
ATRテクニカルレポート表紙

［非公開］

TR-M-0058 

Dressable Music: 

a Musical System Creating a Parallel World 

ロマインルーブ多田幸生 前川督雄

Romain Rouve Yukio Tada Tadao Maekawa 

西本一志 間瀬 健 二 中 津 良 平
Kazushi Nishimoto Kenji Mase Ryohei Nakatsu 

2000.12.27 

ATR知能映像通信研究所





Dressable Music : a Musical System Creating a 

Parallel World 

Romain Rouve (rouve@email. enst.Jr) 
(ATR I ENST) 

Yukio Tada (ATR), Tadao Maekawa (ATR), 
Kazushi Nishimoto (ATR / Japan Advanced Institute 

of Science and Technology, Hokuriku), 
Kenji Mase (ATR), Ryohei Nakatsu (ATR) 

December 27, 2000 



---―----



Contents 

Contents 

1

2

 

Abstract 

Introduction to the Project 

2.1 An Active Entertainment 

2.2 A Wearable Instrmnent . . . . . 
2.3 Creating a Musical Communityware 

4

4

4

4

5

 

3
 

3.2 

Technical Description 

3.1 The Client Part ........... . .'........... 
3.1.1 hardware description ..... . ．．．．．．．．．．。

3.1.2 software description 
The Server Part . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.2.1 hardware description ...。...............
3.2.2 software description 

6

6

6

7

8

8

8

 
4
 

5

6

7

 

The MIDI Specification 

4.1 Introduction ... ・・・・・・・。・・・・・・・・・・。・・．．．．

4.2 Basic Midi Commands ..................... . 
4.3 The Midi File Format 

What is ITRON ? 

8
 

Description of the Work Done 

Structure of the Server Program 

7.1 Reading and Dumping Midi Data .....。・・．．．．．．．．

7.2 Writing and Dumping Midi Files 
7.3 The Sequencer 

Clothes Design 
8.1 Pants Type 
8.2 Vest Type . . . . . . ・・・・・。・・・。・・・

，
 

Conclusion 

A Functionnal Block Chart 

B
 

Description of the Functions 
B.1・ appmain.c ...................。.........
B.2 The Package ringbuffer 

B.3 The Package midiplay 

B.4 The Package midiread 

B.5 The Package mididump 

B.6 The Package smpplay 

10 

10 

11 

12 

13 

14 

15 
15 
16 
16 

17 
17 

18 

20 

21 

22 

22 

22 

22 

22 

23 

23 

2
 



List of Tables 

B.7 The Package play_hand 

B.8 The Package dbm .... 

B.9 The Package mmsapi .. 

C Mapping of the Sensors 

C.l Vest type . 

C.2 Pants type . . 

23 

24 
24 

25 

25 

26 

List of Figures 

1 Possible applications . . . . . . 6 

2 Client hardware block diagram 7 
3 Client software block diagram . 8 
4 Server hardware block diagram ．．．憧魯•

， 
5 Server software block diagram . • • • • 0 • 

， 
6 Server hardware block diagram for the Open House . 15 
7 The pants prototype . . . . . 18 
8 The vest prototype . . . . . . . . . . . . . . . . . . . . . . . . 19 ， Global Chart ................. 21 
10 Vest type : sensors number and function . 25 
11 Pants type : sensors number and function . 27 

List of Tables 

1 MIDI Messages ........。・・・・・・・・・・

2 S ensor mappmg for the vest . . . . . . . . . . . . 
3 The different instruments available on the vest . 
4 S ensor mappmg for the pants . . . . . . . . . . . 

12 
25 
26 
26 

3
 



2 Introduction to the Project 

1 Abstract 

Playin? a musical instrument is often restrictive. It requires a special stance 

or eqmpment. For example, it is hard to play piano, guitar or violin while 

walking. This project intends to propose a new type of musical instrument 

which is both simple and practical and can be used anywhere, anytime and 
with or by anybody. 

The instrument is designed as clothing and can thus be worn. It plays 
music using MIDI and wireless transmissions. This allows anyone to play 

music more easily and lightheartedly than usual. It can be played with people 
in the streets as well as'friends at home and even while walking with random 

people you meet. It opens a new kind of music depending on the feelings 
and the situation. 

In this report, I will describe more precisely the project and introduce 

technical concepts used, like the MIDI protocol or the ITRON specifications. 
Then I will precise my work in the conception of the instrument and conlude 
with future evolutions of the project. 

2 Introduction to the Project 

2.1 An Active Entertainment 

The first idea of the project is to create a musical instrument which is 
both is easy and practical to use. With it you can hear music but also 
play music whenever and wherever you like. You can play it in your home 
or while walking in the streets of a town you are visiting or even when 
you are going shopping. This is what is called "Active Entertainment" as 
opposed to an actual mobile music player such as MD or portable CD player 
which offer no opportunity to participate (and thus will qualify as "Passive 
Entertainment"). 

