
TR-NIS-0004

,, s3 ,,
l―only Logic

Andrzej BULLER

2005.6.22

国際電気通信基礎技術研究所ネットワーク情報学研究所
〒619-0288 「けいはんな学研都市」光台二丁目2番地2

Tel: 0774-95-2641 Fax: 0774-95-2647

Advanced Telecommunications Research Institute International (A TR)
Network Informatics Laboratories

2-2-2, Hikaridai, "Keihanna Science City'', Kyoto 619-0288, Japan

Tel: +81-774-95-1111 Fax: +81-774-95-2647

c(株）国際電気通信基礎技術研究所

"sf-only" logic

Andrzej Buller

Abstract—This report provides a consideration of a logic system based exclusively on the

Boolean functioh s;', called here MEXOR, that returns 1 iff exactly one of its n arguments

equals 1. Proven lemmas show how to built various Boolean functions based exclusively on

3-input MEXORs. 紐 up-to-3-inputMEXOR can be embodied as a q-cell—a square-shaped

device exchanging bits with neighbor cells and returning an output value after one clock. This

report presents as examples of q-cell-based circuits, flat crossing, AND-, OR-, NOR-, and

NAND-gate, multiplexer, more-than-one-of-three majority function, adder, and timer.

Keywords—logic, syrmnetric functions, cellular arrays, pulse circuits, delay circuits

I. INTRODUCTION

An elementary symmetric Boolean function, denoted s;, returns 1 iff exactly k out of its n

arguments are equal to 1, where no permutation of arguments changes the returned value [l].

A non-elementary symmetric Boolean function can be created as the sum of elementary ones.

Syi1thesis of arbitrary symmetric functions is an attractive topic within mainstream logic design,

since, compared with synthesis of an arbitrary non-symmetric function, it is believed to be more

tractable. Within the logic synthesis community the synthesized functions are presented mostly

as sums of the products of non-negated and negated variables or as Reed-Muller expressions in

which only AND and EXOR (EXclusive OR) functions are employed.

I propose to consider a logic system based exclusively on s;. Even if the current VLSI

industry, for reasons of economy, does not regard S13 as the best solution, this situation will not

necessarily last indefi皿tely.On the contrary, advantageous properties demonstrated by S13 may

encomage electronic engineers and physicists to search for a way to economically implement it.

In this report, I summarize the fmdings on S;'logic, especially for n = 3, and provide some

examples of S13 -based circuits. To more conveniently discuss S;'and write formulas based on it,

I coined the name MEXOR [2] and here introduce a simplified notation based on square

ー-:~~--- -
2

brackets. Usit1g the proposed notation, S{'(x1,x2, …，x,,) is written as [ふふ…x,,]and is read as

"MEXOR of x1,x2, and so on up to x,,."

A logical system based only on a 3-input MEXOR and constant 1 is universal, or, in other

words, complete (which means that any Boolean function can be built based exclusively on

3-input MEXORs, provided that a constant signal equal to 1 is available). Moreover, several

useful 2-and 3-input Boolean functions can be built from only few 3-input MEXORs. This

report provides a collection of proven lemmas justifying the above assertions.

Let us also consider an up-to-3-input MEXOR embodied as square tile such that each side not

used as an input can be an output and that an output value is always returned with the same,

defmed delay. I named such tile a q-cell [3], which is to not to be confused with quantum-dot

cells, that are denoted using capital Q and work based on a substantially different paradigm. We

can employ 2-and 3-input q-cells as logic units and single-input q-cells as pieces of wire and/or

as fan-outs; consequently, we can build arbitrary Boolean functions as well as arbitrary

generators and modifiers of Boolean time-series. Each of these constructions can be a single

layer of q-cells.

As for related works, S{', where 1 :o: n :o: 5, together with a certain threshold element were

employed to evolving neural-like modules using a dedicated hardware called the CAM-Brain

Machine (CBM) [4]. However, this approach could not provide a satisfactory solution. The

work done in [5], also devoted to the CBM-style of computing, suggested that all two-input and

some 3-input Boolean functions could be built exclusively from s;'functions. The work achieved

in [6] reported the first successful use of a genetic algorithm for the synthesis of a non-trivial

"Si" -only''c打cuit.

