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Abstract 

In this paper7 the general formula of Bayesian model for stereo matching algorithm is 
derived and implemented with simplified probabilistic models. The probabilistic models 

are independence property between the neighborhood disparities in the configuration7 
and similarity of disparities in adjacent neighborhood. The formula is the generaliza-
tion of Bayesian model of stereo matching7 and can be changed into the some forms 

of Bayesian model of stereo matching according to the probabilistic models in the dis-

parity neighborhood system or configuration. A nd7 this paper performed two kinds of 
experiments. One is the comparison of the performance between the proposed algo-

rithm and the other algorithms7 such as the conventional Bayesian algorithm [? 7 ? } 
and block-based squared sum algorithm. The other experiment applies the multiple 
view stereo images to the proposed algorithm of Bayesian model. According to the 

experimental results, we can conclude the following facts. The first is that the derived 
formula is the general form and can be changed into the some different forms based 

on the reasonable probabilistic assumptions. The more accurate is the assumed prob-

ability model, the better disparity map can be generated with this formula. And, this 
Bayesian model can be developed with various probabilistic model and configuration. 

The second is that it is very important to generate the initial energy space in Bayesian 

model of stereo matching, so the multiple stereo images are useful for the estimation 

of the better disparity map. 



1 Introduction 

Stereo matching is to estimate the disparities between stereo images, which are gen-
erated from slightly different viewpoints respectively. Stereo matching generates the 
three dimensional scene structure, disparity map, from the two dimensional stereo 
images set. In order to estimate the disparities between stereo images generated from 
different viewpoints, various algorithms have been proposed. The sum of squared 
differences(SSD) algorithm searches for the disparity based on the region. This algo-
rithm calculates the squared difference of intensity in stereo images and sums it in 
the region. Based on this summed difference, it finds the disparity of the minimum 
summed difference. This algorithm is simple to implement and has an advantage 
to apply the various post processing in order to reduce the errorneous disparities. 
However, this algorithm is very dependent on the size of region and suffers from the 
blurring of the boundary in the disparity map. The gadient based algorithm [?, ?] is 
based on the idea that the same intensity or color in image may look different corre-
sponding to the visual angles. Due to this misunderstading of human visual system 
and camera imaging system, the measure based on the intensity or color difference 
may be incorrect at some angles of viewpoints. This paper proposes the measure of 
matching as gradient based quantity. This algorithm chooses the disparity with most 
similar gradient of intensity in the stereo images. In this algorithm, it is du缶cult
to find the correct disparity in the images to vary uniformly. The diffusion based 
algorithm is based on the diffusion equation of energy function. That id to say, the 
gradient of energy function in time domain is equivalent to the Laplacian of the energy 
function. With this diffusion equation, the energy function is diffused iteratively and 
the disparity of minimum energy is selected. Since this algorithm is linear function, 
some of nonlinear adaptivity have been proposed. And, there are many algorithms 
to be combined with the above indivisual algorithms. 
In this paper, we consider the Bayesian model of stereo matching. This algorithm is 
based on the probabilistic model in order to find the disparity. Given stereo images 
set, this algorithm searches for the disparity which has maximum probability. Also, a 
new probability distribution, Gibb's distribution, is introduced to evaluate the prob-
ability of disparity, since it is difficult to evaluate the probability directly. 
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This paper consists of six sections. In section 2, we will survey the basic theory 
of Bayesian model for stereo matching. The section 3 derives the general formula 
of Bayesian model for stereo matching, and derives a prctical formula based on the 
probabilistic assumptions. In the section 4, a proposed algorithm is described. The 
experimental results are shown in the section 5, and finally, we conclude the proposed 
algorithm and experimental results in the section 6. 
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2 Bayesian Model of Stereo Matching 

In the stereo matching to estimate the disparity map between the stereo images 
generated from different viewpoints respectively, the starting point is to maximize 
the conditional probability of disparity given stereo images. 

maximize p(D I {I}), {I} = { IR, IK, K =integer}. (1) 

In eq. (1), the symbol {I} is the stereo image set and this set is ususally composed 
of two images, left and right viewpoint, respectively. IR is the reference image to 
compare with the other images in the stereo image set. The symbol Dis the disparity 
map of the stereo image set and describes the three dimensional structure between 
the stereo images. Before maximizing the conditional probability, however, the main 
problem of stereo matching is how to calculate the conditional probability given only 
stereo image set. Therefore, we need a new measure to transform an available measure 
into probability space measure. The Gibb's distribution is the probability distribution 
whose random variable is related to the energy dimension. 

p(x) = C exp {—喜} • (2) 

In the Gibb's distribution, the symbol E(x) is the energy of the random variable x 
and can be obtained from some functions of x easily. In other words, the Gibb's dis-
tribution is a kind of measure to transform the energy space into probability space[?]. 
Now, we can consider the probability space as energy space with the Gibb's distribu-
tion, and, construct the one to one mapping between the two spaces. By transforming 
eq. (1) with the Gibb's distribution such as 

p(D I {I}) ex: exp{ -E(D I {I})}, (3) 

we can also define the Bayesian model of stereo matching as another expression. 

minimize E(DI {I}). (4) 

In the energy space, we generally construct measures which are related to the error 
energy. Therefore, we should minimize the energy in order to maximize the trans-
formed probability. By the Bayesian rule in the probability theory, the conditional 
probability p(D I {I}) can be expressed as 

p({I} I D) p(D) 

p({I}) . 

Since p({I}) is the given and fixed probability, I can consider the only numerator 

in eq. (5), 

p(DI {I}) - (5) 
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p(DI {I}) 改 p({I}ID)p(D). (6) 

By transforming the probability eq. (6) into the energy space based on Gibb's distri-
bution, we can obtain the energy equation which is composed of two energy measures 
dereived from the intensity based measure model and disparity based similarity model, 
respectively. 

E(D ¥ {I}) ex E({I} ¥ D) + E(D) (7) 

In eq. (7), the first term means by the error energy due to the intensity di:fferneces 

given disparity map, and it can be calculated as follows. 

E({I} ID) =区 Pi(IR- IK(D)). (8) 
I廷 {I}

Where, IK(D) is the translated IK by the disparity map D, and Pi(・) is the measure 
function to construct the energy, and Pi (x) =丑isthe usual case. In the case of square 
function as measure function, however, the Gibb's distribution becomes Gaussian 
distribution and this is too special case. This paper uses the contaminated Gaussian 
energy measure which generalizes the energy measure between Gaussian and Dirac 
Delta distribution. 