An important point is to make this instrument as mobile as possible 

but also to make its use very simple so that it would not be a pain to play 
for the person who is using it. However, this simplicity should not make 
the instrument totally obsolete and still interesting to use for confirmed 

musicians. In a way, it should be customizable according to the person using 

it. 
Finally, the idea of a wearable instrument seems to solve these problems. 

2.2 A Wearable Instrument 

The musical instrument has the shape of clothes like pants, jackets or gloves. 

On these clothes touch sensors are fixed. When you touch the sensors it 

makes a sound using MIDI datas and a tone generator. Since you can wear 

4
 



2 Introduction to the Project 

it, you can take it with you everywhere and you can play it while walking. 

The instrument is really mobile and portable. 

Moreover, the positions of the sensors on the clothes (especially on the 

jacket) can be customized so that a confirmed musician will find more pos-

sibilities than with the beginner version. For example, the simpliest version 

could have only the 8 basics notes of an octave and another version could 

have all the half pitches ... 
Besides, the customization is not limited to the positions of the sensors. 

Since the instrument uses a MIDI tone generator to produce sound, it is 
not limited to only one kind of instrument. The user has the possibility to 

change the sound of his instrument as he likes, among the sounds available in 
the tone generator. And nowadays MIDI tone generators have an impressive 

amount of choices. 
Thus, the instrument, like clothing do, tells little about its owner. This 

one can choose the type of music and the way of playing it, according to 
his feelings and impressions of the moment. However, these ideas will be 
nothing if it is not possible to share your music as easily as you play. As a 

consequence, the project assumes to connect the users to each other via a 
wireless network using once more MIDI transfer protocol for the music data 
in the hope of creating a "musical communityware". 

2.3 Creating a Musical Communityware 

The instrument will be able to communicate with servers on the streets that 
broadcast musical accompaniments. But it will also be able to communicate 
with other instruments and open "open session" with them to have a per-
formance. This ability to communicate offers countless possible applications 
(figure 1 on page 6 shows a set of such possible applications). 

For example, you can place several servers in town which will broadcast 

typical music of the town (you can imagine having new age music in Tokyo 
and more classical japanese music in Kyoto). Consequently, while visiting a 
town, you will see it but you can also hear it. Moreover, you can play music 
to the accompaniment of the town and enhance it with your impressions. 

Fin~lly you can exhange with the server your performance and the accom-
pamment so that the music in the town will evolve according to the people 

living in it and so that you can listen to this music even when you get back 

home. 
Another example is the possibility to have ad-hoc session at almost any-

time depending on the random people you meet. Imagine you are playing a 

jazz theme on the street and you meet somebody who is playing the same 

kind of music. Then you can open a session and have a jam with him in the 

street although you barely known him. And people could also join your ses-

sion if they like it and you can leave it if you see you'll be late for your date. 

By this way, new relationships could be created among people who haven't 

5
 



3 Technical Description 

tmosmitter 

~/'")) ； 
exchange their own pl1rases 

＼＼ tra郎 milter

Figure 1: Possible applications 

talked to each other and, at the end, a whole musical communityware could 
break through. 

From a practical point of view, considering the evolution of the telecom-
munication technologies, you can imagine plugging your instrument into a 
mobile phone that can perform all the operations it needs : customizing your 
instrument, generating the music, communicatig with other instruments ... 

3 Technical Description 

3.1 The Client Part 

3.1.1 hardware description 

Figure 2 on page 7 shows the hardware block diagram of a client. It decribes 
the hardware implementation of a user instrument. The different modules 

are: 

• A control unit (CPU and RAM). The CPU will have an ITRON op-
erating System. ITRON has been chosen for its realぷmeabilities (see 

section 5 page 13)。

• An A/D convertor which converts the signal of the sensors into MIDI 

commands (for example). 

6
 



3 Technical Description 

Hardware Block Diagram(Client) 

anlcnna 

ロロ
冒

1-leadPhones 

Figure 2: Client hardware block diagram 

• A memory storage utility. That will allow the user to store his data. 
It could be either a hard disk drive or flash memory. 

• A sound, generator. Basicly, a MIDI tone generator and an amplifier. 

• A communication module using for example the new Bluetooth proto-
col for transmitting the data to the server or the other users。

• A battery pack, of course. 

3.1.2 software description 

Figure 3 on page 8 shows the software block diagram of a client. It describes 
the different tasks an intrument should handle and how they interact. 

A program remaps the input it gets from the sensor and sends it to the 
sequencer. With the help of this remapper and because of the properties of 

MIDI datas (see section 4 page 10) you can customize the instrument as you 
want. 

