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Abstract. In this paper, XCS and its variant, XCSG are analyzed from aspect of func-
tion approximation (FA) method for Q-learning. From the analysis, we clarified the 
relation between XCS, XCSG, Q-leaming with FA by focusing on the three elements 
in the update formula: (1) payoff definition; (2) residual term; and (3) gradient term, 
which revealed the inconsistency of the update process between the XCSG and Q-
learning with FA. Our preliminary experiment also showed that the performance im-
provement of XCSG is not only due to the effect of applying gradient descent method 
but strongly dependent on the combination of the elements in the update fonnula. 

1 Introduction 

XCS [22] is a Learning Classifier System which adopts accuracy for its classifier fitness 

criteria. Although there have been proposed several modifications and extensions regarding 

XCS, the update formula of the classifier prediction, which is one of the core parts of XCS 

has been kept unchanged except for XCS with gradient descent (XCSG) [3]. 

XCSG is a distinct variant of XCS of which classifier prediction update method is modi-

fied by applying the idea of gradient descent, which is a method used in Q-learning enhanced 

by a generalization technique calledfunction approximation (FA). An experimental result 

of XCSG applied to the multi-step maze problems was reported, which showed remarkable 

improvement on both the performance and the prediction accuracy compared to XCS. 

However, how the update formula of XCSG is derived from the gradient descent method 

and the what is the difference between the update formula of XCS, XCSG and Q-learning 

with FA is not sufficiently clarified in the detail. Furthermore, the performance improvement 

of XCSG is not explained in this context. 

Therefore, our objective is to: (1) clarify the difference of update methods between XCS, 
XCSG and Q-learning with FA focused on their reinforcement processes; and (2) identify the 

main factor of the performance advantage ofXCSG compared with XCS. 

2 Gradient Descent Method and XCSG 

In this section, we briefly describe the gradient descent method in Q-leaming with FA and 

XCSG, which is required for our further analysis. See [3] and [17] for the detail. 
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2.1 Gradient descent method in Q-learning 

Gradient descent method is a general function optimization method which uses the derivative 

of the function. The gradient descent method is used to derive the update formula of Q-values 

in Q-learning enhanced by FA method, where the Q-t叩leis indirectly represented as an 

approximated function controlled by a set of parameters 0t = (仇(1),0t(2), ... , 0t(-n)), where 

t denotes the time step. 

In Q-learning with FA, the update formula must be defined for the parameters仇todeal 

with the Q-value indirectly represented as a function of 0t, which is described as: 

→ 
如 1 尻＋り［功— Q心t, at)]▽囚いい， (1) 

where St, at and Qt(s, a) each denotes the state, action and Q-value at time step t, and the 

parameter learning rate is named {3. Here, Vt denotes the target value defined as rt+l + 
1maxaQt(St+1,a), to which the current Q-value is modified. This update formula can be 

derived by applying the gradient descent method to minimize the mean square error between 

the target value灼 andthe corresponding Q-value1. 

2.2 Reinforcement process in XCSG 

In XCSG, the payoff P(ai) for the state s in the prediction array, which is defined by the 

next formula is regarded as a Q-value Q (s, ai) in Q-learning with FA. 

P(a』
区cl店 [M]a; Pk X Fk 

Ec1店 [M]a; 凡＇
(2) 

where Pk and凡 eachdenotes the attributes prediction and fitness of the classifier ch, and 

[M]lai denotes the set of classifier in match set [M] having the action ai. Here, the new 

update formula in XCSG is derived by applying the Formula 1 to Formula 2 and regarding 

the accuracy Pk as a parameter for approximated Q-value function. 