叫）＝ーlog((1一叫exp{—~} + Ei) (9) 

By adjusting the parameter Ei from Oto 1, we can obtain the distributions between 
Gaussian and Dirac Delta distribution. If the parameter is zero, the transformed 
distribution, which results from transformation of energy measure by Gibb's distri-
bution, becomes the Gaussian distribution. Also, if the parameter approach unity, the 
transformed distribution becomes convergent to the Dirac Delta distribution. And, 
in eq. (7), the second term is the energy measure of disparity map. This measure is 
based on the assumption that the disparity will distribute continuously in the image 
plane. That is to say, the disparity will be similar to that of adjacent neighborhood. 
The energy E(D) increases as the difference between adjacent disparities increases. 
This energy term has an important role in regularization of disparity ditribution in 
the diffusion process. The measure function of this energy use the contaminated 
Gaussian energy measure same as intensity based measure. However, in the case of 
disparity based measure, the contaminated Gaussian has an important effect on the 
convergence of diffusion and boundary spreading problem of generated disparity map. 

Pd(x) = -log ((1 -E砂exp{—三}+ td) 
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In summary of eq. (7), there are two error energy measures in the Bayesian model 
of stereo matching, one is the intensity based error measure and the other is the reg-

ularization model based on the assumption of continuous disparity distribution. 

In next section, we derive the general equation of the Bayesian model for stereo 

matching in the image plane. The equation means by the procedure such as cal-

culation of the error energies, transformation into probability, and searching for the 
maximum probability or minimum error energy. 

3 Derivation of the General Formula of Bayesian 

Model 

In this section, we derive the general formula of the Bayesian model for stereo match-
ing in the image plane. Before deriving the general formula at a position (i, j) in 
the image plane, however, we first need to introduce the concept of energy space in 
stereo matching. There are two approaches in estimating the disparity from the error 

measure, point oriented and displacement oriented algorithm. In the point oriented 

algorithm, the error energy is aggregated in the fixed block over a certain disparity 
range, and the disparity of minimum error energy is selected. Finally, some post 

processings are executed in order to reduce the false disparity. The displacement ori-

ented algorithm, on the other hand, calculates the pointwise error energy over the all 

disparity range, and searches for the minimum energy through the disparity range. 
In the step of error calculation, 3 dimensional energy space is constructed. This 

is shown in Fig. 1. At each point (d, i, j), the error energy is precalculated and it is 
used and updated iteratively with the derived diffusion equation later. This paper 

uses the displacement oriented stereo matching algorithm. 

3.1 General formulation of Bayesian Model 

Let the disparity at the position (i, j) in the image plane be di,j. We consider the 
pointwise energy E(di,j) in the energy space. And according to Markov Random 

Field(MRF) theory, it is proved that it is possible to estimate the disparity of a 
position, if all of the joint distributions between neighborhood disparities are known 

in advance. In order to calculate the similarity between neighborhood disparity, we 

have a basis on MRF theory. Therefore, the probability to be maximized becomes 

the conditional probability given stereo image set {I} and neighborhood disparity 
set. Let the configuration of neighborhood disparities be N, and disparity vector be 
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Figure 1: Energy space of displacement oriented approach 
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dN, which consists of the disparity elements in the configuration N. The problem of 
stereo matching based on the MRF theory is as below. 

m切imizeE(di,j I {I}, dN), or, maximize p(di,j I {I}, dN). (11) 

As described above, the energy function to be minimized can be composed of two 

measures. The first is the intensity based error energy measure given disparity map 

and the second is the disparity based similarity measure given the configuration N, 
or, neighborhood disparity vector dN. One is the error energy measure in the image 

plane, and the other is the regularization measure of the disparity space. The former 

is the energy of error signal given the disparity set for stereo matching, and can 

be characterized by the intensity of the stereo image set and disparity map. The 

latter is the energy function in order to consider the similarity between neighborhood 

disparities based on the continuous distribution of disparity in the image plane. The 

intensity based error E。（加） is calculated with stereo image set {I} and the disparity 
d--i,J" 

1 
恥(d叫= L Pi (IR (i, j) - I K (i, j + di ,j)) (12) 

叫{I})-1 
I咋 {I}

In this paper and our experiments, we assume the stereo images have a epipolar 

geometry. So, we have to consider only one component of coordinate system in 

each pair of images to be compared. The energy function for similarity of disparity, 

E(di,j I dN) is 

E(di,j I dN) =区 Pd(di,j-d叫. (13) 
d咋 N

With the two measurements equations, eq. (12) and eq. (13), we can construct the 

energy function at di,j in the energy space based on eq. (7), 

E(di,j I {I}'dN) = E。(di,j)+ L Pd(di,j―d砂 (14) 
dnEN 

In eq. (14), since the image set {I} is given and fixed, we can consider only the 

configuration condition in the probabilistic manipulations. In other words, it is no 

loss in generality to dealing with the conditional probability, p(di,j I dN). In order 

to obtain the probability distribution from the energy function, we apply the Gibb's 

distribution to the energy equation. Since the Gibb's distribution is the probability 

measure of the energy function, it transforms the energy space into probability space. 

we rewrite eq. (14) as 

p(di,j Id」v) Po(di,j) IT exp { -pd(di,j -d叫｝．
dnEN 

(15) 
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By the probability theory, the probability of di,j can be obtained by integrating the 
above conditional probability over the joint probability distribution of all configura-

tions in the neighborhood system, 

p(加） = L p(di,j I dN)p(d砂
all dN 

In eq. (16), p(dN) is the joint probability distribution of disparities in the same 
configuration. The symbol all dN means by the all configuarations to be available 

at di,j. These configurations may be changed corresponding to a position di,j in the 

energy space. Let the all <lN define as 5, the super set of sets which consists of all 

configurations of neighborhood disparities with respect to di,j・Also, let n(S) be the 

number of the elements in the super set S. 

(16) 

S ={NI N: configuration of neighborhood disparities at (i,j)} (17) 

Combining eq. (16) with eq. (15), 

p(d;J) = Po(d叫と[p(dA() II exp { -pd(d;,j -dn)) l・ (18) 
NES dnEN 

The probability space is useful for development of Bayesian model because of the 
Bayesian model is based on probability theory. However, the probability is unknown 

in practical situation, and it is also di缶cultto estimate the probability directly. we 
always estimate the probability indirectly from any other available measures and 

transformation. In this paper, energy measure and Gibb's distribution are used for 
the purpose. Eq. (18) can be transformed into energy function as before, 

E(d;,i)~E0(d,J) -log [>~{p(dN) ,,,,JL exp {-p,(d;,i -d砂}} l (19) 
Eq. (19) is the general formula of Bayesian model of stereo matching. With this 

formula, we can change the energy space iteratively, and find the most accurate dis-

parity after the diffusion is convergent. The intensity based error energy is calculated 

only once, and the joint distributions of the configurations are needed to diffuse the 

energy space. The distributions of the configurations have a dominant role in the 

diffusion process, and estimating the distributions is an important problem in the 

practical implementations. Now, we manipulate the eq. (19) using the ineq叫 ity

between arithmetic mean and geometric mean as follows. 
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L[; a, 2履， for all ak > 0. (20) 

Since each term of the summation operator in eq. (19) is positive, it is possible to 

apply this inequality to the general formula. we can obtain an inequality by manip-

ulating eq. (19) based on eq. (20) and, derive another general formula of Bayesian 

model for stereo matching. 

log [>~{p(dN)』exp{-p,(d;J―d砂｝｝］
> log [ n(S) n(S)凸{p(dN)』exp{-pd(d;,, ―d砂｝｝］

(21) 

- logn(S) + n(~) [>Jlog (p(dN)) + log {』exp{-Pd(d;J -d叫｝｝］］
- logn(S) + n(~) [>dlog (p(dN)) - d〗即(d;,J ―い｝］，
In order to calculate then(S), define the disparity range set, 1J, as the set of all the 

possible disparities, and the geometry set of the configurations, Q. This set consists 

of geometric structures of neighborhood in the two dimensional image plane. Fig. 

