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Abstract 

Learning Classifier Systems (LCSs) are rule-
based systems possessing essential functions 
of (a) reinforcement learning, (b) state gener-
alization and (c) rule discovery. As the first 
step toward developing a theoretical basis of 
LCSs, here we focus on a strong relation be-
tween LCSs'learning process with general-
ization and reinforcement learning methods 
with function approximations, and aim at in-
traducing a proof of convergence for LCSs. 
Based on our previous work, which showed 
an equivalence of learning processes between 
a zeroth-level classifier system (ZCS) and Q-
learning with linear function approximation, 

in this paper, we apply a residual gradient al-
gorithm for Q-learning to ZCS. As for the re-
sult, we obtained an LCS with generalization 
ability that guarantees convergence due to 
the proof of the residual gradient algorithm 
under the condition of its rule discovery pro-
cess being suppressed. 

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute. 

1. Introduction 

Learning Classifier Systems (LCSs) are rule-based sys-
terns whose rules are named classifiers. The origi-
nal LCS was firstly introduced by Holland (Holland, 
1975), intended as a framework to study learning in 
condition-action rules. It included distinctive fea-
tures of a generalization mechanism in rule conditions 
and rule discovery mechanism using genetic algorithms 

(GAs) (Goldberg, 1989). Later, this original LCS was 
revised to the "standard form" in (Holland, 1980} and 
brought about many variants (Booker, 1998; Riolo, 
1991; Smith et al., 2000; Wilson, 1995). 

Although LCSs were mainly developed in the field of 
evolutionary computation, they include the concept 
of credit assignment, which actually has an essential 
connection with reinforcement learning methods, es-
pecially temporal difference (TD) methods (Sutton, 
1988). The bucket brigade algorithm (Holland, 1986), 
a well-known credit assignment mechanism for LCS, 

is quite similar to the Sarsa (Sutton, 1996) algorithm. 
Wilson proposed two types of classifier systems, ZCS 
and XCS with a Q-learning (Watkins, 1989)-like algo-

rithm named the Q-bucket brigade (QBB) algorithm, 
in their learning processes. 

Despite of these essential similarities, when focusing on 
theoretical aspects, LCSs do not have any convergence 
proof for learning, whereas Sarsa and Q-learing hold 
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the convergence theorem with the required condition 
clarified (Singh et al., 2000; Watkins & Dayan, 1992). 

This derives from the most distinct feature of LCSs: 

possessing a rule discovery mechanism that uses GA, 
which makes it difficult to directly applying conver-
gence proof performed in reinforcement learning re-

searches. 

Consequently, is it possible to partially introduce a 
convergence theorem to an LCS by suppressing the 
rule discovery process but possibly keeping the other 
distinct property of generalization? Answering this 

question by proposing such an LCS is the objective of 
this paper, which we regard as a first step to strengthen 
the theoretical basis of LCS, finally aiming at an LCS 
with a complete convergence theorem. 

Based on our previous work that showed equivalence 
between the learning process of the ZCS classifier sys-
tem and Q-learning from the aspect of the function ap-
proximation method, we apply it to ZCS residual gra-
dient algorithms (Baird, 1999), alternative algorithms 
for updating values, which will introduce proof of con-
vergence to several classes of function approximations 
for a variety of reinforcement learning methods. This 
should result in an LCS having convergence proof due 
to a residual gradient algorithm while retaining its gen-

eralization ability. 

The rest of the paper is organized as follows. Section 2 
introduces related researches. Section 3 describes the 
learning process of ZCS from viewpoint of Q-learning 
with function approximation, which is required for Sec-
tion 4 where residual gradient algorithms are applied 
to ZCS. Finally, Section 5 gives our conclusions. 

2. Related Research 

Because LCSs are essentialy connected with TD meth-
ods such as Q-learning, some works comparing both of 
them have been carried out. 

Dorigo et al. compared the originally designed VSCS 
(Very Simple Classifier System) with Q-learning and 
showed that the learning process would be equivalent 
under the limitation of VSCS having neither general-

ization ability nor creation and deletion of classifiers 
(Dorigo & Bersini, 1994). 

In a general study to compare LCS and Q-learning, 

Lanzi implemented LCS by starting from simple Q-
learning, extending it to a rule-based model, adding a 
reinforcement learning mechanism, and finally adding 

generalization ability (Lanzi, 2002). However, the ob-
jective of this work is not to show equivalence with 

Q-learning nor to prove convergence of learning in par-

ticular. Consequently, the final description of LCS 
having generalization is in a form incompatible with 
Q-learning. 

