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Abstract. To evaluate a real-valued XCS classifier system, we present 
a validation of Wilson's XCSR from two points of view. These are: (1) 
sensitivity of real-valued XCS specific parameters on performance and 
(2) the design of classifier representation with classifier operators such 
as mutation and covering. We also propose model with another classifier 
representation (LU-Model) to compare it with a model with the origi-
nal XCSR classifier representation (CS-Model.) We did comprehensive 
experiments by applying a 6-dimensional real-valued multiplexor prob-
lem to both models. This revealed the following: (1) there are critical 
threshold on covering operation parameter (ra), which must be consid-
ered in setting parameters to avoid serious decreases in performance; and 
(2) the LU-Model has an advantage in smaller classifier population size 
within the same performance level over the CS-Model, which reveals the 
superiority of alternative classifier representation for real-valued XCS. 

1 Introduction 

XCS [5] is a learning classifier system which has the potential to evolve accu-

rate, maximally general classifiers to cover the state space for each action [3, 6]. 
XCS takes bit string inputs, the same as traditional learning classifier systems 

[2] (LCS). To facilitate XCS and broaden the range of applicable problem rep-

resentation while keeping its generalization abilities, XCSR [7] was proposed by 

Wilson to deal with real-valued problems, and he found that XCSR could learn 

appropriately on the real-valued 6-multiplexor problem. 

Although Wilson analyzed the potential of XCSR, its validity was insufficient 

in two respects. Firstly, the parameter settings used for the experiment seemed 

to be set ad hoc, especially for the two newly introduced parameters mo and 



r0 that were used in the real-valued classifier operations of mutation and cov-
ering. Secondly, the reason he adopted proposed classifier representation is not 
discussed, despite the possibility of other classifier representations. 

Therefore, what we focus in this paper are (1) an analysis of the settings 
of real-valued XCS specific parameters to evaluate the model; and (2) an anal-
ysis of classifier representation with classifier operators such as covering and 
mutation. To achieve the latter, we propose an opponent model that presents 
another real-valued classifier representation that was inspired by Wilson's other 

model XCSI to deal with integer-valued input [8]. Although the requirement of 
extending XCS to integer-valued input is basically similar to that of extending 
XCS to real-valued input, XCSI adopts a different design concept over classifier 
representation. This concept can easily be applied to design another real-valued 
classifier representation, which we propose and adopt in the opponent model. 
For convenience, we have called this opponent the LU-Model and the original 
model the CS-Model, names which originate from the attributes used in each 
classifier condition that will be described later. 

The rest of the paper is organized as follows. Section 2 describes both the 
CS and LU-Models by revealing the part extended from the XCS to achieve 
real-valued input. Section 3 describes the real-valued 6-multiplexor problem. 
Section 4 presents some simulation experiments that were done by applying 
both the CS and LU-Models to the real-valued 6-multiplexor problem. Section 
5 has discussions based on the experimental results to validate real-valued XCS. 
Section 6 is the conclusion. 

2 Extensions to XCS for Real-valued Input 

Both CS and LU-Models are based on XCS but differ in their classifier rep-
resentation. This section presents the CS-Model, which adopts XCSR classifier 
representation and the LU-Model, where classifier representation is inspired by 
XCSI. It is done by describing their classifier representations in detail, which are 
the extended parts from XCS4. 

2.1 XCSR-based Classifier Representation (CS-Model) 

This section explains the CS-Model regarding its difference from XCS, which is 
equivalent to describing XCSR classifier representation with classifier operators 

such as covering, mutation, and crossover. To catch up with recent developments 
in XCS called the classifier subsumption mechanism, the "is-more-general" op-
erator has been additionally defined which checks whether the classifier can 
subsume the other target classifier. 

4 The implementation of the XCS part of the CS and LU-Models is based on Butz 
and Wilson [l]. 
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!lepresentation of classifier conditions: The representation of the classifier 
m the CS-Model differs from the original XCSR in the condition part, which 

replaces the bit string with a set of attributes named interval predicates by 
Wilson. The interval predicate is composed of two real values (c;, s;) where suffix 
i denotes the position in the condition part. Each interval predicate represents 

an interval [c; -s;, c; + s;] on the real number line, and if the corresponding 
element of the input (which is a real-valued vector) is included in the interval, 
matching succeeds. If, and only if, all elements match the corresponding interval 
predicates in the classifier condition, can matching be considered a success. The 
domain of attributes c; and s; are both set between O and 1, which inherit the 
setting of XCSR in the CS-Model, but is not a necessary requirement for this 
representation. 