2 shows the various geometries of the neighborhood configurations. As mentioned 

above, it is possible to vary the geometry of the configuration as well as the disparities 

in the configuration. The n(S) is calculated as 

n(Q) 

n(S) = L [n('D)f(ふ），
k=l 

(22) 

where, ぷ isthe configuration with k-th geometry in Q. And, combining the eq. 
(19) with eq. (20), we can obtain the general formula of Bayesian model for stereo 

matching as follows. 

E(d,,;) SE。(d,,;)-!ogn(S) -n(~) [;;s { log (p(d,r)) d> pd(d,,;一い｝］
(23) 

，
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Figure 2: Examples of Geometry of Configuration 
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The eq. (23) shows the upper bound of the energy space at each point in the energy 

space. In the term Pd(di,j -d孔ofeq. (23), as the difference of disparity increases, 
the upper bound of the energy E(di,j) increases, and the corresponding probability 

decreases. On the other hand, if the difference decreases, the upper bound of energy 

decreases and the corresponding probability increases. This means by the regulariza-

tion of the adjacent disparities. In other words, the formula makes the neighborhood 

disparities smooth and the isolated disparity be similar to the neighborhood dispari-

ties. And, if the term p(dN) has a large value, the upper bound of energy decreases 

and the probability increases. Therefore, we should choose the configuration so as to 

make the joint probability distribution as large as possible. This paper will imple-

ment the general formula in the point of how to choose the configuration in order to 

estimate the joint distribution maximally. 

3.2 Independence Probabilistic Model 

In the general formula such as eq. (19) or eq. (23), it is necessary to know the joint 
distribution p(d辺ofdisparities in the same configuration, and to specify the con-
figuration at each di,j in advance. However, it is di缶cultto obtain the exact joint 

probability distribution in real cases. So, we assume the simple probabilistic model 

for the joint distribution of the configuration. Assume that the disprities in the con-

figuration are independent one another. The joint probability p(dN) can be rewritten 

as the product of marginal probabilitie of each disparity in the configuration. 

p(dN) = II p(d砂 (24) 
dnEN 

We can develop the Bayesian model of stereo matching based on the independence 

assumption as above. Inserting eq. (24) into eq. (16), 

p( d,,; ) ~ f.s [p( d;,; I dN) dれリv(dn )l , (25) 

and, substitutep(di,jld心ineq. (25) with eq. (15). By interchanging the summation 
and multiplication operator, the new and more practical general formula is derived 

in the probability space as follows. 

p(d,,1)~Po(d,,1) I: [ II exp {-pd(d;J―d砂}p(d,,)l. (26) 
HES dnEN 

Also, eq (26) can be transformed into the energy space with the Gibb's distribution 

as before. 
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E(d;,;) = Eo(出）ー log[区{II exp {-p,(d;,; -d孔}p(d砂}l (27) 
MES dnEN 

Eq (26) and (27) are the new general formula of Bayesian model for stereo matching 
based on the assumption of independence between the disparities in the configuration. 
This formula is much more useful for implementation than eq. (19), because the 
marginal probability p(di,j) can be calculated easily in the energy space. In addition, 
since the energy space is diffused iteratively with this formula, it is possible to estimate 
the marginal probability more accurately in each iteration step. Now, the only thing 
to do is to guarantee that the probability, which is transformed from energy space 
by Gibb's distribution, satisfy the usual probability property. That is to say, the 
probability space transformed from the ennergy space cannot satisfy the axiomatic 
properties of probability theory. This incomplete probability space can result in the 
divergence in the energy space as the diffusion processing is proceeded iteratively. So, 
it is necessary to set the constraint on the probability space as follows. 

p(di,j) 

L p(di,j) = 1, 
d;,jEわ

exp {-E(di,j)} 

区 exp{-E(di,j)} 
di,j ED 

(28) 

(29) 

As the previous manipulation based on the inequality between arithmetic mean 
and geometric mean, we manipulate the eq. (27) again as follows. 

log [〗~{』exp{-pd(d,,; -d砂)p(い｝］

> log [ n(S) n(S~ 凸{〗~~xp{ -pd(;,J―d叫)p(d叫｝］

logn(S) + n(~) [>~{JN log { exp { -pd(d;,; -dn)) p(dn)) } ] 
logn(S) + n(~) [>~L~N{ log(p(dn)) -Pd(d;J―d砂｝｝］

(30) 

Finally, we can derive the new practical inequality based on the assumption of 
independence between the diparities of the configuration. 
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E(d叫 5cE。(d;,;)-Iogn(S) - n(~) [区{I; { log (p(d→) -Pd(d;,, ―d砂}n31)
NES dnEN 

As the same as eq. (23), we can see the disparity regularization and joint probability 

dependence. In this equation, it is different from the eq. (23) that marginal probability 

distribution have to be considered in order to diffuse the energy space, instead of joint 

probability distribution. 

4 Proposed Algorithm 

In this section, this paper proposes a stereo matching algorithm based on eq. (31) 
and assumption of similarity between disparities in the configuration. In eq. (31), we 
should choose the configuration and its elements dn1 s so as to maximize the marginal 

probability p(dn)-Since we have no any information of disparity map, however, we 

have no choice but to estimate the marginal probability. we assume that the disparity 

varies or distributes continuousely with higher probability than it does abruptly. As is 

the same case of the intensity distribution in the image, the disparity varies smoothly 

except for the boundaries of objects. Based on the above assumption, we can esti-

mate the disparities in the configuration as the same as the disparity di,j・That is 

to say, if the disparity at (i, j) is di,j, the all the disparities in the configuration are 
estimated as the same as the di,j・This is reasonable estimation since we have no any 

information of the distribution of disparity, and disparities in the configuration are 

dependent on one another. In addition, this assumption is consistent with the dispar-

ity based regularization measure in the Bayesian model which makes the distribution 

of disparity smmoth and continuous. And, this paper uses the only one geometry of 

configuration. In this paper, the first geometry, Fig 2. (a) is used. 

