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Abstract 

This paper proposes a new anti-multipath modulation scheme which the 

author calls PSK-VP (£hase旦hift_Keying with Yaried£hase) in which a varied 

phase-waveform is redundantly imposed on the DPSK timeslot. The relation-

ship between the phase-waveform and BER is discussed by using an analytical 

approach based on special diversity with a continuous branch. A formula-type 

BER expression is obtained by the analytical approach and shows the optimum 

phase-waveform condition. A convex phase-waveform asymptotically satisfies 

the optimum phase-waveform condition as its phase shift peak is increased. 

'PSK-VP with a convex phase-waveform'raises the delay difference upper 

limit to almost 1 symbol and shows an excellent BER for a multipath fading 

whose delay differences are less than the upper limit. A numerical evaluation 

also confirms the above results and additionally shows that 4-ary PSK-VP can 

nearly double the upper limit as measured in bits, which is about 1.7 bits for 

the convex phase-waveform. 
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gun, Kyoto 619--02, Japan. He is now with Kansai Information and Communications Research Laboratory, 
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I INTRODUCTION 

High-speed digital mobile communications are severely affected by the frequency-selective 

fading caused by multipath with various time delays[l ]-[3], which characterizes their radio 

channels. Severe intersymbol interference caused by the frequency-selective fading greatly 

degrades the BER (Bit Error Rate)[4], and consequently limits the maximum transmission 

data rate. 

To combat the BER degradation, various anti-multipath modulation schemes, in which 

a redundant phase/ amplitude transition is imposed on a basic conventional modulation, 

have been proposed[5]-[9]. In general, these modulation schemes are characterized by 

hardware simplicity with no adaptive process, and an excellent BER for a multipath fading 

whose delay di仔erencesare less than a certain value (hereafter, called delay difference 

upper limit). For example, the upper limit of DSK[6] is less than 0.5 bits. 

Raising the delay di任erenceupper limit, which is equivalent to raising the usable bit-

rate, is an important problem for such anti-multipath modulation schemes, because the 

limit is rather low for applications to various propagation environments or applications at 

a higher bit-rate. The choice of the basic modulation and how the redundancy should be 

imposed determine the upper limit. By choosing DPSK as the basic modulation, PSK-

RZ[7] with amplitude redundancy, SPSK[8] and MC-PSK[9] with redundant phase-jump 

have successfully extended the limit. This is because M-ary versions of the above can 

significantly extend the limit as measured in bits. However, optimization for redundancy 

to extend the limit has not been discussed. 

In this paper, the author proposes'PSK-VP with a convex phase-waveform'as an 

answer to the problem. PSK-VP (J:hase~hift Keying with Yaried }:hase)[lO] is defined as 

a generic name for modulation schemes in which a varied phase-waveform is redundantly 

imposed on the DPSK timeslot. Then, the optimum shape of the redundant phase-

waveform is investigated. 

PSK-VP (in particular, 2-and 4-ary PSK-VP, i.e., BPSK-VP and QPSK-VP are 

dealt with in this paper) is characterized using an analytical approach and a numerical 

evaluation. The analytical approach reveals the major BER features, in particular, the 

relationship between the BER and the phase-waveform through a formula-type BER ex-

pression, and determines the optimum shape of the phase-waveform through an optimum 

phase-waveform condition derived from the BER expression. The numerical evaluation 

verifies the above results. 

The analytical approach is based on diversity. Though similar unique DSK analysis 
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was done by Ariyavisitakul et al.[6], extensions are required because the diversity for PSK-

VP is a special type with a continuous branch and the previous analysis cannot estimate 

the changing of the BER to a delay difference. Using the analytical approach, not only is 

the improvement mechanism (a kind of path diversity) clarified, but we also obtain the 

formula-type BER expression. 

The analytical approach is done mainly for two-ray Rayleigh fading, then extended 

for general L-ray Rayleigh fading. All major PSK-VP characteristics are revealed for 

two-ray Rayleigh fading, and they or their reasonable extensions are also obtained for 

L-ray Rayleigh fading. 

The numerical evaluation is based on an analysis method for a quadratic detector using 

a characteristic function, which was studied by Kac and Siegert[ll] and Turin[12], and was 

also applied to analyze DSK[6]. The numerical evaluation, which is rearranged to analyze 

PSK-VP, is mainly done to verify the results of the analytical approach with several 

approximations and assumptions, and to reveal other PSK-VP characteristics which the 

analytical approach can not deal with. 

The numerical evaluation nicely confirms the excellent pedormance of PSK-VP with 

a convex phase-waveform estimated by the analytical approach and additionally reveals 

a robust feature for rapid fading. 

II PSK-VP SCHEME 

II.1 PSK-VP Signal 

In PSK-VP, a varied phase-waveform</>(c:) is redundantly imposed on the DPSK time-

ぶ・・・・・・・・・・・・ミ.<1)
Phase 

． 

L し胃以罰~t+Ti:ーニ。1-..J
Time 

Figure IIl: PSK-VP signal phase (an example for convex phase-waveform). J
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slot (Fig.Ill). The PSK-VP signal phase ((t) is expressed as 

く(t)=く(E+mT)=¢(E)+rJm ;m= .. ・,-2,-1,0,1,2, .. ,, (IIl) 

where E=i-mT (Os;E<T, T:symbol length, i.e., timeslot). The phase difference between 

the (m-1)th timeslot and the m-th timeslot: 

似＝此ー {)m-1 (II2) 

bears the m-th M-ary data. Though various methods to map the data into如 canbe 

considered, in this paper, it takes O (mark) or 1r (space) for 2-ary PSK-VP (BPSK-VP) 

and O (mark-mark), 1r/2 (space-mark), 1r (space-space) or 31r/2 (mark-space) for 4-ary 

PSK-VP (QPSK-VP) which are conventionally mapped according to the Gray encoding. 

(Of course, symmetrical mapping[13], i.e., 土1r/2for BPSK-VP and土1r/4,7f土1r/4 for 

QPSK-VP is also possible. However, because the following analysis is exactly the same 

when the intersymbol interference due to band-limitation is ignored, in this paper, only 

the conventional asymmetric mapping is dealt with.) 

