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Chapter 2

BENBERENICE» NI T ¥ 7 F OFHEDTIE O BT
Analysis for Mean Effective Gain of Mobile Antennas
in Land Mobile Radio Environments

Abstract This chapter describes a method for analyzing the mean effective gain
(MEG) of antennas moving in a mobile communication environment. The MEG
characteristics of a mobile antenna are determined by the mutual relation
between the antenna patterns and the statistical distribution of incident waves in
an environment. To analyze this relation theoretically, a general expression for
the MEG using a statistical model of incident waves is derived, and a novel
statistical model, whose distribution is uniform in azimuth and Gaussian in

elevation, is proposed.
The validity of the statistical model is confirmed through S00MHz band

measurements carried out in a Tokyo urban area, and the empirical parameters
for the statistical distribution are described. Furthermore, the MEG
characteristics of a half-wavelength dipole antenna are investigated using the
proposed method, and it is shown that the theoretical curves calculated using the
empirical parameters are in excellent agreement with experimental results. This
analysis is very applicable for evaluating the MEG characteristics of arbitrary
mobile antennas in various mobile communication environments.

2.1 Introduction

It is common knowledge that the effective gain of mobile antennas in land
mobile propagation environments can not be evaluated with sufficient accuracy
by using antenna directive gain, since random multipaths exist due to reflection,
diffraction, and scattering in the environment. Since there is a Rayleigh-like
fading of the signal level received in the moving antenna, the mean signal level
received over a certain route has been usually used for estimating the actual
antenna performance. Andersen and Hansen have proposed an experimental
method for evaluating this actual performance of mobile antennas [1]. With this
method, the mean power levels both of an unknown antenna and a reference
antenna are obtained by averaging the signal levels received while each antenna
moves along the same selected route. Then the “mean” effective gain (MEG) of
the unknown antenna related to the reference antenna, averaged over the route,

can be obtained by comparing the mean power level of the unknown antenna with



that of the reference antenna. This method is useful for measuring the MEG of
mobile antennas in practical fields, and it has been used for evaluating the MEG
for several mobile antennas[1]~[3].

The measured MEG contains the mutual effect between the antenna power
gain pattern and the propagation characteristics along the route, and varies
depending on the measuring route. To understand why a MEG results, or how a
desired MEG can be achieved, it is necessary to analyze this mutual effect.
Unfortunately, it can not be analyzed explicitly from the measured MEG values
alone, and thus a theoretical method for analyzing the MEG is desired. To
analyze the MEG in general, it is necessary to discuss the three dimensional
mutual relation between the antenna power gain patterns and the statistical
propagation characteristics in the mobile communication environments. In
particular, to analyze the MEG characteristics when designing antennas
mounted -on portable radio equipment, it is further necessary to take into
consideration the statistical propagation properties of both the vertically
polarized (VP) and horizontally polarized (HP) components of incident radio
waves, because the orientation of these antennas, i.e. the polarization
characteristic, is varied by human operations. However a theoretical method
which treats these points has not been presehted yet.

This paper proposes a theoretical method for analyzing the MEG of mobile
antennas which can treat in general the contribution of both vertically and
horizontally polarized radio waves, the dispersion of incident waves in elevation,
and the variations of antenna polarization. A statistical model of both VP and HP
incident waves is also proposed in order to treat satisfactorily the effects of the HP
component of incident waves and the difference between the statistical
distributions of the VP and HP incident waves. Furthermore, the MEG
characteristics of half-wavelength dipole antennas are discussed theoretically.
The effectiveness of this theoretical analysis is confirmed through experiments
for both the statistical distribution of incident waves and the MEG characteristics
of half-wavelength dipole antennas.

In Section 2.2, the theoretical expression for the MEG of mobile antennas is
formulated by using Yeh’s analysis with respect to mean received power of mobile
antennas [4, p.133-140]. In Section 2.3, the statistical properties of incident
- waves in mobile radio environments are considered, and a novel statistical
distribution model of the incident waves is proposed. Section 2.4 analyzes and

discusses the MEG characteristics of half-wavelength dipole antennas



theoretically. This theoretical results are fundamentally interesting, since the
half-wavelength dipole antenna is usually used as a reference antenna in the
MEG measurements but its MEG characteristics have not been investigated. In
Section 2.5, the results of 900MHz band experiments for statistical distribution of
incident waves are shown, and the validity of the proposed statistical model of the
waves is confirmed. Furthermore, it is shown that the theoretical results of the
MEG for half-wavelength dipole antennas agree closely with the measurement
results in 900MHz band. As a result, it is shown that the MEG of mobile
antennas can be effectively analyzed by using the derived formula jointly with

the proposed statistical model.
2.2. Theoretical Expression of Mean Effective Gain

To properly analyze the MEG characteristics of mobile antennas, it is first
necessary to establish a theoretical expression of the MEG which takes into
account the vertically polarized (VP) and the horizontally polarized (HP) incident
radio waves in multipath environments. Figure 1 illustrates the notion that the
transmitting signal radiated from a base-station antenna passes through a
multipath propagation environment and arrives at a mobile antenna. Py and Py,
respectively, are the mean incident powers of the VP and HP incident radio waves
received while the antenna moves in the environment, averaged over a random
route. Thus, the total mean incident power arriving at the antennas, averaged
over the same route, is Py+Ppg. The ratio between the mean received power of
antennas over the random route, Pre, and this total mean incident power,
Py + Py, can be considered the MEG of mobile antennas in the environment. Itis
assumed that the average over a random route in an environment is equal to the

average over the environment. In this paper, this ratio is denoted by the symbol

Ge,

P

G = rec ) (1)

€ PV +PH

The mean incident power ratio Py/Pp represents the cross polarization power

ratio (XPR),



XPR = (2)
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The XPR corresponds to the “cross-polarization coupling” [5] when the
polarization of the transmitted radio waves is horizontal. The XPR corresponds to
the reciprocal of the cross-polarization coupling when the polarization of the
transmitted waves is vertical.

For spherical coordinates, as shown in Fig. 2, the mean received power of

antennas, Py, is expressed by the following equation [4, p.138],

2n rn .
Prec = [0 Io {P1G9(9,¢>)P6(9,¢>)+P2G¢(9,¢>)P¢(9,¢>)} sin8d8dd 3)

where Gg(6,9) and G¢(6,0) are 6 and ¢ components of the antenna power gain
pattern, respectively, Pg(6,0) and Py(6,p) are 6 and ¢ components of the angular
density functions of incoming plane waves, respectively, and these functions

satisfy the conditions that

2n rm
[ I {Ge(6,¢)+G (e,q>)] sinf8dodp = 4n (4)
0o Jo ¢ .

Fn ]nPe(e,cp)sinGdecp = [% r P (0,9)sin8d8dd =1 . (5)
0o Jo o Jo ®
P is the mean power that would be received by an ig-polarized isotropic antenna
in the mobile radio environment. Similarly, Pg is the mean power that would be
received by an lg-polarized isotropic antenna. g and iy are unit vectors
associated with 6 and ¢, respectively.

In figure 2, since the mobile antenna moves in the XY-plane, the 6 and ¢
components respectively correspond to the VP and HP components. Thus the
terms Py and Pg are, respectively, the mean received power of the VP isotropic
antennas and that of the HP isotropic antennas, and the XPR is equal to the ratio
P1/Py. By using Eq. (3) and the notation for the XPR, the expression for the MEG

can be rearranged as the following equation :
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When only a VP wave (XPR =) is incoming from a single (85, ¢s) direction,
which corresponds to line-of-sight propagation with VP wave transmission, the
angular density functions in Eq. (6) are represented as

8(6—0_)5@~b,)
Py0,0) = (7)

sin@
8

and |

P.6,9) =0 : (8)

where 8(x) is the delta-funcfion. Then, it follows from Eq. (6), (7) and (8) that the
MEG becomes

Ge =G9(es’¢s) : (9)

This means that the MEG corresponds to the antenna directive gain of the (6, ¢s)
direction when incoming signals are centered in the (05, ¢5) direction.

If the characteristics of incoming signals in various environments can be
represented as statistical distribution functions, Pg, Py, the MEG in Eq. (6) gives

the mean power gain of the antenna in each of the environments.
2.3 Theoretical Model of Incident Waves

It has previously been reported that five or six incident waves arrive at an
antenna standing still in a typical mbbile communication environment, and that
most of the incident waves are diffracted over buildings, reflected off buildings, or
scattered by surrounding objects [6],[7]. Since the buildings have no general rule
in height, size, shape, and material, not only the number, strength, polarization,
and phase of incident waves but also the arrival direction of incident waves varies
depending on the city structure and antenna location. When the antenna moves
randomly in such a propagation environment, it can be regarded that numerous
incident waves arrive at the antenna over a random route. To treat this random
occurrence of incident waves statistically, most statistical models, which have

already been presented [8]~[13], assume the angular density functions to be

10



uniform in azimuth. Similarly, in this paper, the angular density functions of
both VP and HP waves are assumed to be uniform in azimuth.