With the above assumption and geometry, we can change eq. (31) into new form-
mula. In this case, the number of possible configurations, n(S) becomes equivalent to 

the number of disparity range, n(D), because we choose all the disparities in the con-

figuration as the same as the disparity di,j at the position. So, the diffusion equation 

eq. (31) is changed into eq. (32), 

E(d,,,) <: E。(d叫― logn('D) 一 n(~) [fs {>~{log (p(d→) -pd(d,,, ―d砂}} ] .(32) 
And, the general formula is equivalent to eq. (27), 
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E(d叫 恥(d;,1)-log [こ{II exp {-p,(d;J―d砂}p(dn)}] 
NES dnEN 

(33) 

5 Experimental Results 

This paper had various experiments with eq. (33) and 3 stereo images sets, which 

consist of 5 images generated from 5 different viewpoints respectively. The reference 

image is always the center image in each stereo images set. The five images have 

been rectified and satisfy the epipolar geometry. Before comparing the performance 

of the proposed algorithm with that of the conventional one, we can understand how 

the formula of Bayesian model for stereo matching operate on the initial energy space 

iteratively in Fig. 3. The first figure is the initial energy space and next figures are 

the first, second, third, 4th, 6th, 9th, and 15th disparity map, respectively. As we can 

see in the successive figures, the disparity is converged to the neighborhood disparity 

with high probabilty. In this way, the disparity map is decided in some iterations. 

Fig. 4 is the center image of the randomdot images set and Fig. 5 is the true 

disparity map. So is the face image in Fig. 6 and 7. And, Fig. 8 is the center image 

of doll whose disparity map is not known. With these stereo images sets, two kinds of 

experimental results are compared. The first experiment compares the performance 

of the conventional algorithm [?, ?] with that of the proposed one. The second exper-

iment compares the estimated disparity map from two viewpoints images set, which 

is the usual case, with the estimated disparity map from five viewpoints images set. 

5.1 Experiments of the Proposed Algorithm 

In this section, the paper summarizes the experimental results. In order to evaluate 
the performance, the paper compares the disparity maps generated from the proposed 

algorithm with those of the SSD and conventional algorithm[?, ?] . The conventional 

algorithm is also based on the independence of marginal distribution. However, the 

algorithm is confined to the specific probability model such as the unique configuration 

and ambiguous independence assumption. In other words, the algorithm used only 

one configuration of Fig. 2 (a), and assumed the independence not between marginal 

distributions, but between averaged distributions in the disparity range. 
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(a) initial disparity map 

(b) once iterated disparity map 
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(c) twice iterated disparity map 

(d) three times iterated disparity map 
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(e) four times iterated disparity map 

(f) five times iterated disparity map 
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(g) nine times iterated disparity map 

(h) fifteen times iterated disparity map 

Figure 3: Convergence of the disparity map 
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Figure 4: Test stereo image ra冗damdot 

Figure 5: True disparity map of random dot 
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Figure 6: Test stereo image face 

Figure 7: True disparity map off ace 
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Figure 8: Test stereo image doll 

E(d;,;) ~ E。(d,,;)-d~N log しご~exp { -p,(d;,1―d,,)}p(dn)] (34) 

The eq. (34) can be derived from the assumption as following conditions. 

p(x1, X砂=[ }:p(x1) l [ }:p(四）］
Xl Xz 

(35) 

This paper has implemented the proposed algorithm in eq. (33) with the same 

configuration and all the same parameters in order to compare the performances and 

probability model with those of eq. (34). In the experiments, the energy space was 
generated from 5 viewpoints stereo images. The four energy spaces generated from 

center image and the other four images are averaged in each three dimensional energy 

space. Fig. 9, 10, and 11 show the comparison of two disparity maps for random dot 

generated from three algorithms respectively. The Fig. 9 is generated from the SSD 

of block size 7x7, Fig. 10 is generated from the conventional algorithm and the Fig. 

11 from the proposed one. As we can see, the disparity map from the proposed 

algorithm is superior to those from the SSD and conventional one. The disparity 

boundares of the Fig. 11 are closer to the true map, and the false disparities are 

fewer than the Fig. 9 and 10. In the three figure, the left and right areas result 

from the modulo operation in the implemetation program. So, they are meaningless 

regions in the disparity maps. Fig. 12, 13, and 14 show the disparity maps for face 
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Figure 9: Disparity map from SSD 

images, and Fig. 15 , 16, and 17 for doll images. As are the same results of the 

random dot images, the proposed algorithm outperforms the conventional one, in 

that the clearer and more accurate boundaries, and the fewer errorneous disparities. 

In any stereo images, the proposed algorithm generates the better disparity map than 

the conventional algorithm. This result shows that the assumption of probabilty and 

similarity of disparity, which was described in section 4., is reasonable and sufficeint 

for the estimation of the joint probability distribution of configuration. 

5.2 Experiments of Multiple Viewpoints Stereo Images 

In this section, the paper shows the various experimental results with five vie,, 「points

stereo images. As is different from the usual case of two stereo images, the stereo 

images generated from five different viewpoints are used. In the first place, this paper 

shows the improvement of the performance using multiple stereo images instead of 

two stereo images. And then, this paper will compare with the disparity maps from 

different generation methods of energy space. Fig 18 shows the disparity map from 

only two stereo images, center and left images of random dot. Fig. 19 is the disparity 

map from three images, center, left, and right images. Compared the two disparity 

maps with Fig. 11, which is generated from five stereo images , as Vvアecan expect, 
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Figure 10: Disparity map from Conventional[3,4] 

Figure 11: Disparity map from Proposed 
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Figure 12: Disparity map from SSD 

Figure 13: Disparity map from Conventional[3,4] 
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Figure 14: Disparity map from Proposed 

Figure 15: Disparity map from SSD 
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Figure 16: Disparity map from Conventional[3,4] 

Figure 17: Disparity map from Proposed 
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Figure 18: Disparity map from two stereo images, center, left 

the more stereo images, the better disparity map is generated. In addition, the iter-

ation number is reduced in the case of multiple stereo images. In other words, the 

convergence becomes faster as increasing the stereo images. This is because of the 

better initial energy space generated from multiple stereo images. However, multiple 

images need many memory space and complex rectification among the stereo images. 
In Fig. 20 and 21 of face, we can show the same improvement by comparing two 
figures with Fig. 14. Also, comparing Fig. 22 and 23 with Fig. 17, we can see that 

the more stereo images generate the better disparity map. 

