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Chapter I 

General Introduction 

Theoretical and experimental studies on nonlinear delayed feedback (DF) sys-

terns such as nonlinear optical cavities have shown the existence of a large variety of 

rnultistable bifurcated oscillation modes leading to chaos [1]-[4]. Ikeda et al. [5] clar-

ified the hierarchical tree structure of the bifurcation of the oscillation modes excited 

in a nonlinear optical ring cavity and suggested the applicability of the rnultistable 

modes for data storage. 

Following up this suggestion, Davis et.al. theoretically proposed that selective 

excitation of the multistable modes, useful for optical signal generation and memory, 

is possible by two complementary methods. The one is seeded bifurcation (SB) 

switch [6] and the other chaotic search/switch (CS) [7]. The SB switch is a direct, 

deterministic selection of a mode by injecting a seed signal. The CS is an approach 

to selection of mode using chaotic mode transitions, which is complementary to 

the SB switch and results in stochastic selection of a mode which satisfies a given 

constraint. These proposals have for the first time given the concrete images for 

making use of chaos and physical experiments for the proposals have been expected 

to test the feasibility. 

This report mainly summarizes the experimental works done by T. Aida and P. 

Davis from 1988 to 1993 in ATR to test the feasibility of the functions proposed. The 

success of the experiments is owing mainly to the good performance of the electro-

optical hybrid DF system, which has much larger delays, and thus more modes, and 

better controllability of system parameters than previous systems. 

In Chapter II, we first describe the design of the DF system for the experiments, 

in particular the reason "、,hy we employed the combination of infrared (1.3μm) op-

tical communication components and waveguide modulator, and discuss the typical 

stability of the bifurcated higher-harmonic oscillations of a non-ideal DF system 

，，vith large delay. ¥Ve then describe the experiments of SB switch, in which the feasi-

bility of memory function using multistable nonlinear oscillation modes is confirmed 

[8]. 

ー



In Chapter III, we propose a nev,; configuration of an optical loop memory us-

ing multistable nonlinear oscillation modes, and demonstrates the basic functions 

for memory,'write'and'erase', using optical pulse sequences in an electro-optical 

nonlinear ring resonator[9]. 

In Chapter IV, we demonstrates the CS experiments, in which the effectiveness 

of making use of chaotic mode transitions for searching and switching among a large 

number of multistable modes is confirmed. The coding of multistable and chaotic 

oscillation modes and the quantitative characterization of chaotic mode transitions 

are also described, related to the CS experiments [10][11 ][12]. 

In Chapter V, we describe a digital electronic system, designed for a real-time 

simulator for systematic study of dynamics of nonlinear DF systems, and to test the 

applicability of such a digital electronic system itself as a signal generator [13]. 
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Chapter II 

Oscillation Modes of Laser Diode Pumped Hybrid Bistable 

System with Large Delay and Application to Dynamical 

Memory 

Abstract 

An electro-optical bistable system with a very large delay was constructed of state 

of the art optical communication components and the self-oscillation phenomena of 

the system were investigated from the point of view of application as dynamical 

memory. Very large numbers of multistable self-oscillation modes were observed, 

including 2nd order bifurcations of the 265th harmonic. The dynamical memory 

function was demonstrated by locking 2nd order bifurcated modes to external clock 

oscillations and performing WRITE and READ of binary data sequences in the 

waveforms of the bifurcated modes. From the dynamical stability of the oscillations 

used for memory, and of the mode switching, it was concluded that the nonlinear 

bifurcation phenomena in this system are applicable for large capacity memory and 

signal processing. Spurious preferential excitation of particular harmonic modes that 

occurred in the system was related to the fine structure in the transfer spectrum 

of the open loop associated with spurious resonances in the electro-optical (E-0) 

modulator used as nonlinear element. It was demonstrated that missing harmonics 

could be recovered by pumping with small sinusoidal signals of the corresponding 

frequencies. 
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1 Introduction 

Since the delay-induced oscillation and instability in the delayed feedback (DF) sys-

tern predicted by Ikeda[ll[2] was for the first time experimentally confirmed in an 

electro-optic hybrid bistable device with computer delay[3], theoretical and experi-

mental investigations of oscillation modes and their stability have been made with 

various DF system implementations [2]-[14]. The nature of the oscillation leading 

to chaos has been investigated in numerical simulations, and also in experiments in 

DF systems with small delay [8][9] and DF systems with large delay [2][3]. 

The main difference between the cases of large delay and small delay is the variety 

of the modes of oscillation. For a large effective delay, where the delay time is much 

larger than the response time, there is a fundamental oscillation mode which exhibits 

period-doubling bifurcation and there arc also multiple harmonic oscillation modes 

each of which exhibits a sequence of bifurcations leading to chaos [2][13][14]. On the 

other hand, for a small effective delay, where the delay time is comparable to the 

response time, neither harmonic oscillations nor clear period-doubling bifurcation of 

the fundamental are observed before reaching the chaotic regime [8][9]. 

Ikeda et al. have clarified the bifurcation structure of oscillation modes of a 

DF system and suggested potential applicability as a memory device, utilizing the 

multi-stable modes of oscillation [14]. Following up this suggestion, Davis et al. 

proposed a method called Seeded Bifurcation (SB) switch for selective excitation of 

oscillation modes corresponding to binary coded input data, which could be used to 

realize a versatile digitally controlled optical signal generator or a memory device 

[15][16]. 

We have constructed an electro-optical (E-0) hybrid DF system, in which very 

large effective delays of up to about 520 are possible, using state of the art com-

ponents for optical communication [17]. This system has much larger delay, and 

thus more modes, and better controllability of system parameters than previous 

systems[3] [7]-[9] [12]. 

Selective excitation of modes in a DF system by the SB switch method not only 

makes possible a memory function but also allows more systematic investigation of 

modes and their stability than was previously possible. There is still no rigorous 

theory for the existence of the many bifurcated harmonic modes that have been 
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found in numerical and physical experiments, and there is still much to be under-

stood about their stability. Previous experiments have shown that spurious small 

nonlinearities in the system can significantly affect the stability of multistable modes 

[7]. In our experiments, in addition to the experimental demonstrations of the SB 

switch and the memory application, we have investigated the typical stability of the 

bifurcated higher-harmonic oscillations of a non-ideal DF system with large delay. 

In section II we first review the principles of the dynamical memory, including 

coding of multistable oscillation modes, method of the SB switch and capacity of 

the memory. We then in section III discuss the design of the DF system, in par-

ticular the reason why we employed the combination of infrared (1.3μm) optical 

communication components and waveguide modulator. We present in section IV 

a quantitative characterization of the DF system, specifically the open and closed 

loop characteristics. In section V we present the test of the application to memory 

function. In section VI we discuss discrepancies in oscillation phenomena of the 

DF system from the ideal model. Finally we summarize this paper and discuss the 

prospects of high-speed, all-optical operation of the dynamical memory. 

2 Principle of dynamical memory 

In this section we briefly review the principle of the dynamical memory [16]. The 

important points are the method to utilize multistable oscillation modes for memory 

states with binary coding and the method to select a mode corresponding to a 

particular binary code. 

2.1 Coding of multistable oscillations 

Oscillations with multistable modes applicable to dynamical memory are seen in 

many systems with delayed nonlinear feedback. The dynamics of such a system are 

described by the following class of delay-differential equations [13). 

Tm 
dx(t) 

dt 
= -x(t) + f(x(t -Tr);μ), (1) 

whereμis the bifurcation parameter, and 1五andTr are the response time and the 

delay time of the nonlinear feedback, respectively. The function f has a nonlinearity 

with at least one maximum or minimum to show period-doubling, asμis increased. 
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For an optical cavity with a dispersive medium, a typical model of the system, 

f (x; μ) takes the following form, 

f(x; μ) =μ(1 + 2Bcos(x -x。)）， (2) 

whereμis proportional to the incident optical power, and dissipation B(< 1) and 

bias x。areconstant [13]. 

Classes of oscillation modes excited in a system described by equations (1) and 

(2) can be classified with harmonic number n and bifurcation order m [14]-[16]. For 

bifurcated harmonics (n > 1, m > 1) there are multiple oscillation modes in the 

(n, m) class, "isomers", with different peak modulation patterns1. The dynamical 

memory described in this paper utilizes a set of isomers of (n, m = 2) class oscillation 

as memory states. 

Figure 1 shows an example of (n = 7,m = 2) mode and its coding. In each Tr 

b. 1 interval there are n su -mterva s, where the signal varies slowly, i.e. T 辛m dt ~0. 

It follows from equation (1) that the signals in sub-intervals separated by Tr are 

approximately related by the following recurrence relation reduced from equation 

(1) 

x(t)~J (x(t -Tr);μ). (3) 

Such recurrence relations are known to exhibit period-doubling bifurcation [19]. 

After the m-th period-doubling bifurcation, the signal in each sub-interval, a peak 

or valley of the oscillation, takes on one of 2m levels, that is 2m-l peak levels and 

2m-l valley levels. Different oscillation modes have different sequences of levels, that 

is different peak and valley modulation patterns. 

The recurrence relation between x(t) and x(t-T,, サcanbe expressed by a dia-

gram in figure 2(a) for the case of second order (m=2) bifurcation [19]. There are 

four peak and valley levels in m = 2 bifurcated oscillation. We assign 2-bit labels, 

Ii = 00,01,10, or 11, to the peak and valley levels, where i is an integer indicat-

ing a time interval. Then the waveform can be represented by a sequence of Iゎ

（・・・，Ii-i,hli+l,・ ・ ・). Now, Ii+n is determined by Ji in accordance with equation 

(3). Therefore, we can completely identify an isomer of the (n, m = 2) class oscilla-

tion with an n-element code J = (11, 12, ・・・,I砂representingthe signal levels in a Tr 

1 Let us briefly explain the correspondence between the (n, m) notation and the notation used 
by Vallee et a/.[18]. They describe "periodic waveforms" and "frequency locked waveforms" labeled 
byザ炉 and昇2叫 respectively.These modes correspond to different isomers in the (n, m) class 
where q = (n + 1)/2. 
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interval. The peak and valley levels separated in interval Tr appear in the cyclic se-

quence determined by equation (3), ・ ・ ・, 01, 10, 00, 11, 01, 10, 00, ・・・,and repeat with 

period 4Tr, as seen in figure 2(b). 

We can also completely identify a (n, m = 2) waveform by assigning 1-bit binary 

labels Ji = 0 or 1 to the peak levels in a 2Tr interval. There are n peak levels in a 

2Tr interval, and the oscillation is coded by an n-element peak code 

J = (J1, .l: ぁ...'In), (4) 

This peak code J can be easily read by thresholding the output signal. The peak 

levels in a Tr interval are related to the valley levels in the former Tr interval by 

equation (3), as shown in figure 1. The relation between I and J is summarized by 

the following equations. 

For the elements of I indicating peak levels, 

I2i-l = 1 Ji when 2i -1 :::; n, (5) 

for i = 1, 2, 3, ・ ・ ・, n. Where the second bit (the left bit) "1" means peak level. 

For the elements of I indicating valley levels, 

I2i-n-1 = 0 (1 -Ji) when 2i -1 > n, (6) 

for i = 1, 2, 3, ・ ・ ・, n. Where the second bit (the left bit) "O" means valley level. 

As is clear from the cyclic sequence of the first bit (the right bit) of h the J 

code is followed by the inverted J code in the next 2Tr interval. With an external 

reference clock to identify the phase of the oscillation we can distinguish 2n isomers 

in an (n, m = 2) class. That is, with an external reference clock to distinguish 

bit patterns which would otherwise be identical under a translation in time, the 

number of different memory states is 2n. With no reference clock, the number of 

distinguishable (n, m = 2) modes is reduced, but at least 2n-l /n. For example in 

the case of the (n = 3, m = 2) class, without identification of the phase of the 

oscillation, there are only two distinguishable isomers in the class -the two modes 

shown in figures 2 (d) and (e). We can assign six different J codes to the first isomer, 

(1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 0, 0), (0, 0, 1), and (0, 1, 1), and two codes to the second 

isomer, (1, 0, 1) and (0, 1, 0). 
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2.2 Writing 

Writing information into the oscillation waveform is done by a selective excitation of 

the isomer of the (n,m = 2) class corresponding to input binary data. In this paper, 

the WRITE is done by switching from a stationary state atμ=μ。ffto an (n, m = 2) 

oscillation state atμ=μ。nwhile injecting a seed signal, oflength Tr, corresponding 

to the desired oscillation waveform. This is a type of seeded bifurcation (SB) switch 

[16]. We introduce a seed code S for the seed signal. The seed determines the peak 

and the valley levels in a Tr interval of the target oscillation, so the seed code 

S = (S1,S2,・ ・・,S砂， (7) 

where Si is a 2-bit binary label, just corresponds to the I code of the target oscil-

lation. 

If the input data is given in the form of J code, it is necessary to convert J to 

the seed code S. The conversion from J to S is done using equations (5) and (6). 

Figure 3 shows a schematic example of the SB switch of (n = 7, m = 2) class with 

the codes S, J and I, in which we can see the relations between the codes. 

3 Design of a delayed feedback system with very 

large delay 

The two main requirements of a DF system to be used in a dynamical memory 

experiment are the following. 

One is stability of a large variety of multiple bifurcated high harmonic oscillation 

modes excited in the DF system. In particular we require stability of (n, m = 2) class 

oscillations with large n. This is for large capacity memory. The other requirement 

is controllability of parameters for changing the feedback gain and injecting signals 

into the DF system loop. This is to facilitate control of the selective excitation of the 

modes using the seeded bifurcation method, the SB switch. A DF system satisfying 

the above requirements should have the following characteristics. 

The DF system should have a large effective delay. The bit capacity of the system 

increases with harmonic number n. Higher harmonics can be excited by increasing 

the effective delay Tr/Tm. A large effective delay can be achieved by employing a 

long delay line and fast response components. 
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The frequency characteristic of the DF system should have a wide bandwidth. 

A class (n, m = 2) oscillation has a principal frequency component (carrier fre-

quency) of n/(2Tr)-A modulation frequency of n/(4Tr) is required to distinguish 

neighboring "1" and "O" peaks. Thus, the frequency band spread at least士n/(4冗）

around n/(2Tr) is necessary to support all the isomers of (n,m = 2) class oscilla-

tion. Moreover, the frequency characteristic should be smooth in this band to obtain 

comparable stability for the different isomers which have different peak modulation 

patterns and thus different frequency components. 

The DF system should be designed so that the bifurcation giving rise to the 

(n, m = 2) oscillations to be used as memory states, is achieved at low input optical 

power. Input power, of the order of milliwatts, is desirable for control of the SB 

switch with a laser diode (LD) pump. In addition, the range of bifurcation parameter 

μ, whereμis proportional to the input optical power, should be wide enough for 

the oscillations to be stable with respect to input power and loop gain fluctuations. 

In the DF system, the range of parameterμsupporting higher order bifurcations 

decreases with increase of bifurcation order m only at a rate of order of the Feigen-

baum constant, 800~4.67 [20], which is less than an order of magnitude. With this 

scaling factor stability ofμparameter to support m = 2 bifurcation seems to be 

achievable in a practical system. According to Vallee's estimation with a stochastic-

difference equation and experimental results for an A-0 hybrid system, the third 

order (m=3) bifurcation is obscured by multiplicative noise of order of 10-2 and ad-

ditive noise of order of 10-3 [12]. So, the signal to noise ratio of the system should 

be more than 20dB to support m = 2 bifurcation. This must be balanced with the 

other requirement of a wide bandwidth, as a wider bandwidth in practice means a 

higher noise level. 

Given the above design considerations, at present, a hybrid DF system seems 

to be a better choice than an all optic DF system. In order to observe the period-

doubling bifurcation in an all-optic resonator, a nonlinear phase shift of more than 

1r within a round trip is demanded [l]. The main problem with an all-optic system 

is that there is a lack of material with high dispersive nonlinearity and need of high 

input optical power, i.e. YAG or CO2 lasers, to obtain the required phase shift 

[21]-[23]. 

The hybrid DF system which we employed is an E-0 hybrid ring resonator, essen-
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tially consisting of a laser diode (LD), an E-0 intensity modulator with waveguide 

Mach-Zehnder (MZ) structure, a single mode optical fiber delay line and high-speed 

video amplifiers as shown figure 4. Optical components of the E-0 hybrid resonator 

are components for optical communication at l.3μm wavelength. The configuration 

is described in more detail in Appendix I. 