However, it is not adequate to express the angular density function in elevation
by a uniform one. Some information is available regarding the dispersion in
elevation of angular density functions, Pg or Py, in urban and suburban
environments. Lee [14, p.158] reported that the elevation angles can be
somewhat larger than 16° but less than 39°. Yeh (in Jakes [4, p.149]) reported
that the elevations are somewhat larger than 11° but less than 39°, Watanabe et
al. [15] measured the average signal strength, in the 873MHz band, received from
a colinear dipole array which consisted of 6 dipole elements, and with which it
was possible to tilt the radiation beam at elevations of 0°, 30°, and 60°. They
reported that the elevation angles were spread over the angular range from 0° to
30°. Ikegami and Yoshida [6] measured the arrival direction of incident waves in
an urban area by using a 12-element Yagi-Uda antenna with a 12-dB gain in the
205MHz band, and noted that the elevation angles were spread over the range
from 0° to 50°. These measurement results indicate that the elevation angles are
spread over a wide angular range and that the dispersion of elevation angle
depends on regional environmental conditions. Thus, a model which extends to
three dimensions should be introduced. Aulin [10] has discussed a 3-dimensional
model in which the angular density function is assumed to be a rectangular or
sinusoidal function in elevation, but is still restricted to a single polarization.
Vaughan [12] has discussed a similar model in which the angular density
function is assumed to be a uniform function between 0° and 30° in elevation, but
is assumed to be the same function for VP and HP waves. The spread of the
elevation angles corresponds to that of the secondary wave sources, i.e.,
diffraction points, reflection points, and scattering points, distributed on
buildings whose heights are spread without general rule. Since typically,
numerous such sources will be observed when the antenna moves randomly in an
environment, it is, therefore, quite reasonable to assume the angular density
function to be a Gaussian distribution in elevation.

In accordance with the above assumptions, this paper proposes a novel
statistical model in which angular density functions Pg and P¢ are assumed to be
Gaussian in elevation and uniform in azimuth as shown in Fig. 3. Note that the
elevation can take on negative values since mobile antennas are usually operated
at a position above the ground. The distribution functions of incident plane waves

are expressed as follows :

11



[9‘<';["mV>} ] (10)

Pe(e,cb):Aeacp{— — (0=6=n)
2°V
(3-ma)]
——m
)|
Pd)(e,q)):Aq)ecp - 5 (0=06=nm) (1D
20H

where my and mpy are, respectively, the mean elevation angle of each VP and HP
wave distribution observed from the horizontal direction, and oy and oy are,
respectively, the standard deviation of each VP and HP wave distribution. Ag
and Ay are constants determined by Eq. (5). If the mean power strengths of VP
and HP waves in the direction of 6 =n/2 —~my and 0 =n/2 — mpy are respectively

P, vand P51, then
Py=PirAg (12)

Prn=Fy 4y : (13)
Therefore, the XPR is also determined by P, v and P, ;7 as shown in the following

equations.

v P .
XPR:P—=F=——.— (14)

2.4 Mean Effective Gain Analysis of Dipole Antennas

A. Power Gain Pattern

A half-wavelength dipole antenna and a spherical coordinate system are shown
in Fig. 4. The feeding point of the dipole antenna is situated at the origin of the
coordinate system and the antenna elements are on the L-axis inclined at the
angle a from the Z axis in the vertical ZX plane. A thin dipole is assumed and the
element radius ignored. The current distribution on antenna elements is

assumed to be sinusoidal as follows ;

I=Iocoskl (=A/4=1=10/4)
2n

k= — ,
A

12



where A is the wavelength. The antenna power gain patterns Gg and Gy are
(%)

cos | —

27

Ge = 1.641 (cosB cosd sina — sinB cosa )2- 2
(1-8)

A2
G, = 1.641 sin%p sin%a - —
(1-8)

-where

& = sinB cosd sina + cosP cosa ,

and the mismatching and ohmic losses in the antenna are also ignored. The
coefficient 1.641 corresponds to the directivity of half-wavelength dipole
antennas.

The 3-dimensional radiation patterns of the dipole antenna with respect to the
inclination angle a, from 0° to 90°, are shown in Fig.5. It is found that at the
inclination angle a=0°, the antenna is only VP wave sensitive, however, at other
inclination angles, it is both VP and HP wave sensitive. In particular, it should
be noted that the horizontally oriented half-wavelength dipole antennas is not

only HP wave sensitive.
B. Mean Effective Gain of Vertical Dipole Antennas

When the inclination angle a is equal to 0°, the power gain pattern for HP
waves A is nonexistent, as shown in Fig. 5. The MEQG is, therefore, obtained by
the integration of only the O component. If, moreover, the incident waves are only
VP waves, i.e., the XPR is o, the coefficient XPR /( 1+ XPR ) of the first term in
the integrand in Eq. (6) becomes 1, and thus the MEG is independent of the XPR
value. However, when the incident waves have both VP and HP components, the
MEG is further reduced by the factor XPR/(1+XPR ). This gain degradaﬁion
due to the XPR is represented by the solid line in Fig. 6. Thus, in order to clarify
the MEG characteristics of vertical dipole antennas, it is sufficient to consider the
MEG characteristics for XPR=00,

The dependence of the MEG of the vertical dipole on the standard deviation oy,
of VP incident waves is shown in Fig. 7. When o,,=0° the MEG is equal to the
directive gain with respect to the incoming direction of incident waves.

Furthermore, when my,;=0° and o,,=0°, i.e., incident waves are completely in the
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horizontal plane, the MEG is equal to the directivity of the half-wavelength
dipole antenna 2.15dBi, because the incoming direction of incident waves
corresponds to the direction with the maximum gain. The more the standard
deviation increases, the closer the MEG is to the isotropic antenna gain (0dBi).
At o,=00, ie., when the statistical distribution of the incident waves is
completely uniform, the MEG is equal to the isotropic antenna gain. As my,
increases from m,,=0° with 0,,=0°, (i.e., incident waves are in an azimuth plane
at the my, elevation), the MEG decreases in proportion to the power gain at the
mean elevation angle m,,, However, the more the standard deviation increases,
the closer the MEG again approaches the isotropic antenna gain (0dBi). In the
actual propagation environment of mobile communications, the distribution of
the incident waves seems to be spread in elevation. Thus, the effective gain of the
~vertical half-wavelength dipole antenna becomes lower than the directivity of
2.15dBi. The MEG is further reduced by lower XPR as shown in Fig. 6.

In a multipath environment in which the XPR is 1 (0dB) and both VP and HP
incident waves arrive from all directions uniformly, the MEG of arbitrary
antennas is equal to 0.5 (—3dBi). If such an environment can be developed,

antenna efficiency can be measured experimentally.
C. Mean Effective Gain of Horizontally Oriented Dipole Antennas

In the case of a horizontally oriented dipole antenna, as the inclination angle a
is 90°, the antenna has both VP and HP radiation patterns as shown in Fig. 5.
 The MEG characteristics of the horizontal dipole antenna have features due to
the existence of the VP radiation pattern. ‘

An example of MEG characteristics for a horizontal dipole is shown in Fig. 8.
In Fig. 8, the parameters of the statistical distribution of the incident wave are
selected typically as my= mj{'-—- 0°and oy =0z . Therefore, when oy =0g=0°i.e.,
the incident waves are in the horizontal direction, only the HP radiation pattern
contributes to the MEG, since the VP radiation pattern Gg is nonexistent in the
XY-plane. In this case, the MEG of the dipole antenna is —1.35dBi, which is
3.5dB lower than the directivity of the dipole antennas, 2.15dBi. This gain
degradation is due to the fact that the HP radiation pattern in the horizontal

plane does not have omni-directional characteristics, and can be evaluated as

follows :
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1 on COS :2-0054)
——[ I Y— dd = 0.45 (—-3.5dB)
2n o sin“y

As shown by the broken line in Fig. 6, as the XPR increases, the MEG further
decreases in proportion to 1/( 1+ XPR ). In Fig. 8, the solid line for XPR = —50dB
(XPR=0 ) represents the MEG characteristics for the special case in which only
HP waves exist. Therefore, this solid line also represents the MEG
characteristics due to just the HP power gain pattern of the horizontal half-
wavelength dipole antennas. When Py=1/4n, which means that the HP waves
are incoming from all directions, the contribution of the HP power gain pattern to
the MEG is 0.76 (—1.2dBi ), and as oy and oy become larger, the MEG of
horizontal dipole antennas approaches the gain —1.2dBi. If the horizontal dipole
antennas did not have VP power gain patterns, the MEG characteristics of
horizontal dipoles for each XPR value would be indicated by the broken lines in
Fig. 8. However, the horizontal dipoles do have VP power gain patterns, so the
MEG due to the VP incident waves adds to the MEG shown by the broken lines.
Thus, the effect of the VP waves is shown by the shaded sections. As the XPR
value or the standard deviation for VP waves, oy, become larger, the effect
increases.

