
TR-M-0043 

Video Rhythm and Motion Analysis 

マ—カス ザーキイ

Marcus CSAKY 

朴錘一

Jong-II PARK 

鈴木良太郎

Ryotaro SUZUKI 

井上正之
Masayuki IINOUE 

1999.3.24 

ATR知能映像通信研究所

ATRテクニカルレポート表紙

［公開］



Video Rhythm and Motion Analysis 

Marcus Csaky, Ryotaro Suzuki, Park Jong-II, Masayuki Inoue 

ATR Media Integration & Communications Research Laboratories 



Video Rhythm and Motion Analysis 

Marcus Csaky, Ryotaro Suzuki, Masayuki Inoue 

Media Integration 

Communication Lab, ATR 

2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-02, Japan 
Email: { mcsaky,ryotaro,inoue }@mic.atr.co.jp 

Abstract 

Three different analysis techniques for video rhythm and motion analysis are presented. First, the 
spatial frequency analysis of movies is considered. Two sequences from different movies are compared 
subject to a variety of criteria with this method. A difference between the two sequences is characterized 
and various features are identified within each media. These features include scene changes, close-up movie 
shots, and long movie shots. Second, the principle component analysis of dance optical flow is considered. 
The optical flow of a segmented dance video is considered. A dance composition is segmented into parts 
that differ in terms of expression邸 displayedby the dancer. Each segment's respective motion data is 
reduced by principal component analysis (PCA). These principle components are compared to the principal 
components generated from a subjective experiment in which the subjects commented on parts of the dance 
composition. L邸 tly,a dance rhythm computation system is considered. A real-time system is developed 
in order to estimate a user's dance rhythm. The user views a skilled dancer and then attempts to duplicate 
this "training" dance rhythm. The system provides feedback to the user to indicate the closeness of rhythm 
attained. The rhythm calculation consists of a maximum entropy method (MEM) windowed frequency 
analysis of binary image differenced (BIN) data. Multi-user capability of the system is also explored. 

1 Spatial Frequency Analysis Preliminaries 

The method proposed here is in extension to the "Image ¥Vave" project carried out in the Media Integration 
and Communication Lab at ATR. This project pursues the physical attainment of rhythm information from 
movie clips in order to realize the automatic synchronization of multimedia content creations[l]. With this 
method it is hoped that one can characterize wave-like structures within particular media contents (the media 
content here will always refer to a whole or part movie). Furthermore, it is proposed that these wave-like 
structures in movies will yield specific movie wavelengths (or frequencies). One idea being investigated in 
the Image Wave study is the combining of more than one movie. A simple example is to have one movie 
running in the foreground and a different movie simultaneously running in the background. After obtaining 
the aforementioned wavelength it would be easier to coherently blend multiple movies together due to the fact 
that movies with similar rhythm could be cla5sified and synthesized. 

Attaining the desired movie wavelength is the end result in this study. At first it is necessary to devise a 
method of sampling movie information and of getting some indication of what type of movie the particular 
selection is. The method of spatial frequency analysis is selected due to its frequency domain representation. 
This method is by no means the only one available and in fact similar methods may be easier to use and to 
interpret the results of. For instance in the results section, some spatial frequency derived results are compared 
to results obtained by two other methods (the change in the average value of the brightness and the change of 
the variance value of the brightness). 

The two movie segments analyzed (expediently named Odessal and Odessa2) are both scenes from the 
famous Russian film "Battleship Potenkin" by S.M. Eisenstein. These two segments are selected because of 
their vast differences. Odessal is "very slow" moving with a lot of long shot camera styles wherea.5 Odessa2 is 
very quickly paced and it has a lot of close-ups and scene changes. Figure 1 arc typical movie sequences from 
Odessal. 

Each progressive image in these 2 image sequences is sampled at a one second interval. Note that there is 
very limited movement during each 3 second section of footage in the left and right sequences. Figure 2 are 
typical movie sequences from Odessa2. 

These 2 image sequences are again sampled at one second intervals. Note that there is a considerable 
amount more movement during the 3 second sequences of footage in figure 2 than there is in the sequences in 
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Fig. 1: Odessal sample scenes 
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Fig. 2: Odessa2 sample scenes 

figure 1. Watching the movie segments makes it clear that these two selections create a different mood in the 
viewer's mind. The goal of this analysis is to be able to differentiate these two selections quantitatively. 

1.1 Method 

The temporal change of images in movies can be analyzed in a variety of different ways. Some of these methods 
include the change of the average value of the brightness, the change of the variance value of the brightness, 
wavelet analysis, and spatial frequency analysis[l]. The change of the average value of the brightness can be 
calculated as follows: 

Pi+l -Pi 

where Pi+l is the average value of the pixel brightness for the i+1st image (or frame). The change of the 
variance value of the brightness can be calculated as follows: 

こ聞—瓦）2
n 

where江 isthe summation over all the image pixels for the ith frame, Pi is the pixel intensity for the ith 
frame, and瓦isthe average pixel intensity for ith frame. 