In the E-0 hybrid DF system, the nonlinearity is due to the sinusoidal modula-

tion characteristic of the electro-optical (E-0) modulator. The half-wave voltage of 

the modulator corresponds to the voltage causing the 1r-shift of phase in the optical 

signal in one arm of the M-Z structure inside the modulator. In order to observe the 

period-doubling bifurcation in the E-0 hybrid DF system, a voltage swing of more 

than the half-wave voltage is required. This condition is described as 

1 
pi伝 (1--)L。RZiAe~V-rr,

Er 
(8) 

where V1r is the half-wave voltage of the E-0 modulator. Pi is the input optical 

power. Lm is the insertion loss of the E-0 modulator. Er is the extinction ratio 

of the E-0 modulation. L。isthe propagation loss in FC-connectors and optical 

fiber. R is the photosensitivity of the PIN diode. Zi is the input impedance of the 

first stage amplifier. Ae is the total electric voltage gain. The components of the 

E-0 hybrid system were chosen so as to satisfy this condition and also satisfy the 

requirements mentioned earlier, namely, large effective delay, wide bandwidth, low 

input optical power, and controllability for the SB switch. The half-wave voltage of 

a waveguide E-0 modulator is typically 6V, while that of a bulk E-0 modulator is 

about ten times larger. The power of the optical input to a waveguide modulator is 

limited by the optical damage threshold, which is typically about 10m W for infrared 

light, while only O.OlmW for 0.63μm (He-Ne laser) light. At the 1.3μm wavelength, 

optical fiber with negligibly small propagation loss can be used as a delay line. 

This use of a waveguide modulator and l.3μm wavelength infrared light, allows 

a combination of long optical delay line and electrical amplifiers with lower gain 

and thus faster response, resulting in very large value of effective delay compared to 

previous experimental works. Specifically, effective delay up to 520 has been realized, 

with Tr equal to 5.2μsec in a 1km delay line, and Tm equal to about lOnsec. This 

is an order of magnitude larger than the effective delay in previous experiments 

[6]-[12]. The effective delay was varied by introducing an electrical low pass filter 

(LPF). 
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Moreover, the choice of optical components allows a laser diode (LD) to be 

employed for the light source. With this configuration, the order of the input optical 

power Pi from the LD required to cause the period-doubling bifurcation is estimated 

as follows. The values substituted into equation (8) are V,r = 6V, Lm = 0.355 

（三ー4.5dB),Er = 100 (三 20dB)as typical extinction ratio or尻=3.16 (三 5dB)

as degraded extinction ratio, L。=0.708 (三ーl.5dB),R = 0.87A/W, 公=50D, 

and Ae = 708 (三 57dB).With these values Pi~0.784 x 10―3 for Er estimated 

at 20dB or Pi~1.135 x 10-3 for凪 estimatedat 5dB are obtained. Therefore, 

the period-doubling bifurcation is expected to occur around the input optical power 

of lm W, which can be achievable with LD power. The LD can be directly and 

rapidly modulated, resulting in easy and quick control of the system gain parameter 

to facilitate the SB switch. 

4 Experimental results: Observations on 

oscillation behavior 

In this section we describe the open and closed loop characteristics of the DF system. 

By measuring the open loop characteristics we could confirm that the operation of 

the DF system is roughly consistent with the theoretical model and obtain the values 

of the system parameters. The main concern in checking the closed loop behavior 

confirmation of the stability of the oscillation modes to be used for memory states. 

4.1 Open loop characteristics 

The open loop characteristics of the DF system were measured by opening the loop 

at port (c), driving the E-0 modulator with an external voltage聞 andmeasuring 

the feedback voltage V. It was confirmed that the behavior was roughly consistent 

with the following model equation, 

Tm 
dV(t) 

dt 
= -V(t) + v;。 +µF(¼(t -rリ）， (9) 

where½。 is an accumulated offset bias voltage measured at the port (c), F is the 

E-0 modulation characteristic of the E-0 modulator, andμis the effective feedback 

loop gain. μis proportional to the input optical power Pi from the LD, and is given 

by 

μ= PiLmL。RZiAe. (10) 
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The parameters Tm, Tr and function F were measured, based on the equation (9). 

By driving voltage聞atthe E-0 modulator with a rectangular wave, parameters Tr 

and Tm, respectively, were obtained as delay time and decay time of the V signal. Tr 

was 5.2μsec. Tm was 6nsec without the LPF and could be increased for example to 

lOnsec, 42nsec, • ・ •, by adjusting the LPF. F was determined as the relation between 

Vand 怜 when½was modulated by a slowly-varying triangular wave with constant 

input optical power Pi. Figure 5 shows the measured F curve, which shows some 

discrepancy from the ideal sinusoidal curve. This discrepancy is due mainly to the 

low extinction ratio of the input light from the LD. 

The frequency characteristic of the open loop gain was obtained as the transfer 

spectrum JG(w)J for constant input optical power Pi. Transfer spectra for the sys-

tem with and without low pass filter (LPF) are shown in figure 6. The frequency 

characteristic without the LPF was flat as shown in figure 6(a) with a slight peak 

before falling off above 70MHz, a characteristic of the wide bandwidth amplifiers. 

After introduction of the LPF the transfer spectrum decreased monotonically with 

frequency as shown in figures 6(b)-(d). This is roughly consistent with the relaxation 

characteristic expected in a system described by equation (9). 

The large signal open loop behavior was investigated by driving the E-0 modu-

lator with巧oflarge amplitude rectangular wave of frequency ranging from 50KHz 

to more than 1MHz. Typically, the output, V(t), was also rectangular. However, 

when harmonics coincided with certain frequencies (e.g., ・・・， 1.12MHz,2.537MHz,・ ・ ・ 

)， small ripples with those frequencies were observed to appear on V(t) as shown in 

figure 7. This behavior is not expected from the model. The ripples could be ob-

served in the modulated optical output of the E-0 modulator. Many small abrupt 

changes of about ldB have been observed in the transfer spectrum of the open 

loop gain as shown in figures 6(a)-(d), and some of the frequencies where these 

occur have been confirmed to coincide with the ripple frequencies. We think that 

this phenomenon might result from spurious resonance of the E-0 modulator due 

to piezo-electric vibration of the LiNb03 substrate [24]. So there appears to be 

another mechanism in the system in addition to equation (9). Although this spuri-

ous property of the E-0 modulator may not significantly impair performance in its 

conventional use for high-speed digital modulation, it can significantly affect low-

frequency modulation and, as explained below, this turns out to have a non-trivial 

14 



influence on the closed loop behavior of the nonlinear resonator. 

4. 2 Closed loop characteristics 

For the closed loop configuration we replace聞(t-Tr) for the open loop with V(t -

冗） • Therefore, figure 5 can be regarded to be a recurrence relation between signals 

V(t) and V(t -Tr) separated in time by the interval of time Tr required by the 

signal to propagate through the feedback loop. The closed loop characteristic of the 

DF system is modeled by the following delay differential equation, 

Tm 
dV(t) 

dt 
-=-V(t)+½。 +µF(V(t -Tr)). (11) 

This can be rewritten in the form of equation (1) with x replaced by V. 

Figure 8 shows the closed loop resonance characteristic for effective delay Tr/Tm~ 

124 obtained at a point just before the onset of self-oscillation. This was obtained us-

ing a network analyzer to measure a small signal transfer spectrum between the port 

(b) for signal injection and the port (a) for signal detection. The resonance peaks 

appear at about 95.3KHz and its odd harmonic frequencies, and the peak heights of 

the spectrum decrease with increase of frequency. This is consistent with the results 

of the linear stability analysis (see Appendix II), which gives the frequencies of small 

amplitude oscillations as 

fこ上(1-凸）．
2Tr Tr 

(12) 

where n is an odd integer. 

We confirmed that equation (12) derived for small amplitude oscillations also 

gave the principal frequency components of the large amplitude oscillations when 

Tmく:S:::Tr. Figure 9 shows the good agreement between the frequencies of the 

fundamental mode J1 for values of Tr/Tm ranging from 18 to 520 and the values 

given by equation (12). 

With increase inμ, the oscillation modes exhibit a sequence of bifurcations, 

leading to chaos. Figure 10 shows the waveform of an (n, m)=(l,2) oscillation for 

Tr/Tm ::::::124. The stable peak and valley levels of the n=l oscillation for m=0,1,2 

over a range of the input optical power Pi are seen as a bifurcation diagram in figure 

11. As explained in section II, these stable peak and valley levels are understood 

from the recurrence relation between signal levels separated in time by Tr 

V(t)'.::::'. V:。+μF(V(t-Tr)). (13) 
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The m=2 order bifurcation occurs at the input optical power Pi of about 0.87m W, 

which is roughly consistent with the value of lm W estimated in section III. For 

Tr/互：：：：：：：124 bifurcated harmonic modes up to m=2 and n=21 were observed to 

stably oscillate. Stable (265,2) mode oscillations were observed as the highest stable 

bifurcated harmonic mode when Tr/Tm ::::::: 翌0.Figures 12(a) and (b), respectively, 

show an example of waveform and spectrum of one of the (265,2) modes. From these 

experimental results we confirmed that a huge variety of multiple stable modes suf-

ficient for the dynamical memory experiment can be excited in the DF system by 

the LD power. 

A preference in the excitation of harmonics was exhibited by the system. Though 

modes with large harmonic number were observed, not all the intermediate values 

of odd n were observed, as would be expected on the basis of numerical experiments 

[13]. For example in our experimental setup with Tr/互：：：：：：： 124, only the modes 

with n=l and n=21 could be spontaneously excited by just increasing input optical 

power Pi. This phenomenon will be discussed in more detail later in section VI. 

It can be seen from figure 11 that the range of input power corresponding to 

(1, 2) oscillation is about 0.04m W. The parameter range for the existence of them-

th order bifurcated mode decreases as m increases. For a one dimensional map such 

as equation (3) [19], whereμm denotes theμvalues for the m-th order bifurcation 

point, the Feigenbaum scaling factor [20] has been defined as 

fJ 
µm —µm-1 

m ＝ (14) 
μm+l -μm 

We definedμm for the n-th harmonic as the minimum value of input power where 

the (n, m) mode was stable. Figures 13 (a) and (b) respectively show bifurcation 

diagrams for the n=l and n=21 modes. From the diagrams we found的：：：：：：：3.3 for 

n=l and的：：：：：：：2.3 for n=21. These values are of the same order as those estimated 

by Vallee et al. for a system with A-0 modulator, 的=4.5for n=l and的=5.2for 

n=3 [12]. 

As seen in the bifurcation diagram in figures 13 (a) and (b), bifurcations for m~3 

were indistinct. Higher order bifurcations are expected to be obscured by noise if 

noise levels exceed certain values [25]. In our system dominant noise sources were 

the LD noise, shot noise of the PIN diode and noise of the first stage video amplifier. 

Of these the LD noise was the major noise source. For lm W input optical power, the 

ratio of the total noise to the input optical power was about -18.5dB (三 1.4X 10-2). 
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This noise behaved as a multiplicative noise for the system. In our experiment, 

bifurcations up to second order were stable but the third order bifurcation could 

not been seen with this noise level. Our result was consistent with Vallee's result 

for multiplicative noise [26]. 

Though the noise ratio in our system could have been improved by using an LD 

with an optical isolator, it was sufficient for the demonstration of the dynamical 

memory function that the m=2 oscillation modes were stable. 

5 Experiments on dynamical memory 

Having confirmed the stability of the m = 2 modes, we next examined the feasibility 

of using these modes as memory states. First, we demonstrated that frequency-

locking of the (21,2) oscillations could be done to obtain phase stability. We then 

executed writing and reading of 21-bit binary data sequences based on the scheme 

described in section II. Figure 16 shows two examples of writing 21-bit binary data 

to a (21,2) mode, and figure 18 shows an example of reading. 

5.1 Locking 

The appearance of resonance and frequency-locking phenomena in a DF system 

as the result of input modulation has been previously reported [27][28]. For the 

purpose of the dynamical memory function we checked that bifurcated modes could 

be locked to external oscillations. We confirmed that the phase of an (n, m = 2) 

mode could be locked to that of an external reference clock by weakly modulating 

the LD with a sinusoidal signal at a frequency near n/(2Tr), the carrier frequency 

of the free-running (n, m = 2) mode oscillation. Figure 14 shows frequency locking 

curves for (7,2) and (21,2) modes with the modulation depth of 0.4%. The locking 

ranges increase roughly in proportion to the modulation depth as shown in figure 

15. Different isomers were found to have comparable locking ranges. 

5.2 Writing 

The WRITE procedure is a selective excitation of the (n, m = 2) mode corresponding 

to an input n-bit binary word in the form J code. The WRITE is done by the SB 

switch described in section II. Parameterμis changed by increasing input optical 
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power (LD power). The seed signal is injected by modulation of bias voltage v;。.

It was necessary to determine two voltage levels, corresponding toμ。ffandμ。m

to be used in driving the LD. It was also necessary to determine four voltage levels of 

the v;。seedsignal corresponding to the four levels of the stable oscillation waveform 

atµ。n•

The SB switch signals were generated in the following manner. Input data in 

the form of J code was converted to S code according to the equations (5) and (6). 

Then the S code sequence was converted to a v;。seedsignal of length Tr. The AFG 

generated the signals for the modulation of v;。andthe LD. A personal computer 

(PC) automatically controlled execution of the sequence of data conversion and input 

signal generation so that a 21-bit data sequence keyed in from the PC keyboard was 

written into the memory. 

Figure 16 shows two examples of 21-bit data WRITE. The change of input 

optical power Pi corresponds to change ofμfromμ。fftoμon・The pattern of the 

seed signal v;。determinesthe (21,2) mode which is excited. It can be seen that the 

stable asymptotic oscillation is similar to the initially excited oscillation, in which 

21 bits of binary data are encoded. 

In general, in the presence of noise, the shape of the seed signal injected into the 

loop should be as close as possible to that of the waveform of the desired oscillation 

mode. However, a degree of tolerance in the seed signal is possible due to the 

dynamical stability of the oscillation modes. In our system we found tolerance of 

more than士50%in the difference of the two peak(or valley) levels and about士50%

of Tr/n in length of the seed signal. Figure 17 shows an example of writing, when 

the shape of the seed signal had discrepancies of -30% in peak levels and +30% in 

valley levels. Due to the dynamical stability of the mode, the input data was not 

lost, although there was a long transient before the signal settled to the asymptotic 

waveform. Too critical setting of the shape of seed signal results in long switching 

times. 

As shown in figure 12 stable harmonic (n, m = 2) modes up to n=265 have been 

observed in this system when Tr/Tm~520. However, our experimental setup for 

injecting seed signal at present cannot handle seed signals for n=265. The writing 

of data into the dynamical memory with bit capacity of 265 bits remains a task for 

the future. 
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5.3 Reading 

The READ operation is done by thresholding peak levels of the oscillation at the 

output detector (DET in figure 4). Figure 18 shows an example of reading 21-bit 

binary data from a (21,2) mode oscillation locked to an external reference clock. The 

timing pulse Pt, used for identifying the first bit of the cyclic 42-bit pattern (21-bit 

pattern, followed by the inverted 21-bit pattern), was generated by 1/42 frequency 

division of the external reference clock. 

5.4 Erasing 

Erasing of the data is done simply by switching input power from the value cor-

responding toμ。nback to the value forμ。ff・Thevalue forμ。ffshould be set to 

be nearly zero for quick decay within the 1-bit time (Tr/n). Figure 19(a) shows an 

example of erasing of (21,2) mode. With a larger non-zero value ofμ。ff,a transient 

of a few Tr in length was observed, as shown in figure 19 (b). Critical setting ofμ。ff

near the bifurcation point of m=l could cause near-critical slowing down, resulting 

in long erasing time. 

