figure 2. The ring generating the multistable oscillations was a hybrid electro-optical
ring resonator, essentially consisting of a Fabry—P‘erot(FP) laser diode (LD), an E-O
intensity modulator with waveguide Mach-Zehnder structure, a 1600m single-mode
optical fiber delay line, PIN photo diode for 1.3pm optical communication and high
speed video amplifiers with 3dB bandwidth from DC to more than 150MHz [5]. The
active nonlinear element was the combination of LD and E-O modulator. The E-O
modulator had a sinusoidal E-O modulation characteristic. In this experiment we
set the effective delay T, /T, =124 (T, = 5.2usec, T,, = 42nsec) by introducing a
low pass filter at the output port of the first stage video amplifier. For the “in”
coupler we used an optical coupler with a splitting ratio of 90:10, while the other
couplers in figure 1 were substituted with electrical power dividers as shown in figure
2.

The ring resonator was pumped by the LD with constant optical power. The class
of (n,2) modes could be selected and phase-locked to an external reference oscillation
by injecting into the loop a small amplitude sinusoidal signal at a frequency near
the carrier frequency, n/(21;). For the (21,2) modes shown in figure 3, the LD
pump power was 0.76mW. The frequency and amplitude of the external reference
oscillation were set to be 1.99566MHz and 0.5% of the amplitude of the oscillation in
the loop, respectively. The locking range under the above mentioned condition was
about 0.023% of the free running frequency of the (21,2) mode. The range increased
in proportion to the amplitude of the injected reference signal. Different modes in
the (21,2) mode class were found to have almost identical locking ranges. With this
locking technique, we could obtain phase stability and identify the first bit of the
cyclic 42-bit memory pattern.

Figure 3 shows an example of “write”, “read” and “erase” of 21-bit binary data.
One of the memory states, the one corresponding to all “0” is used as an initial state
for “write” operation. This state can be reached from any other memory state with
the “erase” operation described below.

In the experiment, another 1.3um FP LD, directly driven by an arbitrary function

generator, was used to generate the “write” signal, a 21-bit RZ binary optical pulse
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train of length 27,.. The “write” signal was injected through the optical coupler.
The optical power of the “write” pulses injected into the loop was 0.024mW. When
injected with the correct timing, the “write” pulses are superposed on the low “0”
peaks of the initial state oscillation in the loop, as shown in figure 3(a).

In the “read” operation of the experiment, the peak levels of the electrical os-
cillation signal output from the electrical stage of the ring are thresholded midway
between the “1” and “0” levels to obtain a cyclic 42-bit RZ pulse sequence of period
4T, (21-bit RZ pulse sequence of length 2T, followed by the inverted 21-bit RZ
pulse sequence of length 27), as indicated in lower waveforms of figure 3.

In the test of “erase” operation, shown in figure 3(b), the same “write” signal
as in figure 3(a) was injected with a delay of 2T, with respect to the first bit of the
42-bit cyclic memory pattern so that it is added onto the inverted peak pattern to
cancel the data in the memory. In a future implementation, the “erase” signal of
length 27, could be extracted with an optical thresholder and gate from the optical
“read” signal.

In the “write” and “erase” operations shown in figure 3, the RZ pulse height
and width of “write” (or “erase”) signal injected in the loop were about 0.024mW
of optical power and 50% of duty ratio, respectively, which roughly corresponded
to the difference between high and low peaks of the (21,2) oscillation waveform
in the loop. With the optimum pulse height and width, the waveform quickly
settled to the destination memory state with little transient as shown in figure 3.
However, some variation of the pulse height and width could be tolerated, due to
the dynamical stability of the oscillation mode. Figure 4 shows a typical example of
the region of the pulse height-pulse width space in which the “write” operation for
a 21-bit pattern could be reliably executed. The shape of the region showed that
the narrower the pulse width the larger the pulse height. Though there were small
differences in the region for “write” and “erase” of the same bit pattern and there
was a small dependence on bit pattern, it was found that for all the bit patterns
examined the area around 0.024mW pulse height and 50% pulse width was suited

to reliable “write” and “erase” operations.



4 Conclusion

We have made a new proposal of novel loop memory and experimentally confirmed
the basic functions, “write”, “erase” with optical pulses and “read”, for the memory
system to show the feasibility of our proposal. The bit capacity of the memory can
be increased by increasing the effective delay T, /Ty, [5].

High—sbeed all-optical operation of the loop memory is an important target.
The key factor for realizing a practical all-optical implementation is a fast, large
nonlinear response achievable with a low optical power, e.g. diode laser power.
Recent experiments on nonlinear switches suggest that a promising approach is
to use the optical Kerr effect in optical fiber pumped by a laser diode [7}[8]. The
response of the Kerr effect is fast (7, < 107**sec) and the long interaction length and
optical power concentration in a fiber switch make it possible to obtain a sinusoidal
type input-output intensity relationship with a low optical power of order milliwatts

or less [7](8].



References

[1] K.Ikeda, “Multiple-valued stationary state and its instability of the transmitted
light by a ring cavity system,” Opt. Commun., vol.30, pp.257-261, Aug. 1979.

[2] K.Ikeda and K.Kondo, “Successive higher-harmonic bifurcations in systems

with delayed feedback,” Phys. Rev. Lett. vol.49, pp.1467-1470, Nov. 1982.

[3] K.Ikeda and K.Matsumoto, “High-dimensional chaotic behavior in systems with
time-delayed feedback,” Physica 29D, pp.223-235, 1987.

[4] P.Davis and K.Ikeda, “Switching between multistable oscillations and appli-
cations in signal generator and memory,” Technical Digest of the 16th Inter-
national Conference on Quantum Electronics, ThC-3, pp.634-635, Tokyo, Jul.
1988

[5] T.Aida and P.Davis, “Experimental demonstration of novel dynamical memory

function in a nonlinear elecro-optical ring resonator,” Jap. J. Appl. Phys. vol.29,

pp.L1241-11243, Jul. 1990.

[6] S.Kuroyanagi, T.Shimoe and K.Murakami, “Photonic ATM switching net-
work,” in Tech. Dig., Intern. Topical Meet. Photonic Switching, Kobe, Japan,
Apr. 1990, paper 14B-2, pp.223-225

[7] I.H-White and R.V.Penty, “Demonstration of the optical Kerr effect in an
all-ibre Mach-Zehnder interferometer at laser diode powers,” Electron. Lett.,

vol.24, pp.340-341, 1988

[8] D.J.Richardson, R.I.Laming and D.N.Payne, “Very low threshold Sagnac switch
incorporating an erbium doped fibre amplifier,” Electron. Lett., vol.26, pp.1779-
1781, Oct. 1990

67



Figure captions

Figure 1 Configuration of the loop memory

Figure 2 Experimental setup

Figure 3 Example of (a)“write” and (b)“erase” of 21-bit sequence of
100111000011111000001" where signal levels indicated are those of optical powers
in the fiber loop

Figure 4 Regions of the pulse height—pulse width space for reliable (a)“write” and
(b)“erase” of 21-bit sequence of ‘100111000011111000001’; No transients in “read”
signal were observed in the dark-shaded zone; Transients of a few T} in length were

observed in the light-shaded zone
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Chapter IV

Oscillation Mode Selection using Bifurcation of Chaotic
Mode Transitions in A Nonlinear Ring Resonator

Abstract

This paper demonstrates the effectiveness of an adaptive parametric control
method for searching and switching among a large number of multistable oscilla-
tion modes using chaotic mode transitions. The adaptive control is used to select
nonlinear oscillation modes in an electro-optic ring resonator. In the adaptive con-
trol scheme, the result of a simple test of resonator output is fed back to a single
parameter, pump laser power, governing bifurcation to and from chaos. The test is
the presence or absence of a target code in the oscillation waveform of the resonator
output. Chaotic mode transition phenomena, called chaotic itinerancy, are investi-
gated in terms of code dynamics, and the results are used to determine the optimal

parameters for the adaptive control.
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1 Introduction

The ability of nonlinear devices with only simple structure to generate very compli-
cated behaviors, such as chaos, is well known. However, this ability has not been
exploited in technological applications of devices. This paper addresses this issue.
We demonstrate that onset of chaos can be exploited in a device which interacts, in a
"trial and error” manner, with its environment to find a suitable mode of operation.

Theoretical and experimental studies on nonlinear delayed feedback systems have
shown the existence of a large variety of multistable bifurcated oscillation modes
leading to chaos [1]-[7]. Ikeda et al. [5] clarified the hierarchical tree structure of
the bifurcation of the oscillation modes excited in a nonlinear optical ring cavity
and suggested the applicability of the multistable modes for memory. It has been
theoretically proposed that selective excitation of modes, useful for optical signal
generation and memory, is possible by two complementary methods, seeded switch
[8] and chaotic search [9].

