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Abstract 

This is the report which. discusses the electronic band structure of microscopic 

superlatteces with use of an improved tight binding method developed by the 

author, especially, in GaAs -AlAs system of both (100) and (111) directionsis. 

The dispersion relation is calculated and the effect of spin -orbit interaction to the 

states at the top of valence band is discussed in detail. The author predict the 

anomaly in the optical polarization associated with the absorption or emission of 

light in (100) and (111) superlattices depending on the atomic layer number 

combinations (m, n) in the (GaAs)叫(AlAs)n
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1 Introduction 

The electronic structure of superlattices of m-v semiconductor compounds 

has been attracting the interest of many workers 1)~11) * since it enables us to 

investigate materials from the microscopic view point and to tailor them for 

engineering applications. 

In the previous paper 11) , hereafter referred as I , the band structure of 

(GaAs)n/(AlAs)n (n=l~4) superlattices was investigated with the use of an 

improved tight binding method, where " an improved . …" means that the better 

fitting of the conduction bands.as well as the valence bands of the bulk materials 

to the results of pseudopotential method 12),13) was obtained (see Fig.1.1) by 

introducing new parameters in the overlap integrals between the localized basis 

orbitals which are regarded, usually, as being ortho-normal in the sense of 

恥 wdin'streatment 14) • The Il:lain point of discussion in I was about the 

differences between the band structures of superlattices for the two choices of 

band offset values,. one is Kroemer's 15) rule and the other Dingle's rule 2) • 

However, a detailed discussion of another important effect of superlattices was 

left, that is, the band folding effect. 

In the present paper, based on the same method, the electronic bands of 

(GaAs)n/(AlAsh and (GaAs)i/(AlAs)n (n= 1 ~10) are investigated because an 

artificially arranged periodic potential of one atomic monolayer makes the band 

folding effect clearly occur especially when the mole fraction of a monolayer 

compounds is quantitatively less than the other constituent materials of 

super lattice. 

* see the references listed in the author's paper (the ref. 11) 
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It is the second aim of this paper to consider a possibility of transforming the 

indirect gap materials into the direct gap materials with making use of such a 

band folding effect. 

Finally, in the present examples of material combination of a superlattice 

structure, the optical oscillator strength is estimated in order to obtain the 

qualitative feature of optical properties. 

内

2 An improved method of tight binding band structure calculation 

We omit the detailed description of the present improved tight binding 

method to avoid the lengthy expression. The outline of formulation is given in I . 

Here, our final eigenvalue problem to be solved is of the formll),16) 

I H,m'(k) -E Sm/k) I = 0, (2.1) 

where 

ik・R 

Hm,'(k) =こ e 1 f五(r)H丸,(r-R) dv,, 
l l 

ik・R 

Sm;'(k) =こ e I I的r)<J¥.(r-R1) dv, 
I 

(2.2) 

(2.3) 

R =入 au+μbv+vcw. 
I I I I 

(2.4) 

His the Hamiltonian and k is the wave vector in the Brillouin zone. { pK(r)} is 

the set of atomic valence orbitals of concerning system, where, in the present case, 

K are s-, Px-, Pr and Pz-orbitals. { R1 } is the set of vectors indicating the 

. f configurat10n o atoms in the given structures, where {朽，杓， v1} is a set of 

integer. a, b, c and u, v, w are the lattice constants and the primitive 

translation vectors of the concerning structure, respectively. We re~tricl the set 
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of transfer and overlap integral parameters to the nearest and next nearest 

neighbor sites for the sake of keeping the global uniqueness of choosing the 

parameter values. 

3 Spin -Orbit Interactions 

To include the spin-orbit interaction, we must add the following new term to 

the Hamiltonian 17) 

H SO = A (V V c X p)• s (3.1) 

where Ve is the crystal potential, pis the momentum operator, and s is the spin 

operator. We regard V c as a spherical symmetric potential, a valid 

approximation in the band structure calculation. Then (3.1) is 

H so ＝入 1• s (3.2) 

where 1 is the angular momentum operator and 入 areconstant parameters 

which correspond to the atomic spin-orbit interaction strengths for Al, Ga, As, 

respective1y. 入arechosen to give best fit with the pseudopotential results.12), 13) 

4 (100)-superlattices 

4.1 General properties 

In the calculation for (GaAs),n/(AlAs)n, it should be noted th_at the space 

groups are different depending on n, that is, 

m+ n = even : D2d1 

= odd : D2d11 
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The Bravais lattie is the simple tetragonal for the former and the body centered 

tetragonal for the latter. The primitive translation vector for (GaAs)2 /AlAs¥, is 

shown in Fig.4.2(a) and the corresponding Brillouin zone in Fig.4.2(b) as well as 

the simple tetragonal Brillouin zone of (GaAsh /(AlAsh in Fig.4.1. 