In order to make this report comprehensive for a wide readership, Section II reviews the

basic notation and some theorems/lemmas useful for further lemma proving, paying most

attention to EXOR properties. However, it is assumed that the target reader knows the most

basic laws of Boolean algebra (e.g. De Morgan's laws), so these are neither provided here nor

referred to in the proofs of lemmas. Section III contains a collection of proven lemmas specific

to MEXOR logic. Section IV shows some examples of circuits built from q-cells.

II. BASIC CONCEPTS

Let us note that an n如 putMEXOR, i.e. S;', for n = 1 has only one argument, where the

2

了二二了二-:-:::-・ ------

3

returned value can only be the argument unchanged (so s/ can be called identity function);

sinillarly, for n = 2, such a MEXOR is simply an EXOR denoted commonly usil1g the

operator④.

Until a method of a "MEXOR-only''expansion of an arbitrary Boolean function is

established, MEXOR-related lemma proving can be done by manipulation on equivalent

NOT/AND/OR-based or Reed-Miller expressions. Therefore, assuming the notations x, xy,

and x+ y mean "NOT x ", "x AND y ", and "x ORy ", respectively, let us frrst recall two

Boolean-algebraic theorems.

Theorem 1 [7]: x +巧 =x+y.

Theorem 2 [7]: xy + xz + yz = xy + xz.

Let us also note that

By Eq. (1) it can be noted that

外(x,y)=疇y=xア+xy. (1)

x〶O=x,

x〶 1 = :x,

x 〶 x=O,

x④ x = 1.

(2)

(3)

(4)

(5)

Other properties of EXOR are reflected by the following four lemmas.

Lemma 1 [8]:

1. (x 〶 y) 〶 z=x 〶 (y 〶 z),

11. xy 〶 xz = x(y 〶 z),

Ill. X 〶y=y 〶 X.

Lemma 2 [4]:

xy =0⇔ x+y=x〶 y.

Lemma 3 [9]:

(x+ y) 〶 (x+z)=x(y 〶 z).

3

4

Lemma 4:

i. 巧 EBy=xy,

11. 迅y 〶 x=x+y.

Proof For 4i., 而 這y=y詞 yI , which, according to Lemma 1 ii, equals y(詞〶 1). By Eq. (3),

詞 1= x. Hence, y(譴 l)=yx=xy. For 4ii., by Eq. (1), 冠釦＝声＋忌 ＝冠+(x + ji)x

＝砂+(xx十yx)=砂+(x+切 ＝ 而+(x+xy)=冠+x =x+y. ロ

Finally, let us defme the 3-il1put majority function M.

M(x1,x2,x3) = S氾，x2,x3)+Si(xi,朽ふ）． (6)

III. MEXOR LOGIC

Note that, a value returned by MEXOR does not change after removal of all arguments equal

to 0. Therefore,

Vx; = 0 ⇒ [x1 花..ぷ kXk+I ・・・x,,]= [x1 x2 ・・心］．
i>k

(7)

The following discussion only concerns a three-argument MEX OR, which expands as follows:

Si (x, y) = [x y z] = x戸＋応y乞十巧戸z.

By Eq. (7) and (8), it can be noted that

[x] = x.

(8)

(9)

By Eq. (7), (8) and (1),

[xy]=x 〶 y. (10)

By Eq. (10) and (3),

[x l] =予． (11)

And by Eq. (8),

[xyy]=xy. (12)

The basic difference between a three-argument MEXOR and a tln・ee-input combination of

EXORs is reflected in the following lemma.

Lemma 5: xyz = 0⇔ [xyz]=x 〶 y 〶 z.

4

___ ::_~----

5

Proof For(⇒），by Eq. (1)

x 〶 y 〶 z=(x®y)ラ +(x ④y)z = (xデ十xy)了＋（ザ＋石）Z = X了ア+xy了+(.xy+xア） Z

這ラ＋声+xyz+芍 =;i:戸＋声+o+麟， whichbyEq.(8) equals [xyz].

For(<=), since (p⇒ q)三（す⇒p) , it is enough to prove that xyz * 0⇒ [xyz]-:tx 〶 y 〶 z.

Note that [111] = 0 and xyz * 0三 x= y = z = 1, whereas 1 〶 l 〶 1, by Le1nma 1 and Eq. (4) and (2),

equals 1, which completes the proof. ロ

The following four lemmas provide practical hints for "MEXOR-only''logic design.