The seeded switch is a direct, deterministic selection of a mode by injection
of a signal close to the mode (i.e. content addressing). The seeded switch was
experimentally demonstrated in an electro-optic (E-O) hybrid nonlinear resonator
and availability of the multistable modes for the generation and storage of binary
optical pulse sequences was confirmed [7][10].

Chaotic search is an approach to selection of mode, which is complementary to
selection by seeding and results in stochastic selection of a mode which satisfies
a given constraint. A method has been proposed for chaotic search which uses
adaptive parametric feedback control of bifurcation to and from chaos to search for
and select a mode which satisfies the given constraint [9][11]. In this paper we shall
refer to this method to “CS” for short. CS corresponds to access to modes from
an upper chaotic stage of the hierarchical mode bifurcation tree, while the seeded
switch is access from a lower [7] or same [10] stage.

The validity of the proposal for chaotic search by adaptive bifurcation was exper-
imentally demonstrated in an E-O hybrid nonlinear resonator, which gave a concrete
image to the applicability of chaos [11].

This paper gives the details of the experiment and quantitative investigations

of CS, relevant to characterization of chaotic mode transitions, control parameters
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and switch time. In particular, we consider the above mentioned factors from the
practical viewpoint of tuning the CS. We explain how parameters can be tuned to
reduce the CS time and what factors determine the lower limit of the CS time.

In section IT we first review the general idea of CS. In section III we describe the
oscillation modes of the nonlinear ring resonator, and coding which is applicable to
waveforms of multistable modes and chaotic modes. In section IV we present chaotic
mode transitions observed as code dynamics, where we can grasp the dependence of
mode transitions on the control parameter. In section V we discuss how to use the
results of section IV to choose parameters for adaptive control of bifurcation, and
present data from experimental trials of CS. In section VI we examine the relations
between chaotic mode transitions, control parameters and switching time, giving

the optimum conditions for the adaptive parametric control.

2 Principle of chaotic search

The method of adaptive mode selection using bifurcation to chaos was proposed by
Davis [9]. The method is complementary to direct mode selection by parameter in
monostable systems or by seeding (content-addressing) in multi-stable systems. In
contrast to direct mode selection, this type of mode selection will be useful when a
device has to operate autonomously.

The key idea is that an optical device which is capable of supporting a variety
of modes and chaotic transitions among them could interact with its environment
in a trial and error manner in order to find a suitable mode of operation. According
to the method proposed, chaotic transitions allow the device to sequentially try
each of the modes to test whether they are suitable or not. An external feedback
signal indicating that a mode is suitable is used to stabilize the mode by changing a
parameter and taking the device into a multistable regime where all the modes are
stable.

It has been argued [9] that this method should be generally applicable when
there are responses from the environment which indicate whether the current device
output is satisfactory or not, and where there is one parameter bifurcation of the
device state from a multistable mode regime to a regime where there is intermittent
transitions among modes.

The onset of intermittent transitions among modes allows the modes to be tested
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in turn. Intermittent transitions among modes can occur if chaos appears via basin
merging and chaotic paths are created between the “attractor ruins” of the previ-
ously stable modes [5][12]. In the context of transitions among multiple modes in
high dimensional systems such transition sequences have been referred to as “chaotic
itinerance” [11][13]-[15]. To ensure that each candidate mode is accessible to the
search and selection process, it is necessary that the chaotic itinerance repeatedly
visits each and every one of the mode neighborhoods.

This method of adaptive mode selection has some similarity with a method
recently proposed by Ott, Grebogi and Yorke [18] [19] for selecting a periodic orbit
from a chaotic attractor. Each uses chaos to search the phase space, and also each
uses feedback to a single parameter. However, the adaptive mode selection described
in this paper is concerned with bifurcation of stable candidate modes to and from a
chaotic attractor. Moreover, it is concerned with an external test of the current state
which may be arbitrary and not specifically related to internal dynamical structure

such as basin structure.

3 Oscillation modes and coding

In this section we describe the nonlinear oscillation modes of the ring resonator
which will be the subject of the mode selection experiment. The nonlinear ring
resonator used for the present experiment is the same electro-optic (E-O) hybrid
ring resonator as was used in a previous experiment [7] where modes corresponding
to multi-bit binary codes were selected by seed injection. Moreover, we use one
of the same sets of modes, the twice-bifurcated 7-th harmonic modes. The modes
are assigned two types of codes for identification. One of the codes, a non-specific

“feature” code, will be used as target in mode selection. !

3.1 modes of nonlinear ring resonator

The nonlinear resonator used for the experiment i1s an E-O hybrid ring resonator
with very large effective delay [7], in which a large number of nonlinear oscillation
modes are excited. In figure 1, the nonlinear ring resonator is illustrated with the

coding and control circuits for the CS experiment.

'For ease of implementation and for the purpose of comparison, we used the same coding as
previously used in computer experiments on the method [9].
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The nonlinear ring resonator is modeled by the following deiay differential equa-

tion [7],

dv (t)
dt

Here V is the signal in the loop, either the optical intensity in the fiber or the voltage

1V _ vty 4 v, 4w (v - T)). 1)

on the EO modulator. V, is an accumulated offset bias voltage at the final stage
amplifier, p is the bifurcation parameter proportional to the input optical power P;
from the laser diode (LD), and T, and T, are the response time and the delay time
of the nonlinear feedback, respectively. The function F is the typical sinusoidal E-O
modulation characteristic of an EO intensity modulator. A nonlinear characteristic
with at least one hump or valley (maximum or minimum), and an effective delay,
T./Ty,, is needed to give delay-induced bifurcations to chaos as y is increased. We
are concerned with the case of large effective delay, 7, >> T,,, in which there are
multistable modes useful for generation and storage of binary optical pulse sequences
(7]

This hybrid electro-optic system acts also as a model for the dynamics of an
all-optical implementation of equation (1), and so, in principle, the results of this
paper are relevant also to all-optical signal generation and storage in future all-optic
communication networks.

For low pump power (low input optical power from the LD), the oscillation
modes which can be excited in the resonator are the fundamental mode of period
Ty of about 27T, and odd (n-th) harmonic modes with period T, equal to about
2T, /n. Each of these harmonic modes exhibits bifurcations leading to chaos with
increase of pump power. The modes of the nonlinear oscillation can be classified
with harmonic number n and bifurcation order m as (n,m) [5]. Figure 2 shows
schematic bifurcation diagrams of oscillation level and oscillation mode.

In each (n,m) class there are multiple oscillation modes, “isomers”, with different
peak modulation patterns [5)[7], which are all stable at the same value of pump
parameter u. As in [9], we shall represent isomers in an (n,m) class by the symbol
énm and a particular isomer by &nm, 1, Where L is some distinguishing label. We
denote by u,, the value of pump parameter p at which m-th order bifurcation occurs
and each &, ,,—1 mode bifurcates into multiple &, » modes.

Successive bifurcations reach onset of chaos at a certain point pp, and after the

onset of chaos at there are order m* “inverse” bifurcations [5]. In the inverse
ur
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bifurcations, the basins of the multiple chaotic modes merge together, resulting in
fluctuations on peak and valley levels of the n-th harmonic carrier and intermittent
transitions among different &, ,, type oscillation waveforms.

In this paper we consider switching among isomers of (n, 2) class at uy < u < us
using chaotic mode transitions in (n,m* = 2*) class at pg+ < p < py+. For the CS
experiment, we set the effective delay T, /T, = 124 (T, = 5.2usec and T}, = 42nsec)
and excite modes by pumping the nonlinear resonator with the LD at about 1mW
[7]. A signal with the desired n-th harmonic carrier frequency was injected initially

to excite the n-th harmonic class of oscillation [7].

3.2 coding

In this section we introduce a method for distinguishing between oscillation modes.
Thresholding of the oscillating optical signal output can be used to generate char-
acteristic binary pulse sequences [9]. The most natural coding of oscillation modes
of (n,m = 2) class is the binary sequence corresponding to the high and low peak
levels. In the experiment we extract a binary J code from the peak modulation pat-
tern in order to characterize oscillations. However, another code, called the feature
R code is extracted, by a different sampling of the peak modulation pattern, for use
in the search. Figure 3 shows the schematic diagram of the coding circuits used to
extract J and R. Figures 4(a) and (b) show examples of signals which appear in
the process of coding periodic and chaotic oscillations, respectively.