(1) 

(2) 

Spatial frequency can be directly obtained from the two-dimensional (2D) Fourier transform. An image can 
be represented by a 2D function f(x, y), where x and y are the horizontal and vertical orientations respectively 
within the image, which gives an indication of the image brightness at the point (屯y). In this study, the 
magnitude of f(x,y) is the Y (brightness) value from the YUV gray scale scheme. The spatial domain 
representation, f(x, y), can be transformed into the spectral domain F(u, v) via the 2D Fourier transform. In 
order to represent this spectral domain (u, v) in one dimension, the normalized spatial frequency is defined as: 

(-*2) 2 +伍）2 (3) 

where X/2 and Y/2 are the magnitudes of half of the horizontal and vertical image boundaries respectively. 
Due to the periodicity properties of the Fourier transform[4]: 

F(u, -v) = F(u, Y -v) F(-u,v) = F(X -u,v) 
F(-u, -v) = F(X -u, Y -v) 



it is only necessary to consider one quarter of the u and v values. There is much literature available 
concerning Fourier transforms and spatial frequency[2, 3] but basically spatial frequency gives an indication 
of the nature of change throughout an image or series of images. Higher spatial frequencies represent rapid 
intensity changes in an image whereas lower spatial frequencies represent smoother image intensity changes 
[2]. 

C software was written to decompose a movie selection into its individual frames. Each frame's brightness 
values were saved as a 2D real-valued matrix. Using the Matlab function call "fft2", a 2D Fourier transform 
was taken of the data to yield a complex-valued 2D matrix of data. From this 2D matrix (Mi,i) the power is 
calculated to be: 

Pi,j = IMi,jl2 (4) 

were IM叫 isthe absolute value of the Mi,jth component of the matrix. This data was then raster scanned to 
associated each power value with its corresponding spatial frequency. 

Some tests were conducted in order to better interpret the results of this spatial frequency image analysis 
method. 
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Fig. 3: Spatial frequency of vertical line pattern 

The plot on the left of figure 3 is the spatial frequency analysis of the simple vertical line pattern on the 
right of figure 3. The dimensions of the vertical line image is 128xl28 and the width of each vertical bar is 16 
pixels. The first maximum power spectra value in the left plot occurs at a spatial frequency of 0.0625. The 
corresponding period (period = 1)  is 16 which corresponds to the period of the repeating black and frequency 
white barred pattern. The small peaks between the two power spectra maxima are due to the lack of smooth 
transition between the black and white vertical lines. Figure 4 was considered next in order to improve upon 
the colour discontinuities between the black and white bars. 
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Fig. 4: Spatial frequency of vertical shaded line pattern 

The image on the right of figure 4 was created by plotting the brightness intensity of a sinusoidal wave 
pattern and the plot on the left of figure 4 is the spatial frequency analysis of this image. One can again see 
the expected m孔ximumat the specific spatial frequency (0.0625) which corresponds to a horizontal period of 
16. However, the subsequent power spectral lines are eliminated due to the smoothness of the transition from 
black to white vertical lines. The left spatial frequency plot was made of the circular pattern in figure 5 in 
order to test the circular symmetric nature of the overall spatial frequency. 
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Fig. 5: Spatial frequency of circular symmetric pattern 

The image on the right of figure 5 was made by plotting the brightness intensity of the product of a horizontal 
sine wave and an inverted ((-l)*sinewave) vertical sine wave of a image coordinate. The power spectra maxima 
at the spatial frequency of 0.0883 corresponds to -./0.06252 + 0.06252. With this methodology in place, it is 
possible to analyze the spatial frequency data from the two movie segments (Odessal and Odessa2). 

1.2 Results 

The overall goal in this spatial frequency analysis is to characterize a rhythm (wavelength or frequency) in 
a movie. To attain this goal, the movie clips (Odessal and Odessa2) are qualitatively analyzed by three 
contrasting methods. The first method considered is comparing the two time series of the average value of 
image brightness between frames of Odessal and Odessa2. 
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Fig. 6: Average frame brightness change 

The two plots in figure 6 represent the average brightness change from frame to frame in Odessal and 
Odessa2. The x-axis is the temporal progression of the movie segment and the y-axis is the average brightness 
of the frame at a particular time. These plots represent about a minute's worth of data and it is clear that the 
structure of the two graphs is very different. The bottom graph is smoother and marked by distinct events. 
An event can be any noticeable feature within the media such as a scene change, a close-up, or a longer camera 
shot. Event transitions are easy to spot in the second plot as they occur at places of rapid changes in average 
frame brightness (approximately 7, 28, and 39 seconds for example). Although this qualitative analysis is 
crude, it is easy to see the difference between Odessal and Odessa2. 

The second method considered was comparing the two time series of the variance value of the image 
brightness from frame to fran1e in Odessal and Odessa2. 