Lemma 6: i. [[xxy]y]=xy,

ii. [[xxy]x] = x+ y.

Proof Let [[xxy]y]=u, [[xxy]x]=w. By Eq. (12), [xxy]=笈y.Hence u =[ぽy)y],w=[ぽy)x]'

which, by Eq. (10), gives u = (xy) 〶 Y, w=(烹y) 〶 x. Hence, by Lemma 4i, u = xy, and by Lemma

4ii, w=x+y.□

Lemma 7: i. [xyl]=x+y,

ii. [[xyl]xy]=xy.

Proof For 7i., by defmition, since one ofMEXOR's arguments eq叫 s1, the only possibility of

returning 1 is when both of the other arguments are equal to 0. Hence, [x y l] =豆 whichequals

x+y. For 7ii., by Lemma 7i, [[xyl]xy] = [(x + y) X y] = (x+ y)xy +(x+ y).xy +(x + y)元

= x y x y + xxy + yxy + xxy + yxy = xy + xy + yx

y+予=xy.ロ

＝戸（予+x)+yx=y+y予， whichby Theorem 1 equals

Lemma 8: [[x[xxy]][yzz]]=応+yz.

Proof [[x[xxy]][y z z]], according to Lemma 4ii. and Eq. (12), equals [(x + y)(y乞）] , which, by Eq.

(10) equals (x + y) 〶 y乞， which by Eq. (1) equals (x + y)戸＋予戸yラ

which by Theorem 2 equals和+yz.□

=(x+y)(デ十z)=xy十xz+ yz,

5

----—ロニ—----_
6

Lemma 9: [x [xxy] [[xy] z z]] =M(x,y,z).

Proof ByEq. (8) [x[xxy][[xy]zz]]=L=p+q+r, where p=x(冠）(z(x④ y)) = x(x + y)(z +xy+ xy),

q 疇（冠）（ヲ(x 〶 y)) = xy(z +汀＋町y),r =予（宕）ラ(x町）＝恥+ji)ラ(xy+豆y)=0.

Hence, L = p+q = x(z +xy+可）+xy(z+xy+可） =xz+xy十xyz= x(y + z) +而z.Let R = M(x,y,z),

which by Eq. (6) equals sf (x,y,z) +図(x,y,z)

=xyz+xy乞十x和+xyz = xy + xjiz十豆yz=x(y+和）＋而z,which by Theorem 1 equals

x(y +z)+而z.Therefore, L = R. ロ

Lemma 8 shows a MEXOR-based multiplexer, whereas Lemma 9 shows a MEXOR-based

3如 putmajority function. The latter construction is fully MEXOR-specific, i.e. it processes

values of three different variables provided to the three inputs.

IV. q-CELLULAR CIRCUITS

Let us depict a q-cell using a square and triangles markmg inputs, as in Fig. 1. When no triangle

is attached to a given side, that side can serve as an output. If only one input is defmed, the

related tile is an identity function (returning only the input's value) with the possibility to fan-out

the input value in three directions. If two and only two inputs are defmed, such a q-cell serves as

an EXOR-gate with the possibility to send a calculated value in two d江ections.If three inputs are

defmed, the related tile serves as a MEXOR with the possibility to send a calculated value in one

direction (Fig. 2).

When a chessboard-like structure is built from a number of q-cells, the propagation of the

values calculated by the cells depends on input configuration (Fig. 3). For transparency,

triangles in single-input q-cells can be replaced with appropriate lines showing the implemented

wiring (Fig. 4).

The remaining figures show a q-cell-based flat crossing (Fig. 5), AND and OR (Fig. 6),

NOR and NAND (Fig. 7), a multiplexer (Fig. 8), a more-than-two-of-three majority function

(Fig. 9), a full adder (Fig. 10), and an example of a timer (Fig. 11).