Signals are passed through thresholders and pulsewidth extenders so that os-
cillating signals, even the irregularly fluctuating chaotic signals, are converted into
sequences of regular pulses. Timing for sampling of pulse sequences is determined
by a clock signal, CLK, which is obtained from the harmonic carrier oscillation.
Here we make use of the fact that in the chaotic states £, m=2+ used for search, even
though the peak modulation fluctuates, the carrier is quite stable.

Threshold level V31 and pulsewidth extension T,/n are chosen to obtain a pulse
sequence S1(t) from which the J code is obtained. The J code is the n-bit binary
sequence corresponding to the first n consecutive binary pulses of signal Si(¢) in
each interval 27} = 47T,, and is updated at a rate of 27} interval.

Threshold level Vi, and pulsewidth extension 3.57,/n are used to obtain se-

quence S,(t) for the R code. R is the number of pulses of signal S,(t) in a long
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interval T = 207, and is updated at a rate of T" interval. The A code can be
thought of as a measure of the anti-bunching of the “1”s in the J code sequence,
and was chosen simply because it is easily implemented and separates the modes
into different classes.

In figure 5 the ten multistable isomers of =7 m=2 mode, labeled by mode number
p as €r2p, (p = 1 ~ 10), are shown. The mode coding is summarized as follows.
All the isomers of the {7, mode can be completely identified by assigning 7-bit code
J = (J1,Jz, -+, J7) [7). With phase identification, for example as is possible with
locking of the carrier to a reference clock signal, there are 128 (27) distinguishable
modes, labeled as 57’2’ J- Without phase identification these 128 modes degenerate
into the ten isomers shown and labeled by mode number p in figure 5. The feature R
of the stable &7 2, modes takes four discrete values of {20, 25, 30,35}, thus ten &7,
modes are categorized into four &2 g sets of modes by the R code. Some further

details about the coding are summarized in the appendix.

4 Chaotic mode transitions

With increase of u (proportional to input optical power ), peaks and valleys of
waveform of &, , mode oscillations of the type shown in figure 5 begin to fluctuate,
leading to chaotic {, 2 mode oscillations involving transitions among &, isomer
patterns. The global character of the transitions can be seen in the transition
matrices shown in figure 6. Oscillations near to each and every one of the &,
modes appear repeatedly in a single chaotic time series. The transition matrix
for the J code shows clearly that transitions tend to take place by change in one
peak level at a time, as in a random walk on an n-dimensional hypercube. In this
section we look mainly at the transitions among &n=7m=2 modes in terms of the
non-specific, feature R code, since this is the code we shall use in the adaptive mode
selection in the next section. We consider the sequences of codes generated and
éharacterize the dynamics by residence time statistics and absence time statistics
for each R value. We emphasize that the use of the K code means that we are
looking at a low dimensional projection of dynamics in which multiple modes are
only distinguished in classes, and the statistics for mode transitions reflect averages

over multiple modes.
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4.1 parameter dependence of mode transitions

Figure 7 shows waveforms and R dynamics during bifurcation from &,—7,-2 to
€n=1,m*=2- mode oscillations in the range ps < g < p1+. Increasing degrees of chaos
accompanied by mode transitions can be observed in the R variations.

Initially (figure 7(a)) the system is below the onset of chaos, in one of the stable
modes with the feature value R = 30, and R remains constant at 30. When u
exceeds pg, mode transitions appear in R dynamics, as shown in figure 7(b). With
further increase in u above p,-, the change in R value became faster, as shown in
figures 7(c)(d) - - - (f). This shows that the rate of mode transitions between isomers
increases with increase of the degree of chaos. As can be seen from the figures 7(b)(c)
-+« (f), in this range even a small change of order 0.1% (1xW) of input optical power
P; affects the mode transition dynamics.

Near ps-, oscillation waveform retained distinctive features of {7, mode (figures
7(b)~(f)) and the values of R concentrates mainly on the values for isomers of £75
mode, R € {20,25,30,35}. This tendency is reflected in “visiting ratid”, proportion
of time spent at each R value. Figure 8 shows the distribution of the visiting ratios of
R values for figure 7(f). The distribution has peaks at values of R corresponding to
the isomers, R € {20,25,30,35}. As p increases further, the tendency for dwelling
near the previously stable modes decreases. For larger values of u, R values showed
a tendency to spread to higher values (figures 7(g)(h)) and then, for p near ;-
concentrate within a narrow range near the maximum value of R = 35 (figure 7(1)).

This is because as u increases, the chaotic degree of the oscillation increases and
the peaks swing large and fissure into multiple peaks, increasing the probability of a
crossing of the threshold Ievel Vini. As the result, most of the binary pulse sequences

generated take the ‘1’ level, giving a concentration of R near E = 35.

4.2 residence and absence time distributions

The nature of chaotic mode transition can be characterized by residence time and
absence time distributions. Examples of histograms of residence times obtained from
a single chaotic time series are shown in figure 9. The distributions are monotonic
decreasing with time. The distributions typically have a dominant exponential part
with a long time tail. Due to the long time tail, care must be taken in rigorously

defining an average or typical time. However, from a practical point of view, we

81



are working far enough above the bifurcation point so that the exponential part
dominates and we found the averages of these distributions are useful estimates,
and in particular are useful for the tuning of chaotic search, as explained in the next
section.

Escape probability P,(g; £, m,1,t) has been introduced [9] as the probability that
an oscillation escapes the neighborhood of the &, ,, ; mode within a time ¢. A long
average residence time at a mode corresponds to a small probability of escape from
the mode.

Figures 10 and 11 show the distributions of average residence time < 7 > and
average absence time < 74 > of each R value and their dependence on parameter
1, respectively.

The average residence times of R € {20,25,30,35}, which at lower p corre-
sponded to stable modes, are long, while those of other values of R ¢ {20, 25, 30, 35},
are at most one count of T' = 207;, independent of u. This means that oscillation
often dwells at or near a mode for some time before making a typically quick transi-
tion to another mode in time T or less. As is shown in the figure 10, the smaller the
i, the longer the residence time < 7g > for R € {20, 25,30, 35}. Below the onset of
chaos at p4+, < 7 > becomes infinite for R € {20,25,30,35} corresponding to the
stable modes (figure 7(a)).

Absence time is the time between appearances of a code value. Figure 11 shows
the distribution of average absence time < 74 >. The absence time for feature values
corresponding to destabilized modes, R € {20, 25, 30,35}, is shorter than for other
values. Though there is some dependence on R, in general the smaller the parameter
value p, the longer the average absence time < 74 > of R € {20, 25,30, 35}.

The experimental results presented here combine to give a characterization of the
phenomenon of “chaotic itinerancy” in this system whereby oscillations move around
in the phase space, visiting and dwelling for some time at or near around a remnant
mode, the "ruins” of an attractor corresponding to a stable oscillation mode, and
then moving to another. It is significant to note that the phenomenon described
here is robust, in the sense that the statistics of the itinerancy are reproducible. In
the next section, we use this chaotic itinerancy to search for modes in an adaptive
mode selection scheme. The reproducibility of the itinerance statistics is essential

to the applicability of this phenomenon for adaptive mode selection.
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5 Adaptive bifurcation control for chaotic search

It was confirmed from the observation of chaotic itinerancy in the previous section
that there is a practical parameter range where intermittent chaotic mode transitions
occur persistently among all the {7, mode isomers. In this parameter range the rate
of chaotic mode transitions among £7,, mode isorners can be simply controlled by
parameter u. The adaptive parametric control for the “CS” search scheme is based
on this property of the chaotic mode transitions [9]. Namely, if the current mode is
not satisfactory parameter p is increased above y > pg+ to where isomers will appear
one after another in chaotic itinerance, and when a satisfactory mode appears, u is
decreased so that the satisfactory mode becomes stable.

In this section, we describe the control scheme and how to choose and tune
control parameters for CS based on the observations of chaotic mode transitions in

the absence of control.

5.1 adaptive parameter control scheme

In the CS experiment, a mode is judged to be satisfactory or not according to its
R code. The adaptive control of parameter u, the LD power, is described by the

following equation,

,% -t o) 2)

Here, £ = |R — R°| is a scalar feedback signal which is a measure of the mismatch
between an externally specified feature value RR° and the feature value R measured
in the previous T interval. E is updated at the end of each T interval. T} is the
response time for varying . G(E) is a monotonic increasing sigmoid type function
of E, bounded below and above as p, < G(0) < G(o0) < pi-. Figures 12(a) and
(b) are the shapes of G(E) functions, respectively used for multi-mode localization
and single-mode selection. These functions are characterized by three parameters -
A, the boundary value of £ distinguishing between satisfactory and unsatisfactory
outputs, G(0), the value of p for satisfactory output, and G(o0), the value of p for
unsatisfactory output.