In figure 7, the two plots represent the change of the variance value of the brightness from frame to frame 
in Odessal and Odessa2. The x-axis is the temporal progression of the movie and the y-axis is the variance 
value of brightness of the frame at a particular time. Again, these plots represent one minute's worth of data 
and the structure of the two graphs is very different. The top graph has more noise associated with it than 
does the bottom graph. Events can be clearly located in the bottom graph (for example, from about 19 to 
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Fig. 7: Variance frame brightness change 

25 seconds and from 32 to 39 seconds). The bottom plot suggests some rhythm from about 20 to 60 seconds 
because after approximately each 6 second segment there is a change in the time series. The same type of 
analysis was carried out utilizing the spatial frequency analysis method. 
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Fig. 8: Spatial frequency for Odessal 

Plot 8 represents data from Odcssal (a similar plot is made for Odcssa2 although not included here for space 
considerations). The x-axis is the temporal progression of the movies. The y-axis is binned spatial frequency 
(in bins of width 0.2). An example of this binning method is that one time along the 0.1 spatial frequency path 
represents the sum of all the frequency components between 0.0 and 0.2 at this time. This birming method 
was necessary in order to coherently display the large amount data. The z-axis is the power spectra. With this 
method it is not easy to visualize the data nor is it easy to see any differences between Odessal and Odessa2. 

There seems to be a certain contradiction with the spatial frequency results obtained and those that are 
expected in a natural setting. Generally low frequency components are usually more prevalent in nature than 
high frequency components. However, the human visual processing system is complex and perhaps not yet fully 
understood. An interesting topic is the question of what form image information takes in the visual system. 
One theory is that image information in the brain is simultaneously stored in various parts of the brain in 
both the time and the spectral domain[5]. It is presently not possible to exactly duplicate this process with 
simple computer based vision models such as the one presented here and hence this may partially explain the 
difference between some natural processes and the same process viewed through computer vision techniques. 



It was decided to select the two lowest and highest frequency bins in order to analyze the movie trends. 
In theory, the high and low frequency bands should display the biggest difference between the two movie 
segments due to the fact that the low frequency changes are representative of smooth image changes while the 
high frequency changes indicate rapid intensity changes. Therefore, more specific data was plotted in order to 
further analyze figures 7 and 8. 

10 ao 40 50 60 
Time 

Fig. 9: High and low frequency movie comparison 

In the plots of figure !J, the data corresponding to Odessa2 begins at about the 2 second mark while the 
Odessal data begins at about the 13 second mark (the Odessal movie clip does not begin until this time). 
The top two plots represent the two lowest frequency bands while the bottom two plots represent the two 
highest frequency bands. The x-axis is the temporal progression of the movie segment and the y-axis is t.he 
power spectra at each frequency bin. At the lowest frequency bin, the magnitude of Odessal and the 
magnitude of Odessa2 are about the .same. However, at the two highest frequency ranges it is clear that the 
magnitude of the power spectra of Odessa2 is much larger than that of Odessal. Hence, both movie se即 1ents
have approximately the same amount of lower frequency components while Odessa2 has a greater higher 
frequency component. Theoretically, one would expect the low frequency component of Odessal to greater 
than the low frequency component of Odessa2. 

Therefore, it is possible to characterize the difference between Odessal and Odessa2 by using the spatial 
frequency method. The next question was why does this method work? It is obvious that by using spatial 
frequency, one can detect scene changes within a movie but can one tell the difference between camera angles 
and close-ups versus long shots? Figures 10 and 11 are two examples of close-ups versus long shots. These two 
sets of images were compared using the spatial frequency method. 
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Fig. 10: Odcssa2 long shot and close-up example 1 

Figures 12 and 13 represent the spatial frequency anaylsis of the images in figures 10 and 11. The top two 
plots in figures 12 and 13 display the spatial frequency along the x-axis and the power spectra for the particular 
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Fig. 11: Odessa2 long shot and close-up example 2 
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Fig. 12: Spatial frequency comparison of long shot and close-up example 1 

close-up or long shot image along the y-axis. The bottom two plots in figures 12 and 13 have bins (where the 
frequency binning was done similarly to the frequency binning of figures 7 and 8) of spatial frequency along the 
x-axis and the power spectra along the y-axis. In figure 12, the third plot from the top is the binned spatial 
frequency representation of a close-up shot (right image in figure 10). One can see that the long shot image 
ha.5 a greater magnitude of power spectra at lower frequencies than does the close-up image. Furthermore, the 
close-up image has a greater magnitude of power spectra at higher frequencies than does the long shot image. 
This corresponds to the fact that higher spatial frequencies represent rapid intensity changes in an image 
whereas lower spatial frequencies represent smoother image intensity changes. A similar trand can be noticed 
in the analysis (figure 13) of figure 11. It is worthy to note that these results are obtained with specifically 
selected image combinations and perhaps the outcome would differ if these ideal conditions where not used. 