Then a sequencer program mixs the sound it gets from the sensor with 

the one it gets either from the other users or a server (via the wireless 

comminucation controler), or from the phrase database of the user. The 

sequencer sends the melody to the tone generator controler. 

The phrase exhange controler handles all the communications and ex-

hanges with other users or servers. It also gets the phrases stored by the 

user via a database manager that controls the I/0 on the memory drive. 

7
 



3 Technical Description 

Software Module Diagram(Client) 

lnpul 10 sound rcmappcr 

wircress communication 
controler 

0S(iTron) 

Figure 3: Client software block diagram 

3.2 The Server Part 

3.2.1 hardware description 

Figure 4 on page 9 shows the hardware block diagram of a server. It decribes 

the hardware implementation of the server. Its structure is much simpler; it 
is only composed of: 

• A control unit (CPU and RAM). 

• A memory storage utility where the phrases will be stored. Unlike the 
memory of the client, this one must be much bigger. That is why a 

hard disk drive will be used. 

• A communication module, using for example the new Bluetooth pro-
tocol for transmitting the data to the users. 

3.2.2 software description 

Figure 5 on page 9 shows the software block diagram of a server. It describes 

the different tasks the intrument should handle and how they interact. Once 

again, it is much simpler. Since the server has only a phrase exhange func-

tion, the only modules it has are the phrase exhange manager the database 

manager, and the wireless communication controler. 

8
 



3 Technical Description 

Hardware Block Diagram(Server) 

皿tenna

―

―

 

Figure 4: Server hardware block diagram 

Software Module Diagram(Server) 

phrase exchange manager wireress comnmnication 
controlcr 

―

―

 

OS(iTron) 

Figure 5: Server software block diagram 

，
 



4 The MIDI Specification 

4 The MIDI specification : a short explanation 

This section introduces basic concepts about the MIDI protocol. For more 

detailed explanations please refer to the MIDI specification, published and 

maintained by the MIDI Manufacturers Association1 (MMA). 

4.1 Introduction 

MIDI stands for Musical Instrument Digital Interface and is a communi-
cations protocol that allows electronic musical instruments to interact with 

each other. 
Much in the same way that two computers communicate via modems, 

two synthesizers communicate via MIDI. The information exchanged be-
tween two MIDI devices is musical in nature. MIDI information tells a syn-

thesizer, in its most basic mode, when to start and stop playing a specific 
note. Other information shared includes the volume and modulation of the 
note, if any. MIDI information can also be more hardware specific. It can 
tell a synthesizer to change sounds, master volume, modulation devices, and 
even how to receive information. In more advanced uses, MIDI information 
can indicate the starting and stopping points of a song or the metric po-

sition within a song. More recent applications include using the interface 
between computers and synthesizers to edit and store sound information for 
the synthesizer on the computer. 

The basis for MIDI communication is the byte. Through a combination of 
bytes a vast amount of information can be transferred. Each MIDI command 
has a specific byte sequence. The first byte is the status byte, which tells the 
MIDI device what function to perform. Encoded in the status byte is the 
MIDI channel.MIDI operates on 16 different channels, numbered O through 
15. MIDI units will accept or ignore a status byte depending on what channel 
the machine is set to receive. Only the status byte has the MIDI channel 

number encoded. All other bytes are assumed to be on the channel indicated 

by the status byte until another status byte is received. The status byte is 
divided in two 4-bit nibbles. The channel is encoded in the low nibble (ie, 
the four less significant bits) and the function is encoded in the high nibble 

(ie, the four most significant bits). 
Depending on the status byte, a number of different byte patterns will 

follow. For example, the Note On status byte tells the MIDI device to begin 

sounding a note. Two additional bytes are required, a pitch byte, which 

tells the MIDI device which note to play, and a velocity byte, which tells the 

device how loud to play the note. Even though not all MIDI devices recognize 

the velocity byte, it is still required to complete the Note On transmission. 

The status byte has his Most Significant Bit set to 1. This bit is set 

to O for the additional bytes. Moreover, a status byte does not need to be 

1http://www.midi.org 

10 



4 The MIDI Specification 

repeated if the next MIDI command is the same. Consequently, if there are 

more additionnal bytes than needed, it w叫 dbe interpreted as several MIDI 

commands with the same status byte. So, a Note On byte can be followed 

by a pitch byte and a velocity byte and another pitch byte and velocity byte, 

etc ... 

4.2 Basic Midi Commands 

Some of the functions indicated in the status byte are Note On, Note Off, 
System command such as System Exclusive (SysEx), Program Change, Con-
trot Change ... 

We have already seen the Note On command (Ox9nりwhichmake the 
MIDI device play a note. The command to stop playing a note is not part 
of the Note On command; instead there is a separate Note Off command 
(Ox8n). This command also requires two additional bytes with the same 

functions as the Note On byte. You can also stop playing a note by sending 
a Note On Command with a velocity of 0. 