5.5 Stability 

It was observed that the modes were most stable when the input optical power was 

set to an optimum level ranging roughly from midway between the m=2 and m=3 

bifurcation points to just below the m=3 bifurcation point. As can be seen from the 

bifurcation diagrams in figure 13, this requires determination of the input optical 

power and loop gain ~ヽrith less than about士2%control error. Appendix III contains 

a discussion of some control considerations specific to our particular system. Note 

that, in principle, if the detector threshold level for reading binary data is set midway 

between levels of peak and valleys originating with m=2 bifurcation, onset of m=3 

or higher order bifurcations initially does not significantly affect the stability of the 

binary data, because they only cause higher order modulations of the waveform. 
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6 Observations on preferential excitation of 

h armon1cs 

In this section we discuss a major discrepancy of the system from the model. The 

model described by the delay-differential equation (11) shows a staircase dependence 

of stable harmonics onμ[13][14], in the sense that whenμis increased, there are 

transitions between odd harmonic modes in the sequence 1, 3, • • •, n, n + 2, • • •. 

However, the behavior of the experimental system differs from the ideal model in 

regard to the stability of harmonic modes. The staircase was incomplete, with a 

preference for oscillation at certain harmonics. Figure 20 (a) shows plots of primary 

oscillation frequency versusμfor Tr/Tm~124, obtained by sweeping input optical 

power Pi (ocμ) up and down. There was a jump directly from n=l to the high 

harmonic n=21, and a return directly to n=l from n~21. 

Missing intermediate harmonic oscillations were excited using the SB switch 

method to systematically investigate their stability. A 7th harmonic branch, n=7, 

was found by SB switch. All other intermediate harmonic branches were unstable 

in the sense that stable oscillations could not be found even by SB switches with 

very careful choice of seed, though n=3 and n=5 oscillations had rather long life-

times. Table 1 summarizes the stability of harmonics excited in the resonator for 

冗/Tm~124. This preferential harmonic excitation could not be understood from 

the experimentally obtained small signal resonance characteristic in figure 8. 

Each missing harmonic could be recovered by pumping into the loop from port 

(b) a small sinusoidal signal at a frequency near that of the missing harmonic. An 

example of the recovery of n=llth harmonic is shown in figures 20(b)-(g). Figure 

21 shows a corresponding phase diagram of mode excitation drawn in the space of 

input optical power versus pump intensity. The region where the 11th harmonic 

appeared to stably oscillate became larger with increase of pump intensity. For the 

case for Tr/Tm~124 we confirmed that all missing odd harmonics, and their m = 2 

bifurcations, for n up to n=27 could be recovered by the pumping. 

As described in section IV, small sharp variations of about ldB were observed 

in the transfer spectrum of the open loop gain (figures 6(a)-(d)). These seemed to 

result from spurious resonances, especially piezo-electric vibration of the LiNb03 

substrate, in the E-0 modulator [24]. These small variations in the open loop 

20 



gain could affect the stability of the oscillation modes, resulting in the preferential 

harmonic excitation. Derstine et al. also observed that stability of harmonic modes 

was extremely sensitive to spurious nonlinearities in the E-0 device [7]. 

In order to test this hypothesis, we examined the relation between the fine struc-

ture of the open loop gain and the strengths of pump signals which were necessary 

to make the harmonics stable. Figures 22(a) and (b) show the transfer spectrum 

of the open loop gain expanded around the frequency 25MHz near the 265th har-

monic, and threshold pump intensities, respectively, for Tr/Tm~520. In this range 

of frequencies, differences in the the open loop gain could be regarded to result only 

from the fine structure, because the systematic decrease of the open loop gain with 

frequency increase originating from the relaxation characteristic was negligible, as 

seen in figure 6(b). For Tr/Tm~520, the 265th harmonic was the highest harmonic 

which could be observed without pump signal, and other harmonics near the 265th 

harmonic could be made stable with pump signals. The threshold pump intensity, 

which is necessary to make each harmonic stable, is indicated in figure 22(b). The 

larger the open loop gain the smaller the threshold pump intensity. These observa-

tions seemed to confirm that, for large effective delay, excitation of harmonics was 

very sensitive to the loop gain and even less than ldB difference in the loop gain 

affects the excitation of harmonics in the closed loop. 

The delay-induced oscillations in the closed loop have many frequency compo-

nents, which can couple to spurious resonances in the E-0 modulator. Therefore, 

the existence of complex fine structure in the open loop transfer spectrum might 

correspond to promotion or suppression of specific harmonics, thus resulting in the 

preference in harmonic excitation. 

A smooth frequency characteristic of the system is required so that such prefer-

ence of harmonic excitation can be avoided. However it is worth noting that from a 

certain point of view, it could be advantageous to introduce such frequency-selective 

mechanisms [12] in the system, in order to increase the stability of particular har-

monic modes used as memory states. 

7 Conclusion 

A delayed-feedback system with a very large effective delay was designed for the 

experimental test of a novel memory function utilizing large numbers of multi-stable 
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nonlinear modes of oscillation. 

The requirements of the system demanded for the experiment are made the 

following. Large effective delay is necessary to excite high harmonic oscillations. 

Smooth monotonicity of the frequency characteristic of the system is necessary to 

ensure uniform stability among different memory states. And controllability of the 

optical input power and loop gain is necessary to facilitate the SB switch control. 

Large effective delays of up to 520 were realized by employing state of the art 

components for 1.3μm optical communication as the key components of the system. 

This made it possible to obtain a large variety of stable modes. The behavior of 

the system was confirmed to be roughly consistent with that exhibited by a model 

delay-differential equation and previous experimental systems with shorter delays. 

Order m=2 bifurcations of high harmonic modes were found to be stable. The 

highest harmonic oscillation modes observed to be stable were those with harmonic 

number n=21 for effective delay of Tr/Tm~124 and those with harmonic number 

n=265 for Tr/Tm~520. 

It was found that the stability of the harmonic modes for large effective delay was 

very sensitive to spurious resonances in the system, which resulted in preferences in 

the excitation of harmonics. Missing harmonics and their m=2 bifurcations could be 

stabilized by pumping small sinusoidal signals into the feedback loop. The presence 

of spurious resonances, which might be caused by piezoelectric vibration of LiNb03 

substrate of the E-0 modulator, was indicated by small sharp features in the transfer 

spectrum of the open loop gain. A correspondence between the loop gain and the 

threshold intensity of the pump signal needed to make a mode stable confirmed 

that the small sharp features, though even less than ldB in magnitude, significantly 

affected the stability of the harmonic modes. 

In an experimental test of the dynamical memory function, WRITE and READ 

of up to 21 bits of binary data using coded oscillation modes locked to an external 

reference clock was successfully executed. In the WRITE process, tolerance of more 

than土50%in the difference in peak (or valley) levels and about士50%of Tr/n 

in length of seed signal could be allowed, due to the dynamical stability of the 

oscillation modes. 

The m=2 mode, at least, should be stable enough for functional applications, 

if the signal to noise ratio of the system is more than 20dB. This noise ratio is an 
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achievable value in practical systems. 

The stability of the loop gain, that is the stability of the input optical power, 

demanded to maintain the stability of the memory mode (m = 2 bifurcation) was 

about土2%.This is the most demanding aspect of the system design, but it is not 

an impractical value. 

Due to the intrinsic stability of the modes used, the dynamical memory, though 

of simple structure, realizes a function similar to that of a conventional delay line 

memory with regeneration. The intrinsic stability of data stored as stable nonlinear 

oscillation modes is an important advantage of this dynamical memory. compared 

to a conventional delay line memory which stores data as a cyclic pulse pattern in a 

delay line with a separate regeneration mechanism to compensate pulse decay and 

suppress intensity and phase noise. 

The dynamical memory can in principle be realized in all optical nonlinear res-

onators with simple structure, such as optical fiber loops [21] and solid-state optical 

resonators [29], though the performances of all optical systems reported so far have 

not reached a level which is practical for the implementation of the dynamical mem-

ory, due mainly to the need for large optical power. In this context, a low threshold 

nonlinear sagnac switch [30], which consists of a combination of an optical fiber and 

a high gain erbium doped fiber amplifier, seems to be a good candidate for realizing 

a practical all optical dynamical memory with fast response. 

It is envisioned that this type of dynamical memory will be suited to specific uses 

such as temporary ring storage or fiber logic functional units in future high-speed 

optical fiber networks [31][32]. The possibility of cascading, using the output of one 

resonator to seed another, and majority logic operations, by superposition of seed 

signals, are also of great interest from the point of view of future all optical sig叫

processing applications. 
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Appendix I 

Some details of the experimental setup which are used in this paper are described 

in this appendix. The setup consists essentially of a controller of the SB switch 

and a DF system with very large effective delay. The former, an arbitrary function 

generator LeCroy 9100 (AFG) controlled by a personal computer (PC), generates 

signals for the SB switch. The latter is a hybrid electro-optic ring-resonator. The 

details of the components are as follows. 

The LD (Mitsubishi FU-llSLD-N) can be directly modulated as fast as 600Mbits/sec. 

Direct modulation of the LD allows easy control of the feedback loop gain, which 

is proportional to the input optical power. The electro-optic (E-0) intensity mod-

ulator (Ericsson PGS6211) is a LiNb03 waveguide of Mach-Zehnder configuration 

with about 4.5dB insertion loss and a half-wave voltage of about 6 volts. The optical 

fiber delay line is a 1.3μm single mode optical fiber with 0.2dB/km propagation loss. 

The length of the fiber is 1000m, corresponding to 5.2μsec propagation delay. The 

photo-detector (Mitsubishi FU-13PD-N) is a pin photo diode for long-wavelength 

infrared light, with photosensitivity of 0.87 A/W and bandwidth of 1.5GHz. All of 

the optical components are connected using FC-connectors which introduce negligi-

ble fluctuation of propagation loss in the optical path. The amplifiers are high-speed 

video amplifiers with 3dB bandwidth from DC to more than 150MHz. Total elec-

tronic gain in the feedback loop is 57dB. The input and output ports of all these 

electronic devices are adjusted to 50D impedance so that waveform distortion origi-

nating from impedance mismatching, which might cause irregular change in the fre-

quency characteristic of the loop, is minimized. The response time of the feedback 

Tm is increased from about lOnsec to more than 270nsec by introducing capacitors 

in parallel in the loop to act as a low pass filter (LPF) as shown in figure 4. 

A DC offset bias voltage V:。'.is added at the input port of the first stage amplifier 

to select an appropriate range of the nonlinear E-0 modulation. 

Appendix II 

We derive equation (12) from equation (11) by linear stability analysis. 

Tm 
dV(t) 

dt 
-=-V(t)+½。 +µF(V(t -T, リ）． (15) 
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For smallμ, that is low input optical power from the LD, there is a stable state 

of the loop corresponding to a constant intensity signal V*, an equilibrium value of 

V(t) as described by the following equations and inequality. 

dV(t) 

dt 
= 0, 

V* = v;。+μF(V*),

、
＇
ー
，
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ー
，
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and 
8F 

av (V*) < 0. (18) 

With increase inμ, this state becomes unstable and there arises stable self-

oscillation in the loop. Near V*, the dynamical behavior of V is understood with 

the following linearization of equation (11) [8]. 

V(t) = V* + v(t), 

Tm dv(t) BF 
dt 
= -v(t) +μ ―-(V*)v(t -Tふav 

(19) 

(20) 

where v(t) is a small signal. By expressing the linear term v(t) as v(t) = cexp(st), 

where c and s are the small amplitude and the complex phase of v(t) respectively, 

the following characteristic equation is obtained, 

8F 
sTm = -l +μ-(V*) exp(-sTr), av (21) 

By comparing real and imaginary parts of equation (21) we obtain following 

equations as, 

叫 +1=喜(V*)exp(—訊）cos(wT: ふ
and oF 

wTm = -μ ―-(V*) exp(—江）sin(wTふav 
where入=Re(s) and w = Im(s). 

By dividing equation (23) by equation (22) we obtain 

wTm 

入Tm+1 
= -tan(w冗）．

(22) 

(23) 

(24) 

Oscillation occurs ifs has a positive real part. So, V(t) begins to be unstable 

and to oscillate around V* at入=0. By substituting入=0, equation (24) becomes 

凶五＝一taれ(wT.ふ (25) 
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On the assumption that the period of oscillation is near 2Tr or 2Tr/n, where n 

is integer, we expand right term of equation (25) around wTr = n11 as, 

wTm'.:::'. -(wTr -n1r). (26) 

Under the condition Tm く~Tr and inequality (18), we obtain the oscillation 

frequency fn(=叫(21r))as 

n Tm 
f n~-(1 --)  , n = odd. 
2Tr Tr 

(27) 

Appendix III 

In our experiment, poor reproducibility of the input optical power Pi level for a 

given loop gain was an issue. This was due mainly to the following causes. 

Firstly, the loss in the optical path could change as much as士0.5dB(土12%)

with reconnection of the FC-connectors. 

Secondly, it was observed that the loop gain was relatively sensitive to the tern-

perature of the atmosphere around the lm long polarization maintaining (PM) fiber 

pigtail of the input port of the E-0 modulator. The light from the LD was ellip-

tically polarized light with low extinction ratio (~5dB) which seemed to be due to 

the birefringence of the cylindrical lens mounted in the LD module. The LD light 

was fed directly to the PM fiber of the E-0 modulator. The principal axis of the 

polarization ellipse in the PM fiber could change due to cha~ge of birefringence of 

the PM fiber with temperature variation of the atmosphere, resulting in intensity 

variation of the field component to be modulated in the E-0 modulator. This could 

cause variation of loop gain in spite of a constant LD optical power. Under typical 

laboratory conditions at room temperature士1°C,the gain varied less than 2%. 

However, we believe that these are not intrinsic problems for engineering models 

of the dynamical memory, because they can be overcome with countermeasures, 

such as permanently fixing the optical connection points, shortening the PM fiber 

pigtail and using a fiber-type polarizer to improve the extinction ratio of the input 

light. 
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Table 1 Preference in harmonic mode excitation for Tr!Tm = 124. 

◎ : stable (can be observed by only varyingμ), 0 : stable (can be observed by choice of 
careful initial condition), △ ： unstable(long lifetime after excitation with suitable initial 
condition), X : unstable(could not be observed) 

Harmonic 
1 3 5 7 9 ................. 19 21 23 .............. number n 

Stability ◎ △ △ 

゜
X ◎ X 
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Figure 1: Schematic example of (n = 7,m = 2) mode and its coding. In each Tr 

interval there are 7 sub-intervals. In each sub-interval there is a peak or valley 

of the oscillation. The four different peak and valley levels are indicated by 2-bit 

labels, 00, 01, 10, 11. The oscillation waveform is identified with a 7-element code 

I = (10, 01, 11, 00, 11, 01, 10) indicating peak and valley levels in a Tr interval or a 
7-element code J = (0, 1, 1, 0, 0, 1, 0) indicating peak levels in a 2Tr interval. The J 
code is followed by the inverted J code in the next 2Tr interval. 

Figure 2: Coding of the oscillation waveform. (a)Diagram of the recurrence relation 

between x(t) and x(t-Tr) expressed by equation (3). (b)Cyclic sequence of 2-bit la-
bel Ii assigned to peak and valley levels separated in time interval Tr . (c)Oscillation 
waveform of (n = 1,m = 2) mode with peak code J. (d),(e)Oscillation waveforms 

of (n = 3, m = 2) mode with peak code J. The first bit of label Ii enclosed by 
dashed line corresponds to 1-bit binary element of peak code J. Peaks (valleys) are 
mapped to valleys (peaks) in Tr later according to the cyclic sequence of label h as 
indicated by dashed arrows. 
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Figure 3: Schematic example of the SB switch of (n = 7,m = 2) mode with the 

codes S and J. The upper signal is the seed signal and the lower signal is the 
oscillation waveform. 

Figure 4: Experimental setup. 

LD:laser diode (wavelength 入 ~1.3µm, optical output power P.。~lmW) E-0 
modulator:Ericsson PGS6211 LiNb03 waveguide intensity modulator (halfwave 
voltage V1r~6V) optical fiber:1.3μm single mode optical fiber (length匂 1000m)
PIN:pin photo diode (photo sensitivity~0.87 A/W) LPF:low pass filter ATT: at-
tenuator (attenuation= -6dB) P:power divider (insertion loss= -6dB) AMP:video 
amplifier (-3dB bandwidth~ 150MHz, 15dB gain in the final stage and 20dB in the 

other stages) PC:personal computer AFG:LeCroy9100 arbitrary function generator 
SG:timing signal generator DET:detector (threshold circuit) 
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Figure 5: Shape of the nonlinear E-0 modulation characteristic. This curve shows 

the relation between V and¼where V =½。 +µF(½) with constant½。 andµ.