4.2 Dispersion without spin -orbit interactions 

In the results of calculation, the band structure for (GaAs)3 /AlAs)1 is shown 

1n Fig.4.3 in the extended zone scheme, as well as Fig.4.4 (a),(b) for 

(GaAs¥/(AlAs)1, (GaAs)/(AlAs¥, Fig.4.5 for (GaAs)1 /(AlAs)9, where note that the 

scale of vertical axis in Fig.4.5 is enlarged for the brevity of showing. The 

d' 1scuss1on is given in the next section. 

In both cases of (GaAs¥/(AlAs)l'and (GaAs)/(AlAs¥, the constitutively 

dominant component [ GaAs in the (GaAs)/(AlAs¥, for instance] determines the 

global band dispersion, which is easily seen in the extended zone scheme as shown 

in Fig.4.3~4.5, however, the new large band gaps open at the new zone boundary 

which are due to the new periodic potential introduced by the~onstitutively less 

component substance. [ AlAs in the (GaAs)/(AlAs¥, for instance]. This new band 

gaps are relatively large near the primary band gap between valence and 

conduction bands, but becomes smaller at the deeper part of valence bands and at 

the higher part of conduction bands. These tendencies become stronger in the 

larger n-values. 

In the conduction band, the two important points should be noted. One is 

that, in (GaAs) /(AlAs) 
ri' 

the direct and indirect m1n1mum gap appears 

alternately depending on n, where the direct gap is realized when n=2, 4, 6, 8, 10 

as shown in Fig.4.6(b) although, all through n = 1 ~ 10 of this case, the 

conduction band edge consists dominantly of the X-point or△ -line states of the 

original zinc-blend structure if one looks their eigenvectors in detail. The second 

point is that the conduction band structure indicates rather com-plicated 

" 
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dispersion because the bands folded from the original zinc-blend bands results in 

the crossing at many points in the new Brillouin zone and split off in the 

superlattice structure, on account for the mutual coupling. 

Now the systematic calculation of band gap alternation is shown in Fig. 

4.6(a) and 4.6(b) for (GaAs)以(AlAs)l'and(GaAs¥/(AlAs)n, (n= 1~10), 

respectively. In the former case, the minimum band gap is direct except only 

(GaAs¥/(AlAs)l'and the gap energy quickly approaches the bulk value of GaAs 

as n increases, on contrasting, in the latter case, the minimum band gap appear 

near the X-point energy of bulk AlAs and its minimum gap energy alternates 

between the direct and the indirect gap depending on n, the result of which is 

interpreted from its folded band structures in the following way. As shown in 

Fig.4.7, the X [ (M) ]-point or the intermediate points along the f-X [ (M)ー(l¥1)] -

line are folded to the r [ (M)] -point depending on either even (n + 1) or odd (n + 1) 

number, where M means the standard name of high symmetry points in the 

tetragonal Brillouin zone but the same point is named as X in the body centered 

tetragonal structure18) , thus we use (M) both in the simple and body centered 

tetragonal structures to avoid the confusion of usage when it is described in the 

present article. Now the calculated eigenvectors of the f-and (M)-points of 

superlattices indicate, which we do not show their actual component data at 

present, that the amounts of mixing component of GaAs, for instance, in 

(GaAs)/(AlAs)3 and (GaAs)/(AlAs)4 are different depending on even (n+ 1) and 

odd (n + 1), that is, the GaAs-component for n = 3 is much less than that for n = 4. 

It is reflected to the energy level of r-and (M)-points as the indirect gap of 

(GaAs)/(AlAs)3 and the direct gap of (GaAs¥/(AlAs¥. This trend is common for 

the other values of n, therefore the alternate appearance of direct and indirect 

minimum band gap occurs 

The situation of obtaining the indirect gaps in (GaAs¥/(AlAs¥ and 

(GaAs¥/(AlAs)3 is consistent with the results of more accurate but harder 

calculations done by, for instances, Nakayama and Kamimura5) or Saito and 
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Oshiyama9) with use of the self consistent pseudopotential method, as well as by 

Hamada, Ohnishi and Oshiyama4) with use of the full-potential linearized 

augmented-plane-wave method (FLAPW) . The coincidence with their results 

show that the present improved tight binding method is not useless for the rough 

speculation of new band structure not only for the (GaAs)n/(AlAs)m system but 

also the other combinations between the different lll-V compounds, moreover 

hopefully, even for the combinations between Il-VI compounds which are the 

extended attempt of the present author, however, it should be noted that the 

present method can not treat the problem of stabilities of thsese new structure, 

especially, a serious difficulty will occur due to the essential weak point of 

parameter theory if it includes the lattice mismatched case, while one manages to 

calculate the band structure as Osbourn8) had done with employing the lattice 

distance dependency of patrameters (transfer and overlap). The further 

comparison for larger n in the present GaAs-AlAs system with more accurate 

calculations is desirable but unfortunately the detailed ab initio investigations 

with respect to the systematic tendencies of the band gaps as well as the 

eigenvectors over the wide ranges of the wave vector and the energy in the new 

Brillouin zones have not yet been reported for the present types (n: 1 or 1 : n ; 

4~n~10) of superlattices. 

