
／

ATRテクニカルレポート表紙

〔非公開〕

TR-M-0021

Querying and Indexing Multi皿ediaData

和モ炉 虹;!ード
Timothy Shephard

田中昭二
Shoji TANAKA

井上誠喜

Seiki INOUE

1 9 9 7. 4. 1 6

ATR知能映像通信研究所

Technical Report:

Querying and Indexing

Multimedia Data

Tim Shephard

Depart111P-11t. :¥

i¥fedi,t l11t.P-grntio11 and Com11111111c,tt1ons Laboratories

ATll.

April 16th, 1UD7

Contents

1 Introduction 4

2 Query Interface 5

2.1 Introduction . 5

2.2 Problem • ．． .. 0

2.:3 Other Approaches . 5

2.4 This Approach . 6

2.4.1 Jntroductton . 6

2.4.2 Expression Model . 6

VL:3 Query Tree 8

9

9

0

0

1

1

2

2

2

2

3

3

3

3

3

4

1

]

1

]

l

l

l

l

l

l

l

l

l

l

•••••••••••••••• •••••••••••••••• .••••••••••••.•• ••••••••••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

•••••••••••••••• •.•••.•••••••••• .••••••••••••••• •••.•••••••••••• ••..••••••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

.••••.••••••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

ー

••.•.•••••••.•• ••••••.••••••••

r

•••••••••

e
 ••••••

•

-

・

・

・

・

・

・

・

・

・

(

.

.

.

.

.

.

••••.••••

a
 ••••••

一

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

一

，

＇

•••••••••••••••

e

.‘

••••

a

••••

1

.

.

.

.

.

.

v

c

••••

a

••.•

o
 ••••••

S

ー

・

・

・

・

・

•••

a
.
J
 •••

l

ー

•9

.

.

V

m

.

.

.

.

：

l

.

.

.

.

.

r

(

.

e
 •.

J

a

a

a

.

e

c

r

..•••

r1re>av~e

t

a

>

•

r

e

>

•••••

a
 ••

t

ー

s

a

e

l

r

i

s

.

J

.

J

.

s

d

e

•••

l
 ••

w
 .•

f

t

L

t

e

.

c

l

s

.

X

'し

0

••

n
P
u
p
a
s
s
.

，

a

r

,

C

.

c

c

o

l

L

.

.

 I

s

.

o

y

.

c

ー

c

c

9

(

S

a

s

)

•Inl.Ir,

.

n

o
f
.
I
O
・

し

I

t

I

T

C

.

e

r

叫

じ

e

s

e

I

S

ー

t

n

y

b

t

>
 •

ヽ

e

i

i

l

"

で

e

a

s

r

i

r

k

、’r

1

s

 •

-

>

-

,_

e

n

t

e

f

i

e

r

i

l

l

l

e

ー

C

.

e

ー

I

ー

t

0

1

]

e

l

t

ー

e

)

r

l

ー

‘

,

・

l

l

.

1

l

t

a

・

l

s

(

l

e

e

x

l

l

 q

a

s

s

e

I

e

t

e

F

D

q

a

p

F

e

s

s

p

n

i

I

t

.

r

)

ー

l

i

t

a

1

2

;

r

e

l

e

j

c

l

l

1

2

3

4

>

2

:

［

：

s

p

e

・

・

・

・

・

・

・

・

・

(

・

・

・

r

8

8

8

8

a

9

9

9

e

e

l

l

i

7

7

7

7

・

・

・

・

・

・

・

・

）

・

・

・

ーー

[

I

(

-

2

2

2

2

S

2

2

2

2

ー

2

2

2

5

6

7

8

9

．

．

．

．

．

2

2

2

2

2

3 Video Indexing 14

4

4

5

6

6

7

7

8

8

9

9

9

0

0

1

2

2

4

4

4

5

5

ー

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

••••••••••••••

•••••••• •••

b

•••••••••••••••••••

••.

0

••.••••..••••••••••

r

•.•

p
 .•••••••..•••••••••

••.

e
 •...••.•••.••••••••

s

•••

l

••••••••••.••••••••

ー

.

.

.

e

.

.

.

.

.

.

9

.

.

.

.

.

.

.

.

.

.

.

.

.

s

••••••••••••••••••••••

r

.

.

.

lO

.

.

.

＇

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r

ー

・

・

・

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.••

0

••.••.•.•..•••.•.••

•••

C
 •••••••••.•••.•••••

e

.