Figure 6: Transfer spectrum IG(w)I of the open loop gain. This was measured 
with small amplitude sinusoidal signal¼, where G(w) is defined in terms of the 
Fourier transforms of V and¼as V (w) = G (w)¼(w). : (a) without low pass filter 
(LPF), (b) with LPF (Tr/Tm~520), (c) with LPF (Tr/Tm~124), and (d) with LPF 
(Tr/Tm俎63).

Figure 7: An example of ripple on V(t) observed when the system is driven with 
rectangular wave¼in the open loop configuration for Tr/Tm~124. 
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Figure 8: Small signal resonance characteristic of the nonlinear resonator for 

冗/Tm叫 24.(a)frequency range from Oto 2.0MHz, and (b)from 2.0 to 4.0MHz. 

Figure 9: Dependence of frequencies of fundamental mode j1 on effective delay 

Tr/Tm. Solid line shows values calculated from equation (12) for n=l and dots show 

experimental values. 

Figure 10: Oscillation waveform of (n,m)=(l,2) mode for Tr/Tm匂124.

Figure 11: Bifurcation diagram for Tr/Tm~124. This diagram shows bifurcation of 
levels of n=l oscillation for Tr/Tm~124 obtained by slowly varying input optical 
power尺(exμ)at about lOHz and observing Pi and V in the X-Y mode of the 
oscilloscope. 

Figure 12: Oscillation of one of the (n,m)=(265,2) modes for T~/Tm 琴520. (a) 
waveform, and (b) power spectrum. 

Figure 13: Bifurcation diagrams of (a) n=l and (b) n=21 modes for 冗/Tm~124.
These diagrams were obtained by the same method as for figure 11. The propagation 

loss in the optical path and E-0 modulation curve in this measurement were slightly 

different from those for figure 11, due to reconnection of FC-connectors in the optical 

path. 

Figure 14: Frequency locking characteristics for Tr/Tm~124 at the modulation 
depth of input optical power尺of0.4%. (a) (7,2) mode, and (b) (21,2) mode. 

Figure 15: Dependence of frequency locking range on modulation depth of input 

optical power Pi, for Tr/Tm~124. 

Figure 16: Two examples of 21-bit data WRITE to dynamical memory. (i) bit 

sequence'110001100010000010101'(ii) bit sequence'101010101010101010101'. 

(a) The change ofμfromμ。fftoμ。ncorresponds to change of input optical power Pi. 
The increase of the input optical power△ Pi was about 0.25mW. (b) V:。(t)modulated 
by the seed signal, (c) the excited oscillation V(t), one of the (21,2) modes. (d) The 

stable asymptotic state of the oscillation V(t), observed a long time(~10団） after 

WRITE. 

Figure 17: An example of transient waveform observed in the WRITE procedure 

when the shape of the seed signal has discrepancies of -30% in peak levels and +30% 

in valley levels from the optimum levels. The optimum levels were slightly different 

from those for figure 16, due to reconnection of FC-connectors in the optical path. 
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Figure 18: Example of 21-bit data READ from dynamical memory locked to an 

external reference clock. Pt: Timing pulse (period 4冗）， V': Stable oscillation 
(proportional to V), Dt: Binary data read from V'by thresholding. 

Figure 19: Two examples of the erasure of a (21,2) mode. Erasing begins Tr after 

switchingμback toμ。ff,due to the delay line. (a) Erasing when the value ofμ。ff
was set to be nearly zero. (b) Erasing whenμ。ffwas a larger non-zero value. A 
switching transient of a few Tr in length is observed. 

Figure 20: Dependence of oscillation mode on input optical power Pi and pump in-

tensity for Tr/Tm叫 124.(a) Oscillation modes without pumping signal, and (b)~(g) 
oscillation modes for increasing intensity of pumping signal at 1.0482MHz showing 

recovery of n=ll mode. (1,1),(l,2),(11,1), ・ ・ ・denote oscillation mode classificat10ns 

(n, m) and (C) denotes chaotic oscillation. The propagation loss in the optical path 

and E-0 modulation curve in this measurement were slightly different from those 

for figure 11, due to reconnection of FC-connectors in the optical path. 

Figure 21: Phase diagram of mode excitation obtained from figure 20 drawn in input 

optical power Pi -pump intensity space. 

Figure 22: Relation between transfer spectrum of the open loop gain and threslじ

old pump intensity required to stabilize missing harmonics. (a) Transfer spectrum 

JG(w)J of the open loop gain for Tr/T~ ~520 expanded around the frequency of the 
265th harmonic, and (b) threshold pump intensity required to stabilize the corre-

sponding harmonic. The 265th harmonic spontaneously oscillates, and the 261th 

harmonic oscillates after initial excitation with pump signal. 
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Figure 1: Schematic example of (n = 7, m = 2) mode and its coding. In each Tr 
interval there are 7 sub-intervals. In each sub-interval there is a peak or valley 
of the oscillation. The four different peak and valley levels are indicated by 2-bit 

labels, 00, 01, 10, 11. The oscillation waveform is identified with a 7-element code 

I = (10, 01, 11, 00, 11, 01, 10) indicating peak and valley levels in a Tr interval or a 
7-element code J = (0, 1, 1, 0, 0, 1, 0) indicating peak levels in a 2Tr interval. The J 
code is followed by the inverted J code in the next 2Tr interval. 
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Figure 2: Coding of the oscillation waveform. (a)Diagram of the recurrence relation 

between x(t) and x(t-Tr) expressed by equation (3). (b)Cyclic sequence of 2-bit la-

bel Ji assigned to peak and valley levels separated in time interval Tr . (c)Oscillation 
waveform of (n = 1,m = 2) mode with peak code J. (d),(e)Oscillation waveforms 
of (n = 3, m = 2) mode with peak code J. The first bit of label Ji enclosed by 
dashed line corresponds to 1-bit binary element of peak code J. Peaks (valleys) are 

mapped to valleys (peaks) in Tr later according to the cyclic sequence of label Ji, as 

indicated by dashed arrows. 3 7 
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Figure 4: Experimental setup. 
LD:laser diode (wavelength 入 ~l.3µm, optical. output power P.。~lmW) E-0 
modulator:Ericsson PGS6211 LiNb03 waveguide intensity modulator (halfwave 

voltage~ ~6V) optical fiber:l.3μm single mode optical fiber (length~lOOOm) 
PIN:pin photo diode (photo sensitivity~0.87A/W) LPF:low pass filter ATT: at-
tenuator (attenuation= -6dB) P:power divider (insertion loss= -6dB) AMP:video 

amplifier (-3dB bandwidth~150MHz, 15dB gain in the final stage and 20dB in the 

other stages) PC:personal computer AFG:LeCroy9100 arbitrary function generator 

SG:timing signal generator DET:detector (threshold circuit) 
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Figure 7: An example of ripple on V(t) observed when the system is driven with 

rectangular wave¼in the open loop configuration for Tr/Tm~124. 
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Figure 10: Oscillation waveform of (n,m)=(l,2) mode for Tr/Tm叫 24.

46 



4

2

0

 

9

9

9

 
(A) 

... ,.::・ i
 0.5 0.75 

Pi (mW) 

1.0 

Figure 11: Bifurcation diagram for Tr/Tm :=:::124. This diagram shows bifurcation of 

levels of n=l oscillation for Tr/Tm祖 24obtained by slowly varying input optical 

power Pi(exμ) at about lOHz and observing P; and V in the X-Y mode of the 
oscilloscope. 

47 



(Ct) 

-4 

-2 

(A) (
1
)
A
 

4
 

ーt(200nsec/div) 
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waveform, and (b) power spectrum. 
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Figure 16: Two examples of 21-bit data WRITE to dynamical memory. (i) bit 

sequence'110001100010000010101'(ii) bit sequence'101010101010101010101'. 

(a) The change ofμfromμoff toμ。ncorresponds to change of input optical power Pi. 
The increase of the input optical power△尺wasabout 0.25m W. (b)½。 (t) modulated 
by the seed signal, (c) the excited oscillation V(t), one of the (21,2) modes. (d) The 

stable asymptotic state of the oscillation V(t), observed a long time (2: l06Tr) after 

WRITE. 
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Figure 17: An example of transient waveform observed in the WRITE procedure 

when the shape of the seed signal has discrepancies of -30% in peak levels and +30% 

in valley levels from the optimum levels. The optimum levels were slightly different 

from those for figure 16, due to reconnection of FC-connectors in the optical path. 
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Figure 18: Example of 21-bit data READ from dynamical memory locked to an 

external reference clock. Pt: Timing pulse (period 4匹）， V': Stable oscillation 
(proportional to V), Dt: Binary data read from V'by thresholding. 
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Figure 19: Two examples of the erasure of a (21,2) mode. Erasing begins Tr after 

switchingμback toμ。ff,due to the delay line. (a) Erasing when the value ofμoff 
was set to be nearly zero. (b) Erasing whenμ。ffwas a larger non-zero value. A 
switching transient of a few Tr in length is observed. 
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Chapter III 

Storage of Optical Pulse Data Sequences in A Loop 

Memory using M ultistable Oscillations 

Abstract 

A new configuration for a loop memory using multistable nonlinear oscillation 

modes was proposed. The basic functions of the proposed loop memory have been 

confirmed with experimental demonstration of "write" and "erase" using optical 

pulse sequences in an electro-optical hybrid nonlinear ring resonator. 
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1 Introduction 

A nonlinear ring resonator, such as an optical bistable system with delayed-feedback, 

can have a huge variety of multistable oscillation modes [1]-[3]. We have previously 

performed an experiment on an electro-optical (E-0) hybrid nonlinear ring resonator 

in which we demonstrated selective switching of multistable oscillation modes and 

examined the feasibility of utilizing the modes for data storage [4][5]. The intrinsic 

stability of data stored as stable oscillation modes is an important advantage of the 

loop memory compared to a conventional optical delay line memory. As there is an 

intrinsic regeneration mechanism in the nonlinear oscillation to compensate pulse 

decay and suppress amplitude and phase noise the proposed memory can have simple 

structure. This simplicity of structure should be of considerable merit in future high-

speed optical communication systems, where buffer loop memories could be used in 

switching nodes [6]. 

In the previous experiment on the nonlinear ring resonator for memory [5], 

switching of modes corresponding to memory states was done by simultaneously 

changing a control parameter, the cw laser pump power, and injecting a seed signal. 

A unipolar return-to-zero (RZ) binary data pulse train was easily obtained as output 

by thresholding peak levels of the oscillation waveform. The seed signal, a "write" 

signal coded from input binary data, was a four-level signal including negative levels. 

The need for negative level input signals posed problems for control and cascading in 

application of the memory function to a conventional optical communication system 

using unipolar binary data pulses. 

In this letter, we make a proposal of a configuration for using the memory func-

tion which solves the above mentioned problem, and report experimental results of 

"write" and "erase" using optical pulse data, which confirm the feasibility of the 

proposed configuration. The possibility of all-optical operation of the memory is 

also mentioned. 

2 Configuration and principle of the loop 

memory 

Figure 1 shows the proposed configuration of the loop memory. The nonlinear ring 

oscillator is formed by an optical fiber loop ofround-trip time Tr, including an active 
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nonlinear element with response time Tm. Couplers dedicated to "write", "erase", 

"read" and "locking" ports are attached to inject or to detect signals. The delayed 

feedback of the "read" output to "write" is used for the "erase" operation. The 

active nonlinear element is assumed to have a sinusoidal type relationship between 

input intensity and output intensity. An all-optical element could in principle be 

achieved with a Kerr switch [7]. In a hybrid electro-optical implementation, the 

nonlinear element could be a laser with an E-0 intensity modulator [5]. 

With large effective delay (round-trip-time Tr/response-time Tm≫1), many dif-

ferent modes can oscillate stably in the ring. The modes can be classified into classes, 

each class labeled by (n, m) where n is an odd harmonic and mis a bifurcation or-

der [3]. Examples of (21,2) modes are shown below in・figure 3. The relationship 

between the modes and data stored in the waveform is as follows. A mode in the 

(n, 2) class can be considered as a carrier oscillation of period 2Tr / n, whose peaks 

(and also valleys) are modulated in two levels, a high "1" level and a low "O" level. 

The peak modulation pattern corresponds to a cyclic 2n-bit pattern. Data stored 

in the modulation peak pattern can be read by thresholding the peak levels. The 

resulting "read" signal is a periodic RZ binary optical pulse train, corresponding to 

a sequence of n bits of information in a time interval of length 2Tr followed by the 

inverted n-bit sequence. Different modes in the (n, 2) class have different peak mod-

ulation patterns. With phase identification, there is an (n, 2) oscillation for every 

n-bit sequence, and the capacity of the memory using the (n, 2) class of oscillations 

is n bits. 

The important feature of this proposal is that "write" and "erase" of data can be 

executed using the same sort of RZ binary pulse train which is obtained as "read" 

signal. The "write" is executed by injecting an n-bit RZ binary optical pulse train 

into the loop through the "in" coupler. Input pulses should have both width and 

separation of about Tr/n. An n-bit input pulse train has total length 2Tr. The 

"erase" operation can be executed by injecting a "read" signal of length 2Tr back 

into the loop after a delay of 2Tr, which corresponds to superposed "write" of the 

inverse bit-pattern to cancel the n-bit pattern stored in the oscillation waveform. 

Phase identification is achieved by locking the oscillation to an external reference 

oscillation through the "locking" port. All timings of the memory operations can 

be identified with locking to the external reference oscillation. 
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3 Experimental results 

The experimental setup used to confirm the feasibility of this proposal is shown in 

figure 2. The ring generating the multistable oscillations was a hybrid ele~tro-optical 

ring resonator, essentially consisting of a Fabry-Perot(FP) laser diode (LD), an E-0 

intensity modulator with waveguide Mach-Zehnder structure, a 1000m single-mode 

optical fiber delay line, PIN photo diode for 1.3μm optical communication and high 

speed video amplifiers with 3dB bandwidth from DC to more than 150MHz [5]. The 

active nonlinear element was the combination of LD and E-0 modulator. The E-0 

modulator had a sinusoidal E-0 modulation characteristic. In this experiment we 

set the effective delay Tr/Tm~124 (Tr~5.2µsec, Tm~42nsec) by introducing a 

low pass filter at the output port of the first stage video amplifier. For the "in" 

coupler we used an optical coupler with a splitting ratio of 90:10, while the other 

couplers in figure 1 were substituted with electrical power dividers as shown in figure 

2. 

The ring resonator was pumped by the LD with constant optical power. The class 

of (n, 2) modes could be selected and phase-locked to an external reference oscillation 

by injecting into the loop a small amplitude sinusoidal signal at a frequency near 

the carrier frequency, n/(2冗）. For the (21,2) modes shown in figure 3, the LD 

pump power was 0.76m W. The frequency and amplitude of the external reference 

oscillation were set to be 1.99566MHz and 0.5% of the amplitude of the oscillation in 

the loop, respectively. The locking range under the above mentioned condition was 

about 0.023% of the free running frequency of the (21,2) mode. The range increased 

in proportion to the amplitude of the injected reference signal. Different modes in 

the (21,2) mode class were found to have almost identical locking ranges. With this 

locking technique, we could obtain phase stability and identify the first bit of the 

cyclic 42-bit memory pattern. 

Figure 3 shows an example of "write", "read" and "erase" of 21-bit binary data. 

One of the memory states, the one corresponding to all "O" is used as an initial state 

for "write" operation. This state can be reached from any other memory state with 

the "erase" operation described below. 

In the experiment, another l.3μm FP LD, directly driven by an arbitrary function 

generator, was used to generate the "write" signal, a 21-bit RZ binary optical pulse 
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train of length 2Tr. The "write" signal was injected through the optical coupler. 

The optical power of the "write" pulses injected into the loop was 0.024m W. When 

injected with the correct timing, the "write" pulses are superposed on the low "O" 

peaks of the initial state oscillation in the loop, as shown in figure 3(a). 