Covering operator: The covering operator creates a new classifier that matches 
a specified input. When a real-valued vector is denoted as (x1, …, Xi, ... ,X叫，
where n is the dimension of input, each interval predicate of covered classifier 

condition (c1, s1)…(c;, s;)…(cれ,sn) is set as follows. 

{ :: : ~:nd(ro)-
(1) 

Here, ro is a parameter used to decide the distribution range of the spread of 
the covering interval, where rand(x) is a function that returns a random value 

distributed in the interval O S:: 四 nd(x)S:: x. The value of r0 is set below 1 to 
maintain the Si within its domain of [O, 1] inherited from XCSR, but is not a 
necessary requirement for this operation. 

Mutation operator: The mutation operator mutates the classifier condition 
by adding delta values△ ci and△ Si to interval predicate variables Ci and Si at 
the constant possibility of mutation parameterμat each interval predicate. Each 
delta value for attributes Ci and Si are calculated as follows. 

｛△ Ci=土rand(mo)
△ Si=土rand(mo).

(2) 

Here, m。isa parameter used to decide the distribution range of both△ Ci and 

△ si, where士rand(叫 isa function that returns a random value distributed in 
interval O :S: rand(x) :S: x with the sign chosen uniform randomly. If the mutated 
value exceeds the domain of [O, 1], the value is adjusted to O or 1. The setting 
for this domain is inherited from XCSR, but is not a necessary requirement for 
this operation. 

Crossover operator: The crossover operator works the same as the crossover 

in XCS, except that the crossover point is not set between the condition bits but 
between the interval predicates. 
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Is-more-general operator: The is-more-general operator judges whether a 
classifier condition is rnore general than another classifier condition. The ba-
sic idea of generality is the inclusion of the set of classifier condition's possible 
matching inputs. If the possible matching inputs of classifier condition X corn-

pletely include and are larger than the possible matching inputs of classifier 
condition Y, X is rnore general than Y. This idea can be realized for real-
valued classifier representation by comparing the inclusion of the interval on 
the real number line for each corresponding interval predicate. For two classi-

fier conditions X: (c1, s1) ... (c;, s;) ... (cn, sn) and Y: (c~, s~) … (cし外）… (c~, 外）， if
(c; -s;) :<:; (< .... sD and (c: + sD :<:; (c; + s;) for all i except where all attributes 
are equal, X is rnore general than Y. 

2.2 XCSI-inspired Classifier Representation (LU-Model) 

This subsection proposes the LU-Model with another real-valued classifier rep-
resentation inspired by XCSI, which is an XCS extended model to deal with 
integer-valued inputs. XCSI adopts a different design concept over classifier rep-
resentation, as it specifies the interval by using the value for the lower and upper 
bounds. This concept can easily be applied to designing real-valued classifier rep-
resentation that differs from the CS-Model. The details are described below. 

~e_presentation of classifier condition: The representation of classifier con-
d1t1on in the LU-Model seems to be like that in the CS-Model as its interval 
predicate is composed of two real values (lぃい）， wheresuffix i denotes the posi-
tion in the condition part. However, the denoting interval on the real number line 
differs from the CS-Model. The ith interval predicate simply denotes an interval 

[lぃ叫]• If the corresponding element of input is included in the interval, match-
ing between the element and the interval predicate succeeds. If, and only if, all 
elements match the corresponding interval predicates in the classifier condition, 
can matching be considered a success. The domain of attributes is restricted to 
〇::;li ::; Ui ::; 1. This setting for domain inherits the concept of XCSI, but is not 
a necessary requirement for this representation. 

Covering operator: The covering operator creates a new classifier that matches 
a specified input. When a real-valued vector is denoted as (xい…，Xゎ．．．，％），
where rz、isthe dimension of the input, each interval predicate of the covered 

classifier condition (h, u 1)…(li, ui)…(lれ,un) is set as follows. 

｛し＝叫一 mnd(ro)
附＝叫+rand(r-0). 

(3) 

Here, r0 is a parameter used to decide the distribution range of the distance 
from input value Xi to li and ui, where rand(x) is a function that returns a 
random value distributed in the interval O:::; rand(x) s; x. If the covering value 
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exceeds the domain of O :S: li :S: ui :S: 1, li and Ui are set to be kept within their 
domains as the follows: if li is smaller than 0, li is set to O; and if Ui exceeds 1, 
叩 isset to 1. 

