
TR-M-0037

Movie Graph GUI

グレゴリ モリ

Gregory MORI

鈴木良太郎

Ryotaro SUZUKI

1998.8.14

ATR知能映像通信研究所

ATRテクニカルレポート表紙

［公開］

Movie Graph GUI

Gregory Mori, Ryotaro Suzuki

ATR Media Integration & Communications Research Laboratories

Introduction

The work that was done here at ATR involves a system for representing multimedia

structure, and construction of multimedia compositions. The basis for this work is the

Movie Graph data structure; it allows for the representation of a multimedia structure

in a visual format that is easy to understand. The sub-systems that were worked on

include the Movie Graph GUI, a program that allows creation and editing of Movie

Graph structures in a visual way, the Component Database, which is a database for

storing components that are used as data points within Movie Graphs, and finally the

Movie Graph Distance, a way of measuring the difference between two Movie Graphs.

Figure 1 shows how the system fits together.

Figure 1

META SCRIPT

MOVIE GRAPH
GUI

MOVIE GRAPH RAW SCRIPT

Movie Renderer

CONTENTS ATTRIBUTES T MOVIE CON

MULTIMEDIA DATABASE

Movie Graph GUI

Introduction

A Movie Graph is a representation of the structure of a multimedia composition.

It allows simultaneous presentation of both the components in the composition and the

timing layout of these pieces. The Movie Graph GUI is designed to allow simple editing of

this structure. See paper for details on the structure ...

Functions of the Interface

The GUI is a modal interface. The current mode is displayed at the bottom of the

canvas holding the movie graph. In order to change the current mode, the user must click

on one of the buttons from the right hand side of the GUI. The possible modes are adding

mode, deleting mode, properties view mode, editing mode, reference mode, and content

viewing mode. In addition to the mode changing buttons, there are buttons to perform

saving and retrieval of movie graphs. It is not possible to open a movie graph, or create a

new one, unless the previous graph is closed.

Adding mode

In adding mode, the user can click on nodes currently in the canvas in order to add

new nodes to the graph. There are two ch01・ce selection boxes that affect the manner in

which nodes are added to the existing graph. One box determines what type of movie

graph node is added. The user can choose from among Movie, Define, Scene, Shot, and

Symbol node types. The second box determines where the new node will be added relative

to the node in the canvas that is clicked. If sibling is selected, the new node will be added

on the same level as the node clicked in the canvas. If child is selected, the new node will

be added as the first child of the clicked node.

Deleting mode

When in deleting mode, if the user clicks on a node in the canvas it will be

removed, along with all of its descendants.

Properties view mode

Properties view mode is used to display the numerical properties held in each node.

When a node in the canvas is clicked, its numerical properties are displayed in the text area

on the right hand side of the GUI. If the selected node references another node in the

graph, that node is highlighted in yellow.

Figure 1

悶MO¥,、ieGraph GUI 冒国Eli

Editing mode

Add Node

"oeiaie面函leI
. —•一1

LF.'!.QE塑空．竺堕~-~』
I

-Edit

Content file name: tit _...
Nodo nるmさ： T itl•
Chi Id number: 0
Node id: I
St,irt tiM: 5.0
Ourati on: 25 .0
Speed: 1. 0
Rさ心心さ： 0
臨peat: I
Gontent twe: ST I LL

記}函曇喜碕I

This mode is used to edit the aforementioned numerical properties of a node.

When a node in the canvas is clicked, a dialog box containing fields for entering the

numencal values appears. The type of dialog box that appears is dependent upon the type

of node that is being edited, since different classes of nodes have different properties.

Reference mode

In reference mode, a reference to a previously defined node can be added. The

GUI will first ask for the node to create the reference from, then the node to be referenced.

The user can cancel the addition of the reference by clicking on the properheslcancel

button.

Content viewin臼mode

This mode allows the user to see the content file of a shot node. A viewer based

on Java Media Framework (お1F)is launched, and the content file is played.

Storag-e of g-raphs

The current graph can be stored persistently (ObjectStore for Java is used) by

selecting the save button. The graph is saved under the name of the root movie node. A

new graph can be created, or an existing one opened for editing, only if no graph is

currently in the canvas. Select the close button to clear the canvas.

Metascript operations

A metascript representation of the current graph can be created by selecting the to

metascnpt button. A dialog box asking for the file to print to will appear on the screen.