Now, the next experiments compare with the methods to generate the initail en-

ergy space. In these experiments, the main problem is how to generate the initial 

energy space from five stereo images. This paper had experiments with three meth-

ods. The first experiment makes the energy space by averaging the four energy spaces 
from the center and the other four images. This method is also applied to the com-

parison experiments in section 5.1. This method is called averaging method. The 

second makes the energy space by selecting the minimum energy among the four 

energy spaces at each position. This is called minimum method. And the final 

method makes the energy space by selecting one minimum energy space in the both 

horizontal and vertical direction respectively, and averaging them. This is called 
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Figure 19: Disparity map from three stereo images, center, left, right 

Figure 20: Disparity map from two stereo images, center, left 
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Figure 21: Disparity map from three stereo images, center, left, right 

directional minimum method. The experimental results of disparity map are com-

pared with one another from Fig. 24 to 29. The Fig. 24 and 25 are the results of 

minimum method and directional minimum method for random dot. The Fig. 26 

and 27 are the results for the face and Fig. 30 abd 31 for doll. Compared with the 

Fig. 11, 14 and 17 for each disparity map from averaging method, respectively, the 

other two methods have poor performances and generate almost same disparity maps. 

In order to compare with the initial energy spaces easily ,we can see the difference 

of initializations in Fig. 28 and 29 for face and Fi. 32 and 33 for doll. This result 

show that it is important to generate the initial energy space as good as possible, and 

noisy generation such as minimum method and directional minimum method are 

not adequate for the initial energy space generation. 

6 Conclusions 

This paper has derived the general formula of Bayesian model for stereo matching. 

It has implemented the proposed algorithm based on the independence of probability 
between disparities in the configuration and similarity of disparity assumption. Also, 

this paper had various experiments with multiple viewpoints stereo images, which 

is differnt from the usual case of two stereo images. According to the experimental 
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Figure 22: Disparity map from two stereo images, center, left 

results, the performance of the proposed algorithm outperformed the conventional 

algorithm [?, ?], in that the boundaries of disparity were clearer and errorneous dis-
parity was fewer than the conventional algorithm. This result means that the derived 

formula is adequate and the assumptions to derive the formula are reasonable and 

SU缶cientfor the joint probability distribution. In the experiments of various initial-

ization of energy spaces, it was sure that multiple viewpoints stereo images made the 

more accurate disparity map than two or fewer stereo images did. This result means 

that the multiple stereo images will be very useful to estimate the more acuurate dis-

parity map in stereo matching and to solve the occlusion problems in view synthesis. 

Moreover, in Bayesian model of stereo matching, it is very important to generate the 

better initial energy space given stereo images set. 

Finally, we can conclude the following facts according to the experimental results. 

The first is that the derived formula is the general form and can be changed into 

the some different forms based on the reasonable probabilistic assumptions. The 

more accurate is the assumed probability model, the better disparity map can be 

generated with this formula. And, this Bayesian model can be developed with various 

probabilistic model and configuration. The second is that it is very important to 

generate the initial energy space in Bayesian model of stereo matching, so the multiple 

stereo images are useful for the estimation of the better disparity map. In order 

to improve this formula, the research for estimation of exact joint distribution and 
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Figure 23: Disparity map from three stereo images, center, left, right 

Figure 24: Disparity map from minimum energy method 
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Figure 25: Disparity map from directional minimum energy method 

Figure 26: Disparity map from minimum energy method 
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Figure 27: Disparity map from directional minimum energy method 

Figure 28: Disparity map from initial energy space by minimum method 
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Figure 29: Disparity map from initial energy space by averaging 

Figure 30: Disparity map from minimum energy method 
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Figure 31: Disparity map from directional minimum energy method 

Figure 32: Disparity map from initial energy space by min切nummethod 
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Figure 33: Disparity map from initial energy space by averaging 

various configurations will be necessary. Also, the analysis of the convergence should 
be described to complete the formulation. 
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Aug 30 1997 12:00 matchS.c 

/***************************************************************/ 
／＊＊／  

／ * Stereo Matching with Diffusion Program * / 
/* Sang Hwa Lee, 1997. 8. 7. in ATR */ 
／＊＊／  

/* Multiview(S Camera Images) */ 
/* Disparity Space from Weighted 4 Images * / 
／＊ Point based initial disparity space construction */ 
/* Stopping Condition Based on Disparity Energy Variation */ 
/* New Derived Update Equation (Pure Version) */ 
/* Momentum Addition: Convergence Improvement */ 
／＊＊／  

/***************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "memory.h" 
#include "in_out.h" 

#define VAR_P 0.32 /* Variance of prior contaminated Gaussian 

#define EPS_P 0.01 /* Epsilon of prior contaminated Gaussian 

＊／ 

＊／ 

#define VAR_M 50.0 /* Variance of measure contaminated Gaussian*/ 

#define EPS_M 0.1 /* Epsilon of measure contaminated Gaussian 

#define D_rnax 15 /* Maximum disparity 

#define D_rnin 

゜
/* Minimum disparity 

#define ws 1 
#define STOP 0.0004 /* Stopping Condition of Iteration 

float wr, wl, wt, wb; 

float P_Contaminated_Gauss (int x) 

｛ 
return (-flog((1.0-EPS_P)*fexp((-x*x)/(VAR_P)) + EPS_P)); 

float M_Contarninated_Gauss (int x) 

｛ 
return (-flog((1.0-EPS_M)*fexp((-x*x)/(VAR_M)) + EPS_M)); 

Find―_Local_Space (float ***ds, float *local、inti, int j 
｛ 

int k; 

for (k=O ; k <= D_max+D_min; k++ 
local [kl = ds [kl [il [j l; 

int Minimum_Disparity (float *local 

（ 
int k . 、index_min;
float minimum; 

''  minimum = local [ 0] ; 
''  index min= O; 

for (k=l ; k <= D_max+D_min; k++ 
if (minimum > local [kl) 

match5.c 

＊／ 

＊／ 

＊／ 

＊／ 
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/***************************************************************/ 
／＊ ＊／ 

/* Stereo Matching with Diffusion Program */ 
/* Sang Hwa Lee, 1997. 8. 7. in ATR * / 
／＊＊／  

/* Multiview(S Camera Images) */ 
/* Disparity Space from Weighted 4 Images */ 
/* Point based initial disparity space construction */ 
/* Stopping Condition Based on Disparity Energy Variation */ 
/* New Derived Update Equation (Pure Version) * / 
/* Momentum Addition: Convergenceエmprovement * / 
／＊＊／  

/***************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "memory.h" 
#include "in_out.h" 

#define VAR_P 0.32 
#define EPS_P 0.01 
#define VAR_M 50.0 
#define EPS_M 0.1 
#define D_max 15 
#define D_min 0 

/* Variance of prior contaminated Gaussian */ 
/* Epsilon of prior contaminated Gaussian */ 
/* Variance of measure contaminated Gaussian*/ 
/* Epsilon of measure contaminated Gaussian */ 
/* Maximum disparity * I 
/* Minimum disparity */ 

#define WS 1 
#define STOP 0.0004 /* Stopping Condition of Iteration 

float wr、wl, wt, wb; 

float P_Contaminated_Gauss (int x) 

｛ 
return (-flog ((1. 0-EPS_P) *fexp ((-x*x) / (VAR_P)) + EPS_P)) ; 

float M―_Contarninated_Gauss (int x) 
｛ 
return (-flog ((1. 0-EPS_M) *fexp ((-x*x) / (VAR_M)) + EPS_M)) ; 