We regard these works as achieving our objective only 
to a minor extent, as the convergence theorem for Q-

learning can be directly applied when the models have 
neither the ability to generalize nor invoke the rule dis-
covery mechanism. However, these results are quite 
limited, because most existing LCSs do allow general-
ization of classifier conditions. 

Here, we focus on our previous work that built a frame-
work capable of dealing with the generalization ability 
of LCSs by showing equivalence between the learning 
process of the ZCS classifier system and Q-learning 
with the function approximation method, a method 
that enables generalization of reinforcement learning 
methods. In this work, we also mentioned that the 
class of generalization in ZCS corresponds to linear 
approximation. 

Based on this work, we introduce proof of convergence 
to ZCS under the condition that its rule discovery pro-
cess is suppressed, but its generalization ability is re-
tained. As the leaning process of ZCS is shown to 
be equivalent to Q-learning with function approxima-
tion, we can use the contributions in a reinforcement 
learning field, which introduces proof of convergence 
to Q-learning with linear function approximation. As 
we already proposed in the introduction, in this work 
we focus on residual gradient algorithms, an alterna-
tive algorithm of updating values, which will introduce 
proof of convergence to several classes of function ap-
proximations for many reinforcement learning meth-
ods. We will apply a residual gradient algorithm for 
Q-learning in order to achieve our objective. 

3. Learning Processes of ZCS from 
viewpoint of Q-learning with 
Function Approximation 

In this section, we describe the learning processes of 
ZCS from the viewpoint of Q-learning with function 
approximation based on our previous work, which is 

necessary for the next step to introduce residual gra-
dient algorithms to ZCS. First, we introduce the ZCS 
learning process in detail. Next, we explain Q-learning 
with function approximation. Finally, we presents the 

ZCS learning process in the form of Q-learning with 
function approximation. 
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3.1. Learning process in ZCS 

ZCS (Zeroth-level Classifier System) is an LCS model 
introduced by Wilson with a simple architecture that 
implements distinctive features of LCS, functions as a 

rule-based model, adopts a lE:arning process, uses rule 
representation with the ability to state generalizations, 
and features a rule discovery process, providing dy-
namic rule creation and deletion through learning. To 

focus on the learning process of ZCS, here we only de-
scribe a learning process of classifier strength to keep 
our discussion general. See (Wilson, 1994) for a more 
detailed description of the model, including the rule 

discovery process. 

Env:ironment 

Match Set 
[Ml 

---------------
＇ 

ヽ, covering 、
● 鴫 ．＇, genetic algorithm' 

ヽ ヽ

、--------------
ヽ

ZCS 

selects the action stochastically by the proportional 
probability based on the total strength of the classi-
fiers whose action part is the same. After action se-
lection, an action set [A] is formed from classifiers in 

the match set [M] that have the same action as the 
selected action. For example, in Fig. 1, two classifiers 
whose action is "01" are collected to organize an action 

set. The action set [A] is preserved to the next time 
step but renamed as [A]-1 while the new action set 
[A] is formed. The learning process occurs when ZCS 
obtains an immediate reward, which has the following 
result: 

Figure 1. System architecture of ZCS, which shows the pro-
cess flow from ZCS receiving an input state from the envi-
ronment to ZCS obtaining a reward from the environment 
by performing an action. 

Figure 1 shows how ZCS operates by following the flow 
of processes. The basic component of ZCS is a set of 
rules, named classifiers. Each classifier comprises three 

parts: condition, action and strength. ZCS maintains 
a set of classifiers named population [P], and when the 
input state arrives, the condition part of each classi-
fier in [P] is matched with the state. All classifiers 
whose conditions match the specified state are col-
lected to organize a match set [M]. For example, in 

Fig. 1, four classifiers whose conditions match the in-
put state "0011" are collected to organize a match set. 
Here, we do not describe the representation of classifier 
condition and its matching definition in detail, though 
each condition of all the classifiers in the match set 
matches at least one state, including "0011." Next, 

an action is selected from among those advocated by 
members of [M]. Many action selection schemes are 

possible, for example roulette-wheel selection, which 

S[AJ_1 +----(1 -(3)S[AJ_1 + (3 [r +悩AJ]. (1) 

The expression SIA] denotes the total value of the 
strength of all classifiers in action set [A], and the left 
arrow in the formula denotes the operation to set the 
value of the right-hand side to the left-hand side. Pa-
rameter (3 denotes the learning rate, which controls 
the flexibility of learning. In this case, each classifier 
in the previous action set [A]-1 is added to the value 
of the right-hand side, equally divided by the number 
of classifiers in previous action set [A]_1. Wilson also 
proposed an alternative update formula quite similar 
to the Q-learning learning process: 