6

- --

7

に
Fig. 1. Graphical representation of a q-cell. The triangles mark
inputs, i.e. the cell's sides through which a Boolean value can be

received from related neighbor cells. A given cell can have 0, I,
2, or 3 inputs.

t= 0
註

i

t = 1

q = IP z z] = [lu x] z z]

Fig. 3. Example of value propagation in a q-cell-based circuit

Assume at time t=O certain cells return Boolean values u, x, y,

and z, respectively; y has to disappear since no neighbor had

input allowing for y's propagation; z moves 1ight o畑 1gto an

input to the light q-cell available. At t=l the value p = [u x]

appears as related cell's inputs allowed to receive u and x; p

moves 1ight. At t=2 z, having inputs to two different cells

available, appears in two places. At t=3 q-cell with three inputs
admits values returned by the three related neighbors and
produces MEXOR of the values.

Xr-2

Yr-1

Fig. 5. Flat crossing made from five q-cells.

&

［ふ1Yt-lZt-1]

ふ l①Yt-1

ふ 必

a. h

ふ 1①Yt-1

ふ 1①yた1

xた1①yた1

ーふ司
XH

Fig. 2. Four possible layouts of a q-cell's inputs. Depending on the

number of defined inputs a q-cell can accept 3 values, 2 values, or I
value, and return a MEXOR of the values (that can be received by
one neighbor cell), EXOR (that can be received simultaneously by
two neighbor cells), or the input value unchanged (that can be

Fig. 4. For clarity, !Ji angles in single-input q-cells can be replaced
with approp1iate lii1es to show implemented wiring. Circuit a.,
modified this way, tunJS into circuit b.

Xr.JJ'; ふ

叶 x,_,ザ,_,

・Fig. 6. AND-gate and OR-gate made from q-cells. Both gates

return calculated values with a 3-clock delay.

7

8

・・-a

豆ーービ＝ーl: Yt: ,_ --'

Xr-1Yr-2

Fig. 7. NOR-gate and NAND-gate made from q-cells. The gates
return calculated values with I-clock and 2-clock delays,
respectively.

M(x1-10, Yr-10, Zi-10)

Fig. 9. A planar more-than-one-of-three majm-ity function as a

q-cell-based circuit.

Y t-4 x,_4 + Y t-4 Zt-4

Fig. 8. A planar multiplexer made from eleven q-cells.

碑成=Xt-18①Yt-18 ffi Ct-18
3

canyt = S2(Xi:..22, Yi:..22, C1-22)
Fig. 10. A planar adder as a q-cell-based circuit.

Yt

u= 10000 ...
y = 0001000100010001

0001000100010000

00000 ...

Fig. 11. Example of a timer built as a q-cell-based circuit.

8

，

ACKNOWLEDGMENT

This work was supported by the National Institute of Information and Communications Technology of Japan

(NICT) under Grant 13-05. I thank Juan Liu and Daniel Jelinski for critical review of the manuscript of this work

and for suggestions that helped me to present the ideas more clearly.

REFERENCES

[1] T. Sasao, Switching The01y for Logic Synthesis, Boston: Kluwer, 1999, p. 99.

[2] A. Buller, "CAM-Brain Machines and Pulsed Para-Neural Networks: Toward a hardware for future robotic

on-board brains" in Proc. 8th Int. Symposium on Artificial Life and Robotics, Beppu, 2003, pp. 490-493.

[3] A. Buller, "From q-Cell to Artificial Brain," Journal of Artificial Life and Robotics, to be published.

[4] M. Korkin, G. Fehr and G. Jeffrey, "Evolving hardware on a large scale," in Proc. 2nd NASA I DoD

Workshop on Evolvable Hardware, Pasadena, 2000, pp. 173-181.

[5] H. Eeckhaut & J. Van Campemhout, "Handcrafting Pulsed Neural Networks for the CAM-Brain Machine,"

In Proc. 8th Int. Symposium on Artificial Life and Robotics, Beppu, 2003, pp. 494-498.

[6] J. Liu and A. Buller, "Evolving Spike-Train Processors," Proc. Genetic and Evolutionmy Computation

C01加rence(GECCO 2004), Seattle, pp. 408-409.

[7] G. D. Hachtel and F. Somenzi, Logic synthesis and verification algorithms, Boston: Kluwer, 1996, pp.

94-95.

[8] T. Sasao, Switching Theory for Logic Synthesis, Boston: Kluwer, 1999, pp. 44-45.

[9] G.D. Hachtel and F. Somenzi, Logic synthesis and verification algorithms, Boston: Kluwer, 1996, p. 471.

，