Find_Local_Space (float ***ds, float *local, inti, int j 

｛ 

int k; 

for (k=O ; k <= D_max+D_min; k++) 

local [kl = ds [kl [il [j l; 

int Minimum_Disparity (float *local) 

｛ 

int k , index_min; 

float minimum; 

minimum= local[O]; 
index_min = O; 

for (k=l; k <= D_max+D_min; k++) 
if (minimum > local [kl) 

match5.c 

＊／ 
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index_min = k; 
''  minimum= local[k); 

return (index_min); 

float Calculate_Sum_Prob (float *local) 

｛ 

int k; 
float temp=O.O; 

for (k=O; k <= D_max+D_min; k++) 
temp += fexp (-local [kl) ; 

return (temp) ; 

Page 2 

float Diffusion (float ***ds, float ***prob、intd, inti, int j, int xsz, int ysz) 
｛ 

int k, x_off, y_off, num; 
float diffuse, neighbor; 

diffuse= 0.0; 
for (k=O; k <= D max+D min・ , k++) 

｛ 

neighbor= 1.0; 
for (num=O ; num < 4 ; num++) 

｛ 

switch (num) 

｛ 

｝ 

case O : 
x_off = l; 
y_off = O; 
break; 

case 1 : 

case 2 

x_off = -1; 
y_off = O; 
break; 

x_off = O; 
y_off = l; 
break; 

case 3 : 
x_off = O; 
y_off = -1; 
break; 

default : 

neighbor*= fexp(-P_Contaminated_Gauss(d-k)) 

diffuse+= neighbor; 

｝ 

return (-flog(diffuse)) ; 

float ENTROPY (float *p) 

｛ 

int d; 

match5.c 

* prob[k] [(i+y_off+ysz)%ysz] [(j+x_off+xsz)%xsz]; 
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float sum、entropy; 

sum = entropy= 0.0; 

for 

｛ 

d=O ; d <== D_min+D_max; d++ 

p[d) = 
sum+= 

fexp(-p[d]); 

p[d]; 

for (d=O 
entropy 

; d <= D_min+D_max; d++) 
+= -(p [d] /sum) *flog ((p [d] /sum)); 

return entropy •9 9

9

 

Block_Init_Disparity_Space 

｛ 

int 
float 

for 

｛ 

temp= 

img_num=l 

0.0; 

else if 

for ( 

for 

｛ 

diff 

(img_num 

k=-WS ; k 
(l=-WS ; 

temp 

(float ***ds, 

d, i, j, k, 1, img_num; 

sum[4]、temp, diff; 

for (d=-D_min; d <= D_max; d++ 
for (i=O ; i < ysz; i++) 

for (j=O ; j < xsz ; j ++ 

｛ 

img_num <= 4
 

if (irng_nurn == 1 && wr != 0.0) 
for (k=-WS; k <= WS; k++) 
for (l=-WS; 1 <= WS; l++ 

｛ 

diff = img[O] [ (ysz+i+k) %ysz] [ (xsz+j+l) %xsz] 
- img[img_num] [ (ysz+i+k) %ysz] [ (xsz+j+l-d) %xsz]; 

temp+= M_Contaminated_Gauss (di££); 

else if (img_num == 2 && wl != 
for (k=-WS ; k <= WS ; k++) 
for (l=-WS; 1 <= WS; l++ 

｛ 

diff = img[O] [ (ysz+i+k) %ysz] [ (xsz+j+l) %xsz] 
- img [img_num] [ (ysz+i+k) %ysz] [ (xsz+j +l+d) %xsz]; 

temp+= M_Contaminated_Gauss (diff); 

else if (img_num == 3 && wt != 
for (k=-WS ; k <= WS ; k++) 

for (l=-WS; 1 <= WS; l++ 

｛ 

diff 

== 4 && 
<= ws; 
1 <= ws 

unsigned char ***img, 

irng_nurn++ 

0.0 

0.0 

wb != 0.0 
k++) 

; l++ 

int xsz, 

= img[O] [ (ysz+i+k)%ysz] [ (xsz+j+l)%xsz] 
- img [ img_num] [ (ysz+i+k+d) %ysz] [ (xsz+j +l) %xsz]; 

temp+= M_Contaminated_Gauss (diff); 

= img [ 0] [ (ysz+i+k) %ysz] [ (xsz+j +l) %xsz] 

- img [ img_num] [ (ysz+i+k-d) %ysz] [ (xsz+j +l) %xsz] ; 

+= M_Contaminated_Gauss (diff); 

int ysz) 

match5.c 
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else 

’ 

sum [ img_num-1] 

｝ 

ds [D_min+d] [ i] [j] = (wr*sum [ 0] +wl * sum [ 1] +wt*sum [ 2] +wb*sum (3]) / (wr+wl+wt+wb); 

temp; 

Point_Init_Disparity_Space 

｛ 

int 
float 

(float ***ds, 

d、i, j, img_num; 
sum[4], diff; 

for (d=-D_min; d <= D_max; d++ 
for (i=O ; i < ysz ; i++) 
for (j =0 ; j < xsz ; j ++ 

｛ 

for 
｛ 

img_num=l 

if 
｛ 

diff 

img_num == 

diff 

img_num <= 

1 && wr ！＝ 

゜

4

0

 

unsigned char ***img, 

img_num++ 

= img [ 0] [ (ysz+i) %ysz] [ (xsz+j) %xsz] 
- img [ img_num] [ (ysz+i) %ysz] [ (xsz+j-d) %xsz]; 
= M_Contaminated_Gauss (diff); 

f
 
'

l

f

f

 

f

f

 

e
'
l
,
1
-

s

d

d

 

ーe
{

 

f
 
'

l

f

f

 

f

f

 

e

.

l

.

l

 

s

d

d

 

ーe
{

 

else if 

｛ 

diff 

else 
， 

int Stop―_Condition 
｛ 

int 
float 

img_num == 

img_num == 

img_num == 

2
 

3
 

diff; 

&& wl 

&& wt 

4 && wb 

!= 

!= 

!= 

(unsigned char **pre, 

0.0 

= img[O] [ (ysz+i)急ysz][ (xsz+j)%xsz] 
- img[img_num] [ (ysz+i)急ysz][ (xsz+j+d)危xsz];
= M_Contaminated_Gauss (diff); 

0.0 

= img[O] [(ysz+i)%ysz] [(xsz+j)%xsz] 
- img [ img_num] [ (ysz+i+d) %ysz] [ (xsz+j) %xsz] ; 
= M_Contaminated_Gauss (diff); 

0.0 

= img[O] [(ysz+i)%ysz] [(xsz+j)%xsz] 
- img [img_num] [ (ysz+i-d) %ysz] [ (xsz+j) %xsz]; 

diff = M_Contaminated_Gauss (diff); 

int xsz, 

sum [ img_num-1] 