For the control scheme, the parameters of function G(F) and the value of T}, are
the key factors which determine the efficiency of CS, as quantified for example by

the search time. Next we show how these parameters can be chosen on the basis of
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the experimental data for the chaotic mode transitions, introduced in the previous
section, figures 7, 10 and 11.

For multi-mode localization the G(FE) function shown in figure 12(a)) is used.
The minimum value G(0) is set slightly above the onset of mode transitions of R
dynamics pg-. The maximum level from G(6) to G(oo) is set at a saturation level
ps where R values for all the isomers of &7, mode, R € {20,25,30,35}, appear as
evenly and as often as possible - for example the value pegium in figures 10 and 11
corresponding to the dynamics in figure 7(f).

In contrast, for single-mode selection the G(E) function in figure 12(b) is used.
The minimum value G(0) is set at a value, y,, below the onset of chaotic mode
transition. The value of G(A), where A = 5 is the minimum difference in R values
between different {7, modes, is set above the onset of the mode transitions at po..
The level from G(6) to G(c0) is set at the same saturation level y, as for the muli-
mode localization case.

Using residence time distribution data, the response time T}, can be chosen so
that parametric control of equation (2) reacts to dwellings near modes rather than to
transients during transitions between modes. As is shown in figure 10, the residence
time at or near isomers, R € {20,25,30,35}, is several T (T 22 207,), while that of
other values of R is about T, independent of x. From these observations we first set

T, at about T. We check the dependence of search performance on T} later.

5.2 multi-mode localization test

First, we do a rough demonstration of the CS parametric control of equation (2)
using the G(F) function of figure 12(a) where the minimum is slightly above uo-,
the onset of mode transitions. The effect of the control of equation (2) is seen in
figure 13.

When there is no control, the visiting ratio is roughly independent of J code
value, as shown in figure 13(a). When the parametric control is activated, there is
a localization of oscillation in modes with the target feature value R = R® = 30, as
seen in the increase of the visiting ratios in figure 13(b).

This roughly confirms the validity of the control scheme defined by equation
(2). The rate of escape from a mode is maximum when there is a large mismatch F

between R and R°. Conversely, when the mismatch E is small, the mode escape rates
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decrease, the typical residence times are longer, and this results in a localization of

oscillations in modes where E is small.

5.3 single-mode selection test

When the G(E) function of figure 12(b) was employed with minimum value set
below the onset of mode transitions, eventually the oscillations converge to a single
mode, one of the modes whose feature value is equal to the target value R = R°.

Figure 14 shows an example of search and selection of mode with R = R° = 25.
The adaptive parametric control is activated at the time marked with (a). The
oscillation mode settles to an isomer of {72 =25 mode at the point marked with (c).
Figures 15(a),(b) and (c) show expansions of the time series at the points marked
with (a),(b) and (c) in figure 14. Similar behavior was observed for the other choices
of target feature value in the set R € {20, 25,30, 35}.

Switching of target value results in a transient search period during which the
system bifurcates in and out of chaotic itinerancy until eventually a mode with the
target value is trapped. Repeatedly changing the target feature value, we observed
that any of the multiple J codes corresponding to each target feature value had a
chance of being selected.

Typically there is bifurcation in and out of chaos a number of times before
convergence to a stable mode. This is due to the fact that the external test is
an arbitrary one, in the sense that outputs with the target feature value are not
necessarily in the basin of attraction of an oscillation with the target feature value
when p, is reduced. This can be thought of as a partition mismatch - a mismatch
between the internal partition determined by the mode basin structure and the
external partition of the space of waveforms defined by the external responses to
the output. We expect the existence of such a mismatch to be common for complex
adaptive devices in general, and this is why we chose a non-specific feature code as

the mode selection criterion [9].

6 Repeated CS and search time statistics

Since chaotic dynamics are used in the search for an appropriate mode, charac-

teristics of the search, such as search time, are stochastic quantities, and require



statistical description. We used the following “repeated CS method” to make a
statistical evaluation of the time required for single-mode selection.

First, we interrupt the control feedback in such a way that E, and hence u,
is large and constant for a time, called the “ERASE interval”, during which the
oscillation is chaotic and, typically, the memory of the mode selected in the previous
trial is lost. Then the feedback control is reconnected and search allowed to take
place for a time, called the ”SEARCH interval”. We repeat this procedure of the
combination of ERASE interval and SEARCH interval periodically by using a square
wave interruption signal.

Figure 16 shows an example of the repeated CS for R° = 25 when T is set
at 0.865T (= 17.3T;). The time series of error E = |R — R°| and feature R are
indicated. The period of repeated CS is 100msec, 50msec for each ERASE and
SEARCH interval. An ERASE interval of length 50msec (~ 96157} = 481T'), being
much longer than the average residence and absence times, was usually long enough
to erase the memory of the mode selected in the previous SEARCH interval. Note
that the chaos in the ERASE intervals is that of gmegium in figures 10 and 11. CS
is judged to succeed in a SEARCH interval if F settles to zero within the SEARCH
interval. In this particular example of repeated CS, CS time for 90% success rate
was estimated at less than 50msec.

Figure 17 shows the dependence of the CS time for 90% success rate on Tj,. Too
large T, makes the response of the adaptive parametric control slow and oscillations
tend to escape from the mode neighborhoods before y decreases enough to trap them
there. On the other hand, when T} is too small, the adaptive parametric control
responds to fluctuations of R during transitions between &;; modes. The valley in
the times shown in figure 17, shows the existence of an optimum value of 7} in the
range between 0.37 and 7". The optimum value of T, is less than the minimum
residence time in the R coding scheme. This reflects the fact that the typical time
for transitions between neighborhoods of €7, modes is less than T'.

Figure 18 shows success in finding a mode with target feature value R = 25 as a
function of search time. The data was obtained from about 300 periods of repeated
CS. Curve (a) shows the probability of converging to a mode with the target fea-
ture value under CS control of equation (2). For comparison, curves (b)---(e) show

statistics for unconstrained (ie. free-running, with control loop open) chaotic itiner-
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ancy at us, namely, the probability of having had a residence time of length (b) 1T
(T = 20T,), (c) 5T, (d) 10T, (e) 20T". All the curves approach 100% asymptotically,
although there is a fall off in rate of increase in success which corresponds to the
long-time tail seen in the residence and absence time distributions.

That curve (a) is above curves (d) and (e) shows that trapping with the adaptive
control is effective. Curve (b) is the upper bound on search performance. It is the
performance expected if a mode with the target feature value is trapped as soon as
the target feature value is encountered in the itinerancy. Typically this does not
happen due to the partition mismatch described above - outputs with the target
feature value are not necessarily in the basin of attraction of an oscillation with the
target feature value when parameter p is reduced.

Tuning of the CS parameters for optimum performance corresponds to choosing
the value of u, to maximize the rate of mode transitions as seen in the curves (b)
to (e), and choosing T}, to brihg curve (a) as close as possible to curve (b).

With optimal tuning, we found the time expected for 90% success in mode se-
lection was around 3507 (36msec), roughly an order of magnitude larger than the
lower limit determined by the dynamics of the unconstrained chaos, the average
absence time of a target mode at p, (see figure 11).

A number of factors affect the optimal value. Most significant factor is the choice
of test criterion, which determines, for example, the mismatch between E values and
mode basin structure. Another is environmental noise. Little is know yet about the
effect of noise on chaotic itinerancy among multiple modes. As seen from the long
time tails in the residence and absence time distributions, occasionally the search
dynamics get caught in some places for exceptionally long times. The presence of
some system noise could help escape from such traps. On the other hand, too much
noise could interfere with the chaotic itinerancy if the chaotic itinerancy is taking
place through narrow dynaniical passageways in the phase space. This is a topic for

more worlk in the future.

7 Conclusion

In this paper, we have experimentally tested a method [9] which makes positive use
of chaos for adaptive selection of modes in a nonlinear ring resonator.

In the experiment reported in this paper, we tested that the method works in
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a practical physical system - an electro-optic circuit useful for repetitive generation
of binary optical pulse sequences [7]. The multiple modes correspond to generation
of different multi-bit pulse sequences. A scalar signal indicating the results of an
external test of generated pulse sequences is fedback to determine power of the LD
source of mW light.