A secondary interesting characteristic of the MEG for horizontal dipole
antennas is the MEG variation with the mean elevation angles my and my. Fig. 9
shows the variation with respect to my of the MEG due to the HP power gain
pattern. When oy and oy are equal to 0°, the mean elevation angle my becomes
larger than 0° and the MEG gradually increases and approaches the directive
gain of a horizontal dipole in the zenith direction. Since the amplitude is the
same but the phase difference is 90° for the power gain patterns of the 6 and ¢
components when 6=0° the directive gain of the HP radiation pattern is equal to
1.641/2 (—0.85dBi). This means that the variation of the MEG due to HP
radiation pattern isless than 0.5dB and is relatively small. However, as shown in
Fig. 10, the variation due to VP radiation pattern is not so small. In Fig. 10, the
broken lines show the MEG characteristics for my=0° and the solid lines show
those for my=20°. There is no contribution to the MEG by the VP waves when
the incident waves are in the horizontal direction because Gg=0 in the XY-plane.
However, when the mean elevation angle m,, increases from 0°, the VP waves
contribute to the MEG because of the existence of Gg components. This
contribution of the VP waves increases in proportion to the XPR value. As the
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standard deviation for VP wave oy becomes larger, the MEG approaches the
values indicated by the solid lines of Fig. 8.

From the above considerations, it is found that the MEG characteristics of
horizontal dipole antennas are strongly affected by the VP radiation
characteristics. These characteristics must be considered when measuring the

XPR using horizontally oriented half-wavelength dipole antennas.
D. Mean Effective Gain of Inclined Dipole Antennas

When the inclination angle of a half-wavelength dipole antenna is increased
from a=0° the MEG of the antenna changes from the MEG value of the vertical
dipole antenna to that of the horizontal dipole antenna as described above.
However, several interesting results are obtained by investigating the MEG
characteristics of inclined dipole antennas. Fig. 11 shows the typical MEG
characteristics calculated for several XPR values. '

Firstly, it is found that there is a particular inclination angle at which the
MEG is constantly —3dBi regardless of the XPR value. This inclination angle is
55° and is shown at the point A in Fig. 11. At this angle,the VP radiation power of
the antennas is equal to the HP radiation power. The variation of the MEG at the
point A with the incident waves distribution parameters ( XPR, m,, mgq, bV, og)
is less than 0.2dB. It is proposed that the sum of the incident power of the VP and
HP waves, Py + Py, can be measured by using this property. The power, Py + Py,
is 2 times the average received power measured by a dipole antenna inclined at
55°. Therefore, this power level can be used as the reference signal level in the
MEG measurement, instead of the mean power level of the vertical oriented
dipole antenna, which is strongly affected by the propagation conditions.

Secondly, it is also shown in Fig. 11 that the MEG characteristic for XPR = —
2dB shows the existence of incident wave parameters which make the MEG
constant (—3dBi) regardless of the antenna inclination angle. Fig. 12 shows an
example of the parameters which give this constant MEG characteristic for half-
wavelength dipole antennas. In Fig.12, the case in which the standard
deviations, Oy OH, increase infinitely indicates an unusual environment in which
both the VP and HP incident waves arrive evenly from all directions. It can also
be seen that there are many propagation parameters giving constant MEG (—
3dBi) characteristic regardless of the antenna orientation, in addition to the

unusual environment with uniform illumination from all directions. In other
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words, there is a possibility of developing an artificial propagation environment
where the average received signal level of antennas can be made constant
regardless of the variation of antenna pattern and polarization. It is expected
that these environments could be developed by controlling the polarity of the
transmitting antenna for XPR, the height of the transmitting antenna for mean
elevation angle, and the beamwidth of the transmitting antenna for standard

deviations, but further experimental investigation is required to confirm this.
2.5 Experiments
A. OQutline of experiments

Two experiments were carried out in a Tokyo urban area (Fig. 13) to confirm
the validity of the theoretical considerations, using a vertically polarized radio
signal in the 900MHz band. The first experiment was to investigate the
statistical distribution of incident waves, and the second was to investigate the
MEG characteristics of a mobile antenna. Two measurement routes were
selected, in Ningyo-cho area and Kabuto-cho area, and both experiments were
" done over these two routes. These routes were located about 1.2km from an omni-
directional transmission antenna 87m high, and all receiving points on the routes
were out of sight from the transmitting antenna, The receiving antennas were
mounted 3.1m above the ground on the roof of a van. The van moved from the
point @ through ®— ©— © to @ around a 50mX40m block in Ningyo-cho, but
from the point @ through ®— © to @ around a 100m X 50m block in Kabuto-cho.
In the Ningyo-cho route, the width of the road was about 8m along three sides of
the route and about 16m on the fourth, and the average height of buildings was
about 15m by the 8m wide road and about 20m by the 16m wide road. In the
Kabuto-cho route, the width of the road was about 14m along two sides of the
route and about 6m on the third, and the average height of buildings was about
25m by the 14m wide road and about 17m by the 6m wide road. These buildings
were considerably high compared with the width of the road.

In the first experiment, to measure the received power pattern of incident radio
waves, a 0.9m diameter parabolic reflector antenna with a dipole element for the
primary radiator was used. By rotating the primary radiator, the reflector
antenna was able to receive VP or HP waves. Fig. 14 shows the radiation pattern

of the measurement antenna for VP waves. The half-power beamwidth and the
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first sidelobe level of the reflector antenna were 22° and less than —9dB,
respectively. This size reflector antenna was used to facilitate measurement,
however it is hoped that a larger size reflector antenna with high directivity will
be used in the future in order to improve the accuracy of the measurements.
Measurements were taken every 5m at a total of 34 points along the Ningyo-cho
route, and every 7m at a total of 30 points along the Kabuto-cho route. At every
receiving point, the received power patterns for both VP and HP incident waves
were measured by rotating the reflector antenna 360° in azimuth, at elevation
angles of —10°, 0°, 20° and 45°. It should be noted that the effect of the metal body
of the van might be included in the experimental data at the antenna elevation of
—10°

In the second experiment, measurements of the received signal level of a test
antenna over a route were carried out over the same route as the statistical
distribution measurements. A half-wavelength dipole antenna was used as the
test antenna, and was mounted 3.1m above the ground on the roof of a van. To
evaluate the variation of received power with the direction of the antenna
radiation pattern, the dipole antenna was inclined in the vertical planes with
azimuthal angle of 0°, 90°, +45° and —45° from the forward direction of the
moving van, The inclination angle of the dipole, a, was set at 0°, 15°, 30°, 45°, 55°,
60°,75° and 90°. The received signal level was measured as the van moved at
about 20~30km/h along the route. The received signal level was digitized by A/D
convertor in every distance of about lem, and then the average received signal

level was calculated by averaging all data sampled over the route.

B. Statistical Distribution of incident waves

A typical example of the measured data is shown in Fig. 15. The circled
patterns show the received power patterns of the VP incident waves measured at
the receiving points @ to ® on the Ningyo-cho route. In this figure, “forward”
and “backward” indicate the direction of motion of the van along the road. The
received power is normalized by the maximum received power at each receiving
point. Thus the power is equal to 1 on the circles and 0 on the center of the circles.
In these measurements, it is seen that the number of principal waves counted is
up to five or six at every point, but the incident power and the arrival direction
vary considerably from point to point, though the separation of measuring points

is only about 5m. This characteristic of direction patterns of incident waves is
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similar to the previous experimental results in 205 MHz band [6]. Similar
direction patterns for VP and HP waves were obtained at the other points of the
Ningyo-cho route and on the Kabuto-cho route. As a result, it can be considered
that an extremely large number of incident waves are observed while the antenna
moves over a random route, and the validity of the assumption of the model in
which incident waves arrive from numerous and random azimuthal directions is
confirmed.

The average received power patterns over the measurement route for each
elevation angle were calculated by averaging the measured received power
pattern for all receiving points. Fig.16 and Fig. 17 show the average power
pattern for the VP and HP waves in the Ningyo-cho route, respectively. Fig.18
and Fig. 19 also show the average power pattern for the VP and HP wave in the
Kabuto-cho route, respectively. The solid lines are the average received power
patterns, and the dotted lines are the mean power levels calculated by further
averaging the average received power pattern over azimuth angle. It is found
that the solid patterns are not completely uniform in azimuth, because the
selected measurement route is only a rectangular course around a block, and
therefore, the assumption of random motion of the antenna is not completely
satisfied. It is expected that the solid patterns be close to uniform when the
measurement route and the set of receiving points is more random. However, this
lack of the uniformity in azimuth causes only the variation of the MEG due to the
antenna orientation when the antenna is not omni-directional in azimuth. But
the average value of the MEG variation is close to the average obtained in the
completely uniform case. Therefore, evaluating the statistical distribution of
incident waves using the mean power levels of the solid patterns results in a
statistical distribution adequate for evaluating the average of the MEG
variation. The 3dB variations in the solid patterns are not significant for the
purpose of the MEG analysis. The mean power distributions of the incident
waves in elevation are approximated using these calculated mean power levels
and are shown in Fig.20. In this figure, the solid lines express the best
approximation of a Gaussian distribution function with the mean power levels.
This figure, therefore, shows that the statistical distribution of incident waves
can be well approximated with the model proposed in Section 3.3.