｝ 

ds [D_min+d] [ i] [ j] = (wr* sum [ 0] +wl * sum [ 1] +wt *sum [ 2] +wb* sum [ 3]) / (wr+wl+wt+wb) ; 

unsigned char **cur、int xsz, 

int ysz) 

int ysz) 

i, J, condition; 
energy, diff, pre_diff; 

match5.c 
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diff =energy= 
condition= l; 
pre_diff = 1.0; 

0.0; 

for (i=O; 
for (j=O 

｛ 

diff += (float) ((pre[i] [j]-cur[i] [j])*(pre[i] [j]-cur[i] [j]))/100.; 
energy+= (float) (pre[i] [j]*pre[i] [j])/100.; 

i < ysz; i++) 
; j < xsz ; j ++ 

if (diff/energy < STOP 
condition= O; 

pre_diff = diff/energy; 
printf ("%f¥n", diff/energy); 
return (condition); 

， 
main 

｛ 

int argc, 

int 
float 
unsigned char 
int 
FILE 
char 

11 

char * argv [ ] 

pre_diff < 

d, i, j, k, 
***Eo, ***E, 
***in, **out, 
xsz、ysz, iter; 
*fp; 
output[30]; 

(diff/energy) 

1、m, condition; 
***tmp_E, ***prob, 
**dp, **dp_pre; 

-pre_diff*0.1 

***moment, *tmpbuf, tmp, Diff; 

f
 
,
l
{
 

argc ！＝ 14 

printf ("USAGE: Command 5_input_images xsz ysz iter¥n "); 
printf("Order of 5_input_images: center, right, left, top, botヒom¥n");
printf (" output, x_size, y_size, iteration_number¥n"); 
exit (1); 

xsz = atoi 
ysz = atoi 
iter = atoi 
wr = atof 
wl = atof 
wt = atof 
wb = atof 

(argv[7)) ; 
(argv[8)) ; 
(argv (9]) ; 
(argv[lO)) ; 
(argv(ll]) ; 
(argv[l2)) ; 
(argv [ 13)) ; 

in= Memory_3D_unsigned_char (xsz, ysz, 5); 
Eo = Memory_3D_float (xsz, ysz, D_max+D_min+l 

.‘
 ，＇， 

for (k=O ; k < 5; k++) 
fread_2D(in、[kl, xsz, ysz, argv[k+l] •9 9

9

 

Point_Init_Disparity_Space 
free (in) ; 

Eo, in、xsz, ysz 
., 
，
、

E = Memory_3D_float (xsz, ysz, D_max+D_min+l); 
tmp_E = Memory_3D_float (xsz, ysz, D_max+D_min+l); 
prob = Memory_3D_float (xsz, ysz, D_max+D_min+l); 
moment= Memory_3D_float (xsz, ysz, D_max+D_min+l); 
tmpbuf = (float *)calloc(D_max+D_min+l, sizeof(float) 
dp = Memory_2D_unsigned_char (xsz, ysz); 
dp_pre = Memory_2D_unsigned_char (xsz, ysz); 

., 
9

,

 

for (d=O ; d <= D_max+D_min 
for (i=O ; i < ysz ; i++) 
for (j=O ; j < xsz ; j++ 

d++ 

match5.c 
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tmp_E [d] [i] [j] = E[d] [i] [j] = Eo [d] [i] [j l; 

for ( 

for 

｛ 

i=O ; 
(j=O 

,
l
.
，
 

v
・
J
 

ysz ; 

< xsz 

¥

l

+

 

＋
 

+
.
J
 

＋
 

'
l
.
,
 

Find_Local_Space ( 
dp[i] [j]=(unsigned 

fp = fopen (" name" 
＇ 

fprintf (fp, "%s_ini t"、
fclose (fp) ; 

fp = fopen ("_name", "r" 
fgets (output, 29, fp) ; 

fclose (fp); 

"w") ; 

argv[6)); 

fp = fopen (output, "wb") ; 
for (i=O ; i < ysz ; i++) 
fwrite (dp[i], sizeof(unsigned char), 

fclose (fp); 

m = l; 
condition= l; 

E, tmpbuf, i, j); 

char) ((250/ (D_max+D_min)) *Minimum_Disparity(tmpbuf)); 

•9 9

9

 

do 

｛ 

printf("%d/%d iteration is prosessing¥n",m, 

for (i=O ; 
for (j=O 

｛ 

Find_Local_Space (E, tmpbuf, i, j); 

tmp = Calculate_Sum_Prob (tmpbuf) ; 
for (d=O ; d <= D_max+D_min; ++d) 
prob[d] [i] [j] = exp(-E[d] [i] [j]) / tmp; 

i < ysz ; i++) 
; j < xsz ; j++ 

xsz, fp •9 1

、

iter); 

for (d=O ; d <= D_min+D_max; d++ 
for (i=O ; i < ysz ; i++) 
for (j=O ; j < xsz ; j++ 

｛ 

Diff = Diffusion (E, prob, d, i、j, xsz, ysz); 
tmp_E[d] [i] [j] = Eo[d] [i] [j]+Diff+0.2*moment[d] [i] [j]; 

moment[d] [i] [j] = Diff; 

for (d=O ; d <= D_min+D_max; d++ 
for (i=O ; i < ysz ; i++) 

for (j=O ; j < xsz ; j++) 
E[d] [i] [j] = tmp_E[d] [i] [j]; 

for (i=O ; i < ysz ; i++) 

for (j =0 ; j < xsz ; j ++ 

｛ 

dp_pre [il [j l = dp [il [j l; 
Find_Local_Space (E, tmpbuf, i, j) ; 
dp [i] [j] = (unsigned char) ((250/ (D_max+D_min)) *Minimum_Disparity(tmpbuf)); 

if ((m%2) == 

condition= 

else 
condition= 

0 && m >= 15) 

Stop_Condition dp__pre, dp, xsz, ysz •9 9

9

 

1; 

if condition== 

゜
11 m >= iter 

match5.c 
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｛ 

fp = fopen ("_name", "w") ; 
fprintf (fp, "%s_%d", argv [ 6] , 
fclose (fp); 
fp = fopen ("_name"、"r"
fgets(output, 29, fp); 
fclose (fp); 
fp = fopen (output, "wb" 

m); 

., 
9

9

 

., 
9

9

 

for (i=O ; i < ysz ; i++) 
fwrite (dp [i), sizeof (unsigned char), 
fclose (fp); 

xsz, fp •9 、',

•I 

+

e

 

+

1

 

}

m

,

l

 
h
 

}

w

 

m <= iter && condition== ー ., 
，＇， 

free 
free 
free 
free 
free 
free 
free 

(tmp_E J; 
(prob) 
(Eo) ; 
(E)  ; 

(dp) ; 
(dp_pre) 
(tmpbuf) 

match5.c 



Aug 30 1997 12:01 in_out.c 

/***********************************************************/ 
／＊＊／  

I* 2D Array fread () and fwri te () Program * / 
/* Sang Hwa Lee、 1997.8.7. inATR */ 
／＊＊／  