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

ー一

.

.

.

t

•.••...•.•.•..•.•..

•••

d

•••••••••••••••••.•

n

•••

a

••••.•••.•••••••••

.••

，
 .••••••••.••.••.•••

e

.

.

.

V

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•
l

•P.t

..•...•..•.......•.

c

•.•

e
 ••.••.•.•••••

a
 •••••

.
 J

V

．

．

．

．

．

．

．

．

．

．

．

．

．

••••••••

b

a

••.

u
 ••..•...•••.•

J

••••

'

s

s

.••

S

.

n

••

C

.

.

.

.

.

.

.

t

.••

e

・

i

e

s

o

t

e

l

i

l

C

•.•

u

.

i

••

s
 ••••.

r

.

.

P

.

.

r
,
c

t

c

ー

•••

s

.

a

.

.

n

.•••

a
 ••

p
 ••

c

.

r

l

.

1

e

••

e

.

.

l

e

n

••

w
 •.

A

.

.

r

l

g

t

o

e

>
,

f

t

d

e

o

a

m

c

i

.

c

.";::

•

0

.

'

••

>
・
-

s

>

'

r

.

r

c

.•

e

a

r

t

l

1

.

a

r

a

I

1

e

o

a

t

••

-

>

•

f

e

r

c

1

X

g

S

l

a

.

e

,

．

c

i

n

h

s

a

u

n

a

l

e

n

f

o

l

.

o

v

.

S

u

l

s

r

l

d

0

1

1

P

i

o

i

B

a

e

)

S

•.

a

t

.

i

'

0

c

e

猷

y

1

.

1

.

I

l

t

r

e

1

1

r

e

1

0

r

C

O

ー

m

ー

a

>
,
 •

J

s

g

.

I

I

C

0

.

p

.

J

n

r

a

t

r

o

t

n

n

n

t

e

s

o

r

l

e

a

r

o

i

b

n

i

-

g

u

Q

a

o

n

l

,

t

i

i

i

n

a

r

t

p

e

P

n

n

l

i

i

t

l

ー

）

C

1

0

ー

T

p

z
・
-

,....,
~LepteFSUFi\I

ー

u

n

A

t

P

1

t

l

e

•II
r

e

e

l

d

l

e

r

A

h

e

1

2

S

l

g

l

2

3

4

5

c

l

n

l

2

>

--

g

.

1

i

p

e

)

o

b

••

i

••••••

s

•••

a

(

r

I

4

e

5

5

5

5

5

e

l

i

8

8

汀

9

I

l

t

o

l

i

r

t

3

3

l

r

'

I

n

P

o

i

ふ

T

3

W

ふ

ふ

ふ

凡

ふ

D

r

c
ふ

i

s

凡

h

ぷ

1

2

3

4

5

6

7

1

8

9

1

•••••••••• 3

3

3

3

3

3

3

3

3

3

4 Sound Indexing 25

5

5

2

2

••
，

．

．

．

．

．

9

9

．

．

．

．

，

．

••
．

．

，

．

.

-

．

．

．

．

9

9

••
9

,

 ．

．

••
．

．

'

・

••
．

．

,

．

9

-．

，

 s

.

e

．
 9
,

、,‘

,

i

 ，＇

1

0

•
ー

0

p

，

‘‘-ー

t

c

¥

j

'

、

(

l

o

e

•I •·
t

t

゜

ー1

2

．

．

~
~
~
 ,．

9
J

2

4.:3 This Approach ．．．．． •••.•. 26

4.3.l Melodic Contour ．．．．．．．． 26

4.3.2 Extracting Melodic Contour 26

4.4 Testing . 27

4.4.1 Similarity Metrics . 28

4.4.2 Experiment 28

4.4.:3 Results . 29

4.5 Description of Software ．．．．．．．．．．．．．．．鱗・・・・・・・ 30

4.6 Implementat1on ．．．． 31

4.7 Client Files 31

4.7.l sound.Java ;31

4.7.2 case.html ;32

4.8 Server files . 33

4.9 Sound Manipulation Files .. ．． •. •.• 33

4.9.l play.c 33

4.9.2 libaudio.h :33

4.9.:3 libaudio.o 33

5 Conclusion 34

5.1 f11tegration . ;34

5.2 OLher Appl1cat.1ons :14

6 Appendix I: File Locations 35

ヽ
'
~．．

1 Introduction

Multimedia Data is heterogenous as compared to data of other kinds, such

as financial or business D叫. It is complex in nature, often consisting of

generalisation-specialization abstractions and whole-part structure. For exam-

ple, a video sequence is simply an image wiLh a time dimension(inheritance),

and a movie i,; ,t collection o[parts, such a.-; video, sound, and script(whole-part).