The effectiveness of the method was seen in the statistics of mode search time -
the time for convergence to'a satisfactory mode. In the particular case studied, we
found the likelihood of search success seemed to approach asymptotically with time
to 100%, with 90% success achievable within several thousands of mode periods.

We looked at the dependence of search time on control parameters, and on the
relation between search time and statistics of mode transitions in unconstrained
chaotic itinerancy. We showed simple guidelines for tuning for optimum search
performance, based on the statistics for unconstrained chaos, such as residence time
and absence time distributions. In particular, we showed that there is an optimum
value of laser power above onset of chaos which corresponds to a trade-off between
convergence to and divergence from neighborhoods of candidate modes. There is also
an optimum value of rate of response of change of laser power, which corresponds
to a trade-off between waiting for attraction into the neighborhood of a satisfactory
mode, and trapping the oscillation before it escapes the neighborhood.

The particular values for optimum performance are expected to depend on the
type of mode classification effected by the external test. For example, in the non-
generic case where the classification of waveform in terms of external test results
corresponds exactly to the basins of attraction of the modes it would not be necessary
to wait for the chaotic itinerancy orbit to visit the close vicinity of a mode. However,
usually there will be a mismatch between the external mode classification and the
internal mode basin structure, and it may be necessary to do trial and error many
times until a target mode is trapped, resulting in search time which is long compared
with mode period.

From the device application point of view, the experiment showed that the
method 1s feasible in an opto-electronic circuit if the laser power is stable to or-
der 0.1%. It remains to be seen whether design of nonlinearities in the circuit could
increase the tolerance to laser power fluctuations, for example by increasing the

separation between multistable regime and the optimal chaotic itinerancy regime.
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Appendix

Here we summarize the coding of &, =2 mode oscillations.
Let us sample peak levels of oscillation V(¢) to project the oscillation on N

“dimensional vector sequence V' (t) at discrete times #; as,

VN(tk) = {V(tk - (N - 1)7—)7 V(tk - (N - 2)7—)’ T V(tk - T)’V(tk)}a (3)
ty = to+kor, (k=0,1,2,---),
T = Ti/n =2T,/n,

where %y is a sampling phase and ¢ is a constant integer number. An N dimensional
binary vector sequence J (¢;) is obtained from equation (3) by discriminating with

respect to a threshold level V;;, as
IV () = {X (0 — (N = 1)7), X (b — (N = D7), Xt~ 7), X ()}, (4)

where X(t) = 1 for V(t) > Vj;, and X (t) = 0 for V() < Vin. |

Now we can choose 5 and V,; so as to obtain a binary sequence corresponding
to sequence of high and low peak levels of stable &, ,,,—» modes. %, is adjusted so as
to sample peaks, and V}j is set between high and low peak levels.

Now for the &, ,=2 modes we shall use the facts that,
TVt +T) =T (4), (5)

and

TN (t 4+ 2T0) = IV (), (6)

where the bar indicates an inverted binary sequence. Hence, we characterize a mode
by a binary vector code for the waveform of length T} = 2T}, by taking N = n.
Replacing X (¢) with binary labels J; = 0 or 1, equation (4) is re-expressed as the
code '

J:(le]?)“')']n)a (7)

The J code for €, =2 modes is followed by the inverted code J in the next T} =~ 27,
interval, and the code sequence of J and J repeats with period 2T} =~ 47, [7]. Taking
o = 2n results in a constant J output when in a stable &, -2 mode.

As for the feature code, the R code of &, ,—» modes takes integer values from

5int[n /2] to 5n, where int{n/2] means round up integer value of n/2. This is easily
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determined from the width of secondary pulses, 3.5T,/n, and the count interval,
107y =~ 207,. As the count interval is a multiple of the period, 2T}, of the stable
&n,m=2 modes, the output sequence of R values will be constant for these modes.
The coding processes described here mainly consist of thresholding, pulsewidth
extension and pulse count. In the experiment we employed electronic circuits for
the coding. However, it is also possible to execute these processes by using simple
optical systems; an optical thresholder for the former, and an optical medium with
long relaxation characteristic for the latter two which are intrinsically integration

processes.
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Figure 1: Experimental setup. LD, laser diode (wavelength A = 1.3um, output
power Po ~ 1mW; E-O modulator, Ericsson PGS6211 LiNb0; waveguide intensity
modulator (half wave voltage V; =~ 6V); optical fiber, 1.3um single mode optical
fiber (length 1000m); PD, pin photo diode; LPF, low pass filter (response time
Ty, = 42nsec); AMP, video amplifier (-3dB band width ~ 150MHz).

Figure 2: Schematic bifurcation diagrams of oscillation level and oscillation mode.
Examples of 7-th harmonic oscillation waveforms are shown for m = 1, m = 2 and
m* = 2* bifurcation orders.

Figure 3: Schematic diagram of coding circuits. The oscillation signal in the ring
resonator, V'(t), proportional to V(t), is fed into the thresholders of the coding
circuits. The threshold voltage of the thresholder, Vi, is set at a level midway
between high and low peak levels of ¢, . mode oscillation to generate binary pulse
signal X (t) corresponding to binary peak levels. The threshold voltage of the other,
Vina, 1 set at a level midway between peak and valley levels of the oscillation to
obtain a clock signal (CLK) which has the same period 2T} /n as the n-th harmonic
carrier oscillation. The pulsewidth extenders are monomulti-vibrators triggered by
the rise edge of X(t), generating binary pulse signals S;(¢) and S,(t) of constant
pulsewidth T, /n and 3.5T;/n, respectively. The temporal patterns of S;(¢) pulse
sequence of length 27, corresponds to J code. The J code is latched and updated
at a rate of 21 = 47T, interval. The counter and latch generate and update a feature
value R by counting up the pulses of S;(t) sequence in each T = 207, interval. The
differential circuit generates error signal £ = |R— R¢|, where R° is a specified target
value. The error signal E is D/A-converted and is used to generate feedback signal
G(FE). The timing signals of period 27} and T are generated by 1/(2n) and 1/(10n)
division of the clock signal CLK, respectively.

Figure 4: Examples of oscillating optical intensity output signal and corresponding
pulse trains. (a) periodicér, mode and (b) chaotic & 5+ mode. Signals indicated
by V'(¢), X(¢), Si(¢) and S,(¢) are observed at the points indicated in the coding
circuits of figure 3. A sequence of 7 pulses in the S;(t) signal corresponds to the
7-bit binary J coding of the pattern of modulation of oscillation peaks. The number
of pulses of the S,(¢) signal in T = 207, interval is the feature value R.

Figure 5: Ten different modes, “isomers”, of £,=7m=2 mode. The upper trace V'(¢)
shows the oscillating optical intensity signal output from the resonator. The lower
traces S)(t) and S,(¢) show the binary pulse sequences obtained from the output
signa] by threshold operation. A sequence of 7 pulses in the S;(t) signal corresponds
to the 7-bit binary J coding of the pattern of modulation of oscillation peaks.
Without phase identification, cyclic pulse trains, J and J degenerate into ten classes,
which are labeled with a mode number p. These are classified further into four classes
according to feature value, R € {20, 25, 30,35}, defined as the number of pulses of
the Sy(t) signal in T = 207, interval.
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Figure 6: Typical transition matrices for code sequences obtained from a single
chaotic time series of {,—7m=2 mode, (a) J code and (b) R code. Transition ratio
is relative number of transitions, that is, the number of times that a transition
occurs divided by total number of transitions. The length of the time series is
about 8,000,0007, (=40sec). Diagonal terms are omitted. Diagonal terms are large
because of long residence time.

Figure 7: Increasing degree of chaos of 7-th harmonic oscillation observed in wave-
forms and R dynamics. (a) Below the onset of chaos, oscillation waveforms are
stable and the feature value R remains constant at 30. Feature values for stable
modes are {20,25,30,35}. (b) With increase of parameter g, oscillation becomes
unstable and mode transition occurs. When p exceeds py+, mode transitions are
seen in the R dynamics. (c) - (i) With further increase of yu above py., the rate of
mode transitions increases. The levels of input optical power P; are (a)1.065mW,
(b)1.097mW, (c)1.100mW, (d)1.102mW, (e)1.104mW, (f)1.106mW, (g)1.111mW,
(h)1.113mW and (i)1.125mW, respectively.

Figure 8:  Distribution of visiting ratio of R for the case of figure
7(f). ‘

Figure 9: Residence time distributions and their dependence on pump parameter
i. A histogram of the number of instances in a single chaotic sequence that a code
value R = 25 persisted for a time 75. Time 1s in units of T = 107} =~ 207,. Values
of p1, small, medium and large, correspond to the values for figures 7(b),(f) and (h),
respectively.