In the "read" operation of the experiment, the peak levels of the electrical os-

cillation signal output from the electrical stage of the ring are thresholded midway 

between the "1" and "O" levels to obtain a cyclic 42-bit RZ pulse sequence of period 

4Tr (21-bit RZ pulse sequence of length 2Tr, followed by the inverted 21-bit RZ 

pulse sequence of length 2冗）， asindicated in lower waveforms of figure 3. 

In the test of "erase" operation, shown in figure 3(b), the same "write" signal 

as in figure 3(a) was injected with a delay of 2Tr with respect to the first bit of the 

42-bit cyclic memory pattern so that it is added onto the inverted peak pattern to 

cancel the data in the memory. In a future implementation, the "erase" signal of 

length 2冗 couldbe extracted with an optical thresholder and gate from the optical 

"read" signal. 

In the "write" and "erase" operations shown in figure 3, the RZ pulse height 

and width of "write" (or "erase") signal injected in the loop were about 0.024mW 

of optical power and 50% of duty ratio, respectively, which roughly corresponded 

to the difference between high and low peaks of the (21,2) oscillation waveform 

in the loop. With the optimum pulse height and width, the waveform quickly 

settled to the destination memory state with little transient as shown in figure 3. 

However, some variation of the pulse height and width could be tolerated, due to 

the dynamical stability of the oscillation mode. Figure 4 shows a typical example of 

the region of the pulse height-pulse width space in which the "write" operation for 

a 21-bit pattern could be reliably executed. The shape of the region showed that 

the narrower the pulse width the larger the pulse height. Though there were small 

differences in the region for "write" and "erase" of the same bit pattern and there 

was a small dependence on bit pattern, it was found that for all the bit patterns 

examined the area around 0.024m W pulse height and 50% pulse width was suited 

to reliable "write" and "erase" operations. 
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4 Conclusion 

We have made a new proposal of novel loop memory and experimentally confirmed 

the basic functions, "write", "erase" with optical pulses and "read", for the memory 

system to show the feasibility of our proposal. The bit capacity of the memory can 

be increased by increasing the effective delay Tr/Tm [5]. 

High-speed all-optical operation of the loop memory is an important target. 

The key factor for realizing a practical all-optical implementation is a fast, large 

nonlinear response achievable with a low optical power, e.g. diode laser power. 

Recent experiments on nonlinear switches suggest that a promising approach is 

to use the optical Kerr effect in optical fiber pumped by a laser diode [7][8]. The 

response of the Kerr effect is fast (Tmく 10-14sec)and the long interaction length and 

optical power concentration in a fiber switch make it possible to obtain a sinusoidal 

type input-output intensity relationship with a low optical power of order milliwatts 

or less [7][8]. 
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Figure captions 

Figure 1 Configuration of the loop memory 

Figure 2 Experimental setup 

Figure 3 Example of (a)"write" and (b)"erase" of 21-bit sequence of 

'100111000011111000001'where signal levels indicated are those of optical powers 

in the fiber loop 

Figure 4 Regions of the pulse height-pulse width space for reliable (a) "write" and 

(b) "erase" of 21-bit sequence of'100111000011111000001'; No transients in "read" 

signal were observed in the dark-shaded zone; Transients of a few Tr in length were 

observed in the light-shaded zone 
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Chapter IV 

Oscillation Mode Selection using Bifurcation of Chaotic 

Mode Transitions in A Nonlinear Ring Resonator 

Abstract 

This paper demonstrates the effectiveness of an adaptive parametric control 

method for searching and switching among a large number of multistable oscilla-

tion modes using chaotic mode transitions. The adaptive control is used to select 

nonlinear oscillation modes in an electro-optic ring resonator. In the adaptive con-

trol scheme, the result of a simple test of resonator output is fed back to a single 

parameter, pump laser power, governing bifurcation to and from chaos. The test is 

the presence or absence of a target code in the oscillation waveform of the resonator 

output. Chaotic mode transition phenomena, called chaotic itinerancy, are investi-

gated in terms of code dynamics, and the results are used to determine the optimal 

parameters for the adaptive control. 
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1 Introduction 

The ability of nonlinear devices with only simple structure to generate very compli-

cated behaviors, such as chaos, is well known. However, this ability has not been 

exploited in technological applications of devices. This paper addresses this issue. 

We demonstrate that onset of chaos can be exploited in a device which interacts, in a 

"trial and error" manner, with its environment to find a suitable mode of operation. 

Theoretical and experimental studies on nonlinear delayed feedback systems have 

shown the existence of a large variety of multistable bifurcated oscillation modes 

leading to chaos [1]-[7]. Ikeda et al. [5] clarified the hierarchical tree structure of 

the bifurcation of the oscillation modes excited in a nonlinear optical ring cavity 

and suggested the applicability of the multistable modes for memory. It has been 

theoretically proposed that selective excitation of modes, useful for optical signal 

generation and memory, is possible by two complementary methods, seeded switch 

[8] and chaotic search [9]. 

The seeded switch is a direct, deterministic selection of a mode by injection 

of a signal close to the mode (i.e. content addressing). The seeded switch was 

experimentally demonstrated in an electro-optic (E-0) hybrid nonlinear resonator 

and availability of the multistable modes for the generation and storage of binary 

optical pulse sequences was confirmed [7][10]. 

Chaotic search is an approach to selection of mode, which is complementary to 

selection by seeding and results in stochastic selection of a mode which satisfies 

a given constraint. A method has been proposed for chaotic search which uses 

adaptive parametric feedback control of bifurcation to and from chaos to search for 

and select a mode which satisfies the given constraint [9][11]. In this paper we shall 

refer to this method to "CS" for short. CS corresponds to access to modes from 

an upper chaotic stage of the hierarchical mode bifurcation tree, while the seeded 

switch is access from a lower [7] or same [10] stage. 

The validity of the proposal for chaotic search by adaptive bifurcation was exp er-

imentally demonstrated in an E-0 hybrid nonlinear resonator, which gave a concrete 

image to the applicability of chaos [11]. 

This paper gives the details of the experiment and quantitative investigations 

of CS, relevant to characterization of chaotic mode transitions, control parameters 
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and switch time. In particular, we consider the above mentioned factors from the 

practical viewpoint of tuning the CS. We explain how parameters can be tuned to 

reduce the CS time and what factors determine the lower limit of the CS time. 

In section II we first review the general idea of CS. In section III we describe the 

oscillation modes of the nonlinear ring resonator, and coding which is applicable to 

waveforms of multistable modes and_ chaotic modes. In section IV we present chaotic 

mode transitions observed as code dynamics, where we can grasp the dependence of 

mode transitions on the control parameter. In section V we discuss how to use the 

results of section IV to choose parameters for adaptive control of bifurcation, and 

present data from experimental trials of CS. In section VI we examine the relations 

between chaotic mode transitions, control parameters and switching time, giving 

the optimum conditions for the adaptive parametric control. 

2 Principle of chaotic search 

The method of adaptive mode selection using bifurcation to chaos was proposed by 

Davis [9]. The method is complementary to direct mode selection by parameter in 

monostable systems or by seeding (content-addressing) in multi-stable systems. In 

contrast to direct mode selection, this type of mode selection、rvillbe useful when a 
device has to operate autonomously. 

The key idea is that an optical device which is capable of supporting a variety 

of modes and chaotic transitions among them could interact with its environment 

in a trial and error manner in order to find a suitable mode of operation. According 

to the method proposed, chaotic transitions allow the device to sequentially try 

each of the modes to test whether they are suitable or not. An external feedback 

signal indicating that a mode is suitable is used to stabilize the mode by changing a 

parameter and taking the device into a multistable regime where all the modes are 

stable. 

It has been argued [9] that this method should be generally applicable when 

there are responses from the environment which indicate whether the current device 

output is satisfactory or not, and where there is one parameter bifurcation of the 

device state from a multistable mode regime to a regime where there is intermittent 

transitions among modes. 

The onset of intermittent transitions among modes allows the modes to be tested 
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in turn. Intermittent transitions among modes can occur if chaos appears via basin 

merging and chaotic paths are created between the "attractor ruins" of the previ-

ously stable modes [5][12]. In the context of transitions among multiple modes in 

high dimensional systems such transition sequences have been referred to as "chaotic 

itinerance" [11][13]-[15]. To ensure that each candidate mode is accessible to the 

search and selection process, it is necessary that the chaotic itinerance repeatedly 

visits each and every one of the mode neighborhoods. 

This method of adaptive mode selection has some similarity with a method 

recently proposed by Ott, Grebogi and Yorke [18] [19] for selecting a periodic orbit 

from a chaotic attractor. Each uses chaos to search the phase space, and also each 

uses feedback to a single parameter. However, the adaptive mode selection described 

in this paper is concerned with bifurcation of stable candidate modes to and from a 

chaotic attractor. Moreover, it is concerned with an external test of the current state 

which may be arbitrary and not specifically related to internal dynamical structure 

such as basin structure. 

3 Oscillation modes and coding 

In this section we describe the nonlinear oscillation modes of the ring resonator 

which will be the subject of the mode selection experiment. The nonlinear ring 

resonator used for the present experiment is the same electro-optic (E-0) hybrid 

ring resonator as was used in a previous experiment [7] where modes corresponding 

to multi-bit binary codes were selected by seed injection. Moreover, we use one 

of the same sets of modes, the twice-bifurcated 7-th harmonic modes. The modes 

are assigned two types of codes for identification. One of the codes, a non-specific 

"feature" code, will be used as target in mode selection. 1 

3.1 modes of nonlinear ring resonator 

The nonlinear resonator used for the experiment is an E-0 hybrid ring resonator 

with very large effective delay [7], in which a large number of nonlinear oscillation 

modes are excited. In figure 1, the nonlinear ring resonator is illustrated with the 

coding and control circuits for the CS experiment. 

1 For ease of implementation and for the purpose of comparison, we used the same coding as 
previously used in computer experiments on the method [9]. 
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The nonlinear ring resonator is modeled by the following delay differential equa— 

tion [7), 

Tm 
dV(t) 

dt 
= -V(t) + v;。+μF(V(t-Tr)). (1) 

Here Vis the signal in the loop, either the optical intensity in the fiber or the voltage 

on the EO modulator. ½。 is an accumulated offset bias voltage at the final stage 

amplifier, μis the bifurcation parameter proportional to the input optical power Pi 

from the laser diode (LD), and Tm and Tr are the response time and the delay time 

of the nonlinear feedback, respectively. The function F is the typical sinusoidal E-0 

modulation characteristic of an EO intensity modulator. A nonlinear characteristic 

with at least one hump or valley (maximum or minimum), and an effective delay, 

冗/Tm,is needed to give delay-induced bifurcations to chaos asμis increased. We 

are concerned with the case of large effective delay, Tr > > Tm, in which there are 

multistable modes useful for generation and storage of binary optical pulse sequences 

[7]. 

This hybrid electro-optic system acts also as a model for the dynamics of an 

all-optical implementation of equation (1), and so, in principle, the results of this 

paper are relevant also to all-optical signal generation and storage in future all-optic 

communication networks. 

For low pump power (low input optical power from the LD), the oscillation 

modes which can be excited in the resonator are the fundamental mode of period 

T1 of about 2Tr and odd (n-th) harmonic modes with period Tn equal to about 

2Tr/n. Each of these harmonic modes exhibits bifurcations leading to chaos with 

increase of pump power. The modes of the nonlinear oscillation can be classified 

with harmonic number n and bifurcat10n order m as (n, m) [5]. Figure 2 shows 

schematic bifurcation diagrams of oscillation level and oscillation mode. 

In each (n, m) class there are multiple oscillation modes, "isomers", with different 

peak modulation patterns [5][7], which are all stable at the same value of pump 

parameterμ. As in [9], we shall represent isomers in an (n, m) class by the symbol 

品，mand a particular isomer byふ，m,L,where L is some distinguishing label. We 

denote byμm the value of pump parameterμat which m-th order bifurcation occurs 

and each ln,m-l mode bifurcates into multiple ln,m modes. 

Successive bifurcations reach onset of chaos at a certain pointμp, and after the 

onset of chaos atμF there are order m* "inverse" bifurcations [5]. In the inverse 
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bifurcations, the basins of the multiple chaotic modes merge together, resulting in 

fluctuations on peak and valley levels of the n-th harmonic carrier and intermittent 

transitions among different ln,m type oscillation waveforms. 

In this paper we consider switching among isomers of (n, 2) class atμ2 <μ< {l3 

using chaotic mode transitions in (n, m * = 2*) class atμ2. <μ<μp. For the CS 

experiment, we set the effective delay Tr/Tm~124 (Tr~5.2µsec and Tm~42nsec) 

and excite modes by pumping the nonlinear resonator with the LD at about lm W 

[7]. A signal with the desired n-th harmonic carrier frequency was injected initially 

to excite the n-th harmonic class of oscillation [7]. 

3.2 coding 

In this section we introduce a method for distinguishing between oscillation modes. 

Thresholding of the oscillating optical signal output can be used to generate char-

acteristic binary pulse sequences [9]. The most natural coding of oscillation modes 

of (n, m = 2) class is the binary sequence corresponding to the high and low peak 

levels. In the experiment we extract a binary J code from the peak modulation pat-

tern in order to characterize oscillations. However, another code, called the feature 

R code is extracted, by a different sampling of the peak modulation pattern, for use 

in the search. Figure 3 shows the schematic diagram of the coding circuits used to 

extract J and R. Figures 4(a) and (b) show examples of signals which appear in 

the process of coding periodic and chaotic oscillations, respectively. 

Signals are passed through thresholders and pulsewidth extenders so that os-

cillating signals, even the irregularly fluctuating chaotic signals, are converted into 

sequences of regular pulses. Timing for sampling of pulse sequences is determined 

by a clock signal, CLK, which is obtained from the harmonic carrier oscillation. 

Here we make use of the fact that in the chaotic states ln,m=2• used for search, even 

though the peak modulation fluctuates, the carrier is quite stable. 

Threshold level½hi and pulsewidth extension Tr/n are chosen to obtain a pulse 

sequence S1(t) from which the J code is obtained. The J code is then-bit binary 

sequence corresponding to the first n consecutive binary pulses of signalふ(t)in 

each interval 2T1 ;:::::; 4Tr, and is updated at a rate of 2T1 interval. 

Threshold level½hi and pulsewidth extension 3.5Tr/n are used to obtain se-

quenceふ(t)for the R code. R is the number of pulses of signal S2 (t) in a long 

78 



interval T~20Tr, and is updated at a rate of T interval. The R code can be 

thought of as a measure of the anti-bunching of the "l"s in the J code sequence, 

and was chosen simply because it is easily implemented and separates the modes 

into different classes. 

In figure 5 the ten multistable isomers of en=7,m=2 mode, labeled by mode number 

p as 6,2,p, (p = 1 ~ 10), are shown. The mode coding is summarized as follows. 
All the isomers of the e7,2 mode can be completely identified by assigning 7-bit code 

J = (11, 12, ... , み） [7]. With phase identification, for example as is possible with 
locking of the carrier to a reference clock signal, there are 128 (2りdistinguishable

modes, labeled as e7,2,J. Without phase identification these 128 modes degenerate 

into the ten isomers shown and labeled by mode number p in figure 5. The feature R 

of the stable 6,2,p modes takes four discrete values of {20, 25, 30,35}, thus ten 6,2,P 

modes are categorized into four 6,2,R sets of modes by the R code. Some further 

details about the coding are summarized in the appendix. 

4 Chaotic mode transitions 

With increase ofμ(proportional to input optical power), peaks and valleys of 

waveform of (n,2 mode oscillations of the type shown in figure 5 begin to fluctuate, 

leading to chaotic (n,2• mode oscillations involving transitions among品，2isomer 

patterns. The global character of the transitions can be seen in the transition 

matrices shown in figure 6. Oscillations near to each and every one of the (11,2 

modes appear repeatedly in a single chaotic time series. The transition matrix 

for the J code shows clearly that transitions tend to take place by change in one 

peak level at a time, as in a random walk on an n-dimensional hypercube. In this 

section we look mainly at the transitions among ln=1,m=2 modes in terms of the 

non-speci且c,feature R code, since this is the code we shall use in the adaptive mode 

selection in the next section. We consider the sequences of codes generated and 

characterize the dynamics by residence time statistics and absence time statistics 

for each R value. ・v,.,re emphasize that the use of the R code means that we are 

looking at a low dimensional projection of dynamics in which multiple modes are 

only distinguished in classes, and the statistics for mode transitions reflect averages 

over multiple modes. 
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4.1 parameter dependence of mode transitions 

Figure 7 shows waveforms and R dynamics during bifurcation from~n=7,m=2 to 

~n=7,m•=2·mode oscillations in the range 四く µ<µ1•. Increasing degrees of chaos 

accompanied by mode transitions can be observed in the R variations. 