Then, if the band-limitation effect is ignored, the complex envelope of PSK-VP signal 

is expressed as 

v(t) =祁(t). (II3) 

Hereafter, j denotes ✓ コ．

II.2 PSK-VP Detection Process 

PSK-VP detection is carried out with a differential detector (Fig.II2). If a complex 

envelope of received signal is expressed as z1 (t), the complex envelope z2(t) of the delayed 

signal will be expressed as 

z2(t) = z1(t -T)・e―j,f,' (II4) 

where 7/J denotes the detection phase, which takes O for BPSK-VP and土7i/ 4 according 

to the I/Q-axis for QPSK-VP. The detected signal d(t), i.e., the baseband component of 

the product of z1 (t) and z2(t), results in 

1 
d(t) = -(z1z; 十z戸）．

4 
(II5) 

Hereafter, * denotes complex conjugate. The output signal Q(t) of the postdetection filter 

with impulse response h(t) results in 

Q(t) = h(t) 0 d(t) , (II6) 

whereRdenotes convolution. Then, the sampled signal q of Q(t) by clock timing ts 

recovered by Q(t) itself, is decoded to mark/ space by its polarity. 
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III ANALYTICAL APPROACH 

III.I Detection Output for Two-Ray Model 

First, we consider a detection output for a two-ray (D-and U-wave) model with a 

delay difference T, whose waves are subjected to Rayleigh fading. By representing each 

fading with multiplicative noise s1(t) or s2(t), which includes the phase rotation due to 

the delay T and is a zero-mean complex gaussian random process, we can express the 

received signal z1 (t) without extraneous noise as 

z1(t) = s1(t)v(t) + s2(t)v(t -r) . (IIIl) 

Transforming t to c: by c:=t-mT-r and definingμas 

µ={~ 

for BPSK-VP 

for QPSK-VP 
(III2) 

and am(=土1)as the m-th transmitted binary data for the detection axis, from Appendix 

A, we can derive the m-th timeslot detected signal dm (c:) (三d(c:+mT+T);-T~c:<T-T) 

for slow fading and O~T<T, separately for the following two regions (Fig.Illl). 

1) Region:a O~c: < T -T (will vanish for T ?:T) 

心(c:)= 1四 m I S1e神(e+r)+ S呼和）ド (III3) 

zi(t) 

Input 
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〗

．
 

．
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．
 

-q .~ 
Sampler 

t s 

Output 1 
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BPSK-VP 
QPSK-VP 

Output 2 

← for 
QPSK-VP 

Figure II2: Detection process for PSK-VP (block diagram of differential detector). 
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In this region, the polarity of the detected signal, which is hereafter called the'effective 

detected signal', is always correct. 

2) Region:b -T~c: < 0 (will vanish for r=O) 

心(c:)=危(amI S1ド+am-1I S2 Iり

+ cos( 
似+em-1 

＋ゆ）溌[s心expj(¢(c:+)¢(c: + T) + 
似+em-1 

) ] , (III4) 
2 2 

where町・]denotes real part. 

In this region, the polarity of the detected signal, which is called the'ineffective 

detected signal'hereafter, is not always correct. 

III.2 Diversity Model for PSK-VP 

Thee任ectivedetected signal behaves as if the received signal were subjected to frequency-

nonselective fading expressed by the linearly combined multiplicative noise s1 e神(c:+r)+s呼蛉{c:)'

(A) 
Phase of 
D-wave 

(B) 

Phase of 
U-wave 

．． ．．．．．． ．．．．．． ．．．． 
•• •• ， ． . ． 
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Detector 
Output 

(Unfiltered) 

(D) 
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(Filtered/ 
Sampled) 

(E) 
Decoded 
Data 

£1 .•. 令・・・・8n
I I'I  ... 

弐 0 T-て

w---V~ ↑¥  

。 。
ー

。
Figure IIIl: Detection output for two-ray model. 
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which varies with c:. Namely, different kinds of detected signals are obtained along Re-

gion:a (Fig.IIIl(C)). Then, a diversity effect is expected, because the different kinds of 

detected signals are combined by convolution with the impulse response of the postdetec-

tion filter (Fig.IIIl(D)). The diversity seems to have a continuous branch. 

To analyze the diversity with a continuous branch, first, we divide Region:a into n 

pieces which are su缶cientlysmall. On the i-th piece position合：

c,; = (T -T)(i -l)/n 

the effective detected signal dmi is rewritten as 

i = 1,2, ... ,n, 

1 
dm; 三心（叫＝ーμ圧 Is1e蛉li+ S呼西 12

2 

by defining 
ヽ

ー

J

、1
,

e

e

 

（

（

 

妬

釦｛
 

</>(s + r) 
</>(E:) 

i = 1,2, ... ,n 

(III5) 

(III6) 

(III7) 

and abbreviating¢1(si) to¢ii (l = 1, 2 and i=l,2,・ • ・,n). 

The equivalent multiplicative noise Vi, which represents the frequency-nonselective 

fading yielding the same detected signal as dmi in Eq.(III6), is expressed as the following 

Input 
Branches 

V1'U 

V2U —• 
．． . . ．． ．． 

V n-1 u---.. 

Vゃ

Differential 
Detector 

(A) 

(B) 

Input 
Branches 

V 1'U 

V 2'U 
．． ．． ．． . . 

V n-1 u・ 

V岱

Differential 
Detector 

Maximal-

Ratio 

Combiner 

Differential 
Detector 

Output 

Output 

9A 

Figure III2: Diversity models for. PSK-VP. 
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linear combination of s1 and s2 

巧=s1ejゆii+ Sze蛉2i ; i = 1, 2, 3, • ・ ・, n . (III8) 

Consequently, 附 isalso a zero-mean complex gaussian random process. Then, as shown 

in Fig.III2(A), PSK-VP in multipath fading is considered to be equivalent to DPSK with 

n-branch postdetection combining diversity whose branches are subjected to the above 

frequency-nonselective fadings v;, because the postdetection filter combines the effective 

detected signals dmi・Such a combining method, which is known as square-law combining, 

is optimum without knowledge of the instantaneous branch SNR[14]. 

For further analysis, the following approximations and assumptions will be used. 

Approx.1) Approximate the postdetection diversity with the square-law combiner (Fig.III2(A)) 

to a predetection diversity with the maximal-ratio combiner (Fig.III2(B)). 

It is difficult to obtain a formula-type solution for the diversity in Fig.III2(A) because 

of correlation between the branches. The diversity in Fig.III2(B), which is optimum 

though requiring perfect knowledge of the branches, has a similar BER performance at 

low error-rates[14] and is easily analyzed. 

Assum.1) Each effective detected signal dmi is equally combined. 

Assum.2) The output SNR of the maximal-ratio combiner is proportional to the normal-

ized interval of Region:a, i.e., 1-T /T. 

Combining dmi depends on the postdetection filter and the sampling timing. Assump-

tions 1 and 2 imply an integrate-and-dump postdetection filter with correct timing. 