The Control Change byte (OxBn) allows you to change some settings of 
the synthesizer such as the volume or the balance of a channel. It is followed 
by two additionnal bytes: the controller type (volume, balance ...) and its 
value. 

Another important status byte is the Program Change byte (OxCn). This 
requires only one additional byte: the number corresponding to the program 
number on the synthesizer. The program number information is different 

for each synthesizer, and the standards have been set by the MIDI Manu-
facturers Association (MMA). Channel selection is extremely helpful when 
sending Program Change commands to a synthesizer. 

The System commands (OxFn) are very general commands and do not 
apply to any channel; instead the low nibble design tells which system com-

mand will be performed. For example the Reset comn1_and is OxFF and does 
not need any additional byte. 

The SysEx status byte (OxFO) is the most powerful and least under-
stood of all the status bytes because it can instigate a variety of functions. 

Briefly, the SysEx byte requires at least three additional bytes. The first 
is a manufacturer's ID number or timing byte, the second is a data for-
mat or function byte, and the third is generally an "end of transmission" 

(EOX=OxF7) byte ... 

Table 1 on page 12 gives a quick overview of the different MIDI messages. 

2Note that I'm using the C programming language convention of prefacing a value with 
Ox to indicate hexadecimal. n design the number of the channel. 

11 



4 The MIDI Specification 

MIDI Message I Status Byte / Data Byte Data Byte 

Note Off Ox8n Note Number Velocity 

Note On Ox9n Note Number Velocity 

Polyphonic 
OxAn Note Number Pressure 

Aftertouch 

Control Change OxBn Control Number Data Information 

Program Change OxCn Program Number 

Channel Aftertouch OxDn Note Number Pressure Value 

Pitch Wheel OxEn Valuel Value2 

System Commands OxFn ．．． ... 

Table 1: MIDI Messages 

4.3 The Midi File Format 

The Standard MIDI File (SMF) is a file format specifically designed to 
store the data that a sequencer records and plays (whether that sequencer 
is software or hardware based). 

This format stores the standard MIDI messages (ie, status bytes with 

appropriate data bytes) plus a time-stamp for each message (ie, a series 
of bytes that represent how many clock pulses to wait before "playing" 
the event). The format allows saving information about tempo, pulses per 
quarter note resolution, time and key signatures, and names of tracks and 
patterns. It can store multiple patterns and tracks 3 so that any application 
can preserve these structures when loading the file. 

The format was designed to be generic so that any sequencer could read 
or write such a file without losing the most important data, and flexible 
enough for a particular application to store its own proprietary, "extra" 
data in such a way that another application will not be confused when 

loading the file and can safely ignore this extra information that it does not 

need. The MIDI file format is a kind of musical version of an ASCII text 
file (except that the MIDI file contains binary data too), and the various 

sequencer programs are mere text editors all capable of reading that file. 
However, unlike ASCII, MIDI file format saves data in chunks, groups 

of bytes preceded by an ID and size, which can be parsed, loaded, skipped, 

etc. Therefore, it can be easily extended to include a program's proprietary 

information. For example, maybe a program wants to save a "flag byte" that 

indicates whether the user has turned on an audible metronome click. The 

program can put this flag byte into a MIDI file in such a way that another 

application can skip this byte without having to understand what that byte 

3 A track usually is analogous to one musical p叩， suchas a Trumpet part. A pattern 
would be analogous to all of the musical parts (ie, Trumpet, Drums, Piano, etc ...) for a 
song, or excerpt of a song. 

12 



5 What is ITRON? 

is for. In the future, the MIDI file format can also be extended to include 
new "official" chunks that all sequencer programs may elect to load and use. 

This can be done without making old data files obsolete (ie, the format is 

designed to be extensible in a backwardly compatible way). 

5 What is ITRON ? : a short introduction to the 

ITRON Project 

The ITRON4 5 6 Project creates standards for real-time operating systems 

used in embedded systems and for related specifications. Since the project 
started, several ITRON real-time kernel specifications have been drawn up 
and offered them to the public. 

In order to meet the requirements of real-time processing and embed-
ded systems, the ITRON OS specifications were designed according to the 

following principles: 

Allow for adaptation to hardware, avoiding excessive hardware virtu-
alization in order for an OS to take maximum advantage of the perfor-
mance built into the Microcontroller Unit (MCU) or other hardware. 
Specifically, the ITRON specifications make a clear distinction be-
tween aspects that should be standardized across hardware architec-
tures (task scheduling rules, system call names and functions, param-
eter names, error code names ...) and matters that should be decided 
optimally based on the nature of the hardware and its performance 
(parameter bit size, interrupt handler starting methods ...). 