Initially (figure 7(a)) the system is below the onset of chaos, in one of the stable 

modes with the feature value R = 30, and R remains constant at 30. Whenμ 

exceedsμ が， modetransitions appear in R dynamics, as shown in figure 7(b). With 

further increase inμaboveμ2., the change in R value became faster, as shown in 

figures 7(c)(d)• • • (f). This shows that the rate of mode transitions between isomers 

increases with increase of the degree of chaos. As can be seen from the figures 7(b)(c) 

・ ・ ・(f), in this range even a small change of order 0.1% (lμW) of input optical power 

Pi affects the mode transition dynamics. 

Nearμ2., oscillation waveform retained distinctive features of 6,2 mode (figures 

7(b)~(f)) and the values of R concentrates mainly on the values for isomers of~7,2 

mode, R E {20, 25, 30, 35}. This tendency is reflected in "visiting ratio", proportion 

of time spent at each R value. Figure 8 shows the distribution of the visiting ratios of 

R values for figure 7(f). The distribution has peaks at values of R corresponding to 

the isomers, R E {20, 25, 30, 35}. Asμincreases further, the tendency for dwelling 

near the previously stable modes decreases. For larger values ofμ, R values showed 

a tendency to spread to higher values (figures 7(g)(h)) and then, forμnearμp 

concentrate within a narrow range near the maximum value of R = 35 (figure 7(i)). 

This is because asμincreases, the chaotic degree of the oscillation increases and 

the peaks swing large and fissure into multiple peaks, increasing the probability of a 

crossing of the threshold level½hi. As the result, most of the binary pulse sequences 

generated take the'1'level, giving a concentration of R near R = 35. 

4.2 residence and absence time distributions 

The nature of chaotic mode transition can be characterized by residence time and 

absence time distributions. Examples of histograms of residence times obtained from 

a single chaotic time series are shown in figure 9. The distributions are monotonic 

decreasing with time. The distributions typically have a dominant exponential part 

with a long time tail. Due to the long time tail, care must be taken in rigorously 

defining an average or typical time. However, from a practical point of view, we 
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are working far enough above the bifurcation point so that the exponential part 

dominates and we found the averages of these distributions are useful estimates, 

and in particular are useful for the tuning of chaotic search, as explained in the next 

section. 

Escape probability Pe(μ; ~n,m,L, t) has been introduced [9] as the probability that 

an oscillation escapes the neighborhood of theらn,m,Lmode within a time t. A long 

average residence time at a mode corresponds to a small probability of escape from 

the mode. 

Figures 10 and 11 show the distributions of average residence time < TR > and 

average absence time < r A > of each R value and their dependence on parameter 

μ, respectively. 

The average residence times of R E {20, 25, 30, 35}, which at lowerμcorre-

sponded to stable modes, are long, while those of other values of R~{20, 25, 30, 35}, 

are at most one count of T~20Tr, independent ofμ. This means that oscillation 

often dwells at or near a mode for some time before making a typically quick transi-

tion to another mode in time T or less. As is shown in the figure 10, the smaller the 

μ, the longer the residence timeく戌>for RE {20, 25, 30, 35}. Below the onset of 

chaos atμ2., <研>becomes infinite for RE {20, 25, 30, 35} corresponding to the 

stable modes (figure 7 (a)). 

Absence time is the time between appearances of a code value. Figure 11 shows 

the distribution of average absence time< TA >. The absence time for feature values 

corresponding to destabilized modes, R E {20, 25, 30, 35}, is shorter than for other 

values. Though there is some dependence on R, in general the smaller the parameter 

valueμ, the longer the average absence time < TA > of RE {20, 25, 30, 35}. 

The experimental results presented here combine to give a characterization of the 

phenomenon of "chaotic itinerancy" in this system whereby oscillations move around 

in the phase space, visiting and dwelling for some time at or near around a remnant 

mode, the "ruins" of an attractor corresponding to a stable oscillation mode, and 

then moving to another. It is significant to note that the phenomenon described 

here is robust, in the sense that the statistics of the itinerancy are reproducible. In 

the next section, we use this chaotic itinerancy to search for modes in an adaptive 

mode selection scheme. The reproducibility of the itinerance statistics is essential 

to the applicability of this phenomenon for adaptive mode selection. 
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5 Adaptive bifurcation control for chaotic search 

It was confirmed from the observation of chaotic itinerancy in the previous section 

that there is a practical parameter range where intermittent chaotic mode transitions 

occur persistently among all the 6,2 mode isomers. In this parameter range the rate 

of chaotic mode transitions among 6,2 mode isomers can be simply controlled by 

parameterμ. The adaptive parametric control for the "CS" search scheme is based 

on this property of the chaotic mode transitions [9]. Namely, if the current mode is 

not satisfactory parameterμis increased aboveµ>µ2• to where isomers will appear 

one after another in chaotic itinerance, and when a satisfactory mode appears, μis 

decreased so that the satisfactory mode becomes stable. 

In this section, we describe the control scheme and how to choose and tune 

control parameters for CS based on the observations of chaotic mode transitions in 

the absence of control. 

5.1 adaptive parameter control scheme 

In the CS experiment, a mode is judged to be satisfactory or not according to its 

R code. The adaptive control of parameterμ, the LD power, is described by the 

following equation, 

Tg誓＝一μ+G(E). (2) 

Here, E = IR -R叶isa scalar feedback signal which is a measure of the mismatch 

between an externally specified feature value Re and the feature value R measured 

in the previous T interval. E is updated at the end of each T interval. T9 is the 

response time for varyingμ. G(E) is a monotonic increasing sigmoid type function 

of E, bounded below and above as胆<G(O) < G(oo)く μp.Figures 12(a) and 

(b) are the shapes of G(E) functions, respectively used for multi-mode localization 

and single-mode selection. These functions are characterized by three parameters -

△, the boundary value of E distinguishing between satisfactory and unsatisfactory 

outputs, G(O), the value ofμfor satisfactory output, and G(oo), the value ofμfor 

unsatisfactory output. 

For the control scheme, the parameters of function G(E) and the value of T9 are 

the key factors which determine the efficiency of CS, as quantified for example by 

the search time. Next we show how these parameters can be chosen on the basis of 
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the experimental data for the chaotic mode transitions, introduced in the previous 

section, figures 7, 10 and 11. 

For multi-mode localization the G(E) function shown in figure 12(a)) is used. 

The minimum value G(O) is set slightly above the onset of mode transitions of R 

dynamicsμ2 •. The maximum level from G(6) to G(oo) is set at a saturation level 

μ8 where R values for all the isomers of 6,2 mode, R E {20, 25, 30, 35}, appear as 

evenly and as often as possible -for example the valueμmedium in figures 10 and 11 

corresponding to the dynamics in figure 7(£). 

In contrast, for single-mode selection the G(E) function in figure 12(b) is used. 

The minimum value G(O) is set at a value, μ。,below the onset of chaotic mode 

transition. The value of G(△）， where△ = 5 is th e minimum difference m R values 

between different t7,2 modes, is set above the onset of the mode transitions atμ2 •. 

The level from G (6) to G (oo) is set at the same saturation levelμs as for the muli-

mode localization case. 

Using residence time distribution data, the response time T9 can be chosen so 

that parametric control of equation (2) reacts to dwellings near modes rather than to 

transients during transitions between modes. As is shown in figure 10, the residence 

time at or near isomers, RE {20, 25, 30, 35}, is several T (T~20~ ふwhilethat of 

other values of R is about T, independent ofμ. From these observations we first set 

T9 at about T. We check the dependence of search performance on T9 later. 

5.2 multi-mode localization test 

First, we do a rough demonstration of the CS parametric control of equation (2) 

using the G(E) function of figure 12(a) where the minimum is slightly aboveμ か

the onset of mode transitions. The effect of the control of equation (2) is seen in 

figure 13. 

When there is no control, the visiting ratio is roughly independent of J code 

value, as shown in figure 13(a). When the parametric control is activated, there is 

a localization of oscillation in modes with the target feature value R = Re = 30, as 

seen in the increase of the visiting ratios in figure 13(b). 

This roughly confirms the validity of the control scheme defined by equation 

(2). The rate of escape from a mode is m訟 imumwhen there is a large mismatch E 

between R and Re. Conversely, when the mismatch Eis small, the mode escape rates 
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decrease, the typical residence times are longer, and this results in a localization of 

oscillations in modes where E is small. 

5.3 single-mode selection test 

When the G(E) function of figure 12(b) was employed with minimum value set 

below the onset of mode transitions, eventually the oscillations converge to a single 

mode, one of the modes whose feature value is equal to the target value R = R汽

Figure 14 shows an example of search and selection of mode with R =Re= 25. 

The adaptive parametric control is activated at the time marked with (a). The 

oscillation mode settles to an isomer of 6 2 R=25 mode at the point marked with (c). 

Figures 15(a),(b) and (c) show expansions of the time series at the points marked 

with (a),(b) and (c) in figure 14. Similar behavior was observed for the other choices 

of target feature value in the set RE {20, 25, 30, 35}. 

Switching of target value results in a transient search period during which the 

system bifurcates in and out of chaotic itinerancy until eventually a mode with the 

target value is trapped. Repeatedly changing the target feature value, we observed 

that any of the multiple J codes corresponding to each target feature value had a 

chance of being selected. 

Typically there is bifurcation in and out of chaos a number of times before 

convergence to a stable mode. This is due to the fact that the external test is 

an arbitrary one, in the sense that outputs with the target feature value are not 

necessarily in the basin of attraction of an oscillation with the target feature value 

whenμ5 is reduced. This can be thought of as a partition mismatch -a mismatch 

between the internal partition determined by the mode basin structure and the 

external partition of the space of waveforms defined by the external responses to 

the output. We expect the e泣stenceof such a mismatch to be common for complex 

adaptive devices in general, and this is why we chose a non-specific feature code as 

th e mode select10n criterion [9]. 

6 Repeated CS and search time statistics 

Since chaotic dynamics are used in the search for an appropriate mode, charac-

teristics of the search, such as search time, are stochastic quantities, and require 
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statistical description. We used the following "repeated CS method" to make a 

statistical evaluation of the time required for single-mode selection. 

First, we interrupt the control feedback in such a way that E, and henceμ, 

is large and constant for a time, called the "ERASE interval", during which the 

oscillation is chaotic and, typically, the memory of the mode selected in the previous 

trial is lost. Then the feedback control is reconnected and search allowed to take 

place for a time, called the "SEARCH interval". We repeat this procedure of the 

combination of ERASE interval and SEARCH interval periodically by using a square 

wave interruption signal. 

Figure 16 shows an example of the repeated CS for Re = 25 when T9 is set 

at 0.865T (~17.3Tr), The time series of error E = IR -Rel and feature Rare 

indicated. The period of repeated CS is lOOmsec, 50msec for each ERASE and 

SEARCH interval. An ERASE interval of length 50msec (~9615Tr~481T), being 

much longer than the average residence and absence times, was usually long enough 

to erase the memory of the mode selected in the previous SEARCH interval. Note 

that the chaos in the ERASE intervals is that ofμmedium in figures 10 and 11. CS 

is judged to succeed in a SEARCH interval if E settles to zero within the SEARCH 

interval. In this particular example of repeated CS, CS time for 90% success rate 

was estimated at less than 50msec. 

Figure 17 shows the dependence of the CS time for 90% success rate on T9. Too 

large T9 makes the response of the adaptive parametric control slow and oscillations 

tend to escape from the mode neighborhoods beforeμdecreases enough to trap them 

there. On the other hand, when T9 is too small, the adaptive parametric control 

responds to fluctuations of R during transitions between 6,2 modes. The valley in 

the times shown in figure 17, shows the existence of an optimum value of T9 in the 

range between 0.3T and T. The optimum value of T9 is less than the minimum 

residence time in the R coding scheme. This reflects the fact that the typical time 

for transitions between neighborhoods of 6,2 modes is less than T. 

Figure 18 shows success in finding a mode with target feature value R = 25 as a 
function of search time. The data was obtained from about 300 periods of repeated 

CS. Curve (a) shows the probability of converging to a mode with the target fea-

ture value under CS control of equation (2). For comparison, curves (b)・ ・ ・(e) show 

statistics for unconstrained (ie. free-running, with control loop open) chaotic itiner-
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ancy atμs, namely, the probability of having had a residence time of length (b) lT 

(T~20'.fiふ (c) 5T, (d) lOT, (e) 20T. All the curves approach 100% asymptotically, 

although there is a fall off in rate of increase in success which corresponds to the 

long-time tail seen in the residence and absence time distributions. 

That curve (a) is above curves (d) and (e) shows that trapping with the adaptive 

control is effective. Curve (b) is the upper bound on search performance. It is the 

performance expected if a mode with the target feature value is trapped as soon as 

the target feature value is encountered in the itinerancy. Typically this does not 

happen due to the partition mismatch described above -outputs with the target 

feature value are not necessarily in the basin of attraction of an oscillation with the 

target feature value when parameterμis reduced. 

Tuning of the CS parameters for optimum performance corresponds to choosing 

the value ofμs to maximize the rate of mode transitions as seen in the curves (b) 

to (e), and choosing T9 to bring curve (a) as close as possible to curve (b). 

With optimal tuning, we found the time expected for 90% success in mode se-

lection was around 350T (36msec), roughly an order of magnitude larger than the 

lower limit determined by the dynamics of the unconstrained chaos, the average 

absence time of a target mode atμ5 (see figure 11). 

A number of factors affect the optimal value. Most significant factor is the choice 

of test criterion, which determines, for example, the mismatch between E values and 

mode basin structure. Another is environmental noise. Little is know yet about the 

effect of noise on chaotic itinerancy among multiple modes. As seen from the long 

time tails in the residence and absence time distributions, occasionally the search 

dynamics get caught in some places for exceptionally long times. The presence of 

some system noise could help escape from such traps. On the other hand, too much 

noise could interfere with the chaotic itinerancy if the chaotic itinerancy is taking 

place through narrow dynamical passageways in the phase space. This is a topic for 

more work in the future. 

7 Conclusion 

In this paper, we have experimentally tested a method [9] which makes positive use 

of chaos for adaptive selection of modes in a nonlinear ring resonator. 

In the experiment reported in this paper,、¥etested that the method works in 
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a practical physical system -an electro-optic circuit useful for repetitive generation 

of binary optical pulse sequences [7]. The multiple modes correspond to generation 

of different multi-bit pulse sequences. A scalar signal indicating the results of an 

external test of generated pulse sequences is fedback to determine power of the LD 

source of rn W light. 

Th ff t・ e e ec 1veness of the method was seen m the statistics of mode search time -

the time for convergence to a satisfactory mode. In the particular case studied, we 

found the likelihood of search success seemed to approach asymptotically with time 

to 100%, with 90% success achievable within several thousands of mode periods. 

We looked at the dependence of search time on control parameters, and on the 

relation between search time and statistics of mode transitions in unconstrained 

chaotic itinerancy. We showed simple guidelines for tuning for optimum search 

performance, based on the statistics for unconstrained chaos, such as residence time 

and absence time distributions. In particular, we showed that there is an optimum 

value of laser power above onset of chaos which corresponds to a trade-off between 

convergence to and divergence from neighborhoods of candidate modes. There is also 

an optimum value of rate of response of change of laser power, which corresponds 

to a trade-off between waiting for attraction into the neighborhood of a satisfactory 

mode, and trapping the oscillation before it escapes the neighborhood. 

The particular values for optimum performance are expected to depend on the 

type of mode classification effected by the external test. For example, in the non-

generic case where the classification of waveform in terms of external test results 

corresponds exactly to the basins of attraction of the modes it would not be necessary 

to wait for the chaotic itinerancy orbit to visit the close vicinity of a mode. However, 

usually there will be a mismatch between the external mode classification and the 

internal mode basin structure, and it may be necessary to do trial and error many 

times until a target mode is trapped, resulting in search time which is long compared 

with mode period. 