S[A]-1← -(l-(3)S[AJ_1 +(3 [r+□ m:xS[M]la], (2) 

where [M] la denotes the set of classifiers included in 
match set [M] having action a. In (Wilson, 1994), 
Wilson discussed the relevance betwe.en ZCS and Q-
learning based on the formula above, which is named 
Q-bucket brigade (QBB) algorithm. However, this 
macroscopic viewpoint only deals with the aggregated 
value of the classifier strengths. Such a viewpoint lacks 
the ability of a microscopic view to relate ZCS to Q-
learning at the level of each classifier strength rein-
forcement, which is the topic discussed in the next 
subsection. 

3.2. Q-learning with function approximation 
method 

Q-learning is a popular learning model to solve online 
reinforcement learning problems. The name Q denotes 

action value function Q (s, a), which estimates the ac-
tion value for taking action a in state s defined as an 
expectation of total future rewards. In Q-learning, Q 

values are updated at each time step as defined below, 

where St, aぃrtand Qt denote agent's state, action, 
received reward, and Q values at time step t, respec-
tively: 

Qt+1(st,at) = Qt(St,at)+a[vt-Qt(St,at)l, (3) 
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where Vt is a target value for the update of Qt(Bt, at), 
In Q-learning, Vt is defined as 

Vt rt+l +,ymaxQt(St+1,a). 
a 

Parameter a denotes the learning rate, and this con-

trols the flexibility of learning. Parameter I denotes 
a discount factor for determining present value of fu-
ture rewards, which is also important for avoiding the 
divergence of action values. The action value function 

Q(s,a) is called a Q-table, since it holds action values 
for all combinations of states and actions represented 
as S x A, where S and A are sets of all possible states 
and actions. This causes the serious problem of state-
space explosion when the number of dimensions of the 
states becomes too large. 

To avoid this problem, a function approximation 
method can be applied to compress a Q-table with 
a large number of states by approximating it with 
a small number of parameters. Instead of updating 
a single cell in a Q-table, these parameters are up-
dated using the gradient-descent method described as 

follows. Let 0t = (0t(l), 0t(2), …，0t(n)汀("T"here 
denotes transpose) approximate the action value func-
tion, where Qt(s, a) is a smooth differentiable function 
of 0t for all s E S and a E A. The gradient-descent 
methods update Qt(s,a) by adjusting the parameter 
vector as the following formulas, 

0t+l 0t十△0t, 

(4) 

△ 0t = a[巧ー Qt(St,at)]▽ 0,Qt(Sゎ叫. (6) 

Here, gradient▽ 0, for a function f is defined as fol-
lows. 

▽ 0,J(0t) 

3.3.2. STRENGTH UPDATE DESCRIBED USING 

(5) FUNCTION APPROXIMATION RULE 

In ZCS, action selection is based on the total strength 
of the classifiers for each action a E A in the match set 
Mt, which matches the state St, Here, we assume that 
the total strength of the classifiers for action a in the 

match set for state St represents the approximation of 
the corresponding Q-value Qt(St, a), which gives the 
formula 

(8f(0リ8f(0t)…旦lT 

狐 (1)'颯 (2)''軌 (n)) .(7) 

Especially if Qt is linear to each parameter in the pa-
rameter vector 0ゎ砧 canbe expressed as a product 

of parameter vector 0t and feature vector </Jsa inde-
pendent of 0t-This type of function approximation is 
called a linear function approximation. 

Qt(s,a) = L叫i)叫 (i)= 0贔sa・(8)
i 

Simple Q-learning using a Q-table can be described 

as a special case of linear function approximation in 
which the parameter vector is composed by listing all 

of the Q-values in the Q-table in a row. 

3.3. Relate ZCS and Q-learning with function 
approximation 

In this section, we show that the ZCS learning process 
can also be derived by applying the updating formula 
of the function approximation method in Q-learning, 
which can be accomplished by focusing on the general-
ization mechanisms. This approach allows us to prove 
the equivalence of the learning processes between ZCS 
and Q-learning with function approximation. 