2 Physical and Psychological Analysis of Dance Preliminaries 

The purpose of the open house dance study is to derive a measure of the correspondence between the observed 
psychological and the measured physical aspects of a dance performance. This report mainly deals with the 
physical data analysis of the dance motion. The motion of a pre-recorded dance performance is analyzed. 
This particular dance segment was selected due to it variety of movements, tempos, and emotional impact. 
The dance is performed (Aimi Hara, Kobe University) and directed (Mariko Shiba, Kobe University) so that 
the range of movements varied from slow and methodical to explosive. The dance sequence is classified into 
seven segments (.Junko Tsukamoto, Tenri University), or motifs, where each motif demonstrates a different 
emotional expression. These seven emotional segments are subjectively chosen but the goal is to characterize 
the similarities between this subjective analysis, or the psychological (as described later), and a physical 
analysis. The physical analysis consists of the decomposition of the dance movie into individual image frames 
and then the subsequent optical flow analysis of successive dance image frames. The method of physical motion 
analysis used in this study is very similar to the method used in[6] to analyze simple walking motion and the lip 
motion that occurs during speech. Although the algorithm is the same, the motion ranges that are encountered 
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Fig. 13: Spatial frequency comparison of long shot and close-up example 2 

in the dance performance are different, and perhaps more complex, that those of Black's analysis. 
The number of data points obtained from the optical flow analysis is equal to twice the resolution of the 

image (or 2 x n x m where n and mare the width and the height of the image respectively). The speed of a 
normal movie is 30 frames per second. The video sequence considered is approximately 80 seconds in length 
and therefore, it contains a very large set of data to analyze. The method of principal component analysis 
(PCA) is utilized to more easily visualize this large data set. The first few (2 or 3) principal components of 
this physical motion analysis are compared to the first few principal components of the psychological motion 
analysis (as described later). 

2.1 Physical Motion Analysis 

The physical motion analysis consists of generating parameterized models of optical flow from image sequences. 
This analysis is similar to the one employed by Black et al. in their study of image motion[6]. Parameterized 
models can be used for motion estimation and they generally provide an accurate estimate of optical flow as 
many (thousands) motion dimensions (where dimensionality will be discussed later) are combined to obtain 
a small number of model parameters (or principal components)[7]. Starting with a set of flow fields (vectors 
of the optical flow of successive movie frames), PCA is used to generate a set of basis flow fields that give an 
approximation to the original data. These basis flow fields can later be used as a starting point for estimating 
optical flow in a region. This last step is not employed in this study but instead we use the derived basis flow 
fields to extrapolate parameters of the dance performance motion model. 

A computationally expensive algorithm is used to calculate the optical flow and all of the dance data 
processing is performed off-line. The selected method uses image intensity data and applies a robust, course-
to-fine, gradient based optical flow calculation algorithm. This algorithm is detailed in Black and Anandan's 
paper[7] which deals with the robust estimation of multiple motions. The actual computation of optical flow 
in this study utilizes Black's code and these programs can be retrieved from the internet[8]. The optical flow is 
calculated using a robust estimation framework that reduces the sensitivity of multiple image motion violations 
to the optical flow brightness constancy and the spatial smoothness assumptions, The brightness constancy 
constraint states that the image brightness of a region remains constant while its location changes[7]. The 
spatial smoothness constraint assumes that the optical flow within a region changes smoothly since it is caused 
by a single motion[7]. The reader should refer to Black's paper for a more detailed explanation of this optical 
flow technique. 

To perform PCA of the dance data, the optical flow of each consecutive image is computed. Figure 15 is 
the computed horizontal optical flow (where white regions indicate horizontal motion and non-white regions 
indicate no horizontal motion) of the two right images of the three image sequence in figure 14. 

Each pixel in an original image has an associated horizontal and a vertical optical flow value and these 
values are subsequently raster scanned (first the horizontal and then the vertical values) into a vector of length 
2 x n x m, where n and m are the horizontal and vertical image dimensions respectively. Each image vector 
forms a column of a 2 x n x m x p matrix F, where p is the number of frames in the dance video sequence, PCA 
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Fig. 14: Dance image sequence 

Fig. 15: Horizontal optical flow calculation 

of the matrix Fis then used to estimate a lower dimensional model of the motion data in F. The fimensionality 
of the data in the video sequence is 2 x n x m x p, because this dimensionality is very large (where n=l60, 
m=l20, and pis approximately 2500 frames), the aim is to reduce the amount of dimensions in order to make 
data analysis more feasible. The singular value decomposition of the matrix F can be written as: 

F = MI:VT (5) 

where J,.;J is an 2 x n x m x p matrix whose columns ([耐，両，．．．，示])form an orthogonal basis for F, ~is 
a p x p diagonal matrix (where the diagonal values, ふ，ふ，．．．，入P,are sorted in decreasing order), and vr is 
a p x p orthogonal matrix(6]. A given flow field, 1, can be approximated by a linear combination of the first 
k basis elements of M: 

→ K 

f戸 I:ai飛
i=l 

(6) 

where the a; values arc the principal components of the input flow ficld[6]. Therefore, the ith principal 
component, a;, can be computed as: 

ai =m『f; (7) 

Figure 16 is the computed horizontal optical flow or the two right images of the three image sequence in 
figure 14 (and hence, an approximation of the horizontal optical flow as computed in figure 15) using the first 
10 basis clements (and hence, the first 10 principal components) of the motion model matrix F. 