Allow for adaptation to the application, which means changing the ker-
nel specifications and internal implementation methods based on the 
kernel functions and performance required by the application, in order 
to -raise the overall system performance. In the case of an embedded 
system, the OS object code is generated separately for each applica-

tion, so adaptation to the application works especially well. 

In designing the ITRON specifications, this adaptation has been ac-
complished by making the functions provided by the kernel as indepen-

dent of each other as possible, allowing a selection of just the functions 
required by each application. 

Specification series organization and division into levels. To enable 

adaptation to a wide diversity of hardware, the specifications are or-

ganized into a series and divided into levels. 

4TRON is an abbreviation of "The Real-time Operating system Nucleus." 
5ITRON is an abbreviation of "Industrial TRON." 
6TRON and ITRON are names of concepts and projects aimed at developing a new 

computer system and environment; they do not refer to any specific product or products. 

13 



6 Description of the Work Done 

Provide a wealth of functions and provide primitives that are not lim-

ited to a small number. By making use of the primitives that match 

the type of application and hardware, system implementers should be 

able to achieve high runtime performance and write programs more 

easily. 

The major feature of ITRON specifications is their adaptability which 

can be implemented even on compact hardware systems having extremely 

limited amounts of memory but also which can be optimized for the appli-
cation. Of these specifications, theμITRON real-time kernel specification, 

which was designed for consumer products and other small-scale embedded 
systems, has been implemented for numerous 8-bit, 16-bit and 32-bit Micro-

controller Units (MCUs) and adopted in countless end products, making it 
an industry standard in this field. 

The detailed specifications ofITRON are available at the ITRON Project 
Home Page7 

6 Description of the Work Done 

In order to present a prototype during the ATR Open House (November 1st 
and 2nd 2001), the project has been simplified. It was decided to design three 
prototypes capable of playing in an open session with a background music 
played by a server. Each instrument sends the notes it plays to the server. 
The server mixes the notes from each instrument with the background music 

(thanks to a sequencer program) and then sends the whole melody to the 
instruments. I was in charge of a part of the sequencer program and of the 
design of two instruments: the vest type and the pants type. 

The sequencer has been designed in three stages. The first one was to 
create a program that will read the MIDI commands in the input of the 
YAMAHA MMP Core, interprete it, and dump the interpretation on the 
output monitor running on the computer. During the second step, I had 
to create several programs that will write then read and play a MIDI file 

from a flash memory card. For this, I used a set of functions already imple-

mented by YAMAHA. Finally, I was able to create a sequencer mixing the 
background music read from a flash memory card with the notes it received 

(MIDI commands) via the input by melting the former programs together. 

A detailed description of these programs is presented in section 7 page 15. 

The instruments were designed after the sequencer implementation. The 

sequencer was then very usefull while mapping the sensors on the prototypes. 

A detailed decription of this step is available in section 8 page 17. 

The CPU of the server was a YAMAHA MMP Core with an ITRON 

operating system (figure 6 on page 15 shows the hardware block diagram 

7http: //tron.um.u-tokyo.ac.jp/TRON /ITRON /home-e.html 

14 



7 Structure of the Server Program 

Equipment for demonstration 

警翌
芦曰

□

L
 竺

ふ翌｝

,t’ 

J
 

ぃ
凩
謬喜

鱈

□
 

＼
ぃ

U

0
／

□

｀
 

言
爪
こ

八̀’心」i
』

7

皇
〗

マ・一国占Paacon 

伍、』

• ,.,,oessng MDI Dぷ•

Figure 6: Server hardware block diagram for the Open House 

of the prototype). All the programming has been made using the develop-

ment kit of the YAMAHA MMP Core on a FreeBSD Set (ie, a compiler, a 
debugger, a monitor…) and the language of programming is ANSI C. 

The people in charge of the project were (i)Mr. Tadao MAEKAWA, my 
supervisor, (ii)Mr. Yukio TADA, from YAMAHA temporaly working for 
ATR, and (iii)Mr. Kazushi NISHIMOTO. 

7 Structure of the Server Program 

As said in the former section, the conception of the server was done in three 

steps. Each step is described below. For a more precise description of each 
module presented in this section please refer to appendix B page 22. 

7.1 Reading and Dumping Midi Data 

The first step was to make a program that will read MIDI data in the input 

on the YAMAHA MMP Core ii,nd then dump the data on a monitor after 
its interpretation. The interpretion was actually a translation of the MIDI 

in to text command. For example the command Ox90 Ox3C Ox64, would be 
interpreted as NoteOn 1 C3 100 8. 

In order to make the program more efficient for real-time sessions, two 

different tasks (or process) are working at the same time. The first one reads 

the data in the input and stores it in a ring buffer. The second one reads the 

data from this ring buffer, interprets it and then dumps the interpretation. 