From the device application point of view, the experiment showed that the 

method is feasible in an opto-electronic circuit if the laser power is stable to or-

der 0.1 %. It remains to be seen whether design of nonlinearities in the circuit could 

increase the tolerance to laser power fluctuations, for example by increasing the 

separation between rnultistable regime and the optimal chaotic itinerancy regime. 
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Appendix 

Here we summarize the coding ofふ，m=2mode oscillations. 

Let us sample peak levels of oscillation V(t) to project the oscillation on N 

dimensional vector sequenceい(t)at discrete times tk as, 

V汽tk)

tk 

T 

{V(tk -(N -l)T), V(tk -(N -2)T), ・ ・ ・, V(tk -T), V(tk)}, (3) 

t。+kびT, (k = 0,1,2, .. ・), 
Ti/n~2Tr/n, 

where t。isa sampling phase andび isa constant integer number. An N dimensional 
binary vector sequence J N伯） is obtained from equation (3) by discriminating with 

respect to a threshold level Vih as 

JN (tk) = {X(tk -(N -l)r), X(tk -(N -2)--r), ・ ・ ・, 入:(tk-r),X(tk)}, (4) 

where X(t) = 1 for V(t) 2: 協 andX(t) = 0 for V(t) <狐

Now we can choose t。and屈 soas to obtain a binary sequence corresponding 
to sequence of high and low peak levels of stable ln,m=Z modes. t。isadjusted so as 
to sample peaks, and屈 isset between high and low peak levels. 

Now for the品，m=Zmodes we shall use the facts that, 

JN (tk +Ti)= JN (t砂， (5) 

and 

JN (tk + 2T1) = J汀t砂， (6) 

where the bar indicates an inverted binary sequence. Hence, we characterize a mode 

by a binary vector code for the waveform of length T1~2Tr, by taking N = n. 

Replacing X (t) with binary labels Ji = 0 or 1, equation (4) is re-expressed as the 

code 

J = (11) 12) ...) Jふ (7) 

The J code for en,m=2 modes is followed by the inverted code J in the next T1~2Tr 

interval, and the code sequence of J and J repeats with period 2T1~4匹 [7]. Taking 

び=2n results in a constant J output when in a stable en,m=2 mode. 

As for the feature code, the R code of en,m=2 modes takes integer values from 

5 int[n/2] to 5n, where int[n/2] means round up integer value of n/2. This is easily 
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determined from the width of secondary pulses, 3.5Tr/n, and the count interval, 

10T1~20Tr. As the count interval is a multiple of the period, 2T1, of the stable 

ふ，m=2modes, the output sequence of R values will be constant for these modes. 

The coding processes described here mainly consist of thresholding, pulsewidth 

extension and pulse count. In the experiment we employed electronic circuits for 

the coding. However, it is also possible to execute these processes by using simple 

optical systems; an optical thresholder for the former, and an optical medium with 

long relaxation characteristic for the latter two which are intrinsically integration 

processes. 
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Figure 1: Experimental setup. LD, laser diode (wavelength 入 ~1.3µm, output 

power Po ~ lm W; E-0 modulator, Ericsson PGS6211 LiNb03 waveguide intensity 
modulator (half wave voltage V1r~6V); optical fiber, 1.3μm single mode optical 
fiber (length 1000m); PD, pin photo diode; LPF, low pass filter (response time 

Tm~42nsec); AMP, video amplifier (-3dB band width~150MHz). 

Figure 2: Schematic bifurcation diagrams of oscillation level and oscillation mode. 

Examples of 7-th harmonic oscillation waveforms are shown for m = 1, m = 2 and 
m* = 2* bifurcation orders. 

Figure 3: Schematic diagram of coding circuits. The oscillation signal in the ring 

resonator, V'(t), proportional to V(t), is fed into the thresholders of the coding 

circuits. The threshold voltage of the thresholder, ½hi, is set at a level midway 
between high and low peak levels of ln,2 mode oscillation to generate binary pulse 

signal X(t) corresponding to binary peak levels. The threshold voltage of the other, 

犀， isset at a level midway between peak and valley levels of the oscillation to 

obtain a clock signal (CLK) which has the same period 2Tr/n as then-th harmonic 

carrier oscillation. The pulsewidth extenders are monomulti-,ribrators triggered by 

the rise edge of X(t), generating binary pulse signals S1(t) and品(t)of constant 
pulsewidth Tr/n and 3.5Tr/n, respectively. The temporal patterns ofふ(t)pulse 
sequence of length 2冗 correspondsto J code. The J code is latched and updated 

at a rate of 2T1~4Tr interval. The counter and latch generate and update a feature 
value R by counting up the pulses of S2(t) sequence in each T~20Tr interval. The 
differential circuit generates error signal E = IR-Rel, where Re is a specified target 
value. The error signal E is D / A-converted and is used to generate feedback signal 

G(E). The timing signals of period 2T1 and Tare generated by 1/(2n) and 1/(lOn) 

division of the clock signal CLK, respectively. 

Figure 4: Examples of oscillating optical intensity output signal and corresponding 

pulse trains. (a) periodicl7,2 mode and (b) chaotic 6,2. mode. Signals indicated 
by V1(t), X(t), S1(t) and S2(t) are observed at the points indicated in the coding 

circuits of figure 3. A sequence of 7 pulses in the S1(t) signal corresponds to the 

7-bit binary J coding of the pattern of modulation of oscillation peaks. The number 

of pulses of the S2(t) signal in T~20Tr interval is the feature value R. 

Figure 5: Ten different modes, "isomers", of ln=7,m=2 mode. The upper trace V'(t) 
shows the oscillating optical intensity signal output from the resonator. The lower 

traces S1(t) and S2(t) show the binary pulse sequences obtained from the output 

signal by threshold operation. A sequence of 7 pulses in the S1(t) signal corresponds 

to the 7-bit binary J coding of the pattern of modulation of oscillation peaks. 

Without phase identification, cyclic pulse trains, J and J degenerate into ten classes, 
which are labeled with a mode number p. These are classified further into four classes 

according to feature value, R E {20, 25, 30, 35}, defined as the number of pulses of 

theふ(t)signal in T~20Tr interval. 
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Figure 6: Typical transition matrices for code sequences obtained from a single 

chaotic time series of en=7,m=2 mode, (a) J code and (b) R code. Transition ratio 
is relative number of transitions, that is, the number of times that a transition 

occurs divided by total number of transitions. The length of the time series is 

about 8,000,000匹 (~40sec). Diagonal terms are omitted. Diagonal terms are large 
because of long residence time. 

Figure 7: Increasing degree of chaos of 7-th harmonic oscillation observed in wave-

forms and R dynamics. (a) Below the onset of chaos, oscillation waveforms are 

stable and the feature value R remains constant at 30. Feature values for stable 

modes are {20,25,30,35}. (b) With increase of parameterμ, oscillation becomes 
unstable and mode transition occurs. Whenμexceedsμ2., mode transitions are 

seen in the R dynamics. (c) -(i) With further increase ofμ, aboveμ,2., the rate of 

mode transitions increases. The levels of input optical power Pi are (a)l.065mW, 
(b)l.097mW, (c)l.lOOmW, (d)l.102mW, (e)l.104mW, (f)l.106mW, (g)l.lllmW, 
(h)l.113mW and (i)l.125mW, respectively. 

Figure 8: Distribution of visiting ratio of R for the case of figure 

7(f). 

Figure 9: Residence time distributions and their dependence on pump parameter 
μ. A histogram of the number of instances in a single chaotic sequence that a code 

value R = 25 persisted for a time TR・Time is in units of T = lOT1 ::::: ⑳ Tr. Values 
ofμ, small, medium and large, correspond to the values for figures 7(b),(f) and (h), 

respectively. 

Figure 10: Average residence timesく店>for the different classes of oscillation. 
Oscillations are classified by feature value R. Values ofμ, small, medium and large, 

correspond to the values for figures 7(b),(f) and (h), respectively. Residence times 

are longer for feature values RE {20, 25, 30, 35} corresponding to the 6,2 oscillation 
modes. The smaller the parameter valueμ, the longer the average residence time 

＜咄>for RE {20; 25, 30, 35}. 

Figure 11: Average absence time < TA > for the different classes of oscillations. 
Oscillations are classified by feature value R. Values ofμ, small, medium and 

large, correspond to values for figure 7(b),(f) and (h), respectively. Feature values 

corresponding to the知 oscillationmodes, RE {20, 25, 30, 35}, appear more often 
than other values. The smaller the parameter valueμ, the longer the average absence 

time< TA> of RE {20,25,30,35}. 
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Figure 12: Shape of control function G(E) used to feedback the error signal E of 
the output state to the laser power, according to equation (2). Two cases are shown; 

(a) for multi-mode localization G(O), the lowest value of G(E), is set just above the 
value for onset of chaotic transitions, μ2., (b) when convergence to a stable mode is 

required, single-mode selection, G (0) is set belowμ2 •. 

Figure 13: The effect of adaptive parametric control of equation (2). (a)Distribution 

of visiting ratio of J code whenμ=μs without control. (b)Localization of chaos in 

states with low E = IR-R門whenthe adaptive parametric control is used. Re = 30 
and the curve (a) of figure 12 was employed for control function. The localization 

is seen as the increase of the visiting ratio of modes, specified here by J code, with 

feature value R = 30. 

Figure 14: Example of CS time series of V(t) and E. The target is an isomer of f.7,2 
mode with R = 25. 

Figure 15: Expanded CS time series for points marked with (a), (b) and (c) in figure 

14. 

Figure 16: Example of repeated chaotic switching. Re = 25 and T9 = 0.865T(~ 
17.3冗）. In each ERASE interval error E is forcibly held at a large value, E = 25, 
whereμtakes the value ofμs, so the memory of the initial state is lost, and search can 

commence from a random point on the chaotic attractor. In each SEARCH interval 
chaotic search takes place under the adaptive parametric control of equation (2). 

The repeat cycle of this example is lOHz, corresponding to a search time cutoff of 

50msec. Chaotic search is seen to be successful if E converges to 0、mthinthe cutoff 
time. 

Figure 17: Dependence of CS time for 90% success rate on control response time 

T g・ 

Figure 18: Success rate in finding a target mode as a function of elapsed time. Curve 

(a) shows the probability of converging to the target mode 6,2,R=25 under CS control 

of equation (2) with乃=0.865T(~l7.3Tr) and G(E) as in figure 12(b). Curves 
(b) ・• •(e) show the probability of finding sequences of the target value R = 25 for 
unconstrained chaos without control (control loop open) atμ=μ8. Respectively, 

the probability finding a sequence (residence time) of length (b) lT (T~20Tr), (c) 
5T, (d) lOT, (e) 20T. Note, probability is defined as the relative number of observed 

events. 
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Figure 1: Experimental setup. LD, laser diode (wavelength 入 ~l.3µm, output 
power Po~ lmW; E-0 modulator, Ericsson PGS6211 LiNb03 waveguide intensity 
modulator (half wave voltage V-rr~6V); optical fiber, l.3μm single mode optical 
fiber (length 1000m); PD, pin photo diode; LPF, low pass filter (response time 

Tm~42nsec); AMP, video amplifier (-3dB band width~150MHz). 
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Figure 3: Schematic diagram of coding circuits. The oscillation signal in the ring 
resonator, V1(t), proportional to V(t), is fed into the thresholders of the coding 

circuits. The threshold voltage of the thresholder, ½hi, is set at a level midway 
between high and low peak levels of~n,2 mode oscillation to generate binary pulse 
signal X(t) corresponding to binary peak levels. The threshold voltage of the other, 
½h2, is set at a level midway between peak and valley levels of the oscillation to 
obtain a clock signal (CLK) which has the same period 2Tr/n as then-th harmonic 
carrier oscillation. The pulsewidth extenders are monomulti-vibrators triggered by 

the rise edge of X(t), generating binary pulse signalsふ(t)and S2(t) of constant 
pulsewidth Tr/n and 3.5Tr/n, respectively. The temporal patterns of S1(t) pulse 
sequence of length 2匹 correspondsto J code. The J code is latched and updated 
at a rate of 2T1~4匹 interval. The counter and latch generate and update a feature 
value R by counting up the pulses of品(t)sequence in each T~20Tr interval. The 
differential circuit generates error signal E = IR-R印whereRe is a specified target 
value. The error signal E is D / A-converted and is used to generate feedback signal 

G(E). The timing signals of period 2T1 and Tare generated by 1/(2n) and 1/(lOn) 
division of the clock signal CLK, respectively. 
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Figure 4: Examples of oscillating optical intensity output signal and corresponding 

pulse trains. (a) periodic6,2 mode and (b) chaotic 6,2. mode. Signals indicated 

by V'(t), X(t), S1(t) and S2(t) are observed at the points indicated in the coding 

circuits of figure 3. A sequence of 7 pulses in the S1(t) signal corresponds to the 
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Figure 5: Ten different modes, "isomers", of丘n=7,m=2mode. The upper trace V'(t) 

shows the oscillating optical intensity signal output from the resonator. The lower 

traces名(t)and S2(t) show the binary pulse sequences obtained from the output 
signal by threshold operation. A sequence of 7 pulses in theふ(t)signal corresponds 
to the 7-bit binary J coding of the pattern of modulation of oscillation peaks. 

Without phase identification, cyclic pulse trains, J and'J degenerate into ten classes, 

which are labeled with a mode number p. These are classified further into four classes 

according to feature value, R E {20, 25, 30, 35}, defined as the number of pulses of 

theふ(t)signal in T~20Tr interval. 
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Figure 7: Increasing degree o f chaos of 7-th harmonic oscillation observed in wave-

forms and R dynamics. (a) Below the onset of chaos, oscillation waveforms are 

stable and the feature value R remruns constan t at 30. Feature values for stable 

modes are {20,25,30,35}. (b) With increase of parameterμ, oscillation_~ecornes 
unstable and mode transition occurs. Whenµexceedsµ2•, mode trans1t10ns are 
seen in the R dynamics. (c) -(i) With further increase ofµaboveµ2•, the rate of 
mode transitions increases. The levels of input optical power Pi are (a)l.065mW, 

(b)l.097mW, (c)l.lOOmW, (d)l.102mW, (e)l.104m.W, (f)l.106mW, (g)l.lllmW, 

(h)l.113m Wand (i)l.125rn W, respectively. 
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The repeat cycle of this example is lOHz, corresponding to a search time cutoff of 

50msec. Chaotic search is seen to be successful if E converges to O within the cutoff 

time. 
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Chapter V 

Digital Implementation of A Nonlinear Delayed-Feedback 

System 

Abstract 

A digital electronic system which implements a certain class of nonlinear delayed 

feedback models and reproduces the nonlinear oscillation phenomena in real time 

was designed and constructed. The purpose of the system is two-fold: to act as 

a simulator and to act as a prototype design for a functional digital device using 

complicated nonlinear oscillations. The system has an architecture which simulates 

the signal flow in a nonlinear delayed feedback system with fixed-point arithmetic. 

We describe the design 

principles aimed at maintaining the simplicity of the circuit structure and 

the variety of dynamics generated. Quantization effects are discussed. In par-

ticular, it is shown how spurious quantization effects peculiar to systems can be 

estimated and avoided. 
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1 Introduction 

Many types of nonlinear oscillation systems are described by nonlinear delayed feed-

back models. Typical systems described by delayed nonlinear feedback models are 

nonlinear optical cavities [1] and musical instruments [2]. Despite their simple struc-

ture, such systems can exhibit very complicated oscillation phenomena, including 

multistability of oscillation modes and chaotic oscillation. 

The aim of the current work was to build a digital electronic system capable 

of generating dynamics according to the model equations governing a certain class 

of nonlinear delayed feedback systems. The motivation was two-fold: (1) to use 

the system as a versatile, real-time simulator for systematic study of dynamics of 

nonlinear delayed-feedback systems, and (2) to test the applicability of such a digital 

electronic system itself as a signal generator. 

For speed and simplicity of structure, we chose a design in which the system 

mimics the signal flow in a delayed feedback system, rather than solves the equation 

describing the dynamics of the model. When designing hardware for generating 

nonlinear dynamics, it is important to determine to what degree dynamics should 

be reproducible, because nonlinear dynamics can often contain infinite complexity. 