Figure 10: Average residence times < 7x > for the different classes of oscillation.
Oscillations are classified by feature value R. Values of y, small, medium and large,
correspond to the values for figures 7(b),(f) and (h), respectively. Residence times
are longer for feature values R € {20, 25, 30,35} corresponding to the {7, oscillation
modes. The smaller the parameter value p, the longer the average residence time
< g > for R € {20,25,30,35}.

Figure 11: Average absence time < 74 > for the different classes of oscillations.
Oscillations are classified by feature value R. Values of p, small, medium and
large, correspond to values for figure 7(b),(f) and (h), respectively. Feature values
corresponding to the {7, oscillation modes, R € {20,25,30, 35}, appear more often
than other values. The smaller the parameter value y, the longer the average absence
time < 74 > of R € {20,25,30,35}.
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Figure 12: Shape of control function G(E) used to feedback the error signal E of
the output state to the laser power, according to equation (2). Two cases are shown;
(a) for multi-mode localization G(0), the lowest value of G(E), is set just above the
value for onset of chaotic transitions, us+, (b) when convergence to a stable mode is
required, single-mode selection, G(0) is set below pg-.

Figure 13: The effect of adaptive parametric control of equation (2). (a)Distribution
of visiting ratio of J code when p = u, without control. (b)Localization of chaos in
states with low E = |R — R°| when the adaptive parametric control is used. R® = 30
and the curve (a) of figure 12 was employed for control function. The localization
is seen as the increase of the visiting ratio of modes, specified here by J code, with
feature value R = 30.

Figure 14: Example of CS time series of V() and E. The target is an isomer of &7,
mode with R = 25.

Figure 15: Expanded CS time series for points marked with (a), (b) and (c) in figure
14.

Figure 16: Example of repeated chaotic switching. R° = 25 and T, = 0.8657' (=~
17.3T,). In each ERASE interval error E is forcibly held at a large value, £ = 25,
where pu takes the value of y,, so the memory of the initial state is lost, and search can
‘commence from a random point on the chaotic attractor. In each SEARCH interval
chaotic search takes place under the adaptive parametric control of equation (2).
The repeat cycle of this example is 10Hz, corresponding to a search time cutoff of
50msec. Chaotic search is seen to be successful if F converges to 0 within the cutoff
time.

Figure 17: Dependence of CS time for 90% success rate on control response time

T,.

Figure 18: Success rate in finding a target mode as a function of elapsed time. Curve
(a) shows the probability of converging to the target mode &; 5 p=25 under CS control
of equation (2) with T, = 0.8657' (= 17.3T,) and G(E) as in figure 12(b). Curves
(b)- - -(e) show the probability of finding sequences of the target value R = 25 for
unconstrained chaos without control (control loop open) at p = p,. Respectively,
the probability finding a sequence (residence time) of length (b) 1T (T = 20T,), (¢)
5T, (d) 10T, (e) 20T. Note, probability is defined as the relative number of observed
events.
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Figure 3: Schematic diagram of coding circuits. The oscillation signal in the ring
resonator, V'(t), proportional to V(¢), is fed into the thresholders of the coding
circuits. The threshold voltage of the thresholder, Vi, is set at a level midway
between high and low peak levels of {,, mode oscillation to generate binary pulse
signal X (t) corresponding to binary peak levels. The threshold voltage of the other,
Ving, 1s set at a level midway between peak and valley levels of the oscillation to
obtain a clock signal (CLK) which has the same period 27, /n as the n-th harmonic
carrier oscillation. The pulsewidth extenders are monomulti-vibrators triggered by
the rise edge of X(t), generating binary pulse signals S;(¢) and S(t) of constant
pulsewidth T, /n and 3.5T,/n, respectively. The temporal patterns of 5(t) pulse
sequence of length 27, corresponds to J code. The J code is latched and updated
at a rate of 21} = 4T, interval. The counter and latch generate and update a feature
value R by counting up the pulses of S,(t) sequence in each T = 207, interval. The
differential circuit generates error signal E = |R — R°|, where R° is a specified target
value. The error signal E is D/A-converted and is used to generate feedback signal
G(FE). The timing signals of period 277 and T are generated by 1/(2n) and 1/(10n)
division of the clock signal CLK, respectively.

V@




(b)

. ‘72'” N "
UMY ﬁﬂm UM
L AR I g

J =1110111 1110111

1111

V'(t)

X

Si(t)

s LT
-~ 2Ty >
o A LN
§
S |
J=1001111 1001100
=
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Figure 5: Ten different modes, “isomers”, of £,=7,m=2 mode. The upper trace V'(t)
shows the oscillating optical intensity signal output from the resonator. The lower
traces Si(t) and Sy(t) show the binary pulse sequences obtained from the output
signal by threshold operation. A sequence of 7 pulses in the S;(t) signal corresponds
to the 7-bit binary J coding of the pattern of modulation of oscillation peaks.
Without phase identification, cyclic pulse trains, J and J degenerate into ten classes,
which are labeled with a mode number p. These are classified further into four classes
according to feature value, R € {20,25,30,35}, defined as the number of pulses of
the Sy(t) signal in T = 207, interval.
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stable and the feature value R remains constant at 30. Feature values for stable
modes are {20,25,30,35}. (b) With increase of parameter p, oscillation becomes
unstable and mode transition occurs. When p exceeds pg-, mode transitions are
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Figure 12: Shape of control function G(E) used to feedback the error signal E of
the output state to the laser power, according to equation (2). Two cases are shown;
(a) for multi-mode localization G(0), the lowest value of G(E), is set just above the
value for onset of chaotic transitions, us-, (b) when convergence to a stable mode is
required, single-mode selection, G(0) is set below po-.
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Figure 16: Example of repeated chaotic switching. R® = 25 and T, = 0.865T (=
17.3T,). In each ERASE interval error E is forcibly held at a large value, F = 25,
where p takes the value of y,, so the memory of the initial state is lost, and search can
commence from a random point on the chaotic attractor. In each SEARCH interval
chaotic search takes place under the adaptive parametric control of equation (2).
The repeat cycle of this example is 10Hz, corresponding to a search time cutoff of
50msec. Chaotic search is seen to be successful if F converges to 0 within the cutoff
time.
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Figure 18: Success rate in finding a target mode as a function of elapsed time. Curve
(a) shows the probability of converging to the target mode {72 =25 under CS control
of equation (2) with T, = 0.865T (=~ 17.3T}) and G(E) as in figure 12(b). Curves
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Chapter V

Digital Implementation of A Nonlinear Delayed-Feedback
System

Abstract

A digital electronic system which implements a certain class of nonlinear delayed
feedback models and reproduces the nonlinear oscillation phenomena in real time
was designed and constructed. The purpose of the system is two-fold: to act as
a simulator and to act as a prototype design for a functional digital device using
complicated nonlinear oscillations. The system has an architecture which simulates
the signal flow in a nonlinear delayed feedback system with fixed-point arithmetic.
We describe the design

principles aimed at maintaining the simplicity of the circuit structure and

the variety of dynamics generated. Quantization effects are discussed. In par-
ticular, it is shown how spurious quantization effects peculiar to systems can be

estimated and avoided.
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1 Introduction

Many types of nonlinear oscillation systems are described by nonlinear delayed feed-
back models. Typical systems described by delayed nonlinear feedback models are
nonlinear optical cavities [1] and musical instruments [2]. Despite their simple struc-
ture, such systems can exhibit very complicated oscillation phénomena, including
multistability of oscillation modes and chaotic oscillation.

The aim of the current work was to build a digital electronic system capable
of generating dynamics according to the model equations governing a certain class
of nonlinear delayed feedback systems. The motivation was two-fold: (1) to use
the system as a versatile, real-time simulator for systematic study of dynamics of
nonlinear delayed-feedback systems, and (2) to test the applicability of such a digital
electronic system itself as a signal generator.

For speed and simplicity of structure, we chose a design in which the system
mimics the signal flow in a delayed feedback system, rather than solves the equation
describing the dynamics of the model. When designing hardware for generating
nonlinear dynamics, it is important to determine to what degree dynamics should
be reproducible, because nonlinear dynamics can often contain infinite complexity.
In the present work, considerations of the particular dynamics observed in computer
simulations and analog system experiments which we wanted to be able to generate
in the digital system were used to determine the scale and architecture of the system.
The designed system uses 16-bit word-length and fixed-point arithmetic. The effects
of quantization in fixed-point arithmetic systems, particularly spurious hysteresis

behavior, is theoretically and experimentally investigated.