In addition, one can read in a movie graph structure from an existing metascript file. This

can be performed if there is no graph currently on the canvas.

Description of Important Source Files

BufferedMetascnptReader.java

This class is an extension of BufferedReader that is used when reading lines from

metascript files. The reader skips lines that are denoted as comments (starting with'#'),

and those that are blank.

Dra wableNode.ja va

A DrawableNode holds all of the attributes of a node within a movie graph

structure. It also specifies how it is to be drawn, and the position at which it should be

laid out on the canvas. The DrawableNode also specifies how its attributes should be

wntten to and read from a metascript.

DrawableDeガneNode.i7va, DrawableSceneNode.java, DrawableShotNode.java, and

Dra wable$vmbo!Node.i7 va

These are all descendants of DrawableNocle, each specifying the attributes

particular to a certain type of node.

Dra wableMovieCn-1.phja va

This holds a complete movie graph, stored as a collection of DrawableNodes.

Various utility functions are also included, to allow addition and deletion of nodes, to find

maximum X and Y positions of nodes in the graph, and to find the node at a given position

on the canvas.

MovieGraphDisplay.ja va

This is the executable class. It sets up the GUI interface, adding appropriate

buttons and a canvas for drawing the graph. All events in the canvas are interpreted, and

the appropriate methods are called on the movie graph being edited.

NodeEdjt U'lndow.java

This class specifies how a particular node's properties are edited. A different

panel of text fields for entering properties is displayed depending upon the type of node

being edited.

How to compile

The source code is located in the directory ms7 4:/home/mori/MOVIEGRAPH・

FINAL. Run the script build_it to create the JAR file moviegraph.jar.

How to install

Required elements:

-moviegraph.jar binary file, an archive of all the Java classes necessary to run the

movie graph GUI

-Java interpreter, version 1.1.x

-Objectstore PSE version 1.2

The Java interpreter and Objectstore for windows95 can be found on mpc49 in

"c:¥compressed software¥'. Pseinstl20.exe and jdkll5-win32.exe are the files.

Place the moviegraph.jar file, and the necessary jar files from Objectstore in your

CLASSPATH environment variable. Moviegraph.jar must be referenced directly, eg.

lusrlxx,Ylmoviegraph.far.

To run the Movie Graph GUI, type Java MovieCraphDisplay [database name}.odb

Component Database

Introduction

The multimedia component database allows for the storage of different types of

multimedia-related components in an object oriented database. These components

may be retrieved by means of queries of component type, component properties and

their values, and by the presence of symbols. Symbols are attached to components in

the database, and can be used to represent properties that may or may not be present,

or may be present in differing cardinality, within the same class of component. One

example is emotion data; in this model, one component may have zero or more emotions

associated with it. Symbols can also be used to represent actors (or objects) within a

particular component. Two components of differing class may each have a symbol of

the same value. This could be the case with a movie clip and a sound clip that both

express the emotion happiness. A query to find components expressing happiness

would return both components.

Structure of the Database

In order to facilitate the types of query mentioned above, a variety of roots into the

object-oriented database area maintained. There are two roots that point to

hashtables, one hashtable is indexed by component class types (to allow queries by

component type), and the other is indexed by field names of components. For each

type of component in the database, one entry is made in the component class type

hashtable. This entry is a SimpleSet containing references to all components in the

database that are of this class. For every field name used by a component class type in

the database, there is an entry in the field name hashtable. This entry is a SimpleSet

of references to the aforementioned Simple Sets of components in classes using this field

name. Note that the same field name may be repeated by different component class

types.

In addition to the two static roots, there is a root for each type of symbol (such as

ActorSymbol or EmotionSymbol) that is used by a component in the database. These

roots point to hashtables that have one entry for each different value that a symbol of

that type takes in the database. Each of these entries is a SimpleSet that holds all

components in the database that have attached to them a symbol of that type takrng

that value. See figure 1 for a picture of the database.

Figure 1

ALL_ROOT

Components

FIELD_ROOT
HT

Sounds

Symbo1Type1

Symbo1Type2
HT

Location of Files

The files for the component database are located on ms7 4, in the directory

/home/mori/jdkl.1.5/classes/componentDatabase

A jar archive of the files is located at

/home/mori/jdkl .1.5/classes/database.jar

Description of Source Files

Symbol.java:

A Symbol is an abstract class; subclasses of Symbol are used to represent

specific types of optional properties that may occur in components in the database.