A measure of the quality of the approximation provided by the first k columns of M is illustrated by the 
variance of the fraction of the matrix F accounted for by the selected (k columns) flow field components: 

Q(k) = (塁）/(喜） (8) 



口
Fig. 16: Estimated horizontal optical flow computed from the first 10 principal components 

An accurate representation of the motion model is given when Q(k) approaches a value of 1. 

After the orthogonal basis vectors are known for the intire dance video data set, the principal components 
of each fr皿 e(or input flow field) can be obtained from equation 3. Figure 17 is a s皿 pletime series (of the 
first three motifs, or dance video segmentations) generated by plotting the magnitude of the first two principal 
components at each time instance. 
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Fig. 17: Principle components of video frames 

2.2 Psychological Motion Analysis 

Six female subjects where asked to watch the dance and then fill out a questionaire that ranked the selected 
dance based on 40 different emotions in order to determine the psychological effect of the segmented dance 
sequence. This process was repeated twice with the same subjects. The data was then analy½ed by PCA in 
order to narrow the dimensionality (originally a dimensionality of 40 due to the number of ranked emotion data 
supplied by the subjects) of the data set and in order to compare the principal components of this psychological 
analysis to that obtained by the physical analysis. A sample of the tabulated results of the PCA can be seen 
in figure 18. The 1st, 2nd, and 3rd principal components account for 44.2%, W.l %, and 12.0% respectively of 
the psychological data. 

Figure 1!) shows the value of the first three psychological principal component magnitudes in relation to 
the segmented sections (or motifs) of dance. The goal is to compare this psychological principal component 
time series to that of the physical principal component time series. 



Results of PCA Principle Components Associated 
Loading Factors 1st PC 2nd PC 3rd PC Emotions 

1st PC (44.1%) 0.96 0.15 -0.13 noticeability 
-0.95 -0.15 0.13 complication 
-0.94 -0.10 -0.12 stability 
0.94 0.29 0.08 calmness 
＊ ＊ ＊ ＊ 

＊ ＊ ＊ ＊ 

2nd PC (29.1%) -0.01 0.97 0.17 liveliness 
-0.17 -0.93 0.15 refreshfulness 
-0.07 0.92 -0.21 brightness 

＊ ＊ ＊ ＊ 

3rd PC (12.0%) 0.38 0.14 0.86 lightness 
-0.10 -0.18 0.82 depth 
-0.21 -0.53 -0.76 heaviness 

Others (14.7%) 0.60 0.04 0.53 solemness 
0.57 0.17 0.44 clearness 
＊ ＊ ＊ ＊ 

Fig. 18: PCA results of psychological analysis 
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Fig. 19: Psychological impression of motif 

2.3 Comparing the physical and psychological motion analysis 

The goal of this analysis is to derive a correspondence between the physical and the psychological motion 
anaylsis. In figure 20, the magnitudes of the first two principal components for the physical and psychological 
motifs are compared. 

The physical principal component magnitudes are generated by calculating the number of data points 
above the 80 and 90 percent (for the left and right plots of figure 20 respectively) of the vertical axis magnitude 
range line in the time series principal component data (like that of figure 17). Each motif's physical principal 
component magnitude (the 1st and the 2nd physical principal components respectively for the left and the 
right plots of figure 20) are plotted on the horizontal axis while each motif's psychological principal component 
magnitude (the 2nd and 1st psychological principal components respectively for the left and the the right plots 
of figure 20) are plotted on the vertical axis. A best fit line (in red) is drawn through the data points. 
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Fig. 20: Physical and psychological principal component motif correspondence 
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Dance Rhythm Estimation Preliminaries 

The computer is playing a larger role in society than it ever has in the past. Part of the reason for this is that 
computers are becoming more accessible and user-friendly. Simple input and output nodality are no longer 
solely relied upon as the present computer user is presented with a wide variety of ways to more easily utilize 
their personal computer power. 

Presented here is an example of a computer application that serves many purposes to its user. The system 
makes prevalent three basic concepts. First, is the idea of low-level computer based vision utilizing information 
from the periodicity of motion. Although this area has not been studied in detail, it is not new. The basic 
premise is that human motions often temporally repeat themselves in nature and hence these repetitive patterns 
can be used to identify the original motion patterns. Second, is the concept of a computer "teacher" that 
instructs a user on a given task. The proposed given task of dance instruction is developed in subsequent 
sections. The system presents a user, or users, with a dance composition and then provides feedback to the 
user as to how well they perform the dance in relation to the demonstrated dance piece. The analysis is 
based on the user's rhythmicity of motion and the feedback to the user comes indirectly in the form of musical 
alterations (as described later). Lastly, is the idea of a virtual setting where users can imagine themselves in 
a real-world dance setting (like a nightclub). Although the club dance setting is familiar, there is added user 
interaction as the users are provided with feedback (in the form of music tempo and background studio scene 
changes) relating to their dance "rhythm" (where "rhythm" is defined later). 