Approx.2) Ignore the ineffective detected signal. 

vVe use numerical evaluation to investigate the effect of the ineffective detected signal. 

Although BER calculated from the above simplified diversity may include absolute 

error, the analysis is still meaningful for obtaining physical views and estimating relative 

performance; for example, comparisons between BER performance for various phase-

waveforms f or changing BER to SNR. 

III.3 Condition for Diversity Effect 

According to Assumptions 1 and 2, and by considering that the maximal-ratio combiner 

causes the output SNR to equal the sum of input SNRs, we find that each input branch 

SNR is proportional to (1-T/T)/n. Consequently, from Eq.(1118), the complex multi-
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plicative process ii on each branch normalized to rms noise, is expressed as 

'Yi=ロ7rr口(s;;令"十 S呼呼")
;i=l,2,3,・.. ,n, (III9) 

where N denotes noise power. Then, the average BER Pe of the diversity in Fig.III2(B) 

for slow fading is simply expressed as[6][14] 

且= 1 
2det(I +X)' 

(IIIlO) 

where I denotes an nxn unit matrix and X denotes an nxn covariance matrix of賞

Furthermore, if the fadings of the D-and U-waves are uncorrelated, through direct cal-

culation, by using matrix X。,matrix X is expressed as 

(1 
T 

X = -nT)r X。， (IIIll) 

whose ik-element X。ikis 

X。ik= _!_e痘 1i —年） +-2ー ej(年年）； i, k = 1, 2, ・ ・ ・, n , 
l+p l+p 

(III12) 

where p (三〈!s1ド）/(!s2 12)) denotes average DUR (D-wave to U-wave level ratio), r 
（三(〈!s112〉+〈I82ド〉）/ N) denotes average SNR per bit, and <•) denotes ensemble aver-

age. Note that Eq.(IlllO) is originally derived for 2-ary DPSK with diversity, however, it 

is also (approximately) valid for the Gray-code mapped 4-ary DPSK with diversity when 

r is the average SNR per bit (i.e., 4-ary DPSK requires a 3dB better SNR for the same 

BER compared with 2-ary DPSK)[15]. 

From Eq.(Ill12), second-and third-order minor determinants乃，四 ofmatrix X。are
calculated as 

by defining 

｛乃=(1: p)'(e-i•,., -e—;• り（砂+'-砂）

乃=0 

の(c:,T)三:¢1 (c) -¢2 (c) =ゆ(c+ T) -¢(c:) 

(III13) 

(III14) 

and abbreviating <;l> (全，T)to <Di (i=l,2,・ • •,n). Equation(III13) results in rankX =rankX。~2

and the n-branch diversity can effectively function as second-order diversity. The order 

two is derived from obtaining n branches through the linear combination of two indepen-

dent fadings. The diversity can be regarded as a path diversity. 
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Then, from r2ヂ0in Eq.(III13), the condition for obtaining the diversity effect is ex-

pressed as 

ヨc:,5 E { (c:, 5) I O s; c: < c: + 5 < T -r} 

<I>(c:+5,r)ヂ<I>(c:,T) : mod 21r . (III15) 

The diversity condition is easily satisfied for a certain r by introducing discontinuity 

or variation into <I> by imposing a redundant phase-jump or a phase-variation to phase-

waveformゆ(cf. Fig.III3). However, the choice of the redundancy must be carefully 

examined to determine whether the condition is satisfied for all r in O<r<T (then, the 

delay difference upper limit is raised to 1 timeslot), where, from Eq.(III15) itself, the 

diversity effect can be obtained. As shown in subsection F, the redundant phase-jump 

(stepped phase-waveform) has an adverse effect on raising the upper limit. 

III.4 Major BER Features of PSK-VP Subjected to Two-Ray 

Rayleigh Fading 

Finally, we obtain BER expression Pe as the continuous-branch diversity by considering 

the limit of BERたasthe n-branch (discrete) diversity when n→ oo (Appendix B and 

C), i.e., 

凡=lim且= 1 
n→ (X) 2{戸(1-~)2(l: p)2(1-j F(T) j2) +r(l -い+1}' 

(III16) 

where 

F(T)三 1 JT-r ej<l)(e,r)dc 
T-T 0 

; 〇s;1F(T) 1s; 1 . (IIIl 7) 

Equation(III16) provides considerable information about PSK-VP BER characteristics. 

First, we investigate the major PSK-VP BER features. 

1) For Frequency-Selective Fading (0 < T < T, 0 < p < oo) 

The BER is remarkably improved proportional to the square of the SNR r for high 

SNR by the term including戸 inthe denominator, where the condition IF(r)l<l (which 

is equivalent to the diversity condition Eq.(III15)) is satisfied. 

2) For Frequency-Nonselective Fading (r = 0 or p = 0 or p =叫

The term including戸 disappears,because F(O)=l (T=O results in峠 0from Eq.(III14)) 

or p/(l+p)2=0 (p=O or oo). Consequently, Eq.(III16) becomes 

Pe= 1 
2(f+l)' 

(III18) 
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which is identical to conventional DPSK[15] (The DPSK BER is also obtained from 

Eq.(III16) itself, because </;=const. also results in年 0.).

3) QPSK-VP vs. BPSK-VP 

The same T measured in symbol lengths shows almost the same performance except for 

a slight BER degradation (3dB in SNR). However, as measured in bit lengths, QPSK-VP 

is expected to double the delay difference upper limit. 

III.5 Ideal Boundary and Optimum Condition for Phase-Waveform 

By transforming Eq.(III16), we find that 

Pe~1 

2{ 
(1-r/T)「

2 

(III19) 

+ 1}2 

The lower limit shows an ideal boundary of BER improved by the diversity effect. The 

ideal boundary implies that the diversity effect can be obtained over O<r<T. Namely, by 

choosing an appropriate phase-waveform, PSK-VP can raise the delay difference upper 

limit by 1 symbol, which is essentially derived from the existence of Region:a. 

The condition for equality in Eq.(III19) is 

I F(r) l=I l JT-r ej1i(e,r)dc: I= 0, 
T-r o 

(III20) 

and 

p = 1 (i.e., D-and U-waves have same level) . (III21) 

In particular, Eq.(III20) shows optimum condition for phase-waveform¢through <I>, where 

the maximum diversity improvement can be achieved. 