3.3.1. NOTATION 

Some notations are introduced here for the subsequent 
analysis. The sets Pt, Mt and At denote classifier pop-
ulation, match set, and action set at time step t, re-
spectively, while regarding classifiers as their elements. 
Let cl; be a classifier, and then each of the three parts 
composing the classifier are labeled cl;.condition E C, 
cl;.action EA, and cl;.strength E冗， wherethe set C 
denotes a set of all possible condition expressions al-
lowed under the classifier representation. To keep our 
discussion general, we define C as a set of all possible 
combination of states S and regard a condition c E C 
as a set of states that can be matched with the con-
dition. Function cl;.match(s, a) for each classifier cl2 
is defined for s E S, a E A, which returns 1 when 
s E cl;.condition and a= cl;.action, otherwise returns 
01. 

①
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Since the state-action pair (sゎ叫 maytake any combi-
nation within the set S x A, we can say that the Q-table 
Qt(St, aリisrepresented by the set of classifiers existing 
in the classifier population P, ぃwitheach classifier cl 
having the strength value cl.strengh and featured with 
cl .condition. This discussion follows from the above 
assumption and makes it seem natural that the set 

of classifiers in the classifier population approximates 
the Q-table by means of the function approximation 
method for Q-learning. 

To prove this understanding, we should apply the 
updating Formula 6 of the function approximation 

method by using the Q-value function defined as For-
mula 11 and compare the result with the original 
ZCS update process. Let 0t be a parameter vector 
composed of the set of strength values cli.strength 
for all classifiers in classifier population Pt = 
{ch, cl2, …, cln}, where n denotes the total number of 
classifiers in Pt. Then let叫 a,be a feature vector 

defined as (ch. match(St, at), …, cln.match(sゎ位））T_ 

These two definitions transform Formula 11 into the 
form of a linear function approximation like Formula 

8. By calculating▽叫(st,at), we obtain 

▽ 心(sぃ叫

（⑰ (sぃ叫 闊 (St,at) T 

颯 (1)'…'訊(n)) (12) 

叫a,• (13) 

Using this result, we finally obtain the updating for-

mula 

虹=0t + a [ (い1+1maxQ叫 1,a)) 
a 

-Qt(Sぃ叫］叫a,・ (14) 

This formula corresponds to the process of updating 

the strength of the classifiers whose conditions match 
the state St and have the same action a maximizing 
Qt(st+1, a), while the other classifiers'strengths are 

not modified. Here, if we set the value of a to f3/IAI, 
where IAI denotes the number of classifiers to be up-
dated, this update process would be equivalent to that 

of ZCS. 

3.3.3. CONDITIONS FOR THE EQUIVALENCE 

Next, we clarify conditions for equivalence between 
the learning processes of Q-learning with function ap-
proximation and ZCS. As Q-learning does not feature 
any dynamic mechanism to change the structure of 

the function approximator, any operation to change 
the composition of the classifier population [P] will 

break the equivalence of learning processes between 

Q-learning and ZCS. This limitation is quite strong 
for ZCS, since it cuts off the most distinctive feature 
of dynamic classifier creation and deletion. However, 
it still assures the equivalence in the time periods be-

tween the invocations of such operations. 

4. Applying residual gradient 

algorithms to ZCS 

From the analytical result in the previous section, the 
convergence of the learning process in ZCS can be dis-
cussed under the condition described in Section 3.3.3. 
In general, simple Q-learning using a Q-table receives 
the benefit of the convergence theorem proving con-
vergence to a probability of 1 under the condition 
that learning rate a decreases appropriately (Watkins, 
1989). However, in the case of Q-learning with the 
function approximation method, the applicability of 
the convergence theorem depends on the class of the 
approximation function. For some special cases in the 
class of linear function approximation functions, such 
as state aggregation, the convergence theorem has al-
ready been proved (Gordon, 1995; Singh et al., 1995; 
Tsitsiklis & Roy, 1996). However, in the case of linear 
function approximation, Baird presented some coun-
terexamples showing that the value function diverged 
as the learning proceeded. 

The learning process in ZCS can be viewed as one of 
Q-learning with the function approximation method, 
which uses Formula 11 as its approximation function 
and is included in a class of linear function approxi-
mations. Accordingly, the stability of ZCS cannot be 
proved, even under the rule discovery process being 
suppressed. 

This limitation can be avoided by applying residual 
gradient algorithms (Baird, 1999), an alternative al-
gorithm of updating values proposed by Baird, which 
will introduce proof of convergence to several classes of 
function approximations for many reinforcement learn-
ing methods, including Q-learning. 

4.1. Residual gradient algorithms for 
Q-learning 

Residual gradient algorithms are modifications of gra-

dient descent algorithms for updating parameters used 
with function approximation methods for reinforce-
ment learning. They were originally proposed by Baird 

(Baird, 1995) to avoid the limit of gradient descent 
method by proposing several counter examples show-
ing the unstability in function approximation meth-

ods applied to off-policy TD control methods such as 
Q-learning with linear and non-linear approximation 
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classes. 