4.3 Oscillator strength between bottom of conduction band and top of 
valence bands 

Finally, the estimated oscillator strength at the f-point is shown in Fig.4.8 

if the calculated bands have direct minimum gap. Fig.4.8(a) shows the case of 

(GaAs)n/(AlAs¥ (n=2~10) in which the vertical axis is normalized by the value 

of bulk GaAs. As 几 increases, the oscillator strength approaches 2/3 = 0.666・・・・

asymptotically, which is due to the reason that the valence band t_op is two fold 

degenerate on account for the tetragonal symmetry of the present _type of 

superlattice on contrastin~the three fold degeneracy of bulk (zinic-blend) Ga.As. 
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The result for (GaAs¥/(AlAs)n, (n=2~10) is shown in Fig.4.8(6) and this 

case indicates that the optical oscillator strength is quite little due to the reason 

mentioned in the second paragraph in this section, therefore the expected optical 

properties are much less effective even if one succeeds to make the direct gap 

materials by the artificial insertion of periodic one monolayer substance in the 

indirect gap materials. It seems, unfortunately, not so hopeful for an application 

of superlattices. However, the several possibilities of making the oscillator 

strength be stronger are retained, for instance, the employing a combination of 

substances where the large different band characters exist between them will 

increase the oscillator strength since the f-character of folded band increases if 

the much modification of original symmetry occurs in the super lattice structures, 

so that, the lattice mismatched case or a combination of semiconductors and ionic 

materials (Si-Ge or AlAs-CaF2, for instances) has the strong possibility of 

realizing a new optically active and tailorable materials. However, the further 

calculations and experiments are desirable. 

4.4 With inclusion of spin -orbit interactions 

The calculated bandstructure is shown in Fig.4.9 for the case of 

(GaAs)i/(AlAs)i. Note that every level is two fold degenerate and at the f-point 

the heavy hole and the light hole are split by the crystalline tetragonality of the 

superlattice. The detailed dispersion near the top of the valence band is shown in 

Fig.4.10 with, for comparison, the dispersion of bulk GaAs and of the super lattice 

without the spin-orbit interaction. It is important that at the f-point the state of 

the heavy hole is the eigenfunction of the total angular momentum (J = 3/2, J2 

—士3/2) but the light hole state is not an eigenfunction of the total angular 

momentum but a mixture of the states (J = 3/2, J2 =士1/2)and (J = 1/2, J2 = 

士1/2)due to the crystalline tetragonality of superlattice. One can understand 

this from the symmetry considerations using group theory. In the case where the 
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spin-orbit interaction is not considered, the wave function at the top of the 

valence band in the bulk zinc-blend structure of Ill-V semiconductor compounds 

consists of bonding orbitals which are linear combinations of p-orbitals of cation ( 

Ga or Al) and anion (As). These bonding orbitals have the p-orbital like 

symmetry and belong to the irreducible representation denoted by f5 in the 

point group Ta at the r-point. Let us r叩presentthese wave functions by {Pi} (i 

= x, y, and z). When we take the spin orbit interaction into account, we should 

reduce the direct product between rs and the spinor { a, 13} into the irreducible 

double point group of Ta symmetry. The table of characters is given in Table 4.1. 

The six states [ (orbital : 3) X (spin : 2) = 6 ] seperate into two states. One is 

four fold degenerate and the other is two fold degenerate. The former is the 

eigenstate of total angular momentum with J = 3/2 (Jz =士3/2is the heavy 

hole andJz =士1/2is the light hole). The latter is the eigenstate of total angular 

momentum with J = 1/2 and is called the split off band. 

Under the symmetry D2a at the r -point of the super lattices and without 

spin-orbit interaction, these original bonding p-orbitals split into two states,11) 

one is two fold degenerate応 ={pェ， Py} and the other is not degenerate, r 4 = { 

Pz } in the D2a point group. This result is obtained from the reduction of the 

character x({Pi}) into the irreducible representation of D2a which is shown in 

Table 4.2. 

The final result for the top of the valence band in the superlattice (D2d 

symmetry) with inclusion of spin-orbit interaction will be obtained by the 

reduction of f5 X { a, 13} and r 4 X { a, 13 }. The former gives f6 + f7 and the 

latter gives f7. Now, the wave function of r6 is the eigenfunction of total 

angular momentum (J = 3/2, み＝土3/2).However, f7 from the former and f7 

from the latter are neither the eigenfuction of (J = 3/2, み＝士1/2)nor (J = 

1/2, Jz =土1/2),as shown below, 

応 X { a, p} = f 6 + f 7 (4.1) 
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rs : { c pェ+i Py)a, (Px -i Py) 13 } 

f 7 : { (Px -i Py)a, (pェ+i Py){3 } 

r 4 X { a, p } = I'7 . 