One interc:sting problem when dealing with Multimedia databases is to de-

velop a mannc:r in which Lo query theme伽 ie11tly,a method which can deal

with Lhe co叫）lex nature of such data. htしhisreport I will叫 linea graphical

query met.hod for complex multimedia databases.

Another interesting problem, is indexing multimedia data. This can be ap-

proached from two perspectives, iridexing for the computer, or indexing from

the human. For example, a number ID for students is for the computer, while

using the name as an ID is for the human. Often, a combination of both is the

ideal indexing method for data.

In this report I will detail indexing methods for two of the most important

types of multimedia: video and audio. I ,,,vj]l describe a method for extracting

represenしativeframes for _movies and an algorithm for extracLing representative

samples from insしrumentalmusic. The approach is from the human perspective,

as the concern here is mostly Lo rc:prese11t larger sets o[information by key

elements for the ltu111at1 user.

Firrnlly I will co11cludc: with 0ヽ111edi,;cussio11 about, bow the various rnsult.s

of Lltis technical report. can be b0Ll1 inLegrnLc:d into a larger syslc:rn or used

seperalely in oLlier applica!.ions.

ヽ

f

2 Query Interface

2.1 Introduction

In the increasingly computerized world, multimedia is at the fore front of com-

munications. Ideas are spread through rich combinations of graphics, audio,

and text on the computer. ¥Vhen the computer-naive user wishes to utilize

this media, they are often faced with a difficult choice: re-inventing the wheel,

or utilizing media which already exists. While many tools exist [or building

a multimedia arrangement from scratch, few methods have been developed to

solve the latter problem: allowing the user to take complex but vague ideas and

represent them with pre-existing multimedia. In this section, I will describe one

solution to this problem.

2.2 Problem

When dealing with databases of complex multimedia objects it would be useful

to have an intuitive method for the non-specialist to query for desired informa-

tion. For example, in the multimedia domain a computer-naive user might wish

to search for a work which reAects a vague and abstract mental image, such as

ら'Findall horror movies with at least one romantic story unit".

2.3 Other Approaches

Two other approaches I'd like to examine here are Object Oriented SQL and

Generalizecl(see Figure l) Materi¥i,,at.ion B.esulLs l¥lanager. With Object ori-

ented SQL, we have a fonnal ¥;wguage which h孔ヽbeendeveloped with a complex

syntax. The G¥IH. l¥fanager, 011 tl1e ot.¥1er hand, is somewhat better in that it

provides a more accessihle interface, hut fails in that. it is rnerely a11 adaptぐ!d

Query 13y l~xa1nple interface 111acle to work witlt the Object Oriented Met.l1od-

5

くくり,... ,fぞ

01: 11 02: t2 0n : t n f1 f 2 f m

叫 叫 idn ？ ？ ？ ．．． ．．．

？ ？ ？
[Iり叫］ [lb2, 咆l [lbniub,J

Figure 1: Generalized Materili:rntion Results Manager

ology. Thus, in the previous case we have a methodology which is complex

and not intuitive, and in the latter case we have a more intuitive inter・face but

one which is not a pure extension of the Object Oriented Methodology. In the

following, I will describe a graphical interface which is both.

2.4 This Approach

2.4.1 Introduction

In order to cleanly match a complex query-structure from the user, and to

provide an efficient indexing and retrieval method, it is necessary to specify

restrictions on the data model often used by complex objecLs. We provide here

a brief, but exact definition of a model for describing complex objects hased on

the work o「WougKi111(l].

2.4.2 Expression Model

A 11 expression 111odel is an ordered pair (A, II), where A is an allriln1le graph

（し',Ii>4) and II is a genf.•mli,rnlion.-specicilし:alicm graph (¥.'・， E11). V corresponds

to the set of <:lttSses i11 tl1e 111odel. Both grnphs are simple and directed, but

011 ly // is necessarily con 11ected and a<、:yclic.II h,tS a special vertice r which is

・`J`

•

Llie root e:r:press-ion.. For example, V v E l-・'J there is at least one path from r to

V.