In the distributions of the VP waves, the mean elevation angles, my, of both
routes are about 20°, which value is consistent with the former experimental

results that the elevation angles are somewhat larger than 0° but less than 39° [4,
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p.149], [14, p.158]. However, it is found that the dispersion in elevation of the HP
waves is larger than that of the VP waves; in fact, the distributions of the HP
waves happen to be nearly uniform in elevation in this case. This is probably
because there are many buildings which are high compared with the width of the
road along the measurement routes so that the diffraction over and the multiple
reflection on the buildings seems to produce HP waves at high elevation angle.
Although further investigations are needed to confirm the statistical
distributions for various mobile environments, it is expected that the HP wave
distribution will be concentrated around a low elevation range in a suburban area
where there are few high buildings. The distribution parameters for the proposed
model, My, Oy, My, and oy can still be obtained empirically even in the closely
uniform distribution case by approximating measured values with Gaussian

distributions as shown in Fig. 20. For the two routes, they are obtained as follows

my;,=19°, 0y,=20°, mp=32°, 0,;=64° for the Ningyo-cho route,
my,=20°, 0,,=42°, m;=50°, 0,;=90° for the Kabuto-cho route.

In the Ningyo-cho route, the maximum mean power levels for both VP and HP
waves are 3.9X10-1mW and 0.6 X10-1mW, respectively. The XPR, therefore,
can be evaluated as 5.1dB by substituting these values into the equation (14).
Similarly, in the Kabuto-cho route, the XPR can be evaluated as 6.8dB. These
XPR values are quite reasonable considering the former measured results,
showing that the cross polarization coupling in the urban area is larger than —
9dB and less than about —4dB [16]. These former results mean that the XPR in
the urban area is larger than about 4dB and less than 9dB, because the reciprocal
- of the cross-polarization coupling corresponds to the XPR in the case of the VP

wave transmission.
C. MEQG of Half-wavelength Dipole Antenna

According to the theoretical consideration described in Section 3.4-D, the
reference signal level in the MEG measurement can be evaluated by measuring
the mean received power level of a half-wavelength dipole antenna with an
inclination angle of 55° from the vertical. Table I shows the measurement
results for average received signal levels of the dipole antenna with 55°
inclination and the reference signal levels for the MEG measurement. The
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average received signal levels were obtained by averaging all measured values
digitized over the measurement route. The variation of these values is caused by
the mutual influence of the antenna pattern and the lack of the uniformity in
azimuth of wave distributions in measurement routes. To evaluate the “mean”
received signal level without such influences, the average of measured signal
levels for various antenna orientations must be used as the “mean” received
signal level of the 55° inclined dipole. Thus, in this case, the average of measured
signal levels for four different antenna orientations was adopted as this “mean”
level, and it was 35.0dBnV for the Ningyo-cho route and 33.5dBuV for the
Kabuto-cho route, respectively. The “mean” received signal level corresponds to
one half of the reference signal level, because the MEG of the 55° inclined half-
wavelength dipole antenna is —3dBi. Therefore, the reference signal levels were
obtained by adding 3dB to the “mean” received signal levels, and were evaluated
as 38.0dBuV for the Ningyo-cho route or 36.5dBuV for the Kabuto-cho route,
respectively. The value normalized by this reference signal level represents the
MEG value of the antenna. Fig. 21 shows the normalized measurement results
and the theoretical curve of MEG for half-wavelength dipole antennas. The solid
line shows the theoretical curve calculated using the empirical distribution
parameters which are described in Section 5-B. The open circles, crosses, open
triangles, and open squares show the measurement results for each antenna
orientation of 0°, 90°, +45° and —45° respectively. Closed circles show the
average values of the measured results for each antenna inclination. '
The variation of measured MEG values at 0° inclination angle indicates the
measurement error, since the vertical oriented dipole antenna has an omni-
directional pattern in azimuth so that there is no effect due to the nonuniformity
in azimuth of the wave distribution. The measurement error is about 1dB for the
Ningyo-cho route and about 2dB for the Kabuto-cho route, respectively. However
these errors are usually observed in the MEG measurement because of the
variation of the environmental conditions due to, for example, the motion of other
cars. It is also found that the variation of the measured MEG at 90° inclination
angle is larger than that at 0° inclination angle in both measurement routes.
This just indicates the increase of the MEG variation caused by the mutual effect
between the antenna azimuthal pattern and the lack of the uniformity in azimuth
of the wave distribution, since the most distinguishable pattern in azimuth
appears in the horizontal oriented dipole antenna. In fact, this variation is more
distinguishable in the Kabuto-cho data in which the HP wave distribution has
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relatively large nonuniformity in azimuth. The most significant resultis that the
theoretical curves have excellent agreement, within about 1dB, with the average
values of measured results. This indicates that this MEG analysis does evaluate
not only the MEG of mobile antennas moving randomly enough for the statistical
distribution of incident waves to be considered completely uniform in azimuth but
also the average of the MEG variation of the directional antenna operating in an
environment in which the statistical distribution of incident waves has lack of
uniformity in azimuth. Furthermore, these experiment results show the validity
of the proposed model and the derived formula for the MEG, and therefore, it is
consequently concluded that this MEG analysis is very effective for evaluating

the MEG of mobile antennas in multipath propagation environments.

2.6. Conclusion

A general formula for the mean effective gain (MEG) of mobile antennas has
been presented and a novel statistical distribution model for both VP and HP
incident waves which are Gaussian in elevation and uniform in azimuth have
been proposed. By using the formula jointly with this statistical model, the MEG
of antennas moving in mobile communications environments can be analyzed
theoretically. In this paper, the MEG characteristics of a half-wavelength dipole
antenna have been analyzed and the following results have been obtained :

(1) the MEG of vertical dipole antennas is less than 2.15dBi due to the wide
spread distribution of incident waves in elevation and the existence of HP
component of incident waves in mobile radio environments,

(2) the MEG of a 55° inclined dipole antenna is almost constantly —3dBi
regardless the XPR and the statistical distribution of incident waves, and the
mean total power of incident wéves can be evaluated by adding 3dB to the

- measured mean power received in the 55° inclined dipole antenna, and

(3) there are many propagation conditions in which the MEG is constant (—~3dBi)
regardless of the variation of the antenna orientation.

The validity of the theoretical model has been confirmed in 900MHz band
experiments carried out in a Tokyo urban area. The number of principal waves
was measured up to five or six at every receiving point, and their incident power
level and arrival direction varied randomly from point to point. This result
supports the assumption that the incident waves are observed numerously and

uniformly in azimuth while a mobile antenna is moving randomly. Since the
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measurement routes were too short for the assumption of completely random
motion, the average patterns of both the VP and HP incident waves in azimuth
indicated about 3dB variation. However, this variation is not significant for the
purpose of the MEG analysis, and the average distributions of incident waves
over the measurement routes can be obtained by using the mean power levels of
measured statistical distributions in azimuth. The distribution parameters in
each measurement route could be obtained empirically by approximating with
the proposed model. The measured distributions of both VP and HP incident
waves did not agree with other previous statistical models. This consequently
shows that the proposed model is more effective for expressing the statistical
distribution of incident waves in practical fields than the other models.
Furthermore, the validity of the MEG analysis has been confirmed through the
900MHz band experiments carried out for the same route as the wave distribution
measurements. The reference signal level for the MEG evaluation can be
obtained by adding 3dB to the mean received signal level measured by a 55°
inclined dipole antenna. This reference signal level should be evaluated by
averaging several received signal levels for the 55° inclined dipole antenna with
different azimuthal orientation, to reduce the level variation caused by the
mutual effect of the antenna pattern in azimuth and the nonuniformity of the
practical wave distributions. The measured MEG values of an inclined dipole
antenna at different azimuthal orientations spread around the average points
within 2 or 3dB, because of the mutual effect, however the average points of these
measured MEG values are in excellent agreement with the theoretical curves
which are calculated using the empirical parameters obtained from the wave
distribution measurements. This shows that this MEG analysis evaluates the
average of the measured MEG values, even if a selected route for the MEG
measurement is not long enough to result in random motion of the test antennas,
and therefore, it is confirmed that this analysis is very effective for evaluating the
MEG characteristics of mobile antennas.
This MEG analysis, of course, can be applied to other antenna systems and
other mobile environments. However, to design mobile antennas, further study of
the statistical distributions of both VP and HP radio waves in various kinds of

mobile communication environment is desired.
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Fig. 5 Power gain patterns of half-wavelength dipole antennas with
inclination angle of 0°, 30°, 60°, and 90°.
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Fig. 10
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Gain fluctuations of horizontally oriented half-wavelength
dipole antennas due to elevation angle of vertically polarized
incidentwaves ; my=20°, my=0° oy=o0y. Broken lines show
MEG characteristics formy=my=0°and oy=o04.
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Fig. 11 Mean effective gain of inclined half-wavelength dipole
antennas; my=my=0° oy=0y=30°.
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Fig. 12 Distribution parameters giving constant MEG of dipole
antennas regardless of the antenna orientation.
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Fig. 13 Map of measurement courses in Tokyo.
(a) Receiving points in Ningyo-cho route.
(b) Receiving points in Kabuto-cho route.
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(a) (b)

Fig. 14 Directivity of measurement antenna for
vertically polarized waves in (a) vertical
plane and (b) horizontal plane.
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Fig. 15 Received power patterns for vertically polarized
incident waves at Dst to ®th receiving points
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Fig. 16 Average power distribution of measured vertically polarized
incident waves in Ningyo-cho route with respect to elevation angle
of (a) - 10°, (b) 0°, (c) 20°, (d) 45°.

( measured average power pattern, — — — calculated mean
power level)
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Fig. 17 Average power distribution of measured horizontally polarized
incident waves in Ningyo-cho route with respect to elevation angle
of (a) = 10°, (b) 0°, (c) 20°, (d) 45°.