巧： { Pz a, Pz 13 } 

(J = 3/2ふ＝土3/2): { (pェ+i Py)a, (Px -i Py)J3 } r6 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(J = 3/2ふ＝土1/2): . { 2pz a -(pェ+ipy)J3, 2pzJ3+ (px -ipy)a }(4,7) 

(J = 112, み＝土1/2): { Pz a+ (Pェ+ipy)P, -PzP+ (Px -ipy)a} (4.8) 

When the three axes (x, y and z) are equivalent (cubic symmetry), the matrix 

elements of the Ham.iltonian between the three p-orbitals are equal. Then one 

can obtain the eigenfunction of total angular momentum by taking a linear 

combination of basis functions of two independent f7, that is, from (4.3) and (4.5) 

to (4.7) and (4.8). However, in the D2a symmetry, the Pz -orbital element is 

different from the other two. Therefore, in contrast to the fact that the state of the 

heavy hole remains the eigenfunction of total angular momentum (J = 3/2, J2 

＝士3/2),the light hole state is a mixture of (J = 3/2, み＝士1/2)and (J = 1/2, 

み＝土1/2)as in the split off band. 

It follows that in superlattices the ratio between the light hole oscillator 

strngth TE-mode (only contributed to by pェandPy) and that of TM-mode (only 

contributed to by Pz) is not an integer but has n-dependency. Let us briefly 

describe some details of the straightforward calculation. The oscillator strength 

for transitions between valence bands and conduction band minimum at the r -

point is obtained by calculating 
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|〈 cI p I vi 〉I2 (4.9) 

where le> is the wave function of the conduction band minimum and Iv i > is 

the i-th wave function near the top of valence bands. p is the momentum 

operator. In the superlattices, c > consists of the linear combination of 

original Ga and As anti bonding s-orbital, and folded states which do not 

contribute to the oscillator strength. I v >'s are the states (4.6) for the heavy 

hole and linear combinations of the states (4. 7) and (4.8), for the light hole and the 

spin split off band. A typical matrix element of (4.9) becomes 

‘̀,‘. 
＞
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(4.10) 

.. Pi a 
=)  (a5) a 〈S(r-R) I - I P.(r-R,) 〉，

后 re rv l ax I l (4.11) 

where the coefficient a is obtained by solving the eigenvalue equation and S(r) 

and Pi(r) (i = x, y and z) are respectively the anti bonding s-orbital and the 

bonding p-orbitals in a unit cell. The trivially vanishing terms, for instance, 

a 
〈P ・て ( r ) I - I P ( r ) 〉

ax :r 
(4.12) 

are not written in (4.11). If we employ the approximation of assuming the 

equality of the matrix elements 

a a 
Q =〈 S(r) I - I P (r) 〉＝〈 S(r) I - I P (r) 

ax X d.)')' 

(4.13) 

a 
=〈 S(r) I - I P (r) 

az z 
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between the GaAs bond and the AlAs bond in the unit cell and assume all the 

other inter-cell elements to be vanishing, these Q terms cancel when we take a 

ratio with the oscillator strength in the bulk GaAs case. Thus the ratio of the 

oscillator strength in superlattices to that of bulk GaAs depends only on the a 

coefficients of linear combination of atomic orbitals in the ergenfunctions. The 

calculated results are shown in Fig.4.11 for several combinations of superlattice 

layer numbers (m, n). In・ (GaAs)z/(AlAs)z,although the oscillator strength is 

not greatly reduced, one can clearly observe the non-integral strength ratio for 

the light hole, which means the mixing between the two different angular 

momentum states discussed above is large. For the (3, 3) combination, the 

reduction of oscillator strength is very great but by increasing the number of 

layers it gradually recovers the bulk value [Seethe case of (10, 10) in Fig.4.ll(a) 

]. For contrast with the case of (n, n), let us take an example of (n, 1) , for 

instance, (GaAs)9/(AlAsh in Fig.4.ll(b). The splitting of the heavy hole and the 

light hole is still considerably large although the calculated TE-and TM-mode 

mixing ratio in the light hole indicates that the bulk character of the 

wavefunction is almost completely recovered. This is true for both band offset 

rules, Kroemer's rule (60%: 40%) and Dingle's, rule (85%; 15%). However, the 

splitting is smaller for Dingle's rule becase the splitting between heavy hole and 

the light hole at the r-point is due to the tetragonality of the Bravais lattice in 

the superlattice which is largely caused by the atomic potential difference 

between Ga and Al atoms. 

These reductions of oscillator strength in the superlattices, especially 

occuring for small m and n in (GaAs)州(AlAs)n,are due to the fact that the 

wavefunction of the conduction band minimum at the f-point consists of the 

superposition between the original bulk component of the r-point (the anti-

bonding s-orbital) and the folded states from the states along the△ -line (or the 

X-point) of GaAs as well as AlAs. These folded states do not contribute 

nonvanishing matrix elements of the momentum operator between the 
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conduction band minimum and the top of valence band. It is briefly shown in the 

previous paper theat we checked the mixing ratio of the folded states, by 

comparing the wavefunction with that of the semi-empirical pseudopotential 

calculation, which is more accurate than the present method. The mixing ratio in 

(GaAs)z/(AlAs)2 agreed well with the pseudopotential result of Nakayama and 

Kamimura. 