Mutation operator: The mutation operator mutates the classifier condition 

by adding delta values△ li and△糾 toli and ui at the constant possibility of 
mutation parameterμat each interval predicate. Each delta value for attributes 
li and叩 iscalculated as follows. 

｛△ li =土rand(mo)
△附＝士rand(mo)-

(4) 

Here, mo is a parameter used to decide the distribution range of both△ l, 
and△叩， where士rand(x)is a function that returns a random value distributed 
in the interval O~rand(x)~x with the sign chosen uniform randomly. If the 
mutated value exceeds the domain of O~li~Ui~1, しisset to O or ui, and ui 
is set to li or 1 depending on the following: (1) if the mutated li is smaller than 
0, しisset to O; (2) if the mutated li exceeds ui, しisset to ui; (3) if the mutated 
ui exceeds 1, ui is set to 1; and (4) if the mutated Ui is smaller than Zi, ui is set 

to li. 

Crossover operator: The crossover operator works the same as the crossover in 
the CS-Model, except for the difference between the format of interval predicates, 
which is of no concern in this operation. 

Is-more-general operator: The is-more-general operator judges whether a 
classifier condition is more general than another classifier condition. This is 
achieved for LU-Model classifier representation as follows. For two classifier con-

ditions X: (li,u1) ... (li,ui)…(lか un)and Y: (l~,u~) ... (lし u;) … (l~,u~), if li~z; 
and叫こ附 forall i except for where all attributes are equal, X is more general 
than Y. 

2.3 Real-valued XCS Specific Parameters 

While extending XCS to deal with real-valued inputs, new parameters mo and 

ro are introduced to XCS for both CS and LU-Models. Although the processes 
for how mo and ro are used in each model are different, roughly mo controls 
the upper limit for the random distribution of delta values used in the mutation 
operator, while ro is concerned with the distribution of the spread of covering 
condition intervals. Originally, the corresponding parameters in XCSR were la-

beled m and so. However, to avoid confusion caused by differences in discussing 
both models, we unified the names of these corresponding parameters to mo and 
ro. The correspondence in the names of these parameters are in Table 2.3, where 

XCSR's parameters have been renamed mo and ro in the CS-Model to match 
the others. 
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Table 1. Correspondence of names of real-valued XCS specific parameters 

I XCSR I XCSI I CS-Model I LU-Model I 

I: lr;:01~。 I~0°I

3 Real-Valued 6-Multiplexor Problem 

The real-valued 6-multiplexor problem is a sample problem presented by Wilson 
to validate XCSR, which is a real-valued version of the Boolean 6-multiplexor 
problem. We also employed this problem for two reasons. The first was that 
the simplicity of the problem made analysis of the experimental results easier 

while low computational costs allowed comprehensive experiments to analyze 
parameter dependence in the model that required a huge number of simulations. 

The second reason was that it would enable us to refer to Wilson's preceding 
experiment on XCSR, and further discuss the validity of XCSR, and the CS and 
LU-Models under the same conditions. 

The Boolean 6-multiplexor function took a six-bit string as input and output 
a truth value of 1 or 0. The function was designed as output that would have a 
value of (n + 2)th bits where n was calculated by interpreting the two leftmost 
bits as a binary formatted number. For example, the first two bits of the input 
string "011010" were "01", which denotes the decimal 1 when interpreted as a 
binary formatted number, so the output value is the third bit of the string, in 
this case, 1. Alternatively, in disjunctive normal form, the Boolean 6-multiplexor 
function F5 is given as follows where b; stands for the i-th bit of the strings, the 
over-line negates the bit, and "+" takes a logical sum. 

且=bob1妬十 b。b1妬十 b。h仇十 bob1b5. (5) 

To modify the Boolean 6-multiplexor problem to the real-valued 6-multiplexor 

problem, a parameter vector 0 = (0。,…，05) is introduced. For each element in 
the real-valued input vector x = (xo, ... , x5), x; is converted to O if x; < 0五
otherwise it is 1. In each learning step of simulation, a randomly chosen value 
from the domain [0,1] is set to each element of vector x and given for input. If 
the returned output for x is correct, which has the same value as Fi訊x),reward 
Timm is given, where this is a parameter denoting "immediate reward." 