For all T in O<r<T, no function <I> strictly satisfies the optimum phase-waveform 

condition in Eq.(III20). However, the strictly monotone increasing/ decreasing (as to c: for 

any r) function <I>(c:, T) can asymptotically satisfy the optimum phase-waveform condition 

by increasing its range. That is, a convex phase-waveform¢can asymptotically satisfy 

the optimum phase-waveform condition by increasing its peak, because the choice of a 

strictly monotone function for <I> is equivalent to the choice of a convex function for¢as 

follows: 

¥Jc:, 8, T E {(c:, 8, r) IO:::; c: < c: + 8 < T -T, 0 < r < T} 

<I>(c: + 8,r) -<I>(c:,r) 

= {<p(T + c + 8) -<p(T + c)} -{tp(c + 8) -tp(c)} 

14 



％ 

~K+ 1-K~ 

Step 

T 
Convex Curve 

(Parabolic Curve) 

Figure III3: Stepped and Convex (Parabolic) phase-waveforms. 

{ > 0 for strictly monotone increasing 

< 0 for strictly monotone decreasing 
(III22) 

The above relationship also shows that a convex phase-waveform¢guarantees satisfying 

the diversity condition in Eq.(III15) for any r in O<r<T. 

Of course, excluding a stepped phase-waveform, which adversely affects raising the 

delay difference upper limit (subsection F) and tends to corrupt the eye-pattern due 

to the existence of the phase discontinuity in the timeslot for bandlimitation, there are 

more complicated phase-waveform candidates to satisfy Eq.(III20) asymptotically, for 

example, (continuous) phase-waveforms with several peaks. However, a convex phase-

waveform is the most reasonable as follows. If¢is a continuous (differentiable or piecewise 

differentiable) function, by differentiating Eq.(III14) as to s, 

輝 (c,T) 
釦

=¢'(c+T)ーが(c) (III23) 

is obtained. Then, in Eq.(III23), by considering that¢'(c:+r) and¢'(c:) designate in-

stantaneous angular frequency deviations from the carrier frequency at c:+r and c: in the 

timeslot, to obtain spectrum compactness, the smaller 81> / 8c: is, the better. The choice 

of strictly monotone increasing/ decreasing function forの(asto c:), i.e., a con vex phase-

waveformゅisthe best way to minimize IF(T) I in Eq.(III20) effectively, while keeping the 

differential coefficient陣/8c: small. 

III.6 Examples for Typical Phase-Waveforms 

For example, we will compare BER performance for the typical phase-waveforms, 

which are stepped and parabolic (an example of convex) as shown in Fig.III3. 

1) Stepped Phase-Waveform 

15 



This is identical to SPSK[8], and the specific case of氏=0.5is identical to MC-PSK[9]. 

¢and <_t> are expressed as 

叫={ Q (0'.o E <汀）

転（』T~E< T) 
; 0 <氏く 1 (III24) 

） 
0 (o::;sく氏T-ror』T::;s<T-r)

叫 T= {¢m にT-T<C,cく江）
(III25) 

If r2:rm=max(氏T,T-托T),because cl>三1Pmis derived for o::;s<T-r, Eq.(III15) is not 

satisfied and the diversity improvement is lost. Namely, the delay difference upper limit 

is reduced to芦 (<T.See Fig.Ill4). 

2) Parabolic Phase-waveform 

¢and ID are expressed as 

四
如）＝ー4.—ー・ c(c -T) T2 

@(c, T) 
8叫汀

=- c 
T2 +¢(r). 

By calculating Eq.(IIIl 7), jF(r) I is expressed as 

I F(r) I= 
Ismゆ(r)I 

¢(r) . 

(III26) 

(III27) 

(III28) 

At all r in O<r<T, IF(r)I approaches zero and BER asymptotically approaches the ideal 

boundary as the phase-shift peak¢m is increased, because the numerator of Eq.(III28) is 

bounded (Fig.HIS). 

III. 7 Extension to L-Ray Model 

The analytical approach can be extended to general L-ray model and reasonably-extended 

results of the two-ray model are derived for the L-ray model. That is, also for the L-ray 

model, the optimum phase-waveform condition (Eq.(III20)) is essentially the same, and 

a convex phase-waveform is considered to be optimum to obtain the maximum BER 

improvement. The outline is shown as follows. 

First, the received signal z1(t) in Eq.(IIIl) is rewritten as 

L 

叫t)= I: 叫）v(t―町）， (11129) 
l=l 

where s1(t) denotes multiplicative noise representing the fading of the l-th path and町

denotes excess delay of the l-th path. Then, redefining T as the maximum of r1 and 
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assuming that the minimum of町 iszero, transforming t to c: by c:=t-mT-T, and using 

μin Eq.(III2), the m-th timeslot detected signal dm(c:) in Eq.(III3) for slow fading and 

O~T<T in the region of O~c:<T-T (corresponding to Region:a) is rewritten as 

1 L 
心(E:)= -μam .rf,(e+r-町)12 

4 
I~ 亨，
l=l 

(III30) 

as shown in Appendix A. In this region, the detected signal polarity is always correct, 

i.e., effective, the same as in the case of the two-ray model. 

Dividing the effective region into n pieces, on the n-th piece position c:i (Eq. (III5)), 

the effective detected signal dmi in Eq.(III6) is rewritten as 

1 
dm; 三心（叫＝一μam

4 

by extending the definition Eq.(III7) as 

I ts1ej和 12 ; i = 1,2, ... ,n 
l=l 

¢(c: + T―町）＝初(c) ;l=l,2,, .. ,L, 

(III31) 

(III32) 

and abbreviating rp(釘十T―町） to ,Pii (l=l,2,・ ・・,Land i=l,2,・ • •,n). Consequently, because 
L 

the multiplicative noises v; corresponding to dmi are rewritten as 附

normalized multiplicative noise ii in Eq.(1119) is rewritten as 

,, =ロTN=
□ ts, 占''

讀 ; i = 1, 2, 3, .. •, n . 

I:s亙気 the
l=l 

(III33) 

If each fading of the L rays is uncorrelated, matrix X is also expressed by using matrix 

X。(Eq.(IIIll)),however, its ik-element X。ikis rewritten as 

L 

X。ik=~t1e(如—如） ; i,k=l,2, ... ,n (III34) 
l=l 

by de伽 ing
L 

e ー

(IS/ 12) /~ 〈I3kド） ; l=l,2, .. ・,L 
L k=l (III35) 

~(I Skド）/N 
k=l 

where 6 denotes the l-th ray power ratio to total signal power and r denotes average 
SNR. 