It should be noted that, strictly speaking, the present discussion has to be 

understood from the viewpoint of the qualitative comparison between the cases 

with and without inclusion of spin orbit interaction, because of the restricted 

meaning of the tight binding method and the approximation employed in the 

calculation of matrix elements of momentum operator (seethe previous paper) . 

However, this qualitative treatment in the present paper sufficient to show that 

neither the light hole state nor the spin-split-off band are eigenstates of total 

angular momentum. It _will be desirable to quantify this with a more accurate 

method of band structure calculation. 

Finally, the results of the calculation of energy levels of heavy hole, light 

hole and the conduction band minimum at the r -point are shown in the Fig.4.12 

with the result of the Kronig-Penny model calculated by Tokuda,19) 

The parameter values employed by Tokuda are as follows, 

conduction band effective mass 

valence band effective mass 

mzh 

mhh 

15 

GaAs 

0.067 

0.087 

0.62 

AlAs 

0.150 

0.150 

0.76 



where all values are in the unit of the electron bare mass. The band offset values 

are chosen according to Kroemer's rule (as in this paper). Note that the heavy 

hole energy level asymptotically approaches the value for bulk GaAs as does the 

Kronig-Penny model result but the former is always higher than the latter. This 

is due to the fact that the role of the energy barrier of AlAs is overestimated in the 

latter model. The electrons can transfer rather easier than expected. This 

situation is reflected more strongly in the asymptotic behavior of the light hole. 

The energy level of the light hole in the Kronig-Penny model is far below that of 

the present calculation. It is also important to note that in the conduction band 

the asymptotic behaviors are very different even for n = 10. This is due to the 

fact that in the bulk GaAs the dispersion in the conduction band is very different 

from the free electron like dispersion assumed in the employment of the free 

electron band in the Kronig -Penny model. 

5 (111) -superlattices 

5.1 General properties 

As is well known, the zinc blend structure of lll-V semiconductor 

compounds consists of t~o f.c.c. sublattices which are mutually shifted (1/4, 1/4, 

1/4) a, where a. is the lattice constant as shown in Fig.5.1. One sublattice is 

occupied by the Ill -group element atoms and the other sublattice by the V -

group element atoms 20). "¥Vhen one observes one sublattice from the (111) 

direction i.e., the configuration of either Ill -or V -element atoms, one can 

recognize that there is the three-layer periodic stacking of two-dimensional 

triangular lattices in the (111) direction [ see Fig:5.1 ]. 

Now, to determine the primitive unit cell, let us consider the superlattice 

case of (IIIA-V Ah/ (lIIB-V Ah which has the same space group symmetry as (IIIが

V Ah I (lllB-V砧 superlatticesas we shall show later in this section. The three 

primitive translation vectors for the atoms of lIIA or III 8 elements are those 
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connecting atoms in neighboring layers of triangular lattices as shown in Fig.5.2, 

so that the resulting Bravais lattice has a rhombohedral structure. The volume of 

the primitive unit cell is (1/2)as, which is twice that of the primitive unit cell of 

the original zinc blend structure, (1/4)a3. Necessarily, the new Brillouin zone 

becomes half of the original f.c.c. Brillouin zone. If one calculates the reciprocal 

lattice vectors and draws the Brillouin zone for both structures, then one obtains 

Fig.5.3 and instantly understands that the L -point in the originai zinc blend 

structure is folded to the f-point of the new (rhombohedral) zone. 

Secondly, let us・consider the case of another layer combination, a (IIIA-V心2

I (IIIB-V Ah superlattice structure. In this case, the primitive translation vector 

is easily defined by choosing the connecting vectors between the lllB element 

atoms. In contrast to the first case, the configurational types of the triangular 

lattices for lllB atoms are all equivalent because the translation period of 

stacking in the (111) direction is three layers in this case and is equal to the 

period of the triangular lattices of the f.c.c. structure [ see Fig.5.4 ]. Therefore, 

the three primitive translation vectors are taken as follows : two are the 

connecting vectors between the intralayer atoms of the triangular lattices and 

one is the interlayer connecting vector. Then, the structure of the Bravais lattice 

is hexagonal, as shown in Fig.5.4. The new Brillouin zone (hexagonal) is drawn 

in Fig.5.5 with the original f.c.c. zone of the zinc blend structure. One easily 

observes that 1/3 the way along the (111) line between the f-and L-point of the 

original zone becomes the new zone boundary and 2/3 along the line is equivalent 

to r-point in the new zone. 