( measured average power pattern, — — — calculated mean
power level)
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Fig. 18 Average power distribution of measured vertically polarized
incident waves in Kabuto-cho route with respect to elevation angle
of (a) - 10°, (b) 0°, (c) 20°, (d) 45°. '
(___ measured average power pattern, — — — calculated mean
power level)
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Fig. 19 Average power distribution of measured horizontally polarized
incident waves in Kabuto-cho route with respect to elevation angle
of (a) -~ 10°, (b) 0°, (c) 20°, (d) 45°.

( measured average power pattern, — — — calculated mean
power level)

44



(x 101" mw)

Mean Power

5 T T T T T

§ 20 T T T T T
00 V-pol. £ 00 V-paol V-pol.
e - } measured - POl measured Pym=17.8%10"""mwW
H-pol. V-pol 2 ® ® H-pol. tm
pol. ' my=20°, oy=42°
4 Pim=3.9%10"""mwW - =
Mmy= ‘90, Ov=20° X l5 r 7]
H-pol. =

3t Pom=0.6%x10""mwW
my=32°, oy=64°

Mean Power
o
T

2r 4
H-pol.
5+ Pomn=29x%10""mwW i
[ ~ my= 50°, oy =90°
0 ! I 1 1 L 0 i 1 ! 1 i
-40 -20 0 20 40 60 80 -40 -20 0 20 40 60 80

Elevation Angle (deg)

(a)

Elevation Angle (deg)

(b}

Fig. 20 Mean power distribution of incident waves versus elevation angles
in (a) Ningyo-cho and (b) Kabuto-cho route.
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TABLE I

Measured signal level of a dipole antenna with 55° inclination
and reference signal level for isotropic mean effective gain.

Orientation | Average “Mean” | Reference
of received received signal
antenna signal signal level for
inclination level fevel “Py +Py"”
plane (dBuV) (dBnV) (dBuVv)
0° 35.0
Ningyo-cho | 90° 34.6
route 35.0 38.0
+45° 35.3
—45° 35.3
0° 33.5
Kabuto-cho 90° 35.2 335 36.5
route +45° 32.4 ' '
- 45° 32.2
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Mean Effective Gain (dBi)
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Fig.20 Comparison of calculated and measured mean effective gain of
an inclined half-wavelength dipole antenna in (a) Ningyo-cho
and (b) Kabuto-cho route.
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Chapter 3

Sl RO LIZIREE - BT 5 FEEWNFNIS OB
Analysis for Mean Effective Gain of Mobile Antennas
in Effective Line-of-sight Propagation Environments

3.1 U &I

S EIFHREIICE 2 N2 BEVMET » 7 F OFHEDFIEMEG) D BITIZ i1k, 52
BETRLAZ LD, BEV) KPE)BRERSH 7 V< 2AFEIC—1E5F LA
FEN A7 AFHT HERET TNV 2 BRT 5 HEFEHTHD, LarL,
SRESIEH T ¥ < AFHITGRVF T b OERBENRE LIERE)N 2 88+
57 7 FOMEGIHHIZ DWW T2 &N Twnh v, KETIE, SRS
LI B 2 V-HERBERS OBIRESA AT ¥ < 2 FR, ABHR & b7
Y RASATT BEEHYE TV R RE L CMEGHEMEORE %4742 o R IZ D2V TH
ETHLDTDH 5,

3.2 iR EF N

BHEFVERLIGRT. TV FFRPEREFTAR—- VLT 7+ &L, XZEN
TaDMHE % b ORETLEEGMBAZZE TA2 b0 ET 5, XYEIZKFEITH
oL, 7 ¥ FFEXYARN%*BET 5, ERESHOEIRFME A, £ O F{IFRE
REESET 5, IRERESHOVHREEDZERIABE TN Thmy, mg &
L. MAEERE Yoy, og & T 5, SHERERKDE X, TOETFINVIEEIETRL
P ARHE 7OV CURIADIC —3 T 5,

33 BRATFE R

M2iia=55°DIEEDETEFI %R, SHNEWET ¥ 7+ OBHFFERMEIC
T AEEERT A, SHRKEVEEIREMAICT T AEEPNSLK YTV
v 2 F A= EF VO TCOEEEIET . FEERFMLAIKT 5 MEG
TEOTFHEIZ, SOBIZ L ST T VT AFA—HIHFEFTIVTOEEMBIZE L
Vi, CORMRT VT FIOEERIZLISTEYIID, IO ik, XHE1IDE
WEF N TCORIKEREY, SHABLERBICIBTT vy 7T oA IR
A THEENAMEGO FUFHEZ2E5 25T E2RTHIDTHL, ZDE &,
EFSRA I T 5 MEGO R AME, f/Miix, BSRESH DT V< R FHIC—HT
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RV ECERT AMEGOEGE2RT L2 b, MR 77T OEEH*E
ALGEOMEGEE 2 /AL TB Y., HPEFIEXMAIOERET 7V TCoEMEE
Thb, B HEIRFVAANNT ZMEGIHFE BB CRENLIHHOT DY
WAL b 2 L8505,

34 IV

EMMRE LGRS BT 5T v 7 T OFHEGHFBEEIZ OV T, V-HIRER
ST V= AFNE, MAFEE BITH T AGTET HBREE TV EEA L 7R
FERL. EFERAMAIIKT T 5MEGEE) O FHEHM T ¥ < A HENI—F5H L
MAEFBIZH Y ASHTAHEREEFT NV COBERMEI—RT A LEERL, &
MR8 LEHEE I B 2 BRESHOUEL 7 v 7 F OMEGHIE I & 5 EERBYHE
AOSBOBETH 5,

SRR

) SR “BELBHEERBEIIBTLIT V7 FRBESE”, EFFH, AP87-78, pp.25-32
(1987).
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Chapter 4

WHER VAT ACBT AT V7 HEMBREREHIow T
A Design of Multipath Propagation Characteristics in
Portable Communication Systems

4.1 i U®IC

EEFETER Y AT AIBN T, AN ET 2T EBBIIEESRET > 7
T OFAELE CIRBESFEIABWN LS 2 ZT 5720, 7 ¥ 7+ OFHEYNF
1% (Mean Effective Gain, L TMEGEBET)VMA K ELEBHT S5, COT v F+ O
MEGZE I EZEEFHEOFHSNROBEIIMNE L, > TY AT ADEBK < —
VU ERELTHAERO—DERY), F/274 TV 7 VEBEBEEFRIIBWTIZFE
BWiFEiR ) BBER)E LS L2ERER L, DX BT v FF+MEGOEE »
BRI T 5 & EAHENIE. BEBO L WVY AT ARE D B VI ADORIEIC L AR
ENEOGILOLh WHEEEESS AT AOEBENYETE L, AETIZ, BEO
(RS F BB IR EBET A LItE W 7 v FF DIEELEIC L 2 MEGS
1L %2 JEl A 4EBREREIE 2 REL. ZoEBYREERIIDVWTHARS §
NDTHb,

4.2 BRITHER

BIOWNB LT AR T v 7 FE LT, RETEEERFAEK— VT 57+
¥EX D, NBWEREICL YD T v 7 F28AT & 2B, fgmMELE ORISR 2
BEIL., 2RI >TT7 v 7+ 0EPHFEIFEH T 2D, BLRTERE S
A—=2 3L, COFEEHEHE L ARREFRLIRT, alk ¥4 £ LT v 7
FOEEFE, S DEEAETRT, IPFARR T ¥ 7+ 0ER SRIEEDIEAE
WL ABEENFIENE L WIEREGERELTEBY, Tk ) s ETL T V7
+ T & T ERR BRI BRI MEGA —E(=3dBi) & & 5, T -RPARMI,
U FF O E b RS BRI MEGH —EE 2B EERLTBY,
SOLBERENS XA -7 FERTNEMEGEEMP0L 25, T ORFEEER
T LB NS A — & R EEIC L RO R EHIRYT, K2k, BRESH
DIED Y (FBERZoy, o) P IRE S h 2 BHE T b R S REENH(XPR) % fl#H T 2
SLI LN FEDORREEEYEHTELILEEZRLTWVS, o T, BEH#FBT
YFFOE— LR T YT RURERECEEELHET 52 L& ) R
HAES IR RTERE NSNS A — 7y 2FEHT LN TELEEZONRD,
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DL RIERBEET T, 7Y 7T OMEGIEBER(T ¥ 7 TEELPO0DE) T —
3dBik %2 %, Blb 7 v 5+ 08{EFIB 7 » 7+ BE0IFLELIE. EAIEE)
TRELIZD, TVTFFRENIBWTEREL L2777 7 IXRETERDOAR & 2
b‘7/T+%#cbw&%méﬁ&%ﬁ%dﬁﬁw%@flw:tk&%
EVWaz 3, (CIEELHREIT A LIZL o T, BHESBIIEEST ST
FOHRETEFEFICHE LT MBS DL EVZ B, HL, \_0)}:37’/7‘+
ﬁﬂﬁﬁb%é BHEBERATOIREEIDL2E 25, Bl bARFEERLICET
MEGZEI 2012 L2 A, ZORMNELTT V7T OREEHETBIB) 2 #FET
LRENDY, VAT LRI BWTIOHEEZEE LR TRIER S v,