In this case, because rankX =rankX。~L (cf. Appendix C), the diversity can ef-

fectively function as a maximum of L-th order diversity, which is easily understood by 

considering that the diversity is a kind of path diversity with L independent-fading paths. 
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The choice of a convex phase-waveform¢is also valid for the L-ray model to obtain 

the maximum order diversity effect (i.e., rankX =rankX。=L).A convex phase-waveform 

¢is verified to guarantee rankX =rankX。=Lby a reductio ad absurdurn as shown in 

Appendix D. 

Then, if rankX =rankX。=L,as shown in Appendix B, an approximation of BER Pe 

1 
凡 =lim Pe~ 

元→co L 

叩 (1-こ)LIT炉letF
T 

k=l 

(III36) 

is obtained for high SNR r by using LxL matrix F whose a/3-element F°'(3 is expressed 

as 

賢 ）＝二JT-re1い (c,r)de: 
T-T 0 

; a, /3 = 1, 2, ・ ・ ・, L , (11137) 

by extending the definition Eq.(III14) as 

11> c,(3 (c, T)三 ¢f3(s)-¢a(s) = cp(s + T -T(3) -¢(s + T -Ta) ; a, f3 = 1, 2, • .. , L. (III38) 

By the term of戸 inthe denominator, the BER is remarkably improved proportional to 

the L-th power of the SNR r. 
As shown in Appendix E, the improved BER in Eq.(III36) has the following lower 

limit: 

Pe~1 . 

2戸 (1
r L --) -
T LL 

(III39) 

The lower limit is the ideal boundary of improved BER for the L-ray Rayleigh fading. 

The equality condition in Eq.(III39) is 

¥ Fa/3(r) ¥三|ニ_;T-r召<l:ia{J(e,r)dc¥= 0 
T-T 0 

aヂj3,a,/3=1,2,・.. ,L, (11140) 

and 
1 

¥jek =一 (i.e.,each arriving wave has the same level) . 
L 

(III41) 

The above results are reasonable extensions of the optimum condition for the two-ray 

model in Eq.(III20) and Eq.(III21). In particular, Eq.(III40) is the optimum phase-

waveform condition for the L-ray model, which is essentially the same as the one for the 

two-ray model. 

Like the two-ray model, a convex phase-waveform is considered optimum also for 

the L-ray model. Equation(III40) cannot be strictly satisfied also for the L-ray model. 

However, if each <I> c,(3 (r::, T) is a strictly monotone increasing/ decreasing function as to r:: for 

any Tin O<r<T, which effectively minimizes each jFc,f3(r)j while keeping EJ<I>c,(3/Br:: small 
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(i.e., keeping the instantaneous frequency deviation due to imposed phase-variation in the 

timeslot small; cf. Eq. (III23)), then, Eq. (III40) is asymptotically satisfied by increasing 

its range. Thus, a convex phase-waveform¢can asymptotically satisfy the optimum 

phase-waveform condition in Eq.(III40) by increasing its peak, because the choice of a 

strictly monotone function for each <Pc,f3 is equivalent to the choice of a convex function 

for¢(cf. Eq.(III22)). 

IV NUMERICAL EVALUATION 

IV.1 Outline of the Calculation Process 

The complex envelope z1(t) of the received signal including bandpass noise n(t), which 

is a zero-mean complex gaussian random process in the equivalent low-pass system, is 

expressed as 
L 

叫） = I: 叫）v(t -町） + n(t) . 
l=l 

On the other hand, Eq.(II5) is rewritten as 

1 1 
d(t) = -(z占 +z臼）＝ー(u国— u叫）

4 8 

(IVl) 

(IV2) 

by defining u1 and u2 as 

―― 

ヽ

t

t
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ー

‘
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u
l
u
z
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z1(t) + z2(t) 
叫t)-z2(t) 

(IV3) 

Furthermore, by defining h;, u1,;, Uz,i, vector u, and diagonal matrix Has 

―
―
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9
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l
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、

/

｀

、

h(i・t△) 

叫ts+i・払）

u2(ち+i. 払）

; i = -K, ・ ・ ・, 0, ・ ・ ・, K (IV4) 

{ U = [u1,-K心2,-K> U1,-K+1 > u,,-K +1,'''> U1,K, u,,K]' 
(IV5 

H. = diag[hK,-hK,hK-1,-hK-1,・・ ・,h-K,-h-K] 
） 

where t△ denotes a short interval and t denotes transpose, from Eq.(II6), the sampled 

detected signal q is expressed as 

K h . 
q = Q(ち） =~ ―i * * 

1 
ー (u氾 1,i―Uz,叫，J= -utHu 
8 8 '  i=-K 

(IV6) 

where t denotes conjugate transpose. 
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The probability density function p(q) of the sampled signal q, which is expressed as 

a quadratic form of zero-mean gaussian variables (Eq.(IV6)), is easily obtained by using 

its characteristic function as shown in Appendix G. The results of p(q) (Eq.(G39) in 

Appendix G) is expressed by using eigenvaluesふofmatrix R* H, where the matrix R 

denotes a covariance matrix expressed, by using〈u)=O(zero vector), as 

R = ((u -(u))(u -(u))り＝（四り， (IV7) 

and its elements are calculated as shown in Appendix F. 

Finally, by means of integration, decision error-rate for mark and space is derived as 

Pe(mark) = JO p(q)dq = L一」
-oo 入

入m<OII (1ーニ）

Pe(space) = f00 p(q)dq = 

゜

n 入m
n;,!m 

こ一二入
袖 >0II (1ーニ）

n 心
n;,!m 

(IVS) 

Because a single decision errot causes a single bit error in the Gray encoded system, 

BER is calculated by simply averaging Pe(ma.rk) and Pe(spa.ce) for occurrence probabilities 

of mark, space, and adjacent symbol patterns interfering with the current timeslot. 

IV.2 Conditions for Calculation 

As for phase-waveforms, the stepped type in Eq.(11124), the parabolic (convex) type in 

Eq.(11126) and¢=canst., which is equivalent to conventional DPSK, are chosen. 

As for postdetection filters, the integrate-and-dump (Eq. (IV9)) and the gaussian (Eq. (IVlO)) 

filters are chosen. 

h(t)I&D = { 2 

直咋 直
0 ;t <—ー。'rt>-
1 2 

戸；—竺戸号
(IV9) 

h(t) 
珈 2召B乎

ga.ussia.n =~Bexp(— ln2)' (IVlO) 

whereり(symbol)denotes integration interval and B denotes bandwidth. 