An object is a set of object attributes which are sets of ordered pairs, (l, p). l

is an n-tuple, where n is the dimension of the space for the domain of the object

referenced by p. Note that the function P:I→ 0 is one to one. Also note the

restriction on an attribute a E o, (ヨnE I)(V(l,p) Ea)! dim l = n. Queries are

performed in reference to object sets. Operations which can be used are the

normal set operations, as well as projection, selection, and multiplication.

Projection, when performed on a set, specifies the output attributes of ob-

jects. Selection is used to perform comparison operations on scalar as well as

complex data. Multiplication is the operation which can combine objects to-

gether to create new objects and cla.5ses.

Evaluating the distance between graphs which describe complex objects is a

difficult t畔， especiallywith heterogenous data such as multimedia. If there is

a reliable function f(a, b) which is the probability that objects a and bare value

equal for all v E V, domain(a) is v and domain(b) is v then the problem of

structure and data matching becomes one of efficiency. However, this assump-

tion is difficult to make in several cases, and an analysis of Type I and II errors

becomes necessarv.

We have st.udied three algorithms, with the strongest matching algorithm

requiring a traversal o[the entire graph. Error is dependent on the distance

[u11ctio11s defined over the entire graph, and so sometimes a weaker but more

prob,tbly a,lgorit.hrn rnighL be necessary. One such 111ethod, would he to calculate

distance i11 tl1e''leaves" where error would be depe11de11t upon the atomic values

of the graph. And even more probable, but the 111ost we;tk, would be to rnalch

011 likely subgraphs.

The ,tbilit.y Lo e:、：press e:、:a111plei11forr11aLio11 at various levels o「theclass

-1

hierarchy, the ability to leave information unspecified, and the ability to irn-

port exte・rnal data as example complex information are ome of the important

attributes a query by example for multimedia system should have.

． sea "
＇
ry '. , movie ，

， -- ---

＇ ＇ " ・romantic ＂

---・---、＇ , shot '

`—-~---を5『__:
------，
, color

二→→二:~~,;,;,;_-_-_-,_____戸ーーしh;•'W•m

Figure 2: A Query Tree

2.4.3 Query Tree

A useful and visual tool for a..-,sisting the user in specifying example query data,

is a query tree. A query tree is a graphical representation of the attribute graph

representing the exa111ple multimedia. Nodes with specined information are

colored dilTerenL lh孔11nodes where i11forrnaLio11 is left unspecined. For exarnple,

in Figure 2, we lrnve an example query on a complex multimedia object(a.ssuming

the necessary pre-processing and distance functions). It would translate as:

"Select all image wiLl, irrrnge.kansei like'scary'and irnage.space.lines.kansei like

'active'a11d i111age.space.color.histograrn like 1,;xa111ple.hisLogra1r1".

8

2.5 Description of Software

The system is a client-server application, with the client written in Java with a

"thin" description of the interface, and the server written in C++ and C, uti-

lizing the Objectsore MetaObject Protocol. The user constructs the query from

information the server provides about the inheritance and whole-part structure

of the complex multi-media objects stored in its databa.5e. After constructing

the query, through a series of selections of parts and connecting scalar values to

those parts, the user can send a query to the database. which would return an

answer in the form of multimedia data of similar structure and content to the

query.

In order to use the softv,-are, the server "queries" must be running on miris37.

from there, the main file can be run with''java paintC!ass" on a machine with

java enabled. The interface will pop up at this point. It, is fairly straightforward-

use the mouse to click on the boxes set in each of the query tree nodes. Some

example uses of the interface can be found in Figure :3.

2 .6 Implementation

The architecture(Figure 4) is client-server in nature, and involves a network

8erver, the Objectslore databa.5e system, and the query tree java thin client.

After lhe user has co118truct.ed queries i11 the query clie11t, the query is se11t

through lhe network to the server, wlticl1 ret.11rn8 the result.s of t.lte query. The

net.work 8erver is also re~porrnible for re孔dingthe internal structure of the 013S

Databa8e and sending il to the Query Tree Client lo work a8 llte Query Graph.

，

1. The starting screen.

4. What happens when

you select new box for

2. Select blue box to add

a new attribute, select time

from the list of attributes.