ActorSymbol.java:

An ActorSymbol is a Symbol that represents a role in a component, and the

actor (i.e. person or object) cast into that role. Both the name of the object and the

casting are stored as strings within the ActorSymbol.

EmotionSymbol.java:

An EmotionSymbol is a Symbol that represents an emotion that is conveyed by

a component in the database. It has only one field, the emotion name, as a string.

ComponentDatabase.java:

This object represents a component database. A ComponentDatabase may be

created from a filename that contains an existing database, or a new database may

be created by passing an empty string to the constructor. Once created, a number of

operations may be carried out, including insertion and deletion of components,

modification of the symbols of existing components, printing the contents of the

database, and searching for components by the methods mentioned in the

introduction. Refer to the comments in the code for details on exactly how the

structure of the database is maintained for insertion and deletion operations.

DatabaseComponent.java:

A Database Component is the abstract class of objects that may be stored in a

ComponentDatabase. Classes that are to be stored in the database must implement

the abstract methods outlined by this class. In particular, the addSymbol and

removeSymbol methods are listed here so that the roots of the database may be

properly updated when symbols are changed. Updating symbols is done by calling

methods in the ComponentDatabase class, which in turn calls the protected

addSymbol and removeSymbol methods.

There is also the facility to provide a GUI display for editing the contents of

the component. This editor can be used by a GUI system to provide for the editing of

different kinds of components. Sample DatabaseComponentDisplay classes are

given in /home/mori/jdkl.1.5/classes/databaseGUI.

PictureDatabaseComponent.java:

An object that is used to store all of the properties associated with a still

picture, such as the title, an explanation, and other properties.

PictureSize.java:

Used to represent the dimensions of a PictureDatabaseComponent.

ShotDa tabaseComp onent.j a va:

A representation of a multimedia shot. It could be a movie, a picture, or a

sound. A generic representation of the possible prnperties of a shot.

SimpleSet.java and SimpleSetitem.java:

A SimpleSet is used to represent a set of SimpleSet[tcms. し1sedso that the java

objects may be made persistent..

Usage of Database

Objectstore PSE 1.2 and java 1.1.x are required to run the component database,

identical to that specified in the MovieGraphGUI documentation.

A component database can be used by means of the simple GUI contained in

/home/mori/jdkl.1.5/classes/databaseGUI

A driver program to run that GUI is located at

/home/mori/jdkl.1.5/classes/drivers/RunGUI.class

The usage isjava RunGUI

A battery of drivers is located in the aforementioned directory, and two other useful

drivers, one for printing a listing of all the components in the database (PrintContents)

and one for printing a debug listing that is more representative of the structure of the

database since all roots are included (PrintDatabase) are stored there. The usage is

the same for both of them, Java Printxxx databasename.odb.

Additional features may be added to the database by adding methods to

ComponentDatabase.java, then adding driver programs, or GUI access, to run the

methods. After modifying ComponentDatabase.java, run the script bwld_jt, which is

located in /home/mori/jdkl.1.5/classes. The script bwld_it will overwrite the jar

archive with a new one.

Movie Graph Distance

Introduction

A仕erconstructing Movie Graphs using the Movie Graph GUI, or by other means of

creating metascript files that describe Movie Graphs, we would like to be able to

measure the amount of similarity between Movie Graph structures. It is difficult to

define what is meant by similarity; there are many ways to compare two graph

structures. The method chosen has some degree of flexibility in it, some definitions

may be changed to allow for different meanings of similarity. For example, the

distance measuring can be tuned to look for sub-graphs, returning a high degree of

similarity when one of the graphs analyzed is a sub-graph of the other.

Description of Method

The method for comparing Movie Graphs is based upon the notion of an axis within a

graph. An axis is defined as the set of children of a particular node. In the case of

Movie Graphs, there is an inherent ordering to the nodes in an axis, but this ordering is

not a necessity for graphs to be measured under this distance function.

Figure 1

Gamel

Title

豪.Back匹 und

21:: し

■, Km:rer, BEACHaod3GM

und

End
．． s五・..
:'L;)

In the sample Movie Graph (Figure 1), examples of axes include the set {Define, Title,

Dining, End}, the set {Banana Boat, Girls_Middle_Shot, Girl_Zoom_Shot}, and

{Background, Foreground}.