4 Experiment 

Simulation experiments were done to validate real-valued XCS by applying the 
CS and LU-Models to the real-valued 6-multiplexor problem. Common condi-

tions for all experiments can be described as follows5: N(max population size)= 

5 Refer to Wilson [7] for meaning of these parameters. 
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800, f3(learning rate)= 0.2, 1:0(error threshold to calculate classifier fitness)= 0.2, 
v(power parameter to calculate classifier fitness)= 5, 0aA(threshold to invoke 
GA)= 12, x(possibility invoking crossover)= 0.8, μ(possibility invoking muta-
tion) = 0.04. The threshold parameter vector仇(i= 1, …，6) for the real-valued 
6-multiplexor problem was set as (0.5, 0.5, 0.5, 0.5, 0.5, 0.5). In all simulations, the 
initial classifier population was set to empty. These settings to evaluate XCSR 

were the same as those in Wilson experiments. 

The simulations for all experiments were evaluated by the average reward 
and the size of the classifier population. The classifier system was expected to 
acquire a population as small as possible to attain high average reward. For both 
values, the moving average of 50 previous iterations were calculated to check the 
temporal change. Here, iteration denotes the number of explored problems in 
the real-valued 6-multiplexor. Ten simulations were done on each case to obtain 

average variations. 

4.1 Preliminary Experiment 1: Parameter dependency on 
CS-Model 

To examine the dependence of real-valued classifier representation specific pa-
rameters mo and ro, we did a preliminary experiment by applying the CS-Model 
to the real-valued 6-multiplexor problem using four sample combinations of 

(m0,r0) pairs: (a) (0.1,1.0), (b) (0.1,0.5), (c) (0.1,0.25) and (d) (0.5, 0.5). Here, 
the setting for (a) represents the same conditions as Wilson's experiment. The 
settings for (b) and (c) were selected to check the effect of change on r0 param-
eter compared with (a). The setting for (d) was selected to check the effect of 

the mo parameter. 
The results we obtained from the experiments are Fig. 1, which shows the 

relation between average reward on the vertical axis and iterations on the hori-
zontal axis. Figure 2 shows the relation between population size on the vertical 
axis and iterations on the horizontal axis. Focusing on the r0 parameter by 
comparing (a), (b) and (c), there is a significant difference between (c) and the 
others. For (c), there is no improvement in average reward as Fig. 1 shows, and 
the population size remains at a maximum limit of 800 throughout the simula-
tion period in Fig. 2. This implies the existence of a threshold on parameter r0, 
which is roughly between the 0.5 used in (b) and the 0.25 used in (c) causing a 
serious decrease in performance . Focusing on the m0 parameter by comparing 
(a) and (d), there are no noticeable differences in average reward as shown in 
Fig. 1. In terms of population size, (d) converges smaller than (a) as shown in 

Fig. 2, where the difference is far smaller than that of the previous effect of r0 
between (a) and (c). 

4.2 Preliminary Experiment 2: CS-Model vs. LU-Model 

To evaluate the differences between the CS and LU-Models, we did another pre: ― 

liminary experiment by applying the LU-Model to the real-valued 6-multiplexor 
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problem. We used 2 settings of (a) (0.1, 1.0) and (c) (0.1, 0.25) for parame-
ters (mo, ro). (a) had the same setting as Wilson's original experiment, and (c) 
yielded a distinctive result in the previous experiment on the CS-Model. 

The experimental results for the LU-Model compared with the results of the 
previous experiment on the CS-Model are in Fig. 3, which reveals the relation 
between average reward on the vertical axis and iterations on the horizontal 

axis. Figure 4 has the relation between population size on the vertical axis and 
iterations on the horizontal axis. By comparing the CS and LU-Models, for (a), 
there is a difference where the LU-Model records a higher average reward than 
the CS-Model throughout the period of simulation as Fig. 3 shows, while the 
population size converges to less than that in the CS-Model in Fig. 4. In the 
(c) of the LU-Model, a similar phenomenon with that of the CS-Model can be 
observed where there are no improvements in average reward in Fig. 3. and the 
population size remains at a maximum limit of 800 throughout the simulation 
period in Fig. 4. From a comparison of both cases, there seems to be a similar 
performance dependence on the r0 setting between the CS and LU-Models, which 
indicates that learning proceeds during a large r0 value but fails with a small r0 
value. 
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4.3 C omprehens1ve Experiment 

The results of the two preliminary experiments described in Section 4.1 and 

Section 4.2 indicate that there seems to be a significant dependence of both 
average reward and population size on the combination of parameters mo and 
ro. To reveal the big picture on the landscape for the m0-r0 plane, we did a 
comprehensive experiment on both the CS and LU-Models. In the experiment, 
400 combinations of parameters mo and ro were examined, which covered the 
m0-r0 plane with a series of grid points defined in the following matrix. The grid 
size was set to 0.05, so that the grid points included four sample combinations 