It is easily understood that these are the only two types of the layer number 

combinations which give different Bravais lattice structures. Hence, 

generalizing the above results to the case of (IIIA-V心m I (lllB-V叫n. , the 

structures of Bravais lattice are hexagonal for m+ n = 3l and rhornbohedral for 

m+ n¢3l, where m, n and l are positive integers. 
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The point group of the unit cell is C3v for all combinations of m and n. The 

symmetry of the group C3ヽ， israther lower and this is due to the fact that when 

observed from the (111) direction, the position of the V element atoms is at the 

shifted site in the unit cell which is not the high symmetric position and prevents 

the unit cell from having a symmetry operation such as a horizontal reflection or 

a rotational reflection (see Fig.5.1, 5.2 and 5.3). This is the reason why, in the 

consideration of the Bravais lattice, we take, without loss of generality, the 

rather simple examples of (IIIK V心ml(IIlB-V心nwhich have the same V 

element atoms. Hence, in the determination of the space group of (111) III-V 

superlattices, it is enough to pay attention to either the III or V element atom 

configurations which contain different periods. 

There are six kinds of space groups belonging to C3ヽ， asshown below 18) 

156 P3ml 恥C討 m+n = 3l 
157 P31m 恥 C3ヽ.2

158 P3cl 且Csヽ.3

159 P31c 応 C3y4

----------------------------------------------------------------------------------------

160 R3m rrh Cs¥'5 m+n~3l 

161 R3c rrh C3¥'6. 

Four correspond to the hexagonal Bravais lattice and two correspond to the 

rhombohedral Bravais lattice. Since there are not symmetry operations of either 

glide plane or screw axis in the present system, one can easily specify the space 

groups for (111) (IIIK V A)m I (lIIB-V叫nsuperlattices as Cふ.1 for m+n = 3l and 

C3ヽ.5for m+n::;:: 3l. ・ 

The top of the valence band (f-point) of the original zinc blend structure 

has threefold degeneracy because the eigenstate consists of the thre-e p-like 

bonding orbitals. In the (111) superlattices, it will split into a feヽ1,'levelsdue to 

18 

--; 
．； 

： 
' 



the effect of the superlattice crystalline field. Using the group theoretical 

treatment 18), one can classify the splitting as shown in Table 5.1 for cases both 

with and without spin orbit interaction. With the inclusion of spin orbit 

interaction, it should be noted that the top of the valence band splits into three 

twofold degenerate levels. The basis functions of heavy holes (r 4 and r 5) 

indicate that these two levels are degenerate due to time reversal symmetry 18), 

21) and are not eigenstates of the total angular momentum. This situation is 

different from the case of the bulk Ill-V semiconductors and their (001) 

superlattices, where the heavy hole state is an eigenstate of the total angular 

momentum 11), J = 3/2 andみ＝土3/2.Two irreducible representations of r 6 

appear and mix together to give the final eigenstates of the light hole and the spin 

split off band. Thus the same situation as the case of (001) superlattices occurs, 

that is, the states for the light hole and the split-off band are not eigenstates of 

the total angular momentum 11). This will be confirmed when the eigenvectors 

for each energy level are calculated in the numerical examples in the next 

section. 

5.2 Results of calculation 

Fig.5.6 is the resulting band strucuture for bulk GaAs fitted to the 

pseudopotential calculation. The lowest conduction band fits well but the higher 

does not, so this band structure should be interpreted to be qualitatively 

meaningful only as far as the valence bands and the lower part of the conduction 

bands are concerned. 

In Fig.5.7, the calculated band structure is shown for the case without 

inclusion of spin orbit interaction, along with the folded band structures of bulk 

GaAs and AlAs, in which the position of the valence band top is shifted by the 

band offset value calculated according to Kroemer~s rule. 
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The new zone boundary is indicated by (Z) in the rhombohedral Brillouin 

zone so that one should note that (Z) is equivalent to the midpoint of the line 

between r -and L -points in the original f.c.c. Brillouin zone. The global 

dispersion of valence bands is similar to that of both bulk materials except new 

gaps open at the new zone boundary and there is a splitting of degeneracy at the r 

-point. 

The present calculation gives the direct gap in the conduction band which is 

different from the (001) superlattice with the same combination of layers. 

However, we should not ta~e this result as conclusive because of the qualitative 

character of the present calculation. 

Without inclusion of spin orbit interaction, the top of the valence band splits 

into two levels obtained in the group theoretical analysis. The result including 

spin orbit interaction is shown in Fig.5.8. The splitting of the valence band top is 

also consistent with the result from symmetry considerations. The notation r 4 

and r 5 (the degeneracy due to the time reversal symmetry of the heavy hole 

state) for the top of the valence band follow that in the ref. 18 but is different from 

that in the ref. 22. As noted in§5.1 the eigenfunctions of these two states are not 

the eigenstates of the total angular momentum. This fact is different from the 

case of (001) superlattices, where the heavy hole state is the eigenstate of the total 

angular momentum. The detailed description of the eigenstate for (001) 

superlattiecs is given in the other paper*. 

The eigenfunctions of the light hole and the spin split-off band consists of 

the superposition of two f6-states. Each of the r6-states is an eigenstate of the 

total angular momentum J = 3/2, Jz =士1/2(I 3/2, 士1/2〉)and J = 1/2, J z = 

土1/2(1112, 士1/2〉)， sothat the superposition of these two states gives the non-

* S.N ara : preprint 

20 



integer ratio between the optical polarization (TE-and TM-mode) in the 

absorption spectrum of these two levels. The coefficient of superposition depends 

on the band offset value. Therefore, the precise measurement of this ratio allows 

the determination of the band offset value experimentally, which is independent 

of the other methods of measuring the band offset value. It is desirable that 

detailed observation of the optical polarization in the (111) superlattices as well 

as in the (001) super lattices of Ill -V semiconductor compounds is performed. 