In the present work, considerations of the particular dynamics observed in computer 

simulations and analog system experiments whichヽ'Tvewanted to be able to generate 

in the digital system were used to determine the scale and architecture of the system. 

The designed system uses 16-bit word-length and fixed-point arithmetic. The effects 

of quantization in fixed-point arithmetic systems, particularly spurious hysteresis 

behavior, is theoretically and experimentally investigated. 

2 Configuration of the System 

The general conceptual structure of the nonlinear delayed feedback system is repre-

sented as a loop with linear and nonlinear parts characterized by an impulse-response 

function hA and a nonlinear function g, respectively, and an overall round-trip time 

of tr as x(t) =い(t)* gに(t))-t where * denotes convolut10n. T l 

The discrete-time equation for digital systems is expressed as 

x(n) = hD(n) * g(x(n -n1,)) = hD(n) * {μf(x(n -n1,))}, (1) 
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where hD(n) means the impulse response of a discrete-time system corresponding to 

加(t)and ntr is a delay-step number corresponding to the delay time tr. Here, we 

explicitly express the loop gainμwhich can be used as a control parameter. Four 

circuit blocks for the basic functions,μ, hD, ntr, and f of equation (1) and an extra 

block inserted for testing and observing are connected in a loop with data-bus, as 

shown in figure 1. The dynamics of the implemented model are generated when the 

digital data circulates around the loop, driven by the common clock signal. For the 

simplicity of the configuration we employed fixed-point binary arithmetic operation 

system. We chose the word-length to be 16 bits. 

3 Implementation of nonlinear ring cavity model 

To examine the performance of the system, we implemented the nonlinear ring cavity 

model[l] which is modeled in the form of equation (1) as, 

x(t) = hA * {μf(x(t -tr))}, (2) 

{ 0 ,t<O 
加(t) = tm 1 exp(-口t), t~0 (3) 

f(x) = -1 {1-sin(2立）｝．
2 

(4) 

The important factors to determine the achievable dynamics are number represen-

tation and maximum effective delay. Low noise level and large effective delay are 

needed for large variety of oscillation modes excited in the system. To be specific, we 

consider, as a reference, the performance of the E-0 hybrid nonlinear ring resonator 

[3]. 

For positive values ofμ, the dynamics of the model takes positive values. Hence, 

we employ the straight-binary (SB) representation for the 16-bit binary data. The 

resolution of the 16-bit word-length fixed-point binary arithmetic operation system, 

that is the order of the quantization noise, is 2—16~1.53 x 10-5, which is adequate to 

distinguish order m = 3 bifurcations[3][4]. The effective delay for the digital system 

can be defined as n1)ntm, where we define the response-step number n1m as the 

number of sampling data steps representing the most abrupt variation of the system 

dynamics. The effective delay from 0.6 to 20.5.3 could be realized when n1m = 10, 

and from 1.2 up to 410.6 could be achieved when ntm = 5. 

Main tasks of the implementation of the model are writing data of equation (4) 
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in the lookup memory table and designing a digital filter for equation (3). These 

are shown in figure 2. 

4 Quantization effects 

The bifurcation of oscillation modes is controlled by varying feedback loop gainμ 

up and down. Quantization can affect the bifurcation points. We show how this 

effects can be easily estimated, so spurious quantization effects can be avoided. 

First we discuss the expected quantization effects of the system without the 

digital filter. We consider a system described by the following discrete map, 

Xn+l = g(xn, μ). (5) 

Figure 3(a) shows the calculated bifurcation diagram of the discrete map for the 

model implemented in the system. The system typically stays in or near steady 

state even after the parameterμis increased past the bifurcation point. Figure 3(b) 

shows points trapped in a domain near the first bifurcation point. 

A point x1 =が＋伝 nearthe fixed-point x* = g(x*,μ) is mapped onto a point 

四＝が十 8x2as 

が＋年=g(が＋伝，µ)~ が+{鷹(x*,μ)}玩． (6) 

Near the true fixed point, successive iterations map to alternate sides of the true 

fixed point (8x18x2 < 0), but the distance from the fixed point doesn't continue to 

grow, if the following condition is satisfied. 

118叫― l8x2II<△ /2, (7) 

where△ is the quantization step and we suppose that the quantization error of the 

mapping is clue to rounding. This condition gives an estimate for a domain of points 

which are trapped near the fixed point as 

18叫＜
△ /2 
11-I塁(x*,μ)¥¥. (8) 

The dashed line in figure 3(b) shows the boundary of the domain specified by in-

equality (8). Points trapped in the domain are not necessarily fixed points. However, 

the system can appear to be stable in the domain, because the width of the domain 
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is much smaller than the dynamic range of the map. We call this domain near the 

fixed point where inequality (8) is satisfied the "quasi-stable" region. 

Next, we take a residual error r of order叩△ in the digital filter into account 

[5]. With the filter and delay included, and assuming the delay time is much longer 

than the relaxation time of the filter, the fixed point of the loop dynamics is given 

by 

x* = g(x*,μ) + r. (9) 

This leads to the following inequality, corresponding to inequality (8), 

Io叫＜ △ /2+ irl 
11―鸞(x*,μ)¥I.

(10) 

We can simply estimate the expected shift of the point of onset of oscillation due 

to quantization effects under the condition of Tμ ≫ntrT≫ 叩 T,where Tμand 

T are the time interval for varyingμand the period of the clock signal driving the 

16-bit data in the loop, respectively. 

Assume the system is in a stationary state xT = g(xT, μi) andμis then increased 

fromμ; toμ=μ; 十△μ. A step signal△ x is generated as△ X = g(xf, μi +△ μ) -

g(xr,μ;)'.:::'.{続(xi'叫｝△μ. If the increment△ μis so small that the value of x after 
μincreased, x =叫＋△x, remains within the quasi-stable region atμ=佑＋△μ, 

oscillation will not grow. This condition, J△叫く 2J8ェJ,gives the following relation 

between△ μandμi as 

△μ く△+ 21rl { og ―1 

11 -I紐(xi□)II 加国，μ;)}' (11) 

with the approximation that Dx ~ Dx;, where如 isthe half width of the quasi-stable 

region atμ;. 

According to inequality (11), ifμis increased in small increments△ μ, the onset 

of oscillation will not occur at the true bifurcation point, but rather will occur at a 

larger value ofμ. On the other hand, if the system is initially in a large amplitude 

oscillation state (i.e., outside the quasi-stable region) at a parameter valueμabove 

the true bifurcation point, and parameterμis decreased, the system bifurcates back 

at the true bifurcation point. Thus, quantization-induced hysteresis is expected to 

be seen in the dependence of state on the parameterμ. The above discussion can 

be extended to apply to every bifurcation point. 
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5 Oscillation phenomena 

In the experiment, we set ntr = 400 to fix the effective delay at ntr/ntm = 40, and 

compare the reproduced dynamics in the system with the results of Ikeda et al. 

[6]. We drove the system by a clock signal of period T = 20μsec (三50kHz),and 

observed the D / A-converted signal in real time. The value ofμwas set from port 

(d) in figure 1 by PC with the 16-bit integer data U ranging from Oto 65535, where 

μrelated to U asμ= U /65536. U was increased or decreased m mcrements of 

. The time between mcrements of U was about 50 △ U = 100 (△ μ ~1.53 X 10-3) 

msec, much larger than the round-trip delay time ntrT=8msec and the response-time 

ntmT=0.2msec. 

First we implemented the IIR digital filter of type (I). Figure 4 shows examples 

of the oscillations generated in the system. Figure 5 shows the schematic diagram of 

the oscillation mode transitions. Except for the quantization-induced hysteresis of 

bifurcation points, the dynamics generated in the system were consistent with those 

obtained by Ikeda et al.[6]. The extent of the quantization-induced hysteresis was 

consistent with the simple rough analysis at the previous section. In figure 5, the 

points where the bifurcations and the transitions occurred are indicated by upward 

triangles for increasingμand downward triangles for decreasingμ. The smaller the 

increment△ μ, the larger the hysteresis. In the case of the IIR digital filter of type 

(II), similar results were obtained, except for the widths of the spurious hysteresis. 

Figure 6 illustrates the relation between the increasing parameter step size△U 

（三△μ) and the value of parameter U (三叫 wherebifurcation (oscillation) occurs, 

according to inequality (11). Dispersion of the experimental results is due to the 

dispersion of the initial states of the system in multiple trials. Larger dispersion of 

the experimental result of the IIR digital filter of type (I) is expected to result from 

the larger dispersion of r value due to its somewhat more complex filter structure. 

6 Conclusion 

We constructed a digital nonlinear delayed-feedback system which reproduces com-

plicated nonlinear dynamics in real time. With the digital implementation, it is 

possible to design the degree of complexity of reproduced dynamics. We established 

guidelines to determine the architecture and scale of the system, appropriate to 
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reproduce the nonlinear dynamics required. 

In a simulation of the oscillation phenomena of a nonlinear ring cavity model[6], 

we confirmed that bifurcations up to order m=3 can be distinguished as designed 

and the behavior of oscillation modes is consistent with that of the original model, 

except for the quantization-induced hysteresis of bifurcation points. The theoretical 

estimation of the hysteresis was in good agreement with the experimental results. 

In the parameter range for chaotic regime, we observed features peculiar to chaos, 

randomness in waveform, dense orbits in phase portrait, continuous spectrum and 

intermittent mode transitions. A rigorous study of the degree of fidelity of the 

chaotic oscillations is a topic for further future study. 

The implementation of nonlinear delayed-feedback models in electronic devices 

is of interest from the point of view of applications in complex signal generation, 

ranging from electronic music [2] to dynamical memory [7]. Digital devices can have 

advantageous over analog devices [8](9] due to the flexibility in changing parameters 

and the stability of operation. The simple architecture of the system proposed 

here makes it suitable for implementation as an IC chip which utilizes complicated 

dynamics. 
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Figure 1: Block diagram of the digital delayed-feedback system and experimental 

setup. The nonlinear function f is implemented in a lookup memory table. The 

lookup memory table has a configuration of 216 words x 16 bits (1 word三 16bits). 

The gainμis realized using a 16-bit x 16-bit parallel multiplier (Analog Devices 

ADSP-1016AJN). The impulse-response hv(n) is implemented in a digital signal 

processor (Texas Instruments TMS320C25). The variable delay-line is realized using 
digital memory with a configuration of 204 7 steps x 16 bits. A delay-step number 

ntr ranging from 6 to 2053 is obtained with the delay-line and the dead delay in each 

circuit block. These blocks and an extra block inserted for testing and observing are 

connected in a loop with 16-bit data-bus. A personal computer (PC) is connected 

to the blocks through a common control-bus for online control of parameters. 

Figure 2: Implementation of nonlinear function f and impulse response hn. 

(a) Data for the nonlinear function f written in the memory table. F(A) 

nint [苧{1 -sin(21r論）}) , where nint[x] means the rounding of x. A and F 
take 16-bit SB integer numbers, respectively corresponding to the 16-bit address of 
the memory table and the data stored there. 

(b) Block diagrams of IIR digital filters realizing the relaxation characteristic of 

equation (3). Filter coefficients are calculated for response-step number n伍=10. 

(type I) IIR filter, designed by bilinear transformation, with the impulse response, 

hn(n) = b。afu(n)+ b1af―1u(n -1), where u(n) = 1 for n :2: 0 and u(n) = 0 
for n < 0. The coefficients are a1 = (2ntm -l)/(2ntm + 1)1叫=10~0.904755,
b。=b1 = l/(2ntm + 1), C。=l/c1 = 2/(2ntm + 1)1叫=10~0.095245 and 
c1b。=c1b1 = 0.5. (type II) IIR filter, designed by approximating the derivative with 
the backward difference, with impulse response, hn(n) = banu(n). The coefficients 

are a= ntm/(l + ntm)I叫=lO~0.90909 and b = 1/(1 +叫） 1叫=10~0.09091.

Figure 3: (a) Bifurcation diagram of quantized map of Xn+i = g(xn, μ), g(x, μ) = 
μf(x) =~{1 -sin(21rx)}. Variable x and function g take 65536 (216) quantized 
values. (b) Bifurcation diagram of the quantized map magnified around the first 

bifurcation point, whereμ= U /65536 and x = X/65536. The dashed line is the 
boundary of the quasi-stable region obtained from inequality (8). 

Figure 4: Waveforms generated by the digital system and corresponding phase space 

trajectories, when implementing the model of equations (2)(3) and (4). These were 

drawn with the 16-bit digital data obtained from port (b) in figure 1. Each of these 

shows (n,m) mode= (a) (1,1) atμ= 0.534, (b) (1,3) atμ= 0.691, (c) (7,3) just 

above m=2 atμ= 0.763, and (d) chaos atμ= 0.916, respectively. (Oscillation 
modes are classified by harmonic number n and bifurcation order m.) 

122 



Figure 5: Schematic diagram of the oscillation mode transitions. (1,1), (1,2), (2,1), 
• • • denote oscillation mode classified by harmonic number n and bifurcation order m 
as (n,m). (n,C) denotes chaotic oscillation at n-th harmonic branch. Upward and 

downward triangles indicate bifurcation points for increasingμand for decreasing 

μ, respectively. (The name of vertical axis n indicates harmonic number.) 

Figure 6: Relation between the increasing parameter step size△ U(三△μ) and the 

value of parameter U (三 μi)where bifurcation (oscillation) occurs. Here n1m = 10 
and n1r = 400. Curves calculated from inequality (11) with r = 5△, 2.5△ and 0 
indicate the predicted upper limits of the shift of the first bifurcation points, where 

△ =2―16. Thick bars and thin bars indicate experimental results for the IIR filters 

of types (I) and (II), respectively. The value of r for the IIR filters is estimated as 

r:::::; 5△. 
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Figure 1: Block diagram of the digital delayed-feedback system and experimental 

setup. The nonlinear function f is implemented in a lookup memory table. The 
lookup memory table has a configuration of 216 words x 16 bits (1 word= 16 bits). 

The gainμis realized using a 16-bit x 16-bit parallel multiplier (Analog Devices 

ADSP-1016AJN). The impulse-response知 (n)is implemented in a digital signal 
processor (Texas Instruments TMS320C25). The variable delay-line is realized using 

digital memory with a configuration of 2047 steps x 16 bits. A delay-step number 

ntr ranging from 6 to 2053 is obtained with the delay-line and the dead delay in each 

circuit block. These blocks and an extra block inserted for testing and observing are 

connected in a loop with 16-bit data-bus. A personal computer (PC) is connected 

to the blocks through a common control-bus for online control of parameters. 
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Figure 2: Implementation of nonlinear function f and impulse response hD. 
(a) Data for the nonlinear function f written in the memory table. F(A) = 
nint [苧{1 -sin(21r論）}] , where nint[x] means the rounding of x. A and F 
take 16-bit SB integer numbers, respectively corresponding to the 16-bit address of 

the memory table and the data stored there. 

(b) Block diagrams of IIR digital filters realizing the relaxation characteristic of 

equation (3). Filter coefficients are calculated for response-step number叩=10. 

(type I) IIR filter, designed by bi,linear transformation, with the impulse response, 

hD(n) = b。吋u(n)+ b1af―1u(n'-! 1), where u(n) = l for n 2'. 0 and u(n) = 0 
for n < 0. The coefficients are a1 = (2n1m―l)/(2ntm + l)lntm=lO~0.904755, 
b。=b1 = 1/(2印+1), Co = l/c1 = 2/(2ntm + 1)1叫=10~0.095245 and 
c1b。=c出=0.5. (type II) IIR filter, designed by approximating the derivative with 
the backward difference, with impulse response, 肋(n)= banu(n). The coefficients 

are a= ntm/(l + n1m)I叫=10~0.90909 and b = l/(l + n1m)I叫=10~0.09091.
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Figure 4: Waveforms generated by the digital system and corresponding phase space 

trajectories, when implementing the model of equations (2)(3) and (4). These were 

drawn with the 16-bit digital data obtained from port (b) in figure 1. Each of these 

shows (n, m) mode = (a) (1,1) atμ= 0.534, (b) (1,3) atμ= 0.691, (c) (7,3) just 

above m=2 atμ= 0.763, and (d) chaos atμ= 0.916, respectively. (Oscillation 

modes are classified by harmonic number n and bifurcation order m.) 
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