The two task read and dump access to two different I/0 devices. If these 

8It should be read "a Note On command on channel 1 that play a C3 note with a 
velocity of 100". 

15 



7 Structure of the Server Program 

tasks were implemented as one: when some trouble occured on one I/0 

device (for example a delay), it will spread to the other device, which may 

have a bad influence for the device connected to this I/0. Therefore it had 
to be divided it into two tasks using ringbuffer in order to prevent such a 

trouble beforehand 

The ring buffer declared as a global variable. It is actually a table of 

256 bytes (or uns紅,nedchar as declared in C). In order to implement this 
structure a package has been created (ringbuffer). This module offers three 
functions for (i)initializing the ring buffer, (ii)writing something in the ring 

buffer and (iii)reading something from the ring buffer. Moreover, this module 

implements a semaphore structure to control the critical I/ 0 on the ring 
buffer. This structure works as a mere producer/consumer system. 

Two other modules were implemented (midiread and midiplay), each one 
containing the necessary functions for the reading and the dumping task. 
All the main program has to do is to initialize the ring buffer, create and 

then start the tasks. 
This step required a good understanding of the MIDI protocol for the 

interpretation of the data and a knowledge of the ITRON operating system 
specifications for the creation and the use of tasks and semaphores. 

7 .2 Writing and Dumping Midi Files 

The next program was to make the YAMAHA MMP Core play a MIDI file 
that was written on a flash memory card. In fact, the MMP Core does not 
"really" play the music. It reads the chunks of a MIDI file (see section 4 
page 10) and sends MIDI commands to a tone generator according to what 
is read from the chunks. 

My work was really made easy by the use of a set of functions already 
implemented by YAMAHA that can (i)read and write data on a flash mem-

ory card and (ii)translate MIDI file data stored in a variable into MIDI 
command and send it to the tone generator (ie, the standard output). The 
first set of packages is called DBM (for DataBase Manager), the second one 

is called MMSAPI (MultiMedia Sequencer API). I created a program that 
write the MIDI file stored in a variable onto the flash memory card and then 
a second program that read this MIDI file and stored it into a variable so 

that it can then be played by MMP Core thanks to the functions already 

implemented. 

7.3 The Sequencer 

The final step was to conceive a sequencer that would mix background music 

and notes played by the three instruments. Actually, the sequencer does 

not collect the notes by itself. It receives them via its standard input (see 

Hardware Block Diagram, figure 6 page 15). The sequencer just mixes the 

16 



8 Clothes Design 

MIDI data from its standard input with the MIDI data "translated" from a 

MIDI file (the background music) and sends it to its output. 

The program of the sequencer is obtained by merging the two former 

programs and adding some functionalities. Once again, the functions imple-

mented by YAMAHA were useful. Indeed these functions create a new task 

for playing the MIDI file. Thus I had to make important changes only on 
the first program. 

First, the main module of the first program which initialized the ring 

buffer and created and started the tasks was implemented in a new package 

called m奴iiplay.It has two functions, (i)one making all the initializations 
(MIDI I/0 and ring buffer) and creating the tasks, (ii)the other starting the 
tasks. Then I replaced the interpretation function of the dumping module 

into a remapper function that will allow me to configure and design the 
clothes. 

As for the second program, the main module becomes a new package, 
smpplay. 

Note: for the ATR Open House, this program has been embedded by 
Mr. Yukio TADA. The program plays a sucession of three music ac-
companiments repeated 4 times in an infinite loop. The music accom-
paniments have been composed by Mr. Yukio TADA and the midi 
files were not written on the flash memory card, but stored in three 
variables ... 

You can see in appendix A the functional block chart of the final program. 

8 Clothes Design 

During this part of my work, I had to decide about the mapping of the 
sensors on two instruments (the vest and the pants) and about the-note and 
the sound each sensor would play. 

The sensors were connected to an I-Cube System (A/D converter) which 
transforms the signals of the touch sensors into a Note On command. The 

I-Cube System was configured so that the couple note played and channel 
was unique. That is to say that if we know the note and the channel, we can 

dertermine which sensor has been activated and transform the command into 

any command we want thanks to the MIDI dumping program (see section 7 
pageref 15). 

8.1 Pants Type 

When you play music with your pants, you are usually trying to play per-

cussions. That's why it seems natural that the pants play the drum part 

of the music. The instrument has thus been conceived as a little drum kit. 

17 



8 Clothes Design 

Figure 7: The pants prototype 

Although it is more comfortable to play this instrument while sitting you 

can also play it while walking. 
Detail wise, the pants are very simple. They can only play one type of 

instrument and the notes are always the same (see figure 11 on page 27 in 
the appendix C). The most tricky part was to find the correct percussions 

to put on the sensors. 