6 Concluding remarks 

In this report, the electronic band structures of microscopic superlatteces 

are discussed, especially, in GaAs -AlAs systems using an improved tight 

binding method developed by the present author. In both (100) and (111) 

superlattices, band dispersion are delicately different depending on the selectin of 

band offset values. At the top of valence band, the electronic states have a large 

number of variation due to the combination between the spin -orbit interaction 

and the crystelline field of tetragon豆1or trigonal symmetry which is caused by 

forming the (100) or (111) superlattices. They appears as the polarization 

anomaly in the optical properties as absorption or emission oflight. 

It is desirable to investigates semiconductor superlattices theoretically and 

experimentally since they have many possibilities as a one of key materials to 

realize electronically and optically new functional devices in future. 
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Fig.1.1 

Fig.4.1 

Fig.4.2 

Figure Captions 

The resulting fitted band structure of bulk GaAs to the 

pseudopotential calculation.the present calculation ， the ref. 

11 ----

The Brillouin zone of zinc blend (----) and simple tetragonal (-

) structures which is representatively realized in the bulk GaAs and 

the(GaAs)i/(AlAs)i superlattece, respectively. 

(a) The unit cell of the (GaAs)が(AlAshsuperlattice with its primitive 

translation vectors and (b) the corresponding Brillouin zone. In the 

former, the indication of positions of As is omitted to avoid the 

complcated description. 

Fig.4.3 The calculated band dispersion of (GaAs)s/(AlAsh in the extended 

zone scheme with the bulk band ofGaAs for comparison. 

Fig.4.4 - (a) The calculated band dispersion of (GaAs)4/(AlAs)i and (b) of 

(GaAs)i/(AlAs)4 , both in the extended zone scheme. Compare with 

the bulk band structures of GaAs or AlAs. 

Fig.4.5 The calculated result for (GaAs)1/(AlAs)9 in the extended zone 

scheme, where the scale of the vertical axis is enlarged since the two 

dimensional character of electronic state becomes stronger for 

incrf'命 inp;n And.the dispersion becomes flat more and more. 

Fig.4.6 The band gap alternation depending on n in (GaAs)n/(AlAs)i (a) and 

(GaAs)i/(AlAs)n (b). 

Fig.4. 7 The extended Brillouin zone for zinc blend and tetragonal strctures. 

Fig.4.8 The ocsillator strength dependencies on n for (GaAs)n/CAlAs)i (a) and 

(GaAs)i/(AlAs)n (b). 

Fig.4.9 The valenceband structure of (GaAs)i/(AlAsh with inclusion of spin-

orbit interaction. Each level is two fold degenerate. N-ote the 
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degeneracy of the heavy hole and the light hole at the r -point in the 

bulk GaAs is split. 

Fig.4.10 The comparison between the detailed band dispersions to the (001) 

direction near the top of valence band. The notation HH and LH 

means the heavy hole and the light hole. The thick solid line (一）

is the superlattice (GaAs)i/(AlAs)1 , denoted by SL, with the spin-orbit 

interaction. The thin solid line (一）is the (GaAs)i/(AlAs)i without 

the spin-orbit interaction, where the type of p-orbital wavefunctions at 

the valenceband top is shown aspェ，Pyand Pz• The broken line (---—--) 

is the bulk GaAs with the spin-orbit interaction, where the eigenstates 

of total angularmomenturn at the top of valence band are indicated as 

(J, み）．

Fig.4.11 (a) The n dependence of the oscillator strength for the heavy hole (the 

solid line) and the ligth hole (the broken line) in (GaAs)州(AlAs)n.

The vertical axis is normalized by the oscillator strength (I < c I -

ihalax I Px > l2) of bulk GaAs. (b) The oscillator stength of 

(GaAs)9/(AlAs)i for the band offset values based on Kroerner's rule ( 

solid line) and Dingle's rule (broken line). The normalization of the 

vertical axis is the same as that of Fig.4.ll(a).HH and LH denote the 

heavy hole and the light hole respectively. 

Fig.4.12 (a) The n dependence of valence band edge for the heavy hole (HH) 

and the light hole (LH), described by the upper curve and the lower 

curve respectively for both (GaAs)州(AlAs)n and (GaAs)n/(AlAs)i・

For comparison, the results based .on the Kronig-Penny model 

calculated by Tokuda are shown. The values of parameters used in 

Tokuda's calculation are listed in the paper. In the Kronig-Penny 

model the width of each layer is a continuous valued variable so that 

the layer number n~integer) is replaced by d in the figure. (b1 The n 

dependence of the two lower conduction band edge at the r -point for 
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Fig.5.1 

Fig.5.2 

Fig.5.3 

Fig.5.4 

both (GaAs)n/(AlAs)n (the solid line) and (GaAs)n/(AlAs)i (the 

broken line). As in the (a), the results obtained by Tokuda based on 

the Kronig-Penny model are shown for comparison. 