3.1 Previous Work 

The auditory study of rhythm with computers and music rhythm tracking has been extensively studied. Some 
of the more recent work on rhythm tracking has been done by Rosenthal[9] and Desain and Honing[lO] where 
beat tracking was performed on MIDI music and also the work of Rosenthal et al.[11] and Goto and Muraoka(12] 
where real-time tracking of conventional audio (such as CD music), using multiple agent processing theory, was 
achieved. 

The computer "tutor", or "teacher", idea is also not novel and such systems have been developed in the 
past like the work of Bobick et al.(13] and Davis and Bobick[14] for example. This first example refers to the 
well-known MIT KidsROOM demonstration where children are guided through a story line that is controlled, in 
part, by the children's actions. In the final phase of the KidsROOM, a CG instructor teaches the children how 
to dance. This dance is a combination of simple movements (for example, spinning) that are easily recognized 
by gesture recognition techniques. The second example refers to an aerobic instructor system where the user's 
performance is gaged on the basis of their actions as compared to those actions of a training instructor. 

Dance based computer systems have been developed before and an example is the work of Paradiso and 
Sparacino[15]. In this system, a user's movement controls the drawing of a multi-coloured trail on a screen 
and also the use of various computer simulated instruments. This system provides a tool to originally generate 
graphics and music but it does not instructionally aide the dancer. Browstow et al.(16] are developing a system 
(the system is still in the development phase) proposed to act as a ballet dance instructor. 

This study extends these three previously mentioned research exploits. The idea is to take the idea of a 
dance tutor into new genres (disco and techno musics and atmospheres) with added useability (multiple user 
capability for realistic dance club type settings) and different functionality (rhythm analysis versus gesture 



recognition). 

3.2 System 

The system uses an image expression environment called the Image Expression Room[l 7] which consists of a 
virtual studio with a large display and a media handling system[l 7]. This virtual studio enables the chroma-
keying of multi-camera input and the ability of the studio users to see themselves interacting with the system 
in a large half-mirror. 

All software was written is C++ (with help from SGI's DMedia utilities and libraries) and it runs on a 
SGI Highlmpact RlOOOO system. The display is composed of two windows which display a BIN of the dancer 
and also a BIN that has its intensity degregraded in time so that the motions of the dancer form a temporal 
template where the most recent motions have greater intensity values than those of the motions in the past 
(this idea is similar to the Motion Histogram Image idea that Davis and Bobick use in their motion recognition 
work[18]) but this feature is purely aesthetic and serves no system functionality. See figure 21 for a screen shot 
example. 

Fig. 21: System screen shot 

3.2.1 System Domain 

The system has two different associated music genres and MIDI formatted disco and techno music (" Stayin' 
Alive" by the BeeGees and "Max don't have sex with your ex" by E-Rotic) are used to guide the user through 
the dance sequences. The music tempo is altered (the tempo is halved if the user's rhythm is incorrect) 
according to the closeness of match of the user's dance rhythm to that of the system's training. Slowing the 
music is both an easy metric for the user to recognize and it is also a motivating factor for the user to dance back 
into rhythm and hence re-normalize the music tempo. The background CG (computer graphics) scene consists 
of multi-coloured balls that simulate the projected light off of a disco ball. See figure 22 for a scene snapshot. 
If the user's rhythm is incorrect, then the balls disappear from view. This background CG compositing is very 
simple but it is motivation for further development in this area. For instance, the atmosphere of the dance 
system would be greatly enhanced if there was background videos (ex. other virtual dancers visible to the user) 
and background images (ex. a dance club scene image) also interfaced into the system. 

The word "rhythm" has a very broad meaning and hence the classical view of musical rhythm is slightly 
different than the one used in this study. Rhythm is assumed to mean measured movement, as in dancing[19]. 
The goal is to estimate a user's dance rhythm, or measured movement, as compared to that of a skilled dancer 
rhythm. ¥Vith this in mind, a very simple method of the frequency analysis of measured movement is proposed. 
At each time instant, a BIN is calculated for each pair of adjacent frames. If there is motion in a pixel, then 
this fact will be reflected in the BIN and the number of "motion pixels" are counted at each time instant. 
Therefore, there is an associated number of pixels that experience motion for each pair of consecutive frames. 
This associated number is inserted into a "windowed" vector by a queueing (the newest value enters and the 



Fig. 22: System screen shot 

oldest value exits) data structure and therefore the vector is kept at a constant length. This length is set at 
300 values as this is approximately the minimum amount of data needed to get an accurate dance frequency 
representation for the particular training data used. At each time instant, the MEM transform is taken of this 
vector in order to map the windowed time series into the frequency domain. A frequency difference measure (as 
described later) is calculated by comparing the frequency of the characteristic peaks of the live video sequence 
to those of the training dance sequence. 