43 LTV

EROWRT 7 FOBEIE, RETHLLSAF—- VT v 7+ & 3
MNRL LD, MAUIRLREN T A= #FRBT 7 F23e L TH
KOLUENS L, T2, MOEETHESRLT V7 FROBEIZIE. BITA
FBIZX 7 7 FHRABEHZEB L LR NNT A - ORFPLETH S, L
ML, RETENIF- /25T A — 23, HFICBREHREER2 Y oslhv—
PRBETIRETIZIBW THENESIIERATE 2 LEZXL OIS, REREH
EREMZ. BWEHBBHAT 7 F0OREEFHICL, BWELBROREErmMET
XL E D oD, WHEHR I AT LOFN REHERERENEE L THFET

5,

X’

1) S8 “BLrBBHEEBEB BT Y7 FHERERE" E%KH, APST-78, pp.25-32
(1987).
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Chapter 5

BHEERE B 52 EHX SRBENLEPR)HEE
A Theoretical Study on Measurement of Cross Polarization
Power Ratio (XPR) in Mobile Communication Environments

ZHE BEH

Abstract This paper described the theoretical results of measurement accuracy
of the methods for measuring the cross polarization power ratio (XPR) in mobile
radio communication environments. In some methods which have been used, the
measuring errors strongly depends on the XPR itself and the measured results
have not the sufficient accuracy. Because the antennas for measuring the
horizontally polarized component of incident waves have the radiation pattern of
the vertically polarized component. To solve this disadvantage, a novel method
which uses the slotted cylinder antenna for measuring the horizontally polarized
component of incident waves is proposed, and it is shown that the measurement

accuracy is superior than that of previous methods. |

51 FANE

BENBEREIC BT AR SREEE . BEET » 7 F oEDFIEBEROL
RS 43— ¥ FRESOBEND, 2 6 TREFIR I & 5 BHEEEHFHEG D
Bar»rbbBEEL 2LERFEO—DTH B, T4, EMBOX SIBESFE L,
B RIRES A N — P FZEREERT A ETEER2 7725 THHBL LY
12 ABEIRESEEE A BEERS AT L2 BT A LT EE SN LN
*BERHHOO—>TH 2,

—fixiz. BFREEOFEREEST OERGE & Z OEXIRERTOEBFREE L O
iz, Bk o Rk (polarization ratio) L IFIX M TV 5, BEBERED L )
ZSEEWETIE. S OREEPIEESL L UNAHOR 2 2BEOFE M 3RTHIZE
AFAD»LZEEIIAFT S, STk &, BERBEESCH L CEENLEE
EHMET 7 FREERERSOATE L, TORE., T XToFEIIHTL
T FZEEIIBEVW LT E, ZEENIIHREOREREXSPET HE
HEBEOBIE LY, T FOEXRFRINT 2BEN 2 EZEIMET V77 %
Huhid, REENEZZOEXREESYE T A2EBNEEORME 05, HEI
DL BT VI FREELRZ VY, SEERERO—DOREHIIBY X
SRR ER DL D RZEEHOLE LTEHETE L, LI A2, ZEAIE
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BT, ThETLRERIEREFEIIBTT L0, CORSERLD 3
R EEOBEI o TEET 5, HMHAEREREIIHEINIZZIBLEALS v &
AAFLTERREDLIEDPL, COREBS I LSV FLLEBELZLI LN
HMTEL), SOLIBTVFLERBTRYIR) FEE L Tkt nFEErg
MThHh., EREY. HEBHEMICD o TOEHR SREL % ko TR
NOREEEE 2 ZRBILTARAD R SR TETWwEEO0), ZBEREEIE - BIT2T
HOTHWE S 2 HBT 286, “BHOEBEOFH »IEE Bk % § o010
Eroh, o CTEHRSFELZEBRTH2HEIC 5 E4 ORKICHT 2 EHE
PHE LTHYE) S ENEE L, EFE, BEBET v 7 F0EEHEHATOE
WEMFIEL S T V5 F 54 38— 3 FEE OB O BrO.@ - suv o,
FEEREES OBREFEHEN L ARKFRERT OBIREFHES L 0Lt iz
{7 % Bt cross polarization power ratio, L FXPRE W H)E LTESH L. Bw
T& TITWIHIFHLEE, BT v 70 BB L E0LTEHIZH
LBEFHTH S, XPRBEE- KEHREESOZTEENZEEFY Lok
THHDT, BRBEEIBTALZEEHMEEORIREEFEZEZ T WENY v
A—FELTHEREEZOND,
EZANXPREFEREIIBVWIHET 256, BECFHLEL 7 > 75 11 8®
B KELEEIIHS L TEFETE 2w, HET ¥ 7 F Oftdsmt) i 2H
TAOUEBEENET LI L 25, o T, WEEIZEF OXPREEEZIZOW
THELTBLILPEETH L. TOWUEBEII2VTIE I T TR
ENRNTWhol,
FITCAETIE, BRALAVOLNTWVABHET > FF+H b0 HFEIZL A
XPROWIFEBEFMEIZ OV CHBNRIT Z21T) L & b, HREOREZBEL
THZEEOEEHEZ L VML LD AWESFEII DV THZIIRELITL V., E
WZFOBEREEICOW THEHBRNEEYINX 5, F3'5.2T1k, XPRUEREZDHE
RERTEELICXPRUEBIZERENL T v F HEFEHIIOWTEHR L 5, /-8
FEli0 - DI EBRAT AEREETFTNVERT, 53T, ERELIVAVLERATW S
BHEXPRIMEEDWERBZII OV THRWERE 2T ), 5.4Tik, EREIEFET S
RE*HBETLILOOMNET > 7T OREZITHIEEDIT, TOT V7 ) %
XPRUIEIZHEHA L7z & &2 OHEEREFEII OV THERNZERE 2T 2 o TWw b,

52 XPREIEEEDER KX EBEETET I
5.2.1 XPREIEED IR/

EZHEXPRUEBEDMEREZS M+ 412440, KEgTIEFoHBRIzo>WT
Wz EEBIZ, XPRUERT7 v FFITERSNBFEHIZIOWVWTEET 3,
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SEERBNEBEHT 57 ¥ 7T OTHSEES P . SEEMERN % /7

TAHBEET 7T FEERES T AREEEREDII BV TRRIZL DS LS
nz (11)0
P = f P P(QG(Q)+P P q)(Q)G q)(Q)}dQ (1)

QIXVEATH Y

2n rm
| | % dQ = Io [0 sin6d0dd
Thbo HUIREND &) IBEVET v 7+ 0 XYFHEAZ BB+ 5 & 5, HE
TRIERT (VELT) & KRG () 1E . & N2 RO SMR I & QR MR I 12 i
T h, o Ty Go(Q), Ge(QEENZFNT ¥ 7 F OBHFIRIEEM DO (VK
73), LUV QRS (ERLST). Po(Q), Po(QE 7 » 5 F ~AEHT 5 BRI D 0p (VAL
NE I QD (HEDN T 2 ABEMEERL, ThPhihRNeMBET 5,

{ {GG(Q) + Gq)(Q)}dQ = 4n (2)

{ P Q) dQ = f P(b(Q) dQ =1 (3)

P, BVESCH T A HREFUT v 7 F OFHREENTH Y, AP,
HSIN T 2ERSFFTRT > 7 FOFHREENTH 5, 0L &, FHRE
{R % EJ) e XPR (cross polarization powerratio)id T & Z 2> D EHZEENIL P,

/P b LTEHE R B,

Py

. XPR = —~ (4)
PH

2T, VIREHER7 ¥ 7+ o BHFIBIEEME 2 GeV(Q), Ge™M(Q) & L. HIR
HWWER T v 7+ OBHFEEAN £ Ge®(Q), GV ET B, T2IRbT ¥
FFTHEENETFEHSEENE FNFNP oV, P+ 1iE, XPRUIE(E
(XPRpmeoas )12 (1),A)RFHWTARTEREI NS,

14
rec
XPRmeas. = P (H)
rec
1
82! V)
PGy (M P ()G, ()} dQ
= XPR - (5)

(H) (H) .
}{XPR-P(_)(Q)Ge (Q)+P¢(Q)G¢ (Q)}dQ
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ETERZHAWVT, XPRUWEWERS DT v 7 HEHIIoWTEET 2,
GYRABII B 55 FOMBESBABROEIE L SBOHES MO B1EH I 1 Ak
WEL LI ETHXPROYHESLTEBY, ThsoBRSEIIEEICEEY RIZ
T bhr b, TbEXPREYEBICHET 2012, VIRENEET7 v 7
FATHIRHIERMEE b 22w I LGV Q=0 . HIRBEHZER 7 ¥ 7 + 2 VIR
EEEE 2w E(GeM(Q)=0) 0 RKIEBLELZFHETH I v b, Z04%
fEEEz T & 2G)RIXB)NE %2 5,