Fk 
凡← 四十f3(P-P砂――’

F[A]-1 
(3) 

where F[A]-i denotes (I: 叫E[A]_1Fj) using the previous action set [A]_1, and Pis defined as 

a target value (r + 1 maxa P(a)) using the reward rand the discount factor denoted as予

3 Analyzing Update Methods 

In this section, we first compare the update formulae in XCS, XCSG and Q-leaming with FA 

to clarify the differences. Next, we propose a table including all the possible update formulae 

which can be derived by combining the different elements clarified through the comparison. 

3.1 Difference in Update Methods 

For the comparison, we focus on the two main terms (P -Pk) and (8P/8pk) in Formula 3 

and name it residual term and gradient term for the convenience. 

1The derivative ofQ-value function Vが':Jt(sぃ位） must be calculated, which depends on the approximation 
of Q-value function. 
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3.1.1 Residual term 

The residual term calculates the difference between the target value and the current value 

regarding the prediction value. In both XCS and XCSG, the residual term is defined as (P -

加）， whichcan be described as (r + 1 maxa P (a) -p砂byexpanding the target value P. The 

corresponds term in Q-learning with FA is (rt+l + 1 maxa Qパ均+1,a) -Qパ均，aり）， which
is based on the fundamental equation in reinforcement learning called Bellman equation. By 

comparing these two formulae, an asymmetry is found that Qt(st+1, a) corresponds to P(a) 

butQ心，叫 correspondsto Pk. 

By precisely applying the gradient descent method to Formula 2, the residual term is 

derived as (P -P[AJ_i) where P[A]-i denotes the payoff value of the selected action in the 

previous time step. In this paper, we call this form XCS residual, which is defined as (P -

P[AJ_1) and call the original form Bellman residual, which is defined as (P -Pk) . 

3.1.2 Gradient term 

The gradient term is a newly introduced term in XCSG compared with XCS, which is derived 

from the update formula in Q-learning with FA. Compared with XCSG, the gradient term of 

XCS can be regarded as a constant 1. 

In XCSG, the gradient term (fJP /fJpk) is calculated as (Fk/ F[AJ_i) by regarding the pre-

diction Pk as the parameter of the Q-value function. 

However, the fitness value凡 isactually a function of Pk, so the derivative cannot be 

calculated as a simple form. This is because the update formula of凡 isbased on the error 

attributes Ek, which uses the prediction Pk in its update formula 2. One way to precisely apply 

the gradient descent method is to modify the definition of the payoff P(a) not to include the 

fitness A, which we discuss in the following. 

3.1.3 Payoff definition 

Here, we introduce an alternative payoff definition defined as the following formula, which 

enables to apply the gradient descent method precisely by excluding the influence of the 

fitness value. 

P(い＝
Lc1店 [M] 加 X 7叫 Tnk

％ 

こ山E[M]ai numk 
(4) 

where numk denotes the numerosity of the classifier elk, and num[AJ_1 denotes (I: 虹 [AJ_1numj), 
For the convenient we name this definition numerosity-weighted payoff (Formula 4) and call 

the original definition in XCS fitness-weighted payoff (Formula 2). 

By adopting the numerosity-weighted payoff, the gradient term (fJP/fJpk) can be pre-

cisely calculated as (n'urnk/n'UTn[AJ_J. 

2Furthermore, as the fitness A is also influenced by the value of itself in the previous time step, 凡 must
also be regarded as a parameter to approximate the Q-value function, which causes a contradiction between 
original fitness update formula in XCS. 



3.2 Relation between the update methods 

From the previous analysis which clarified the difference of the update methods in the payoff 
definition, the residual term, and the gradient term, here we present a systematic view to cate-
gorize the update methods based on these differences. By listing all the possible combinations 
of different elements, we can consider 8 different categories, which are listed in Table 1. 

In this table, XCS is in the category F-I because XCS adopts the fitness-based payoff, 
the XCS residual and the gradient term in the form of 1. XCSG is in the category F-II, as it 
differs from XCS in the gradient term. By modifying the update method of XCS by adopting 
the update form of each category, eight different XCS variants can be generated3. Within such 

systems, N-IV based XCS is the only system of which update method is consistent with the 
Q-learning with FA of which update method derived from the gradient descent method. 