One advantage of this simple rhythm estimation method is that the relative magnitudes of motion have 
no effect on the analysis (of course the power spectrum magnitude changes but the respective characteristic 
peak frequencies are the same). Instead, the rhythm is formed by changes in the dancer's motion that result in 
changes of the motion time series. For example, if the dancer's hips are swaying back and forth, then the time 
that a left movement direction changes to a right movement direction results in a timeseries magnitude change 
(in this case, a minimum value). For the image sequence illustrated by figure 23 one can see the resulting time 
series in figure 24. Note that the graph minima correspond to direction changes in the dancer's motion. 
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 Fig. 23: Frames 2475, 2485, and 2497 in motion direction change example 
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Fig. 24: 1-fotion time series for image sequence represented by figure 4 



Hence, the proportions (body size, clothing styles, ect.) of the live dancer and those of the training sequence 
dancer need not be the same nor normalized. This also enables the possibility of multi-user functionality. If 
there is two people in the studio and they are both moving in rhythm as compared to the training dancer, then 
there is no difference (in terms of frequency analysis) than if there is only one person in the studio dancing in 
rhythm. 

There may be a more robust way to estimate the dancer's motion or motion direction change. For example, 
it may be possible to use the MRI (as described in section 2.1) to calculate the times of motion direction change. 
This time would correspond to the maxima of the derivative of image motion change. It is not immediately 
apparent how this analysis could be carried out. 

3.2.2 Training Data 

The system is first trained with the rhythm of a skilled dancer in order to provide feedback on a dancer's 
rhythm. Ekaterina Saenko (from the University of British Columbia) provided the dance sequences for the 
training disco and techno dance style data. Ekaterina has studied dance for over 10 years and she is very skilled 
in both classical and modern dance. She performed two sequences of typical disco and techno dance styles. 
Underlying both performances is a constant body rhythm (usually achieved by swaying hip movement) and 
relatively simple arm and leg movements. See figures 25 and 26 respectively for examples of disco and techno 
dance rhythm sequences. 
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Fig. 25: Examples of disco dance sequences 
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Fig. 26: Examples of techno dance sequences 

The complete time series (whole video) of motion change values is transformed into the frequency domain 
and the peak frequency values are calculated. These values arc used in the live studio rhythm processing 
system. Figure 27 shows the characteristic peaks of the disco and techno dance sequences. 

3.3 Frequency Analysis 

Although the Fast Fourier transform (FFT) is a frequently used tool for frequency analysis, other methods of 
analysis often prove to be more useful than the FFT[20]. In this study we chose to use a method called the 
Maximum Entropy Method (MEM). The FFT (figure 28) was used to do a similar analysis to that of figure 
27. 

The frequency peaks are harder to identify in figure 28 than those in figure 27. The FFT power spectrum 
of any real-valued time series function, c(tk), is represented by: 



ヽ,10 
4.5,-,-

口
3.5 

5

2

 

9-

•
』
-
＆s
』
O
M
O
d

1,5 

0.5 

ヽ
＼
 

ー

＼
 

ー

I

I

 

I

I

 

I

I

I

I

 

．`
 

9
.
,＇ 

9

1

 

,
 

•. 

_．̀' 

1

1

9

 

ー

9

'`,'＂` 

9

9

 

9
ー

9

9

 

9

9

 

9

9

9

 

1

9

 

I

I

 

．
~
ー

ー

ー

I
 

A
ふ

＼
 

＼
 

＼
 

＼
 

¥,＇ 

＼
 ｀
 

ー

ー

。。
0.02 0.04 

’’‘ ← 

0.06 0.08 0.1 0.12 0.14 0.16 0.18 
Frequerc,• 釦,... 叩~g 而ervel

0.2 

Fig. 27: Computed frequencies for disco and techno musics 
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Fig. 28: FFT computed frequencies for disco and techno musics 

P(f) = I f c(tk)e2rrikf△ 2 

k=-oo 

where f contains the frequencies in the Nyquist range, -fcく f< fc, and△ is the time domain sampling 
interval. A common approximation to equation 1 is: 

(g) 

P(J) = I尺心）e2叫 f△ 2 

k=-N/2 

but it often turns out that equation 1 is approximated better by: 

(10) 

P(f) = 
a。

M 2 

1+区akeZrrikf△
k=l 

(11) 



Equation 3 is called the MEM and to solve it, the values of ak, k = 0, 1, ... , M need to be found. The 
difference between equations 2 and 3 is that equation 3 can have poles which provide accuracy when the power 
spectrum has sharp peaks. Equation 2 can only approximate the spectral peaks of equation 1 by finding the 
zeroes of the polynomial and not the poles[20]. 