)
f%m% (@) dQ

XPR = XPR -

meas

(H) 6)
f P ()G 7 (Q) d

ORI BVT, E5IZGQ)=CGe™(Q)=1(V,ELGUET v 7+ L b 1%
FET 7)o @R &V EROBRBEAFEEBEP(Q), Pe(Q) 123 L T
XPRpmeas. =XPRYEHhN B, T bbb, 1THNZ LIV, HEEE: bEE
EHET v THETERE., EEOGHEREII BV TIEMZ2XPRERE S =
ENTEL, L Leds, 20X ) 2BENT Y7 FEEBTET, fEo T
RELIUFEE LTI, 2L EFHCEVENFHEALEE T2 7 >~
FF2EEBIIRBVWL I ENETF Lk ng b,

5.2.2 EkKESFET IV

BIEiCR 7 EHB X 2 AV TXPROWIEERZE 2 FHMET 23546, V,HERHE I
TOERBEAFERERESAD I LIULELE LD, KEETIER, 7YV AFHIZ
— RS LIS Ay AT 2REtE S VD2 ERT 5, COEFLOR
WM ET IS BT A EREEIC L DR S TR Y., V,HERE I T
LERGABEEBIIRRNTREND,

(7)

Pe(G, c}))=Aeexp[—

{9_<g—mHﬂzl (8)

LACH ¢)=A¢ap[—
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122U my, myik TR TRV, HERERTTHOFHMBETH Y, o, 0,3
TNV, HERERN DT OFERFEZETH 5(M2). Ap, ApltFIEHTH Y. 3B)x
CEhRES RS,

5.3 FEXPREAITEEDEEFE

FEREVAVLENTWEBXPROBIEFEE LTI, 7 8AFAF—- VT T
FERAVAFEGT, XFAE—LMEEWNOD, gL T o FF Ly —
VRIANT VI FERVAFES, FA K- VT YT FEN—TT VTSR
Vs FEOSEARNREREL LTH T o N, RETHE, Thbofitkikt
AW XPRUIEEBEIIDOWTEET 3,

5.3.1 X4 1 K — )L iEOD

X554 R—VETIE, VHRRERNS* T h FREE-XKFFEICBEV2EER
FAR=LT V7T E VHET 5(H3), HBIRTEFERIIBVT, FHEES
AR=NVT V7T FOEEMNERTELZLOLL, Ty T T LOBRSAH
I=Igcoskl (k=2n/A, —MASISMNH)TEZ LN B30T 2L, HEF5AF- LT
7 OBHFGEEEERK TR S NS,

(EE YA RK—LVT >FF):

2 I‘ICOSG )
Ccos 2
G =1.641 X —— (9)
o sin29
Gq)(v) =0 10
(KFEF A R—=NVT 7 T):
2
(n&/2)
G. M = 1,641 cos®Bcos’p X Sl (11)
[¢] (1_§2)2
' cosZ(HE/Z)
Gqf”’ = 1.641 sin%d X (12)

1-&
7275 L |

£=sinb cosd
ThHb, BEILEMAITEEESF 41 F— LT 7 FoiEAERELRT, (10)xL LD
EES A K- VEGHT T b, KPS A4 F— ViZADK DG 3% FH
T HO, 2CHARZUEAT V7 FOBRNOLEEERBWELRWI & L%
Bo SHEEXY A FE— VEDWEREZIANTREN, o THEME ., @
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BT VT TSR TR VI DIET D ERBESAFFE ST 2K DA% &
TRELL ) ETHXPRED D DIZHIKFL TEET 5,

XPR f PGV (@) da
XPR "= (H) oy (13)
}{XPR-PG(Q)GG @+P, G, @)}da

44 B3 O P ARTFF N —BT 5 584 o P AL 0 B 2 R
T o B AKFEPIIES(0,=0,=00F 2HEIT 1, BEWSSIBE L Y, &
BOXPRE ) 35dBE CEHET A2 & ke b, T DBEIKFSY A HF— L DOKFE
(RIBIEEME SO FIBEMETH LT LI B DT, XX L ICEETE 2,

(2 cos® ( g— cosd )
_J —————d$=0.45(~3.5dB) ' (14)
2 ) g sin%
BRIEAKFEACET LTV ARETIE, oM IcFfEL, JISE,» 5
35ABEVEEZXPREEHI T A 2 T & o TIELWHIZESHEATEETH 5,
D.C.Cox 5 i&, FREMKFHEANIZERL TV L LDERENFEIIZ, L& FH
DHEZAT > TELERRE T DX SR EE (cross polarization coupling ;
XPOL) % HW5E L 72D, XPOLIZREERERF T 2R SFEEESLTESE S
N, [EREORTSRERSERE*RL TWb, ZEREIHIER & 2 XPOLIX
XPRIZE L < . BERBEASVIEH OBE 1T EXPOLOBEAXPRIZE L ¢ 2 5,
D.CCox L EREAT v 7 T #EZEMIZHVTWAEN, T I TIEEFRTZERIC
AWRBEBEEIT), D.C.Cox5 DHELLT. CoxiEE WwIH)Tit., HIRERSHE
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Chapter 6

BEBECBII AT V77 54 8— 2 F OB OBIT
Analysis for Correlation Coefficient of Antenna
Diversity in Mobile Radio Communications

Abstract This chapter presents a method for analyzing the correlation
characteristics of antenna diversity in land mobile radio environments. This
method can treat not only space, polarization and direction diversity, but also the
effects of the statistical distribution of incident waves, cross-polarization power
ratio (XPR) and antenna patterns. The correlation characteristics of antenna
diversity formed by cross dipole antennas is investigated theoretically, and the
existence of a paticular environmental condition which achieves extremely low
correlation branches is shown. Furthermore, the theoretical characteristics is

shown to be in close agreement with the experiment results in an urban area.
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KiiltflE#, XPRiIZRK TEH & h 5 FHZ & {RIKE )] H(Cross polarization
power ratio : XPR )13 ¢ & 5,
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XPR = — (10)
PH

Py i, BE OB 5 WREFET ¥ 7 T OFHZEEN. Py i, FiEmo
REN AT BREFHUT © 7 T OFHEEENERT . Py6,0), P(6,9) 12 T it
TN, QT DERBEAWERBZERL, XAXEWET 2,

§P9(9,¢) dQ =} P,©,9)dQ = 1 (11)
TREIOT VT T BT S EELHEMOFERE 0, 13

o’ = <V1(t)V;(t)>

=2K PH f { XPR-EN(Q) Eel(Q) Pe(Q)

+E, (QE @ P, @) d0 (12)

THX O NEIRIIE2OT > 7 T BT A1RERZ 0, AKX TE X 5N 5,

2 _ -
0," = <V2(t)V2(t)>

= 2KPH § { XPR-Eez(Q) Eez(Q) Pe(Q)

+E¢2(Q)E¢2(Q) P, Q) dQ (13)

—fgic. HFEMERE L p & LBW S h 2 BT 2 EREZp, £ T 5
oop | p | 2EHENCE L WOr s KiB),(9),(12)B &L U(18)2 Hp, it K3k
DEHITRDOLND, .

p, = Ipf® = —— (14)

H9),(12), 1N EAAL THES AU, EBESFANN—SF RET 17—
FIEEES ANV FEDORT U FF ¥ 43— T F BN, LI EIRES
FOEEGRT v 7 FHEEAREHOMELZETEL R LERARNTH 2, K
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\CAERR S, 0L 2B T L ABIRL TV 5,
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7.2.2 BRIESTHE TNV
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 BEARTEENS,

Pe(B,(b):Aeexp[— oo 2 (15)
n 2
(z)
P¢(9,¢)=A¢ap[— 2";12 ] (16)
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Chapter 7

SR AR=VNT v FFILEBRRT A 8= 2 FiEnEE
BYRES

An experimental study for correlation characteristics of
polarization antenna diversity in indoor propagation

environments

Abstract  This chapter investigates the correlation properties of polarization
diversity theoretically and experimentally in indoor environments. In a
theoretical analysis, typical correlation properties are described and the
particular environmental condition which achieves extremely low correlation
branches is presented. Furthermore, this paper confirmed the predicted
properties through experiments. To discuss the correlation property, a method of
estimating the distribution parameters is also described, and several different
propagation parameters are estimated for an indoor environment where the
propagation characteristics are controlled by changing the polarity of the
transmitting antenna. Through experiments on correlation properties in such an
environment, it is confirmed that low correlation diversity branches can be

developed by controlling propagation conditions.

7.1 Introduction

The demand for a wide range of digital services to personal users and data
terminals in indoor mobile communication environments is expected to increase
in the future, and several digital communication systems concerned with indoor
communications systems have been proposed [1},[2]. In these systems, diversity
reception is an effective technique to mitigate the degradation of the digital
transmission quality due to multipath fading. The amount of improvement in
antenna diversity can be estimated by using the correlation coefficient between
two reception antenna branches, i.e. the greatest improvement is achieved when
the correlation coefficient is at its lowest.

The author has already theoretically investigated the correlation properties of
a polarization diversity which is formed by using orthogonal half-wavelength
dipole antennas named cross dipole antennas [3]. As a result, it has been found
that the correlation properties strongly depend on the environmental propagation

parameters, and that there is a particular environment in which the low
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correlation property of antenna branches is achieved independent of antenna
inclination caused by human operation of the personal radio equipment.