Table 1: The update methods categorized by its payoff definition, gradient term, and residual term in the update 
formula. 

Update method 

F-I (XCS) 
F-II (XCSG) 
F-III 

F-IV 

N-I 
N-II 
N-III 

N-IV (Q-leaming + FA) 

Payoff definition 

(Lctk四 X且）/ Lctk J,k 
(Lctk Pk X仕）／区elk且

（とelkPk X凡）f Lclk H 
（区ct,Pk X凡）!Lci.H 
(Lclk Pk X numk)/区elknumk 
（区elkPk X num砂／区ctknumk 
（とelkPk X numk)/区elknumk 
（区chPk X num砂／区cl,.numk 

4 Preliminary Experiment 

Residual 

(? -Pk) 
(P-Pk) 

(P-P[A]_1) 
(P-p[A]_1) 

(P -Pk) 
(P-Pk) 

(P-P[A]_J 
(P-P[AJ_i) 

Gradient 

1 

(Jik/ F[AJ_,) 
1 

(Fk/恥—,)

(numk/num[AJ_,) 
1 

(numk/num[AJ_,) 

In this section, we present a preliminary experiment to compare the performance of the eight 
XCS variants representing the categories in Table 1. We use Maze6 problem, which is a 
same problem used in [3] to double-check the simulation results and to make the comparison 
easier4. For the performance measure, the number of steps to the goal is used. All the statistics 
are averaged over 20 experiments. 

Figure 1 reports the performance of methods F-1,F-II,F-III and F-IV Figure 2 reports the 

performance of methods N-l,N-II,N-111 and N-IV. In both the graphs, the number ofleam-
ing problems is on the the horizontal axis and the average number of steps to goal is on 
the vertical axis. From both the graphs, we can find that the update method which showed 

better performance than F-1 (XCS) was only F-11 (XCSG), which converged to the optimal 
performance of Maze 6. On the other hand, F-IV and N-IV showed the worst performance. 

3Note that each of these categories specifies only the form of the update method. Several XCS variants can 
be included in a category which adopt different mechanisms in the other components such as classifier fitness 
criteria. 

4For this reason we use the same parameter settings with [3] as follows: the population size N is 3000 

classifiers, P# = 0.3, /3 = 0.2, ry = 0.7, X = 0.8, μ= 0.01, Bmna = 8, p⑬ plr = 1.0, BaA = 100, Eo = 1, 
Bdel = 20, doGASubsumption = 0, doASSubsumption = 0. 
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Figure 1: The performance of methods F-1 to F-IV applied to Maze 6. 
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Discussions and Conclusion 

To clarify the relation between XCS, XCSG, Q-leaming with FA by focusing on the three 

elements in the update formula: (1) payoff definition; (2) residual term; and (3) gradient term. 

And presented eight categories by combining these differences, which revealed that XCSG 

are not precisely the gradient descent based XCS. 

Furthermore, we presented a preliminary experiment by applying these update methods 

to Maze 6, which showed that the main factor in performance improvement ofXCSG, which 

we named F-II is due to the combination of the XCS residual term and the gradient term 

newly proposed in XCSG. However, this combination is effective only in the case of fitness-

weighted payoff, as the similar method N-IV adopting numerosity-weighted payoff showed 

the worst performance within the others. 

From these results, we can conclude that the performance improvement in XCSG is not 

due to the gradient descent method in the strict meaning, but enhancing the framework of 

XCS, which might be a distinct advantage ofXCS framework over Q-leaming with FA. 

In this paper, we did not analyze deeply about the method N-IV, however, update formula 

of N-IV is consistent with Q-learning with FA and we think that the analysis between the 

XCS with N-IV update and Q-learning with FA will help understanding XCS in the context 

of reinforcement learning researches. 
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