Linear prediction theory provides the values of a0 and ak, In classic linear prediction, one wants to find 
the next value of M consecutively linearly spaced points of data Yi・The linear prediction formula is: 

M 

珈＝区 di釦—j +xn 
j=l 

where Yn is the magnitude of the data point Xn and the linear prediction (LP) coefficients, dj, are found 
using autocorrelation: 

1 
N-j 

¢; :::::J戸 区 叫i+j

i=l 

and: 

M 

伽=I: 虹 kJdj
j=l 

where k = l, ... , M. The values of the ak values in equation 3 are obtained from the LP coefficients: 

ao = xrns ak = -dk 

where xms is: 

は〉三 xms=¢。— ¢1d1 -¢ 心—... -¢ 叫 M

3.3.1 Frequency Distance Measure 

(12) 

(13) 

(14) 

(15) 

(16) 

The closeness of fit between the training and the test data power spectrum vector is measured once the power 
spectrum of the windowed time series data is computed. More specifically, the goal is to measure the similarity 
of the training and test characteristic spectral peak frequencies and hence the use of various normality tests, 
like correlation or the Kolmogorov-Smirnov test which measure the similarities of the whole data set, are not 
adequate. Therefore, a specialized power spectrum vector distance measure is used. 

The characteristic peak frequency values (cpfv(j) where j = 1, ... ,P and pis the number of characteristic 
peaks of the training data) of the training data are calculated before run-time. The test data power spectrum 
vector is partitioned into n (the optimal value of n is determined during the training phase but this could be 
done automatically during the test phase run-time) segments during execution. The corresponding frequency 
value of the maximum power spectra of the test data for each segment is saved in a vector, datapeakfreqs(i) 
(where i = 1, ... ,n). For each value of cpfv(j), the vector datapeakfreqs(i) is searched for the smallest 
difference, divdif J(j), between the particular value of cpf v(j) and each clement of datapeakf reqs(i). All the 
values of divdif J(j) are added to give a total difference measure, totdif J, for all the characteristic peaks of 
the test data as compared to the those of the training data. Pseudo-code for this distance measure technique 
is indicated in figure 9: 



initialize totdifj and divdij J(j) to 0 
segment test data power spectrum into n parts 
for i = 1 ton, 

save frequency of the maximum power spectrum value of segment i in datapeakfreqs(i) 
end 
for j = 1 top, 

divdij j(j) = maximum floating-point number 
for k = l ton, 

end 

if ldatapeaks(k) -cpfv(j)I < divdif f(j) 
divdijj(j) = ldatapeaks(k) -cpfv(j)I 

end 

totdif f = totdif f + divdif J(j) 
end 

Fig. 29: Pseudo-code for distance measure 

3.4 Problems and Improvements 

The system described here is still work in progress and hence there are several inefficiencies. The first deals with 
ambiguities such as what exactly is the rhythm of dance and what types of dance the choice of this definition 
applies to? It is agreed that the definition of image rhythm adopted here is not the only one available. This 
type of rhythm analysis is dance specific. The styles of dance are so numerous that it is uncertain whether or 
not a unified dance rhythm analysis method is possible or even sensical. 

The rhythm analysis algorithm computes in real-time (at about 30 Hz) but the actual response of the system 
to the dancer's motion has a delay associated with it. This delay corresponds to the time for a data value to 
propagate through the windowed time series of pixel motion values. The system would be more effective if this 
delay was negligible. Furthermore, in theory it should be possible to obtain more rhythm information than a 
single distance measure value. With a small change in the distance measure algorithm it would be possible 
to differentiate frequency values that are greater or smaller than those of the training data. This would make 
it possible to provide more detailed feedback (decrease or increase the speed of the music) to the user but in 
reality, the algorithm is not precise enough to do this. 

The training data is very specific and hence the system works best when the user imitates this dance style 
exactly. Ekaterina maintains a fairly constant rhythm throughout her dancing although there are periods when 
changes in rhythm happen (ex. when she tires and stops or slows down momentarily). The training data would 
be more robust if a more strictly controlled dance sequence is used. 

4 Conclusion 

Three analysis techniques for video rhythm and motion analysis are presented. First, spatial frequency analysis 
is proposed to determine the composition of an image or series of images. With this method it is demonstrated 
that it is possible to distinguish between two different movies. It is also shown that close-up and long camera 
shots can be recognized in ideal conditions. Second, dance motion is analyzed by two contrasting methods. The 
motion is first analyzed physically by an optical flow and principal component analysis technique. Next, the 
motion is analyzed by a subjective psychological experiment and principal component analysis. The resulting 
physical and psychological principal components arc compared in order to derive a relationship between people's 
emotionals as produced by dance and physical analysis. A relationship showing the correspondence between 
the physical and psychological analysis seems to be evident. Lastly, a real-time system used for the estimation 
of dance rhythm is described. The user is guided through a dance sequence and subsequently receives feedback 
as to their dance composition as compared to that of a trained dancer. The user receives indirect feedback in 
the form of audio (musical tempo change) and visual (the presence or lack of a CG background). The system 
estimates the user's dance rhythm by using BIN pixel change information and a windowed MEM frequency 
method. 
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