8.2 Vest Type 

The design of the vest is a little bit more complicated. Instead of a vest 

playing some disparate set of sounds, the vest has been designed so that it 
can play a real melody. 

The vest has eleven sensors. Eight of them play notes (C, D, E, F, G, A, 

B, C) and the other ones are command sensors: Octave Up, Octave Down, 

Change Instrument. That means that the vest is not limited to eight notes of 

one instrument. It can play all the notes of several instruments (see table 3 

on page 26 in the appendix C). Moreover, the dispersal of these sensors 

made them practical to use with the hands (see figure 10 on page 25 in the 

appendix C). 

18 



8 Clothes Design 

Figure 8: The vest prototype 

More specificly, the Octave Up and the Octave Down commands actu-
ally perform two actions. They first send an All Note Off command (OxBn 
Ox7B OxOO) on the requested channel (n) to prevent any excessive duration 
of a note. Then they increment or decrement a variable used to calculate the 
note played by the vest in the remapping module. As for the・Change Instru-
ment command, it only sends a Program Change command on the requested 

channel (see section 4 page 10 for details on these MIDI commands). 
The three control sensors use a different channel than the other sen-

sors. This makes the distinction easier (particularly when programming the 

remapping module in the dumping program) and more practical when send-

ing All Note Off and Program Change commands. 

19 



9 Conclusion 

9 Conclusion 

The design of the other instrument, musical gloves, the set up of the demon-

stration and the rest of the programming were made by Mr. Yukio TADA9. 

For the demonstration Mr. Kazushi NISHIMOTO was playing the jacket, 
Mr. Yukio TADA was playing the gloves, and I was playing the pants. Fi-

nally the prototypes worked quite well and people seemed interested when 

we showed them during the Open House, and several other presentations we 
have made (a french article has even been published on it10). However there 
is still lots of work to do until the project is completed. 

As I said earlier, the prototype is really a simple version of the initial 

project. Only three instruments could play in a unique open session, and 
they were quite forced to participate. You couldn't switch on a button and 
play your own melody apart from the others. It would simply not work. 

The next expansion would be to transfer the sequencer program in the 
instrument itself and make it autonomous. Then the phrase exhange module 

can be implemented. However, I see several problems that should be first 
resolved. 

First of all, the MIDI specification as it is first defined is limited by 
sixteen channels. If you consider that the accompaniment background takes 
eight channels, this means that you can't have more than seven instruments 
playing together (assuming that you have a channel reserved for control 
commands and that each intrument takes only one channel). Nevertheless 
I have heard that there is some way to get more than sixteen channels, so 
this problem is not unsolvable. 

Another problem is to define a sort of protocol for sessions where issues 
like opening sessions and channel attributions will be solved. The same is 
for the phrase exhange sessions ... 

Finally, the integration of the project on to mobile phone, although it 
sounds interesting, seems very ambitious but not impossible after all. The 
musical capabilities of modern mobile phones are quite restrictive but con-
sidering the evolution of telecommunications, we can hope that in the near 
future they will elvove enough. 

9The communication module between the server and the instruments using the protocol 
UDP has been programmed by Mr. Tadashi TAKUMI (CSK Corp.) 
10http://www.internetactu.com/ archives/ dossiers/ atr /index.html 

20 



A Functionnal Block Chart 

APPMAIM 

Display Time 

lnitializai1ons 
and Creation of Tasks 21 & 22 

mi dip I ay lniti alize() 

81artTasks 

I 
midiplaySiart() 

smpplay() 

Play Midi File 

MMSAPI MIDIREAD 

Figure 9: Global Chart 

A Functionnal Block Chart 

MIDIDUMP 

21 



B Description of the Functions 

B Description of the Functions 

B.1 appmain.c 

This program contains the main function void appma切(void).

B.2 The Package ringbuffer 

This module implements a simple ring buffer that will be used to store the 
data read on the input waiting for its processing. There are three functions: 

void initialize_buffer(void): which resets the ring buffer and create a 

semaphore to control the i/o access on the ring buffer. 

int write_buffer(unsigned char *data, unsigned char len): which writes 
a data in the ring buffer. It returns O if the operation has been sucessful 
or -1 otherwise. 

unsigned char *data: pointer to the data to be written in the ring 
buffer. 

unsigned char len: length of the data in byte. 

int read_buffer(unsigned char *data, unsigned char len): qwhich read 
a data from the ring buffer. It returns O if the operation has been 
sucessful or -1 otherwise. 

unsigned char *data: pointer to the buffer where the data that has 
been read will be stored. 

usigned char len: length of the buffer. 

B.3 The Package midiplay 

This package contains the functions of initialization and start for the MIDI 

I/0. There are two functions: 

ER midiplaylnitialize(void): makes all the initializations for reading and 
dumping programs, ie, initializes MIDI I/0 devices, the ring buffer and 
the tasks for reading and dumping. It returns a standard ITRON error 

code. 