Given two Movie Graphs (or any two graphs in general), and a distance function that

compares two axes, the Movie Graph Distance is defined to be a matching or an

assignment between the axes of the two graphs that minimizes the sum (may be a

weighted sum of some variety) of the distances between all of the pairings of axes. In

practice, the two graphs being compared do not necessarily have the same number of

axes, so the distance function must be able to compare an axis to a null axis.

In the simple case of a straight sum of the distances between axes, we end up with an

Assignment Problem to solve. There are two sets of n axes (fill the smaller set of axes

with null axes to pad to the size of the larger), and n/¥2 costs (differences) in making

assignments between an axis in the first set to an axis in the second set. Each axis in

the first set must be assigned to exactly one axis in the second. This version of the

Movie Graph Distance is in fact a metric, providing that the distance function used to

compare two axes is also a metric.

s • II

1mpleMGD = MJN(L d A B i=l (i'CJ(i)))
CJES(11)

d is the distance function between two axes
A・th . . = l axis of graph A

B; = /'axis of graph B

n is the number of axes in the larger (in terms of number of axes) of the two graphs

In the second version of the distance, we try to take into account parent-child

relationships amongst axes. When making an assignment of one axis al (make real

a-sub-1) in graph A to another axis (b-sub-1) in graph B, we consider the assignment of

the parent of axis asub 1. This pair of assignments is considered best if the parent of

a-sub-1 was assigned to the parent of b-sub-1. Penalties to this assignment (reflected

by an increase in cost) are imposed if the parent has been assigned somewhere else.

The specific cases implemented by the second ¥・ersion of the Movie Graph Distance are

(in increasing order of imposed penalty) direct parent, upper (the parent of asub 1 was

assigned to some axis that is an ancestor of b-subl, but not its parent), unrelated (not

an ancestor, but not a descendant either), and lower (a descendant of bsubl). In

Figure 2, when Axis A is matched with Axis B, the labels on the axes of the graph on

the right specify the parent-matching case that occurs if Parent is matched to each of

the other axes in the right-side graph.

Figure 2

Upper

Parent DP Unrelated

Axis A Axis B

Lower

By adding in this additional consideration of the structure of the axes within the graph,

we end up with a distance that reflects the structural differences more emphatically.

It is possible to measure these sorts of structural differences exclusively by defining the

distance function to be identically equal to some constant, thereby ignoring the actual

contents of the axes, and focusing entirely on the parent-child relationships.

This second version of the distance is represented in a linear programming type of

problem; there is a function to minimize under a set of constraints.

give the equation of the function to minimize, plus some sample constraints

Function to minimize:
II II P-C _CASES

II Id(A;,B)*A(i,j,k)
i=I j=I k=I

Subject to the constraints:
11 P-C_CASES

vi E {l..n}, I IA(i,j,k) = I
j=I k=I

11 P-C_CASES

VjE{!..11},I IA(i,j,k)= I
i=I k=I

A(i, j, k) is an entry in a :3-d matrix representing the assignment between axis i in

graph A and axis j in graph B, subject to parent-child condition k

These two sets of constraints specify that each axis in graph A should only be assigned

to one and only one axis in graph B.

There are also 4が equationssimilar to:
P-C_CASES

直 jE {1..n} LA(p,j,k)+ LA(i,n,l)~1
k=I nechildren(A)

The axis numbered p in graph A is the parent of the axis numbered i. There are 4

different types of equations like this (one for each parent-child case). Each of these

equations uses n2 different combinations of i and j.

These equations specify that the parent-child case must be adhered to (i.e. the "upper"

case must only be used if the parent of the axis in graph A really is assigned to an axis

that "upper" of the axis in graph B).

The Distance Function Used

The distance function used is:

J# repeated(x)-# repeated(y)『，TYPE(x)=symbol/¥ TYPE(y) = symbol

d(x,y) = i IMPORTANCE(x) + IMPORTANCE(y),x = null v y = null v (TYPE(x)-:f::. TYPE(y))

TF*ND + (TF -If, TYPE(x) =shot/¥ TYPE(y) = shot

The "type" of an axis can be either null (null), all symbol (symbol), or a mixture of shot

and symbol (shot).