(a) (0.1, 1.0), (b) (0.1, 0.5), (c) (0.1, 0.25) and (d) (0.5, 0.5), which were used in 
the preliminary experiments. 
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The results are as follows. Figures 5, 6, 7 and 8 show the average reward for 
the CS-Model, its population size, and the average reward for the LU-Model, 

and its population size. In all figures, the x-axis denotes m0, and the y-axis 
denotes r-0. Converged values at iterations of 10000 were used to describe the 
surface for the z-axis. Each grid points'height from the m0-r-0 plane denotes the 
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corresponding values. The viewpoint of Figs. 6 and 8 differs from that of Figs. 5 
and 7 presenting the whole surface without hidden regions. The labels (a) to (d) 
each denote the four sample conditions used in the preliminary experiments. 

The simulations on the CS-Model revealed the dependence of performance 
on the mo乎 0plane, which can clearly be seen in Figs. 7 and 8. There is an r0 
threshold where the r0 value is between 0.2 to 0.5, which is plotted as a sharp 
drop on each surface. In the middle of this drop and, in the area where ro is larger, 
the average reward is quite high being over 900 and the classifier population size 

converge towards 300. In the other area where ro is smaller, the average reward 
remains low at 500 and the population size nearly remains at the maximum limit 
of 800. From the simulations on the LU-Model described in Figs. 5 and 6, we 
can see that the dependence of performance on the mo-ro plane is quite similar 
to that of the CS-Model, which can be explained by the similarity in the shapes 
of their landscapes. However, comparing their corresponding values, population 
size of the LU-Model at less than 200 is below the CS-Model's of above 300 when 

ro is large. 
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Fig. 5. Relation between average performance and time steps in CS-Model. 
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5 o・ lSCUSSIOll 

5.1 Validating Parameter Sensitivity of XCSR (CS-Model): 
Analysis of Cover Spread Parameter(r0) Sensitivity 

To validate our evaluation of XCSR, we will discuss the sensitivity of model spe-
cific parameters for the CS-Model, especially the serious performance decrease 
caused by the small ro value. We first found this in the first preliminary experi-
ment and verified it through the comprehensive experiment described in Section 

4.3. It was not a special case on a specific (mo, ro) setting, but a general phe-
nomenon that occurred when ro was smaller than a specific threshold that was 
roughly between 0.2 to 0.5. 

As ro is a parameter used to decide the distribution range of intervals in 
covered classifier condition, an assumption concerning the covering process can 
be made, where the scenario can be described as follows. Consider the entire 
process of simulation where ro was set to be small. In the early stages of simu-
lation, the covering would frequently occur as classifier population was initially 

set as empty. The population size would soon reach the maximum limit, because 
the classifiers created by covering could only cover small areas of the input state 
space as the size of their condition intervals were limited within r0. Soon, input 

that was not covered by the present classifier population would arrive, then a 
new classifiers would be created to cover it while one of the existing classifiers 
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would be deleted. This cycle would be repeated until the state space was cov-
ered through simulation. During this period, classifiers would be replaced one 
after another before they had become experienced, and learning could not be 

attained. 

This assumption explains results such as (c), where no improvements in the 
average reward can be seen (Fig. 1) and the population size remains at a maxi-
mum limit of 800 throughout the simulation period (Fig. 2.) We can check this 

assumption by calculating the rate the area is covered by the N classifiers over 
the state space, where N is the maximum limit for population size. In the real-
valued 6-multiplexor problem, the area of the state space is 1.06. Here, if we 
assume that all the intervals in N classifier conditions takes a maximum value 
of r0, the total area of the covered space would be N x r0 6 and the coverage rate 
would be (N x r06)/1.06 where r0 must at least be larger to make (N xパ）/1.06 
larger than 1.0 to cover the entire state space. In practice, there are overlap-
ping areas between each classifier condition, which require an extra ro value to 
cover the state space. This can be calculated by simple simulation that examines 
the rate of coverage of the state space by N covered classifiers. The process of 
simulation is described as follows. 

1. Generate a 6-dimensional input vector by setting a random number within 
a range of [0,1] for each element and check if the randomly generated input 
vector is covered by any existing classifiers. Repeat until the uncovered input 
vector is found. 

2. Create a classifier by covering operation for the input vector generated in 1 
and insert it into the classifier population. 