2 Configuration of the System

The general conceptual structure of the nonlinear delayed feedback system is repre-
sented as a loop with linear and nonlinear parts characterized by an impulse-response
function h4 and a nonlinear function g, respectively, and an overall round-trip time
of t, as z(t) = ha(t) * g(z(t — ¢,)), where * denotes convolution.

The discrete-time equation for digital systems is expressed as

z(n) = hp(n) * g(e(n —n,)) = hp(n) * {uf(z(n - n.,))}, (1)
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where hp(n) means the impulse response of a discrete-time system corresponding to
ha(t) and n,, is a delay-step number corresponding to the delay time ¢,. Here, we
explicitly express the loop gain g which can be used as a control parameter. Four
circuit blocks for the basic functions, g, hp, ns,, and f of equation (1) and an extra
block inserted for testing and observing are connected in a loop with data-bus, as
shown in figure 1. The dynamics of the implemented model are generated when the
digital data circulates around the loop, driven by the common clock signal. For the
simplicity of the configuration we employed fixed-point binary arithmetic operation

system. We chose the word-length to be 16 bits.

3 Implementation of nonlinear ring cavity model

To examine the performance of the system, we implemented the nonlinear ring cavity

model[1] which is modeled in the form of equation (1) as,

z(t) = hax{pf(z(t 1))}, | (2)
halt) = {%e;q?(—%) : 228 ’ ()
fla) = %{l—sin(%r:c)}. (4)

The important factors to determine the achievable dynamics are number represen-
tation and maximum effective delay. Low noise level and large effective delay are
needed for large variety of oscillation modes excited in the system. To be specific, we
consider, as a reference, the performance of the E-O hybrid nonlinear ring resonator
(3].

For positive values of u, the dynamics of the model takes positive values. Hence,
we employ the straight-binary (SB) representation for the 16-bit binary data. The
resolution of the 16-bit word-length fixed-point binary arithmetic operation system,
that is the order of the quantization noise, is 271% &~ 1.53 x 1073, which is adequate to
distinguish order m = 3 bifurcations[3|[4]. The effective delay for the digital system
can be defined as n, /n;,_ , where we define the response-step number n,;  as the
number of sampling data steps representing the most abrupt variation of the system
dynamics. The effective delay from 0.6 to 205.3 could be realized when n,,, = 10,
and from 1.2 up to 410.6 could be achieved when n,_ = 5.

Main tasks of the implementation of the model are writing data of equation (4)
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in the lookup memory table and designing a digital filter for equation (3). These

are shown in figure 2.

4 Quantization effects

The bifurcation of oscillation modes is controlled by varying feedback loop gain p

up and down. Quantization can affect the bifurcation points. We show how this

effects can be easily estimated, so spurious quantization effects can be avoided.
First we discuss the expected quantization effects of the system without the

digital filter. We consider a system described by the following discrete map,

Tng1 = 9(Tn, ). (5)

Figure 3(a) shows the calculated bifurcation diagram of the discrete map for the
model implemented in the system. The system typically stays in or near steady
state even after the parameter 4 is increased past the bifurcation point. Figure 3(b)
shows points trapped in a domain near the first bifurcation point.

A point z; = z* + éz; near the fixed-point z* = g(z*, 1) is mapped onto a point

To :m*-{-&rg as
. " . )09, .
¥+ bz = g(z” + bzy, 1) =z + (—9—;(m 1) ¢ 6y (6)

Near the true fixed point, successive iterations map to alternate sides of the true
fixed point (6162, < 0), but the distance from the fixed point doesn’t continue to

grow, if the following condition is satisfied.
1621] — |622|| < A/2, (7)

where A is the quantization step and we suppose that the quantization error of the
mapping is due to rounding. This condition gives an estimate for a domain of points

which are trapped near the fixed point as

-

The dashed line in figure 3(b) shows the boundary of the domain specified by in-

A2

|6z1] < gf(:z:*,p)H'

(8)

equality (8). Points trapped in the domain are not necessarily fixed points. However,

the system can appear to be stable in the domain, because the width of the domain
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is much smaller than the dynamic range of the map. We call this domain near the
fixed point where inequality (8) is satisfied the “quasi-stable” region.

Next, we take a residual error r of order ny, A in the digital filter into account
[6]. With the filter and delay included, and assuming the delay time is much longer
than the relaxation time of the filter, the fixed point of the loop dynamics is given
by

ot = g(a*, 1) + 7. (9)

This leads to the following inequality, corresponding to inequality (8),

AJ2+ |r|
1|26

I(S.’Ell < (10)

We can simply estimate the expected shift of the point of onset of oscillation due
to quantization effects under the condition of T, > n, T > n,, T, where T, and
T are the time interval for varying u and the period of the clock signal driving the
16-bit data in the loop, respectively.

Assume the system is in a stationary state z} = g(z}, it;) and p is then increased
from p; to p = w; + Ap. A step signal Az is generated as Az = g(zf, p; + Ap) —
glzl, pi) =~ {gﬁ(zz‘, /,Li)} Ap. If the increment Ay is so small that the value of z after
4 increased, ¢ = z; + Az, remains within the qﬁasi—stable region at p = u; + Ay,
oscillation will not grow. This condition, |Az| < 2|6z|, gives the following relation

between Ay and y; as

A + 2|7 {ag

-1
An< —(m:,ui)} | (11)
|1 - 22 (ar, o)) L o1 |

with the approximation that éz ~ dz;, where dz; is the half width of the quasi-stable
region at u;.

According to inequality (11), if p is increased in small increments Ay, the onset
of oscillation will not occur at the true bifurcation point, but rather will occur at a
larger value of p. On the other hand, if the system is initially in a large amplitude
oscillation state (i.e., outside the quasi-stable region) at a parameter value p above
the true bifurcation point, and parameter p is decreased, the system bifurcates back
at the true bifurcation point. Thus, quantization-induced hysteresis is expected to
be seen in the dependence of state on the parameter u. The above discussion can

be extended to apply to every bifurcation point.
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5 Oscillation phenomena

In the experiment, we set n; = 400 to fix the effective delay at n, /n,, = 40, and
compare the reproduced dynamics in the system with the results of Ikeda et al
[6]. We drove the system by a clock signal of period T' = 20usec (=50kHz), and
observed the D/A-converted signal in real time. The value of 4 was set from port
(d) in figure 1 by PC with the 16-bit integer data U ranging from 0 to 65535, where
p related to U as p = U/65536. U was increased or decreased in increments of
AU =100 (Ap = 1.53 x 1073). The time between increments of U was about 50
msec, much larger than the round-trip delay time n, T=8msec and the response-time
ny,, 7'=0.2msec. |

First we implemented the IIR digital filter of type (I). Figure 4 shows examples
of the oscillations generated in the system. Figure 5 shows the schematic diagram of
the oscillation mode transitions. Except for the quantization-induced hysteresis of
bifurcation points, the dynamics generated in the system were consistent with those
obtained by Ikeda et al.[6]. The extent of the quantization-induced hysteresis was
consistent with the simple rough analysis at the previous section. In figure 5, the
points where the bifurcations and the transitions occurred are indicated by upward
triangles for increasing p and downward triangles for decreasing . The smaller the
increment Ay, the larger the hysteresis. In the case of the ITR. digital filter of type
(II), similar results were obtained, except for the widths of the spurious hysteresis.

Figure 6 illustrates the relation between the increasing parameter step size AU
(= Ap) and the value of parameter U (= p;) where bifurcation (oscillation) occurs,
according to inequality (11). Dispersion of the experimental results is due to the
dispersion of the initial states of the system in multiple trials. Larger dispersion of
the experimental result of the IIR digital filter of type (I) is expected to result from

the larger dispersion of r value due to its somewhat more complex filter structure.

6 Conclusion

We constructed a digital nonlinear delayed-feedback system which reproduces com-
plicated nonlinear dynamics in real time. With the digital implementation, it is
possible to design the degree of complexity of reproduced dynamics. We established

guidelines to determine the architecture and scale of the system, appropriate to
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reproduce the nonlinear dynamics required.

In a simulation of the oscillation phenomena of a nonlinear ring cavity model[6],
we confirmed that bifurcations up to order m=3 can be distinguished as designed
and the behavior of oscillation modes is consistent with that of the original model,
except for the quantization-induced hysteresis of bifurcation points. The theoretical
estimation of the hysteresis was in good agreement with the experimental results.

In the parameter range for chaotic regime, we observed features peculiar to chaos,
randomness in waveform, dense orbits in phase portrait, continuous spectrum and
intermittent mode transitions. A rigorous study of the degree of fidelity of the
chaotic oscillations is a topic for further future study.