IMPORTANCE(x) = IMP _FACTOR*

l(REPEAT CONSTANT*#
3

_ repeated(x)) +

PARALLEL_ IMP_ FACT* SMOOTH_ IT(deptlz(x))* (SHOT_ CONST*# slzots(x) + SCENE_ CONS7

TF= I+ ALIGN_FACTOR*IALIGN(x)-ALIGN(y)I

The alignment of an axis is either I or 0, representing sequential vs. parallel alignment

of shots, one of the most important distinguishing features of a movie graph.

ND= SCENE_ FACTOR*!# scenes(x)-# scenes(y) + LENGTH_ FACTOR* length(x)-length(y)I

The distance function used may be easily changed by modifying the function

computeDifference. If only a change in the values of constants used is required, the

constants text file may be edited.

How to Interpret the Output

The output that is returned by the Movie Graph Distance consists of a number

representing the distance (minimum assignment), and the flow (or assignment between

axes) that accomplishes that minimum distance. A single distance number by itself

has little meaning; it is the comparison of differences between one input movie graph,

and a battery of known movie graphs that holds more meaning. By looking at the

rankings of the known graphs that are closest, or the relative differences between them,

one can obtain an understanding of the nature of the structure that is being analyzed.

Software

How to use the svstern

The main program is called MovieGraphMetric, and requires four parameters -the

names of two metascript files that represent the two Movie Graphs to be compared, and

the names of two files for the output of the program, the first for the simple assignment

problem, the second for the linear programming problem. There is a fifth, optional

parameter, the name of a file from which to load constants. This file contains entries

on a row by row basis, parameter name, and value. An example parameter file is

given at:

c:¥Program Files¥DevStudio¥MyProjects¥metric¥constants.txt.

Files produced:

After running the program, two output files are created. One contains the data for the

assignment problem, stored in DIMACS format for graph problems. The second is a

linear programming problem, a system of equations, and an objective function to be

optimized. Both files contain a comment at the top that gives a listing of the axes of

the two graphs being compared, a key to reference the axes by number in the problem

notation.

Once these problem files have been created, a solver must be run to produce an answer

to each problem. These solvers are located on ms 18.

For the standard assignment problem:

The software for the solver is located in rnslS:/home/mori/CSAS/CSAS/

Run the program csa/prec_costs/csa_s to solve an assignment problem. This prngram

reads from the standard input stream, so redirect input to come from the assig・nment

problem file created my MovieGraphMetric. Summary information on the result will

be printed to the standard output stream. The file output.flow is also created; it

contains more detailed information --the exact assignments between axes which were

made.

For the linear programming problem:

The software for the solver is located in msl8:/home/mori/solvers/lp_solve/lp_solve_2.0/

Run the program lp_solve to obtain a solution from one of the linear programming

problem files created by MovieGraphMetric. Input should be redirected to read from

the problem file in question, and output should be redirected to a file as well. The

solution will be very long in most cases. The first line of the output will have the

distance on it. The following lines will have linear programming variable names, and

their values when the optimal solution (the distance) is obtained. The variables of

note are those with value 1. Those with value 1 represent an assignment, those of

value O represent no assignment. Use the UNIX command grep to find the lines with

single ls on them. Variables are named xnymzp. This represents an assignment

between axis n of graph 1, and axis m of graph 2. The zp portion refers to which of the

parent assignment cases occurred.

Samples

The sample constant file subgraph-constants.txt contains a set of constants that can be

used in detecting sub-graphs. The major thing that is changed by this constant file is

setting the importance of any axis to 0. vVhen an axis is compared against a null axis,

the importance of the non-null axis is the difference. By setting all of these values to

zero, we tend to look for a sub-graph. If graph A is a sub-graph of graph B, the Movie

Graph Distance between the 2 graphs will be zero. If A is very close to being a sub-

graph of B, a distance slightly higher will be returned. A set of sample data is kept in

msl8:/home/mori/movie-graph-distance/samples/subgraph

Two useful script files are also kept in sub-directories there, asn/solve_asn and

lp/solve_lp. These scripts take an .asn and .lp file as a parameter respectively, and

redirect the output and interesting information to a pair of output files.

Location of Files

The files for MovieGraphMetric are stored on mpc49, in:

c:¥Program Files¥DevStudio¥My Projects¥metric¥

There is a Developer Studio workspace file, metric.dsw in that directory.