As for the propagation model, mainly the two-ray Rayleigh fading model with the same 

average ray power (p=l) is chosen and additionally the 1-ray (frequency-nonselective) or 

3-ray (each ray has the same average power, i.e., も＝ら＝ら） Rayleigh fading model is used 

for comparison. For the numerical evaluation, maximum Doppler frequency fn, which 

the analytical approach cannot deal with, is newly added to the propagation parameters. 
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IV.3 Results of Calculation 

The numerical evaluation results nicely confirm the analytical approach results as 

shown in Figures IVl and IV2 compared with Figures III4 and III5. In particular, PSK-

VP with a convex phase-waveform is verified as having excellent performance though the 

delay difference upper limits are slightly reduced. 

The reduction of the delay difference upper limit is due to the fact that the ineffective 

detected signal, which is ignored in the analytical approach, tends to be mixed in the 

integral interval of the post detection filter as Region:a is shortened by a long T. The 

reduction can be eased by using a postdetection filter with a shorter response settling 

time. The reduction is eased by using integrate-and-dump filters with a shorterりora 

gaussian filter, though the BER for short T is slightly degraded (Fig.IVS). 

The reduction, as shown in Fig.IV4, tends to be accelerated for QPSK-VP, in par-

ticular, when using a longりintegrate-and-dumppostdetection filter. QPSK-VP with a 

gaussian postdetection filter performs better. 

However, the delay difference upper limit is nearly doubled for QP SK-VP as measured 

in bits. Namely, the upper limit for QPSK-VP with a convex phase-waveform using a 

gaussian postdetection filter is about 1.7 bits (0.85 symbols, Fig.IV4) in contrast to 0.9 

bits for BPSK-VP (Fig.IVS). 

As predicted in the analytical approach, BER for PSK-VP on two-ray /three-ray 

Rayleigh (frequency-selective) fading is remarkably improved by the diversity effect pro-

portional to the square/ cube of the SNR, in contrast to directly proportional to the 

SNR for conventional DPSK on Rayleig~(frequency-nonselective) fading (solid lines in 

Fig.IVS). As shown in Figures IV4 and IVS, for multipath fading, whose delay differences 

are less than the delay difference upper limit, PSK-VP shows much better performance 

than conventional DPSK. 

Furthermore, PSK-VP maintains its excellent performance even for rapid fading. As 

shown in dotted lines in Fig.IVS, the diversity effect can also remarkably decrease the 

irreducible error due to random FM[16]. The irreducible error rate is less than 10-4 for 

quite rapid fading fnT=0.02. 

V CONCLUSIONS 

The analytical approach based on the diversity with a continuous branch has revealed 

the major PSK-VP features. The analysis gives us not only physical views such as the 
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effective order of diversity or equivalency to a path diversity, but also a formula-type BER 

expression which can estimate the major features including the optimum phase-waveform 

condition to achieve the best BER, i.e., the ideal boundary for improved BER. 

A convex phase-waveform is considered to be optimum, because it approaches the 

optimum phase-waveform condition asymptotically as its phase shift peak is increased, 

and effectively while keeping the instantaneous frequency deviation in the timeslot small. 

PSK-VP with a convex phase-waveform raises the delay difference upper limit to almost 

1 symbol. 

The numerical evaluation has con且rmedthe features suggested by the analytical ap-

proach. It has also con且rmedthat 4-ary PSK-VP (QPSK-VP) can nearly double the 

delay difference upper limit as measured in bits, which is about 1. 7 bits for convex phase-

waveform. BER of QPSK-VP with a convex phase-waveform is remarkably improved for 

multipath fading, whose delay difference is less than the upper limit, as compared with 

conventional DPSK. 

The numerical evaluation has additionally revealed not only the influence of the se-

lection for the post-detection廿lter,but also the robust feature for rapid fading. The 

irreducible error-rate is less than 10-4 even for quite rapid fading fnT=0.02. 
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Appendix A 

Derivation of Detection Output for Two-and L-ray Models 

Fading is so slow compared with symbol rate that 

叫t)= s1(t -T) = s1 ; 1, 2 or 1, 2, • • • , L . 

For the two-ray model, Eq.(IIIl) and Eq.(II4) result in 

―― 
り
り

f
ー
、

r
ー
、

Zl

砂｛
 

s1v(t) + s2v(t -T) 

叩 (t-T)e―Jゆ +s匹 (t-T -T)e噂

(Al) 

(A2) 

by using Eq.(Al), respectively. On the other hand, in Region:a, from Eq.(Ill)-(II3), 

v(t) = ei(rfa(e:+r)+年）

v(t -T) = ej(¢,(e+r)+1Jm-0m) 

v(t-T) = ej(や(e)+iJm)
(A3) 

v(t -r -T) = ei(¢,(e)+'9m-0m) 

are derived by considering mT:St-T<(m+l)T. Then, by using Eq.(II5) additionally, 

心(s)is expressed as 

心(c:)=~cos(似＋心） I s1e神(e:+r)+ S討年） 12 

Consequently, by noting that 

1 1 
-cos(似＋心）＝ーμam)
2 2 

we obtain Eq.(III3). Similarly, in Region:b, by considering (m-l)Ts;t-T<mT, 

(A4) 

(A5) 

v(t) e庫（叶r)Hm)

v(t -T) 叫如+r)+{}m-0m)

叫ー T)
ej(<f,(e+T)+{)mー1)

v(t -T -T) ej(や(e+T)+{)m-1-(Jm-1)

are derived from Eq.(II1)-(II3). Then, by using Eq.(II5) additionally, dm(c:) is expressed 

as 

心(c:)= 1 { cos(似＋ゆ） I S1門+cos(0m-l +心)I 82ド｝

em+ em-1 
+ cos(+心）況[s1好expj(qy(c:+ T) -qy(c: + T) + ) ]  . 

如+em-1 

2 2 

Consequently, by using Eq.(A5), we obtain Eq.(III4). 
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For the L-ray model, Eq.(A2) is rewritten as 

、I
,

、1
,

t

t

 

（

（

 

1

2

 

N
 

N
 

L 

こ叫t-rz) 
L l=l 

こ却(t-r1 - T)e―j心
1=1 

(A7) 
亀

Then, in Region:a, because Eq.(A3) is rewritten as 

{ v(t-町）
v(t -町 -T)

ej(¢,(e:+rー可）＋知）

ej(¢,(e:+r-rz)+-8m-Bm)' 

from Eq.(II5), 心(c:)is expressed as 

1 L 
dm(c:) = -cos(0m +心） I I: 亨年+r-可） 12 

2 
l=l 

Consequently, by using Eq.(A5), we obtain Eq.(III30). 