The unit cell of the zinc blend structure, where the body diagonal 

direction is taken as a vertical direction. The closed circle represents 

the III -element atoms and the cross mark the V -element atoms. 

Note that the triangular lattices are stacked in the vertical (body 

diagonal) direction with a period of three layers. The primitive 

translation vectors are represented by arrows and the symmetry of the 

Bravais lattice is f.c.c .. 

The unit cell of the (111) superlattice of (IIIA-VA h / (llIB-VA)i . The 

closed circles represent the IIIA -element atoms and the open circles 

arethe IIIB-atoms. The cross mark is the VA -atoms. Note that the 

primitive translation vectors are represented by arrows and the 

symmetry of the Bravais lattice is rhombohedral. The volume of the 

unit cell is twice the volume of the f.c.c. unit cell shown in Fig.5.l(a). 

The first Brillouin zone of the rhombohedral Bravais lattice and the 

Brillouin zone of the (111) superlattice, (IlIA-VA h / (IllB-VA h , is 

drawn with the original f.c.c. zone of the zinc blend structure. Note 

that the mid point of the line from r to L in the original f.c.c. 

structure becomes the new zone boundary, so that the L -point is 

folded to the r -point in the super lattice structure. 

The unit cell of the (111) superlattice of (IIIAべは）2 I (lllB-VA h . The 

meaning of the symbols is the same as those ofFig.5.1 and Fig.5.2. In 

the lower half, only the atomic configuration of lll-element atoms is 

shown to avoid complexity・of figure. Note that the broken line arrows 

are the primitive translation vectors of f.c.c. structure ifall points are 

equivalent and the solid line arrows are the primitive translation 

vectors of the hex.agonal lattice of the present superlattices. In the 
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Fig.5.5 

Fig.5.6 

Fig.5.7 

Fig.5.8 

lower half, the atomic positions of V -element atoms are put into the 

figure and the solid line frame indicates the equivalent unit cell which 

is drawn in order to show the symmetry of this type of superlattice. 

The first Brillouin zone of the present (hexagonal) (111) superlattice 

of (IIIA-¥は）り(IIls-¥は）1. Note that 1/3 the way along the (111) line 

(r  to L) is the zone boundary of new structure, so that 2/3 along the 

line becomes equivalent to the r-point. 

The band structure of bulk GaAs fitted to the pseudopotential・ 

calculation by M. L. Cohen et al. Note that the lowest conduction band 

is well reproduced. 

The calculated band structure of (111) superlattice, (GaAs)i/(AlAs)i 

with the band structure of bulk GaAs and Al~s which is folded about 

the midpoint of the line from r to L . Spin-orbit interaction is not 

included. Note that new gaps open at the new zone boundary and the 

top of valence band splits into two levels as predected by the group 

theoretical treatment. 

The same as Fig.5.5 with the inclusion of spin orbit interaction. The 

band structure near the top of the valence band is shown. For 

comparison, the dispersion of bulk GaAs is shown by the broken line. 
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Table 4.1 

Table 4.-J-

Table 5.1 

Table Captions 

The irreducible representations of the double point group Td and 

the character for the three bonding orbitai's under the T d 

symmetry with and without inclusion of the spin-orbit interaction. 

The irreducible representations of the double point group D2d and 

the character for the three bonding orbitals under the D2a 

symmetry with and without inclusion of the spin-orbit interation. 

The irreducible representations of the double point group C3ヽ. and 

the reduction of representation consisting of the three bonding p-

like orbitals under the C3,. symmetry with and without inclusion 

of spin-orbit interaction. Note that the basis functions of r 4, r 5 

and f6 are represented by making use of the eigenfunctions of the 

total angularmomentum, J and Jz, for instance, I 1/2, 1/2〉is

the eigenfunction of J = 1/2 and Jz = 1/2. 
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Tcl E 6JC4 3C2 6ad 8C3 

A1 r1 1 1 1 1 1 

Az r2 1 -1 1 -1 1 

E f3 2 

゜
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゜
-1 

T1 f4 3 1 -1 -1 

゜T2 応 3 -1 -1 1 

゜
E112 店 2 -2 v2 -✓2 

゜゜
1 -1 

Es12 巧 2 -2 --V2 -./2 

゜゜
1 -1 

G312 喜 4 -4 

゜゚ ゜゜
-1 1 

{PJ 3 -1 -1 1 
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{PサXE112 6 -6 -v2 -V2 

゜゜ ゜

・点群 Tlこ誤する回巨対呑操作

TJv{ G_ J 



D2d E 2IC4 Cz 2C21 2ad 

A1 巧~ z2, :::yz 1 1 1 1 1 

A2 r2 z(丑—笠） 1 1 1 -1 ー1
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