The implementation of nonlinear delayed-feedback models in electronic devices
is of interest from the point of view of applicatioﬁs in complex Signal generation,
ranging from electronic music [2] to dynamical memory [7]. Digital devices can have
advantageous over analog devices [8][9] due to the flexibility in changing parameters
and the stability of operation. The simple architecture of the system proposed
here makes it suitable for implementation as an IC chip which utilizes complicated

dynamics.
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Figure 1: Block diagram of the digital delayed-feedback system and experimental
setup. The nonlinear function f is implemented in a lookup memory table. The
lookup memory table has a configuration of 2'® words x 16 bits (1 word = 16 bits).
The gain p is realized using a 16-bit x 16-bit parallel multiplier (Analog Devices
- ADSP-1016AJN). The impulse-response hp(n) is implemented in a digital signal
processor (Texas Instruments TMS320C25). The variable delay-line is realized using
digital memory with a configuration of 2047 steps x 16 bits. A delay-step number
n,, ranging from 6 to 2053 is obtained with the delay-line and the dead delay in each
circuit block. These blocks and an extra block inserted for testing and observing are
connected in a loop with 16-bit data-bus. A personal computer (PC) is connected
to the blocks through a common control-bus for online control of parameters.

Figure 2: Implementation of nonlinear function f and impulse response hp.

(a) Data for the nonlinear function f written in the memory table. F(A4) =
nint |88538 1 —sin(27r6—;—54%)}], where nint[z] means the rounding of z. A and F
take 16-bit SB integer numbers, respectively corresponding to the 16-bit address of
the memory table and the data stored there.

(b) Block diagrams of IIR digital filters realizing the relaxation characteristic of
equation (3). Filter coefficients are calculated for response-step number n,,, = 10.
(type I) IIR filter, designed by bilinear transformation, with the impulse response,
hp(n) = beau(n) + byal'u(n — 1), where u(n) = 1 for n > 0 and u(n) = 0
for n < 0. The coefficients are a; = (2ny, — 1)/(2n¢,, + 1)|n, =10 = 0.904755,
bo = b = 1/(2n, + 1), cog = 1/er = 2/(2n¢, + 1)}, =10 = 0.095245 and
c1bo = c1by = 0.5. (typeII) IIR filter, designed by approximating the derivative with
the backward difference, with impulse response, hp{n) = ba™u(n). The coefficients
are a = ny,, /(1 + 4, )n,,, =10 = 0.90909 and b = 1/(1 + n¢,, )|, =10 = 0.09091.

Figure 3: (a) Bifurcation diagram of quantized map of zny1 = g(zn, 1), g(z, 1) =
pf(z) = £{1 —sin(27z)}. Variable  and function g take 65536 (2'°) quantized
values. (b) Bifurcation diagram of the quantized map magnified around the first
bifurcation point, where p = U/65536 and z = X/65536. The dashed line is the
boundary of the quasi-stable region obtained from inequality (8).

Figure 4: Waveforms generated by the digital system and corresponding phase space
trajectories, when implementing the model of equations (2)(3) and (4). These were
drawn with the 16-bit digital data obtained from port (b) in figure 1. Each of these
shows (n,m) mode = (a) (1,1) at p = 0.534, (b) (1,3) at p = 0.691, (c) (7,3) just
above m=2 at p = 0.763, and (d) chaos at p = 0.916, respectively. (Oscillation
modes are classified by harmonic number n and bifurcation order m.)
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Figure 5: Schematic diagram of the oscillation mode transitions. (1,1), (1,2), (2,1),
.-+ denote oscillation mode classified by harmonic number n and bifurcation order m
as (n,m). (n,C) denotes chaotic oscillation at n-th harmonic branch. Upward and
downward triangles indicate bifurcation points for increasing p and for decreasing
p, respectively. (The name of vertical axis n indicates harmonic number.)

Figure 6: Relation between the increasing parameter step size AU (= Ap) and the
value of parameter U (= p;) where bifurcation (oscillation) occurs. Here n,, = 10
and n; = 400. Curves calculated from inequality (11) with r = 5A,2.5A and 0
indicate the predicted upper limits of the shift of the first bifurcation points, where
. A =271, Thick bars and thin bars indicate experimental results for the IIR filters
of types (I) and (II), respectively. The value of r for the IIR filters is estimated as
T & 5A,
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Figure 1: Block diagram of the digital delayed-feedback system and experimental
setup. The nonlinear function f is implemented in a lookup memory table. The
lookup memory table has a configuration of 2'® words x 16 bits (1 word = 16 bits).
The gain p is realized using a 16-bit x 16-bit parallel multiplier (Analog Devices
ADSP-1016AJN). The impulse-response hp(n) is implemented in a digital signal
processor (Texas Instruments TMS320C25). The variable delay-line is realized using
digital memory with a configuration of 2047 steps X 16 bits. A delay-step number
n,, ranging from 6 to 2053 is obtained with the delay-line and the dead delay in each
circuit block. These blocks and an extra block inserted for testing and observing are
connected in a loop with 16-bit data-bus. A personal computer (PC) is connected
to the blocks through a common control-bus for online control of parameters.
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Figure 2: Implementation of nonlinear function f and impulse response hp.

(a) Data for the nonlinear function f written in the memory table. F(A4) =
nint [L;Bs {1 - sin(27r£ﬁ)}], where nint[z] means the rounding of z. A and F
take 16-bit SB integer numbers, respectively corresponding to the 16-bit address of
the memory table and the data stored there.

(b) Block diagrams of IIR digital filters realizing the relaxation characteristic of
equation (3). Filter coefficients are calculated for response-step number n,_ = 10.
(type I) IIR filter, designed by bilinear transformation, with the impulse response,
hp(n) = beafu(n) + bjal'u(n'— 1), where u(n) = 1 for n > 0 and u(n) = 0
for n < 0. The coefficients are a; = (2n,, — 1)/(2n4,, + 1)|a, =10 = 0.904755,
bo = by = 1/(2ny, + 1), co = 1/an = 2/(2n4, + 1)|n,, =10 = 0.095245 and
c1bg = c1by = 0.5. (type II) IIR filter, designed by approximating the derivative with
the backward difference, with impulse response, hp(n) = ba™u(n). The coefficients
are a = ny,, /(14 1y, )|n,, =10 = 0.90909 and b = 1/(1+ ny,)|n,, =10 = 0.09091.
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Figure 3: (a) Bifurcation diagram of quantized map of Znp1 = 9(Tn, 1), g(a:,p.) =
pf(z) = £{1—sin(27z)}. Variable z and function g take 65536 (2'°) quantized
values. (b) Bifurcation diagram of the quantized map magnified around the first
bifurcation point, where p = U/65536 and ¢ = X/65536. The dashed line is the
boundary of the quasi-stable region obtained from inequality (8).
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Figure 4: Waveforms generated by the digital system and corresponding phase space
trajectories, when implementing the model of equations (2)(3) and (4). These were
drawn with the 16-bit digital data obtained from port (b) in figure 1. Each of these
shows (n,m) mode = (a) (1,1) at p = 0.534, (b) (1,3) at p = 0.691, (c) (7,3) just
above m=2 at p = 0.763, and (d) chaos at p = 0.916, respectively. (Oscillation
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Figure 5: Schematic diagram of the oscillation mode transitions. (1,1), (1,2), (2,1),
- - - denote oscillation mode classified by harmonic number n and bifurcation order m
as (n,m). (n,C) denotes chaotic oscillation at n-th harmonic branch. Upward and
downward triangles indicate bifurcation points for increasing g and for decreasing
i, respectively. (The name of vertical axis n indicates harmonic number.)



70000 R 1 l ¥ 1 v l T i L ] T T T I T T T l T T T

ot ]

r I -

60000 - r=54 ]

b - =~ =254 1

' |

50000 k- | ... 0 ]

I :

> 40000 - * Oscillation .

g :

30000 [ .

20000 .

10000 e b e e ]
0 200 400 600 800 1000 1200

AU

Figure 6: Relation between the increasing parameter step size AU (= Ap) and the
value of parameter U (= p;) where bifurcation (oscillation) occurs. Here ny, = 10
and n; = 400. Curves calculated from inequality (11) with 7 = 5A,2.5A and 0
indicate the predicted upper limits of the shift of the first bifurcation points, where
A = 271% Thick bars and thin bars indicate experimental results for the IIR filters
of types (I) and (II), respectively. The value of 7 for the IIR filters is estimated as
T = 5A.
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