Appendix B 

Analytical Approach Error-rate Derivation for Two-and L-ray Rayleigh 

Fadings 

Because nxn matrices X and X。areHermitian, their eigenvalues入1and J.i (i = 

1, 2, ・ • • , n) are real and have the following relationship: 

入;=
(1 -T /T)r~ 

入; ;i=l,2,3,, .. ,n. 
n 

(B8) 

For two-ray Rayleigh fading, from rankX =rankX 。~2, non-zero eigenvalues are not 

greater than two, i.e., ふ～心=0 and~3 ~~n = 0. Then, using Eq.(BS) 

n 

det(J + X) = TI (入k+ 1) = (入1+ 1)(入2+ 1) 
k=l 

T T 
(1--)「 (1--

={ T 戸ふ+ T 
) r h h 

（ふ＋入り+1. 
n n、

(B9) 

Consequently, because 入＋ぶ and~ふresultin Eq.(C22) (Appendix C), by using Eq.(B9), 

Eq.(IIIlO) results in Eq.(III16). 
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The above derivation is extended to the case of L-ray Rayleigh fading as follows. From 

rankX =rankX。s;L,non-zero eigenvalues are not greater than L, i.e., A£+l ~入n= O and 

泣+1~入=0. Then, using Eq.(B8), 

L L (1--
T 
) r~ 

det(I + X) = IT (心+1) = IT (,¥k + l) = g { n ,¥k + l} . 
k=l k=l 

If SNR r is high (f~1) and rankX =rankX。=L,then, 

(1 -こ汀 L L 

n 
T }L IIぶ={(T  det(I + X)~{ 1 --)r}L Il ek det F (BlO) 

T k=l k=l 

is obtained, as shown in Appendix C, by using LxL matrix F, whose a/3-element is Fc,/3 

in Eq.(C20). Consequently, using Eq.(BlO), Eq.(IIIlO) results in Eq.(III36). 

Appendix C 

Eigenvalues of Matrix X。forTwo-and L-ray Models 

First, the derivation is generally done for the L-ray model including the two-ray model 

as the specific case (i.e., L=2, 巧=0and乃=T).

By using matrices XI whose ik-elements Xr,ik are 

X1,ik = ej伽—年）； l=l,・・・,L, i,k=l,2,・・・,n, (Cll) 

X。isexpressed as the following linear combination: 

L 

X。=I:t1X1. (C12) 
l=l 

Because rankX1=l, each X1 has only one non-zero eigenvalue, which is n. That is, 

X閣＝呵； l = 1,, ・ ・,L, 

where each y1 is the corresponding eigenvector: 

防=[e知 1,ej<fi12, ej知，・・・，e玲 n]t ; l = 1, ・ ・ ・,L. 

On the other hand, there are relationships: 

n n 

(C13) 

(C14) 

X叩 =I: ej(<f,13k→ 叫叫 =I: 凸 {3k叫 ； a,(3=1,・.. ,L, (C15) 
k=l k=l 

25 



where叫(3(c:k,T)(Eq.(III38)) is abbreviated to q>°'(3k・Note that Eq.(C13) is included in 

Eq.(C15), because~ 召w,,,,,,k=n.
k=l 

Because X。isexpressed by the linear combination of Xis (Eq.(C12)), whose ranks are 

one, then, rankX。~L. If rankX。=L,each y1 is linearly independent and the eigenvectors 

corresponding to the non-zero eigenvalues of X。canbe expressed by linear combination 

立闇.Then, by using Eq.(C12) and Eq.(C15), the following relationship: 
l=l 

L L L LL  LL  n 

X。こ訊=(~eふ）(~p叫＝区 ~eaPf3X°'yf3 =I:~(もPf3~凸 {3k)y°'
l=l l=l l=l 0<=l (3=1 0<=l /3=1 k=l 

(C16) 

is obtained, By comparing the coefficients of y1 on both sides of Eq.(016), we obtain 

L n 

e1 I:(Pp I: 召°凸＝袖； l= 1, ... ,L, 
(3=1 k=l 

where入denotesthe eigenvalue of X。.By rewriting Eq.(Cl 7), the following characteristic 

equation, whose eigenvalue is入
nBFp=入p

is obtained, where the LxL diagonal matrix B and the vector p are defined as 

B = diag[も，・・・，丘］

p=加，・・・，p研， 

and the a恥 lements凡f3of the LxL matrix Fare expressed as 

1 n 

心＝一 ~ejい； a,~=l,••·,L 
n k=l 

by noting thatに=1. 

Furthermore, by considering (T-T)/n=釘+1士＝△e:, because 

1 n 
lim Z 凡o,f3k

1 n T-T 
- e =-limZが°年—―

n→ con 
k=l T-T n→OO 

k=l n 

l n 
=― lim I: 召ili0<(3k, △ c:=ニ-JT--r e心 (o,-r)dc:'

T -r n--+oo 
k=l T-r o 

if n→ co, then, Eq.(C19) is rewritten as 

(Cl 7) 

~1 T-T 
F"'t3(T) = lirn F 

n-+oo 
c,{3 =―j ej@。13(e,r)de 

T-T 0 
a,(3=1,・・・,L. 

(Cl8) 

(C19) 

真

(C20) 
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Finally, by considering thatぶisan eigenvalue of matrix nEF and using Eq.(III35), 

L L 

区ふ=tr(nSF) = n Llk = n 
勺1 k=l L 

rrふ=det(nSF) = nL IT 6 det F 
k=l k=l 

(C21) 

are obtained by noting that all diagonal elements of F are 1. 

In particular, for the two-ray model (L=2, 巧=0,and Tz=T), Eq.(C21) is rewritten as 

2
 

^
＼

^

2

 ̂‘A 

十

ー
ー
＾
入

＾ヽ
A

r
v
`
,．9

9

、

n、

(1 + p)2 p 厨— I F(r)ド） (C22) 

by defining 

応）三知(r)=凡(r)*= 1 ;T-r e和 1(e,r)dc= 
1 T-r 

T-r o T-rla。 ej@(e,r)de: 

due to <I>21(c:, r) = <I>(c:, r) from Eq.(III14) and Eq.(III38). Note that, if rankX。=1,
there is a single non-zero eigenvalue, i.e., 入=trX。=n,thenぶ=0.On the other hand, 

because乃=0in Eq.(III13), p=O or ej@;=const. is obtained. Consequently, Eq.(C22) is 

also satisfied for rankX o= 1. 

Appendix D 

Proof for Convex Phase-waveform Ensuring L-th Order Diversity Effect 

in L-ray Niodel 

As shown in Appendix C, because X。isexpressed by the linear combination of X 1s 

(l=l,2,・ ・ ・,L) (Eq.(C12)), whose ranks are one, if each eigenvector y1 of X1 corresponding 

to one non-zero eigenvalue is linearly independent, then, rankX。=L. Then, we will 

show that each eigenvector is linearly independent for a convex phase-waveform¢by the 

following reductio ad absurdum. 