By using the target value Vt defined as Formula 4, the 
residual gradient algorithm for Q-learning is described 
as an update formula, 

砂=a [vt -Qt(st, aリ][¢s,a, -r m:;xい](15) 

＝△ ふ＋△2釘 (16)

which is divided into two delta values△ 10t and△ 20t 
defined as, 

△直 =a [vt -Qt(sぃat)]似 a, (17) 

△ 20t = -a1 [vt -Qt(st, at)] m:;x叫a・(18)

The difference between this update formula and the 
original update described in Formula 6 is the addi-
tional delta value譴 t,which modifies the values of 
parameters concerned with maxa Qt(s', a). 

4.2. ZCS with residual gradient algorithms 

To apply residual gradient algorithm for Q-learning, 
the additional delta value for modifying the parame-
ters concerned with maxa Qt(s', a) must be introduced 
to ZCS. We modify the update process of ZCS by 
adding this process to result in an algorithmic descrip-
tion, as shown in Figure 2. It is mostly the same as 
the original ZCS; however, it differs where the set of 
classifiers [ A'] representing the maximum aggregated 
value for an action a'are updated from procedure 23 
to 25 in Fig. 2. 

By suppressing the rule discovery process of proce-
dures 5, 15 and 26, which is same with the condi-
tion we mentioned for equivalence between ZCS and 
Q-learning in Section 3.3.3, this algorithm will become 
equivalent with with Q-learning with residual gradient 
algorithm. 

Residual gradient algorithm for Q-learning requires 
the learning rate at time step t, which is denoted as 

O:t to satisfy the formula, 

00 

区Dot=oo and 立;< oo, (19) 
t=O t=O 

to assure convergence with probability 1. In the case of 

ZCS, the learning rate a corresponds to {3 / Al. As the 
number of classifiers in the action set is greater or equal 
than 1, and less or equal than IPI, the total number of 
classifiers in the population, the learning rate is in the 

range of 1/IPI ::; {3/ Al ::; {3. Accordingly, when {3 is 
set appropriately, for example店=1/t, the learning 

rate Ost = f3t/lAI satisfies the requirement of Formula 
19 for convergence with probability 1. 

1 Initialize [P] 

2 Repeat (for each episode): 

3 s← initial state of episode 

4 [M]← { i E [P] I s E ck condition} 

5 Invoke COVERING 
until [M] satisfies covering condition 

6 For all a E A(s): 

7 [M]la← {i E [M] lcli,action = a} 

8 payoff a← 区iE[M]la cli,strength 

9 Repeat (for each step of episode): 

10 Choose action a E A(s) using policy 

derived from payoff a (e.g., E-greedy) 

11 [A]← {i E [M] cli.action = a} 

12 Take action a, observer reward r, 
and next state s1 

13 6← r -payoff a 

14 [M]← {i E [P]] s'E cli.condition} 

15 Invoke COVERING 

until [M] satisfies covering condition 

16 For all a E A(sり：

17 [M]la← {i E [M] di.action= a} 

18 payoff a← I:iE[M] la cl;.strength 

19 a'← arg maxa payoff a 

20 § ← 8 + ,payoff a' 

21 For all i in [A] 

22 cli. strength← cl i. strength十蹄/IAI

23 [A']← {i E [M] I cl;.action = a'} 

24 For all i in [A'] 

25 ck strength← di.strength -(3わ/IAI

26 Invoke GENETIC ALGORITHM 

in probability p/2 

27 until s1 is terminal 

Figure 2. Residual gradient algorithm for Q-learning ap-
plied to ZCS. The process of updating classifier strength is 
concerned with the target value is added. 

6
 



- ----

5. Conclusion 

In this paper, as a first step towards developing a the-
oretical basis of LCSs, we aimed at introducing a proof 
of convergence for LCSs. Based on our previous work, 

which showed an equivalence of learning processes be-
tween a zeroth-level classifier system (ZCS) and Q-
learning with linear function approximation, we ap-
plied a residual四adientalgorithm for Q-learning to 

ZCS. As for the result, we obtained an LCS with gen-
eralization ability, which guarantees convergence due 
to the proof of the residual gradient algorithm under 
the condition of its rule discovery process being sup-
pressed. In future works, the rule discovery process 

should also be analyzed, eventually aiming at an LCS 
with a complete convergence theorem. 
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