The purpose of this chapter is to investigate the correlation property of a
polarization diversity formed by a cross dipole antenna in an indoor environment,
‘and to confirm whether extremely low correlation diversity branches can be
achieved by the control of the environmental propagation parameters in the
indoor environment. There are many objects around mobile antennas in indoor
environments, which reflect and scatter the waves, e.g. walls, posts, ceilings, and
floors. Thus, the statistical distribution of incident waves in indoor mobile
communication environments is assumed to be more dispersive in elevation than
in outdoor environments, and it is also expected that the correlation property of
antenna diversity is significantly affected by the propagation environment.

In this chapter, to discuss the correlation properties of antenna diversity, a
statistical distribution model of incident waves which is uniform in azimuth and
Gaussian in elevation is assumed [4], and typical correlation characteristics of
cross dipole antennas are described theoretically. The values for the propagation
parameters which achieve low correlation antenna diversity are also
theoreticélly predictéd. Furthermore, a method of estimating the statistical
distribution parameters of incident waves [the standard deviations both of
vertically polarized (VP) and horizontally polarized (HP) wave distribution] is
proposed and some estimated results in the 900 MHz band are described. Finally,
an experiment is described which confirms that extremely low correlation
diversity branches can be achieved by carefully choosing the propagation

parameters.

7.2 Correlation Characteristics of a polarization diversity

7.2.1 Theoretical analysis

The correlation coefficient of the antenna diversity depends not only on the
radiation patterns of two antenna branches but also on the cross polarization
power ratio (XPR) and the statistical distribution of incident waves [3]. In this
paper, the correlation properties between the cross dipole antenna branches are
discussed theoretically by using the statistical field model where the incident

wave distribution is uniform in azimuth and Gaussian in elevation as shown in

Fig. 1[4].
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The distribution characteristics of incident waves can be expressed by the

following 5 parameters :

D the average elevation angle of VP wave distribution : my

@ the average elevation angle of HP wave distribution : my

@ the standard deviation of VP wave distribution : oy

@ the standard deviation of HP wave distribution : o1

® the cross polarization power ratio (XPR) which is defined as Py/Py.

where Py and Py are, respectively, the average power of VP and HP incident
waves. |

Fig. 2 shows a polarization antenna diversity formed by cross dipole antennas
[5],[6] and its spherical coordinates. Angle a indicates the inclination of this
diversity system which is considered to be caused by human operation. |

Typical correlation properties are shown in Fig. 3. When one dipole antenna is
placed vertically and another horizontally, i.e. a=0°, the branches are completely
uncorrelated, since the vertically polarized radiation patterns of the antennas
perpendicularly intersect each other in space. This zero correlation property is
independent of the XPR and the variation of the statistical distribution of
incident waves. These theoretical results have been previously confirmed
through experiments [5]. However, when the antenna system isinclined, this
orthogonality of the antenna patterhs is not completely maintained, and the
correlation coefficient, therefore, increases with the inclination angle a.
This situation seemed to be common in antennas mounted on personal equipment
and terminals. The maximum correlation resulted at an inclination angle a 0of 45°,
since both dipole antennas have the same vertically polarized radiation patterns
in the horizontal plane, and the same horizontally polarized radiation
patterns in all radial directions. Therefore, as shown in Fig. 3, in an environment
with the XPR considerably larger than 0dB, the more the correlation coefficient
increases or decreases, the more the statistical distribution of incident waves is
concentrated in the horizontal plane or dispersed in a wide angular range in

elevation, respectively.

7.2.2 Low correlation condition

The optimum propagation condition for low correlation can be obtained by
investigating the correlation properties at an inclination angle a of 45°. Fig. 4
shows the correlation properties at an inclination angle a of 45° for some

propagation parameters. It is found that the correlation coefficient is low when
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the XPR is about —1.5dB, and that this low correlation is independent of the
standard deviation of the distribution of incident waves. Therefore, it is believed
that the optimum antenna diversity system using cross dipole antennas, which
realizes extremely low correlation diversity branches, can be designed by

appropriately choosing the polarity of the transmitting antenna.
7.3 Experiment Investigations

7.3.1 Outline of experiments

Experiments were conducted to confirm the validity of the theoretical
considerations in an indoor environment in the 900MHz band. Fig. 5 shows the
layout of the experiment environment. The experiment was carried out by using
920MHz signalsin an 11m X 18m rectangular room. The receiving antennas were
mounted on a wooden pole set vertically on the top of a 1.5m rotating bar and
fixed horizontally on the azimuth rotator located at point ® in Fig.5. Point ®
was located about 12m from the transmission point. The receiving antennas were
set 1.5m above the floor. Therefore, the receiving antennas were moved in a circle
with a radius of 1.5m, 1.5m above the floor. The transmitting antenna was
located at point @ in Fig.5 which is a corner entrance of the room. A half
wavelength dipole antenna was used as the transmitting antenna and was set
1.5m above the floor, which was the same height as the receiving antennas and
midway between the floor and ceiling. It should also be noted that there was no

line-of-sight condition between the transmitting antenna and the receiving

points.

7.3.2 Estimation of statistical distribution of incident waves

First, a method of estimating the statistical distribution parameters in an
indoor environment is proposed. This method is based on the assumption that the
statistical distribution of incident waves in an indoor environment can be
approximated by the model shown in Fig. 1.

In the indoor environment shown in Fig. 5, it can be assumed that the incoming
direction of the waves is mainly horizontal and the statistical distribution is
dispersed in elevation around the horizontal direction, because the heights both of
the transmitting and receiving antennas are the same and located midway
between floor and ceiling. Thus, it is also assumed that the VP and HP waves are

reflected equally in elevation by floor and ceiling. Therefore, to estimate the
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statistical distribution parameters easily, this paper introduces the following

assumption :

The average elevation angles of both the VP and HP incident waves, my and

my, are 0 degrees, which means that the average incoming direction of both

the VP and HP wavesis horizontal.

Therefore, the parameters which should be estimated are the XPR value and
the standard deviations of VP and HP waves. The XPR measurement is very
important in estimating the standard deviation. Itisnecessary to use VP and HP
wave antennas which have omni-directional radiation patterns in azimuth and
almost the same patterns in elevation. In this paper, the VP and HP average
power was measured by a vertically-oriented half-wavelength dipole antenna,
and a vertically-oi'iented slotted cylinder antenna, respectively. These antennas
have the same radiation patterns, but orthogonally polarized.

The standard deviations of VP statistical distribution can be estimated by the
difference of average received power between the vertically and horizontally
oriented dipole antennas. Fig6 shows the mean effective gain (MEG)
characteristics [4] both of the vertically- and horizontally-oriented dipole
antennas. As shown in this figure, the difference in average received power
between them results in the XPR and standard deviations. If the XPR is
determined, the difference depends only on the standard deviation. Thus, the
standard deviation can be estimated by measuring the level difference between
the vertically- and horizontally-oriented dipole antennas.

Similarly, the standard deviations of HP statistical distribution can be
estimated by the difference of average received power between the vertically- and
horizontally-oriented slotted cylinder antennas. Fig 7 shows the MEG
characteristics [4] both of the vertically- and horizontally-oriented slotted
cylinder antennas. As shown in this figure, the difference between them in
average received power also results in the XPR and standard deviations. If the
XPR is determined, the difference depends only on the standard deviation. Thus,
the standard deviation can be estimated by measuring the level difference
between the vertically- and horizontally-oriented slotted cylinder antennas.

Table 1 shows the estimated results of the statistical distribution parametersin
the indoor environment as shown in Fig. 5. In Table 1, the different distribution
parameters can be obtained by changing the transmitting antenna polarity by

inclining the transmitting antenna element from the vertical.
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7.3.3 Correlation characteristics

Figure 8 shows the measured results and the theoretical curve of the
correlation coefficient for the cross dipole antennas. The theoretical curve in
Fig. 8 is calculated by using the distribution parameters described in Table 1.
The theory is in excellent agreement with the experiment results, and the low
correlation characteristics were obtained when the inclination angle of the
transmitting antenna was 60°. At this inclination of the transmitting antenna,
the XPR was —1.7dB which was almost equal to the XPR of —1.5dB producing
- the low correlation condition as shown in Fig. 4. It is, therefore, confirmed that
extremely low correlation diversity branches can be achieved by carefully

choosing the propagation parameters.
7.4 Conclusions

The correlation properties of antenna diversity are determined by both the
antenna radiation patterns and the propagation environments. This paper
presented a theoretical prediction condition which produces extremely low
correlation branches in a polarization diversity formed by a cross dipole antenna.
Furthermore, this paper presented an experimental method of estimating the
parameters of the statistical distribution of incident waves in an indoor
environment, and investigated, theoretically and experimentally, the correlation
properties of a polarization diversity in an indoor environments. The experiment
confirmed that using the theoretically predicted propagation parameters results
in extremely low correlation diversity branches. This paper has described the
possibility of a low correlation diversity system in indoor environments by
appropriately choosing the propagation condition, which seems to be useful in

developing an indoor personal digital communication system.
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Table 1.

Evaluation results of statistical

distribution
Inclination standard Stamdard
t aar?sgle-t;i] XPR (dB) deviation deviation
" tenma ov (deg) of (deg)
antenna

0° 5.1 14.6 26.1

30° 2.1 16.9 12.9

60° -1.7 23.4 19.6

90° -4.4 29.6 46.4
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0° 1.6 28.2 69.6

30° 0.9 18.7 37.4

45° -2.4 13.3 47.6
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90° -7.7 17.3 325
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