First, we assume that there is a pair of eigenvectors, y c. and y /3 (aナ(3)which are not 

linearly independent, then, 

叫=ayf3・ (D23) 

where a is a complex constant. From Eq.(C14) and Eq.(III32), by considering n→ oo, and 

by replacing a (lal=l) to e凡Eq.(D23)is rewritten as 

e蛉 (c+Ta)= ae蛉 (e:+T(3)=占e蛉 (e:+T(3)
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that is, 

</>(C: +互） = <f(c: + r13) + <p : mod 21r. (D24) 

Because Eq.(D24) is satisfied for any E: in O<E:<T-r, if cp is a continuous function (if not, 

then, ef> cannot be a convex function), by subtracting Eq.(D24) from the same equation 

where E: is rewritten as E:+8 (0<8~1, O<E:<T-T-8), 

rp(s +冗,)一ゆ(s+ 8十冗,)= rp(s + Tf3) -rp(s + 8 + Tf3) (D25) 

is obtained. Equation(D25) is inconsistent with a convex phase-waveform f. 
Consequently, each eigenvector y1 (l=l,2,・ ・ •,L) corresponding to one non-zero eigen-

value is linearly independent, that is, rankX。=L.

Appendix E 

The BER lower limit for the L-ray Rayleigh Fading 

By defining vector¢(c:) 

的） = [e―砂i(e)'e―j如(e)'...'e-j位 (el]t , 

the matrix F can be also expressed in the style of covariance matrix as follows: 

1 T-r 

F=―J cp(e:)cp(e:)tde:. 
T-r o 

Thus, obviously, the matrix Fis Hermitian positive semi-definite, then, its all eigenvalues 

~k (k=l,2,・ ・ ・,L) are positive or zero. Consequently, by using the relationship between 

arithmetic mean and geometric mean, 

L 

{/detF =正~~=芋=f =1 

that is, the relationship: 

O < det F s-; 1 (E26) 

置

is obtained. On the other hand, allも(Eq.(III35))are also positive or zero, then, by using 

the relationship between arithmetic mean and geometric mean, 

L 

~~ 冒=½'
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that is, the relationship: 
L 1 

o < IT戸戸
k=l 

(E27) 

is obtained. From Eq.(E26) and Eq.(E27), Eq.(III39) is obtained as the lower limit of the 

right-hand term of Eq.(III36). 

The equality condition of Eq.(III39) is derived from equality conditions of Eq.(E26) 

and Eq.(E27). Because the eq叫 itycondition in Eq.(E26) is此 =1,i.e., matrix F is 

diagonal (diagonal elements are 1), then, Eq.(III40) is obtained. On the other hand, 

because the equality condition in Eq.(E27) is equality of all ek, then Eq.(III41) is obtained. 

Appendix F 

Calculation of the covariance matrix R 

The 2 x 2 partitioned matrix R低 (i,k=-K, ・ ・ ・, K) of the covariance matrix R is writ-

ten as 
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from Eq.(IV5), Eq.(IV7) and Eq.(IV3), where 

{ A=〈Z1,叫）

C=〈Z1,;z;豆
B = (z2, 心，K〉

D=〈Zz,iZ「,K〉
(F29) 

by abbreviating互（し+i. t△) and z2(ts + i・t△) to z1,; and z2,;, respectively. 
If there is no correlation between each fading and between the signal and noise, i.e., 

（尋）s訊））＝｛゜；i # k 
叶Ps1(t1―む）；i=k=l 

〈 s1(t)v(t —町）・が (t)) == 0 

〈n(t占＊（む））＝叶Pn(t1-む）

(F30) 

(F31) 

(F32) 

by calculating Eq.(F29) using the above relationships, A, B, C, and D in Eq.(F28) are 
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expressed as 

L 

A=  こ叶Psi(二• 松）ej{((如）ーく(tz1k)} + a;pn(亡言・ 払）
l=l 
L 

B=  こ叶Psz(二・払）ej{く(tz2;)-((t12k)} ＋叶Pn(亡 ・ 払）
l=l 

L 

C=~ 叶Psi(二・ 払十 T)ej{く（国—く（如）+fl + a記（二・払十 T)
l=l 
L 

D = I: 叶Psi(二.t△ - T)ei{く(t12,)ーく(t11k)一,f;} ＋叶Pn(亡・ 払ー T)
l=l 

其

(F33) 

where 
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t0 + i• 払ー T/

t0 + k・t△ ー百

ら+i・払ー r1-T

ts+ k・t△ -r1-T 

(F34) 

andび:z/2 and Psz(t) in Eq.(F30) are the power and the autocorrelation function of the 
l-th path, respectively. 0';/2 and Pn(t) in Eq.(F32) are the power and the autocorrelation 

function of the noise, respectively. In this paper, a nondirectional receiving antenna and 

constant mobile speed are assumed. Then, Psz(t) is expressed as [17] 

Ps1(t) = la(2可叫）， (F35) 

where fn is maximum Doppler frequency. On the other hand, the predetection bandpass 

filter is assumed to be a rectangular filter with bandwidth EN (in this paper, BNT=2.0 

is used), which is wide enough not to distort the PSK-VP signal, then 

四 (t)= sin(丑むt)/けB屈）． (F36) 

Appendix G 

Derivation of the probability density function p(q) 

To obtain the probability density function p(q), first, we obtain its characteristic func-

tion G(l) defined as 
co 

G(e)三 Jp(q)庄 dq.
-co 
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G(l) can be expressed in Eq.(G37) for a quadratic form of zero-mean gaussian variables 

such as Eq.(N6)[12], 

G(e) = 
1 1 

＝ det(J -2jeR方） 「Is ヘ・た、 、 ， (G37) 

k 

where R denotes covariance matrix of u (Eq.(IV7)) and入kare eigen values of matrix 

R*H. 

Then, by means of inverse Fourier transformation, i.e., 

1 
p(q) =戸1-:G(e)e—j~q dl' (G38) 

p(q) is obtained. Consequently, by calculating Eq.(G38) using the residue theorem, the 

probability density function p(q) is expressed as 

-2入qm 

;q > 0 
1 e 

こ一2入m ・Il(l--入ふJ 
入m>O m 

” 
(G39) n;im 

q p(q) =~ 
1 e 2入m

渭く 0
こ戸.II (1ーニ,¥） 

入=<O 入m
n 

n'!'m 
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