ER midiplayStart(void): starts the reading and dumping tasks. It re-

turns a standard ITRON error code. 

B.4 The Package midiread 

This module implements the function used by the task that reads midi data 

on the input : 

void midiread(void): read midi data on the input and store it on the ring 

buffer. 

22 



B Description of the Functions 

B.5 The Package mididump 

This module implements the function used by the task that dumps midi 

data on the output (tone generator): 

void mididump (void): reads midi data from the ring buffer, process the 

data and dump it to the output. 

B.6 The Package smpplay 

This package contains the functions used to start playing the background 

music. Originally, this package reads a file from the flash card and play it 
once but it has been modified by Mr. Yukio Tada for the demonstration. 

Then it can play three music in an infinite loop, but these music are stored 
in variables. There are three functions: 

void smpSetup(UB canst *pSetup, int nSetup): interprets Control Change 
and Program Change command and send it to the tone genrator. 

UB canst *pSetup: pointer to the command string 

int nSetup: length of the command string 

void smpPlaySong(UB canst *pSmf, UB canst *pSetup, int nSetup, int nTimes): 
makes four metronome clicks and then plays the song contained in 
pSmf nTimes times with the setup commands contained in pSetup. 

UB canst *pSmf: pointer to the song (MIDI file format) 

UB canst *pSetup: pointer to the setup string 

int nSetup: length of the setup string 

int nTimes: number of times the song will be repeated 

int smpplay(vaid): makes the initializations for the MMSapi and starts 

playing three songs four times in an infinite loop. It uses three variables 
that contains the midi files data. These variables are affected in the 

libraries data_Jusion.h, data_dancepop.h and data_foxtrot.h. It returns 
-1 if an error occured or O otherwise. 

B.7 The Package play_hand 

This module contains the remapper function for the hand type instrument. 

It has been programmed by Mr Yukio Tada for the demonstration. There 

are two functions: 

void phdTGSetup(void): sets the configuration of the tone generator for 

the controller. 

23 



B Description of the Functions 

void phdRemapEvent(int nCh, int nNote, int on, unsigned char aBuf[j): 

the remapping fuction itself. 

int nCh: number of the channel of the command. 

int nN ote: note that has been played (the note and the channel de-

termine which sensor has been touched ...) 

切ton: 1 if it's a Note On command, 0 otherwise 

unsigned char aBuf[}: buffer where the new command will be stored. 

B.8 The Package dbm 

This package contains the functions to be used for writing and reading files. 

It has been implemented by YAMAHA. 

B.9 The Package mmsapi 

This package contains the functions for playing a midi file. It has been 

implemented by YAMAHA. 

24 



C Mapping of the Sensors 

C Mapping of the Sensors 

C.1 Vest type 

p
 

u
 

e
 

ロ

ロ

ロ
言
w
n〗

odo 

回
4

2
 

ove 
1
a
 

ct 

゜

Figure 10: Vest type : sensors number and function 

Vest sensor 1 2 3 4 5 6 7 8 
I-cube sensor 1 2 3 4 5 6 7 8 

MID I Channel used 5 

Note played by I-cube C3 D3 E3 F3 G3 A3 I B3 I C4 

Vest sensor g I rn I I 12 
I-cube sensor 9 I 10 I 11 I 12 13 I 14 1s I 16 

MID I Channel used 6 7 8 

Note played by I-cube C3 I D3 I E3 I F3 C3 I D3 C3 I D3 

Table 2: Sensor mapping for the vest 

25 



C Mapping of the Sensors 

l Instrument Number I Instrument 
1 Grand Piano 

2 Jazz Guitar 

3 Distorsion Guitar 

4 Finger Bass 

5 Violin 

6 Orchestral Harp 

7 Strings 1 

8 Synth Brass 2 ， Baritone Sax 

10 Flute 

11 Whistle 

12 Voice Lead 

13 Crystal 

14 Shamisen 

15 Kato 

16 Melodic Tom 

Table 3: The different instruments available on the vest 

C.2 Pants type 

Pants sensor 1 2 3 4 5 6 7 8 

I-cube sensor 1 2 3 4 5 6 7 8 

MIDI Channel used 3 

Note played by I-cube C3 D3 E3 F3 G3 A3 B3 C4 

Vest sensor 

I-cube sensor ， 10 11 12 13 14 15 16 

MID I Channel used 4 

Note played by I-cube C3 D3 E3 F3 G3 A3 B3 C4 

Table 4: Sensor mapping for the pants 

26 



References 

Low Torn High Tom 

回 困

Floor Tom H図 国MidTom H 

[TI 田
Floor Tom L Mid Tom L 

二Kick Soft 二Crash Cymbal 
Figure 11: Pants type : sensors number and function 

References 

27 