3. Repeat 1 and 2 until the size of the classifier population reaches N. 

4. Calculate the rate of coverage of the state space by generating 1000 sample 
random inputs. The coverage rate is estimated by dividing the number of 
covered inputs within the number of total sample inputs. 

The results are in Fig. 9, indicating the relation between r-0 and the simulated 
value for state space coverage rate compared with the value of (N x r-06)/l.Oり
The horizontal axis denotes ro and the vertical axis denotes the coverage rate 
of state space. When r-0 gets smaller than the threshold roughly between 0.2 
and 0.5, the simulated coverage rate quickly decreases to converge to 0. As this 

curve resembles the curve of the relation between r。andaverage reward, the 
assumption seems to be valid. 

Therefore, the evaluation done by Wilson where XCSR could learn appro-
priately on the real-valued 6-multiplexor problem should be limited within con-

ditions where the parameter ro is set sufficiently large for the covered classifiers 
conditions to cover the entire input state space. These conditions should be 
maintained to avoid serious decreases in performance. 
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5.2 Validating Classifier Representation for real-valued XCS: 
Superiority of LU-Model to CS-Model on Classifier Population 
Size 

Although the CS and LU-Models have a similar tendency towards parameter 
dependence, by focusing on an absolute value of performance, the LU-model 
performs well as was found during the second preliminary experiment in Section 
4.2, and verified by the comprehensive experiment in Section 4.3 and this is what 
we will discuss here. The superiority of the LU-Model over the CS-Model is that 
it requires a smaller classifier population size, while achieving the same average 

reward where ro is large enough to learn, where the threshold is that discussed 
in the first discussion. This can be explained by analyzing how the difference in 
the classifier condition expression affects the difficulty of classifier subsumption. 

The classifier subsumption is a process that suppresses the classifier population 
size by letting a more general classifier to subsume the other classifier, where 
the definition of generality is described in Section 2.1 for the CS-Model and in 
Section 2.2 for the LU-Model. 

Intervals expressed by interval predicates (ci, si) are allowed to take ranges 
which exceed [0,1] in the CS-Model, because the bounds of both ci and si are 

between O and 1. For example, the interval predicate (ci, si) = (0.1, 0.3) denotes 
[-0.2,0.4] as indicated by (b) in Fig. 10, where Ci and Si values are both within 
[0,1] but the denoting interval exceeds [0,1]. Here, the Fig. 10 has three intervals 
(a) to (c) on the real number line, where the horizontal axis denotes the real 
number line and the vertical axis is used to distinguish the three intervals. This 

excess of matching, covering and mutation operations causes no problems, as 
only the sub part within [0,1] is used for the classifier operations, which is [0,0.4] 
in this case, described as interval (c) in Fig. 10. However, there is a problem 

15 



with subsumption. For example, although interval (a) in Fig. 10 denoting [0,0.6] 
is more general than interval (b) in the effective range, which is equal to (c), 
interval (a) cannot subsume interval (b). This could occur, in general, to an 

interval that exceeds the range of [0,1]. 

However, the LU-Model does not suffer from this problem, as the interval 
expressed by its interval predicate (Zi, 叫 islimited within the effective range of 
〇::;liさ叫::;1. For this reason, we found that the LU-Model could success-
fully subsume not general classifiers which could be alternated by more general 
classifiers, and this resulted in a smaller classifier population size than in the CS-
Model. This presents the possibility of an alternative classifier representation for 
real-valued XCS, which was adopted and validated in the LU-Model. 
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Fig. 10. Interval Graph to Describe Subsumption Difficulty in CS-Model 

6 Conclusion 

In this paper, we discussed a validation of XCSR in Wilson's experiment in two 
respects: (1) we analyzed the settings of real-valued XCS specific parameters to 
evaluate the model; and (2) we analyzed classifier representation with classifier 
operators such as covering and mutation. To achieve the latter, we proposed an 
opponent -the LU-Model and compared it with the original -the CS-Model. 

We conducted comprehensive experiments by applying the 6-dimensional real-
valued multiplexor problem to both models, which revealed the following: (1) 
there is a critical threshold on covering operation parameter (ro), which must be 
considered in setting parameters to avoid a serious decrease in performance; and 
(2) the LU-Model has an advantage with smaller classifier population size within 
the same rate of performance as the CS-Model, which demonstrated alternative 
classifier representation for real-valued XCS. 

In future work, we intend to do an intensive analysis on GA operations to 
validate the discovery of a general and accurate real-valued classifier set. Other 

classes of problems should then be applied to make the discussion general, as all 
the results are based on the real-valued 6-multiplexor problem in this paper. 
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