/* Automatic Generation of Output Filename in 2Dfwrite */ 
/* Data Type: unsigned char */ 
／＊＊／  

/* USAGE : fread2d (IMG, XSZ、YSZ, FILENAME) * / 
／＊ - IMG: unsigned char **image */ 
／＊ - FILENAME: char *input_filename */ 
／＊＊／  

/* fwrite (IMG, XSZ, YSZ, FILENAME, TAG) */ 
/* - TAG: char *tag_name_of_ouputi, */ 

/* "FILENAME TAG" is output filename */ 
／＊＊／  

/***********************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 

Page 1 

/*---------------------------------------------------------------------------*/ 

fread_2D (unsigned char **IMG, int XSZ, int YSZ, char *FエLENAME

｛ 

int X, Y; 

unsigned char *BUF; 
FILE *FP; 

BUF = (unsigned char *)calloc(XSZ*YSZ, sizeof(unsigned char)); 
FP = fopen (FILENAME, "rb") ; 
fread(BUF, sizeof(unsigned char), XSZ*YSZ, FP); 

for (Y=O ; Y < YSZ; Y++) 
for (X=O; X < XSZ; X++) 
工MG[Y] [X] = BUF [XSZ*Y+X]; 

free (BUF); 
fclose (FP); 

/*---------------------------------------------------------------------------*/ 

fwrite_2D (unsigned char **IMG, int XSZ, int YSZ, char *FILENAME, char *TAG 

｛ 

int 

unsigned char 

FエLE
char 

x、Y;
*BUF; 

*FP; 

OUT FILENAME [35 l; 

FP = fopen ("_name", "w") ; 

fprintf (FP, "%s_%s", FエLENAME, TAG) ; 
fclose (FP); 

FP = fopen ("―_name", "r") ; 
fgets (OUT_FエLENAME, 34, FP) ; 
fclose (FP); 

printf("%s", OUT_FエLENAME);

BUF = (unsigned char *)calloc(XSZ*YSZ、sizeof(unsignedchar)); 

for (Y=O ; Y < YSZ; Y++) 
for (X=O; X < XSZ; X++ 

in_out.c 
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BUF[XSZ*Y+X] = IMG[Y+l] [X+l]; 

FP = fopen (FILENAME, "wb") ; 

1n out.c 

fwrite(BUF, sizeof(unsigned char), XSZ*YSZ, FP); 

fclose (FP); 

free (EDF) ; 

Page 2 

/*---------------------------------------------------------------------------*/ 

in out.c 
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/****************************************************************************/ 
／＊＊／  

/* Memory Allocation Program forエmageor Video */ 
/* Sang Hwa Lee, 1997. 8. 7. in ATR */ 
／＊＊／  

/* 2-dimensional, 3-Dimensional Allocation */ 
/* type : int, float, unsigned char */ 
* USAGE : function_name(pointer, xsz, ysz, zsz) */ ／ 

／ ＊＊／  

/* unsigned char** Memory_2D_unsigned_char (int XSZ, int YSZ) */ 
/* unsigned char*** Memory_3D_unsigned_char (int XSZ, int YSZ, int ZSZ) */ 

/* int ** Memory_2D_int (int XSZ, int YSZ) */ 
/* int*** Memory_3D_int (int XSZ, int YSZ, int ZSZ) */ 

/* float** Memory_2D_float (int XSZ, int YSZ) */ 

/* float*** Memory_3D_float (int XSZ, int YSZ, int ZSZ) */ 
／＊＊／  

/****************************************************************************/ 

#include <stdio.h> 

#include <stdlib.h> 

/*--------------------------------------------------------------------------*/ 

unsigned char** Memory_2D_unsigned_char (int XSZ, int YSZ) 

｛ 

int X, Y; 
unsigned char **M; 

M = (unsigned char **)calloc(YSZ、sizeof(unsignedchar*)); 

for (Y=O ; Y < YSZ ; Y++) 
M(Y] = (unsigned char *)calloc(XSZ, sizeof(unsigned char)); 
return (M) ; 

/*--------------------------------------------------------------------------*/ 

unsigned char*** Memory_3D_unsigned_char (int XSZ, int YSZ, int ZSZ) 

｛ 

inじ X, Y, Z; 

unsigned char ***M; 

M = (unsigned char ***)calloc(ZSZ, sizeof(unsigned char**)); 

for (Z=O ; Z < ZSZ; Z++) 
M[Z] = (unsigned char **)calloc(YSZ, sizeof(unsigned char*)); 

for (Z=O ; Z < ZSZ; Z++) 

for (Y=O; Y < YSZ; Y++) 
M[Z] [Y] = (unsigned char *)calloc(XSZ, sizeof(unsigned char)); 

return (M) ; 

/*--------------------------------------------------------------------------*/ 

int** Memory_2D_int (int XSZ、intYSZ) 
｛ 

int 

int 

X, Y; 

**M; 

memory.c 
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M = (int **)calloc(YSZ, sizeof(int *)); 

for (Y=O ; Y < YSZ; Y++) 
M[Y] = (int *)calloc(XSZ, sizeof(int)); 

return (M) ; 

/*--------------------------------------------------------------------------*/ 

int*** Memory_3D_int (int XSZ, int YSZ, int ZSZ) 

int 

int 

X, Y, Z; 

***M; 

M = (int ***)calloc(ZSZ, sizeof(int **)); 

for (Z=O ; Z < ZSZ; Z++) 

M[Z] = (int **)calloc(YSZ, sizeof(int *)); 

for (Z=O ; Z < ZSZ; Z++) 
for (Y=O; y < YSZ ; Y++) 

M[Z] [Y] = (int *)calloc(XSZ, sizeof(int)); 

return (M) ; 

/*--------------------------------------------------------------------------*/ 

float** Memory_2D_floaヒ (intXSZ, int YSZ) 
｛ 

int 

float 

X, Y; 

**M; 

M = (float **)calloc(YSZ, sizeof(float *)); 

for (Y=O ; Y < YSZ; Y++ 

M[Y] = (float *)calloc(XSZ, sizeof(float)); 

return (M) ; 

/*--------------------------------------------------------------------------*/ 

float*** Memory_3D_float (int XSZ, int YSZ, int ZSZ) 

｛ 

int 

float 

X, y、Z;
***M; 

M = (float ***)calloc(ZSZ, sizeof(float **)); 

for (Z=O ; Z < ZSZ; Z++) 

M[Z] = (float **)calloc(YSZ、sizeof(float *)); 

for (Z=O ; Z < ZSZ; Z++) 

for (Y=O; Y < YSZ; Y++) 

M[Z][Y] = (float *)calloc(XSZ, sizeof(float)); 

return (M) ; 

/*--------------------------------------------------------------------------*/ 

memory.c 
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