5. An "attribute graph"

Figure :3: Example uses of the Query Tree interface

2. 7 Client Files

2.7.1 DefinitionList.Java

The Definition List file contains all the connection routines to the server. lt is

what queries the server and creates a "query graph" that the user will utilize

when developing the whole-part. strncture of their query. It defines the classes:

De恥 itionList -Neし¥Vorkmethods to connect to server

attribSelectionDialog -Dialog extension for selection data

member.

at.t.ribList. -me111hn list. used in the att.rih dialog

lO

Query Tree Client

ubmit

uery

send

query graph

Network Server

OBS Database

Figure 4: Architecture for Query Tree System

Client Files Server Files Database Files

cserver.c, cserver.h schema.cc Definitionlist.java

querylnputStream.java

attribType.java

paintClass.java

SocketHandler.cc, SockerHandler.hh expression.h

server.cc, server.hh

queries.cc

Figure 5: Files for Query Tree

2.7.2 querylnputStream.java

makeDB.cc

The querylnputStream file contains a description for the protocol for sending

aしtributedescriptions to the definition list. This file only contains the public

class, which i111ple111enls the stream A Pl.

2. 7 .3 attrihTypc.java

r「hea.ttribType.java. rile co11tains a description of a linked tree structure which

is used Lo co11tai11 tlte叫 rihutesof tl1e query graph. ll also co11Lains important

code for i11lerfaci11g withし!teDeri11itio11 I」island queryl11putStrearn when rilli11g

out Lhe query graph during the i11itilizatio11 process.

11

2.7.4 paintClass.java

The paintClass.java file is the main file, as it contains the description of the

main() routine, as well a.<; a description of the main event handler in the box-

Canvas object. This file contains descriptions of methods for manipulating,

drawing, deleting, and adding query boxes. The following cla.'>ses are defined in

paintClass.java:

paintClass -the public class with main() defined

boxCanvas-the canvas boxes are painted on, this

contains the main event handler

box -deals with box draWlllO'and box mo

゜
f

textBox -dialog for entering sclar text

2.8 Server Files

2.8.1 cserver.c cserver. ， h

These files contains C routines for dealing with socket connections. It starts up

the server by forking a process, returning if its the parent, and waiting for a

connection if it's a child. If a connection occurs, it then forks a child process to

deal with the socket connection.

2.8.2 SockctHaudler.cc. SocketHandler.hh

These C++ files contains descriptions of the Socketllandler class. This class is

used to deal with individual socket co1111ectio11s, including important routines

to read and write data to the socket.

l'.2

2.8.3 server.cc, server.hh

This is a basic class which was designed to act as the C++ wrapping for the

cserver.c routines. By calling those routines, it waits and spawns off socket

connections.

2.8.4
．

queries.cc

This is a complex file which describes the sockeLconnection routine, do.something.

do.something has routines which access the MetaObject protocol of the Object-

store system. Briefly, they can query the objectstore database for the whole-

part structure of classes described in the schema file. For example, a movie class

which has the data members time, and description is described in an internal

database of the Objectstore system. When socket connections are made to the

server, the routines in queries.cc traverse the query graph described by the in-

ternal representation of the movie object, and return that information through

the socket connection.

2.9 Database Files

2.9.1 scheina.cc

Contains the objedstore schema description. See Objectstore documentation

before modifying.

2.9.2 expression.Ii

Contains a description of the expression genernlisation/speciafoation hierarchy.

¥Vhen the server returns the query graph, it parses an internal description of

this .h file which h,:t.'i been put in the objectstore data.b,:1.-,e.

13

2.9.3 makeDB.cc

Creates the database required by the server. The database will contain the

internal description of the expression generalisation/specialization hierarchy.

3 Video Indexing

3.1 Introduction

On the other side of querying large datab心ses,co111es the problem of browsing

the results of the querying process. A useful area of research in studying any

kind of databases, is the issue of how to represe11t large sets of information with

key elements of these sets.

For example, a viewer might find, as the results of a query, a five minute

segment of an open field with a blue sky. Rather than complicating the results

vヽitha full motion video of this segment, it would be useful to select one still

frame from the shot as a "summary" of the shots contents. In this manner, a

large number of segments, even a movie, could be summarized on the screen at

once.

3.2 Problem

Given a set of images which, when put i11 temporal sequence create full motion

movie data, we would like to develop some tecl111ique which would enable the

extraction of representative frames of movie conlent(Figure fi). Representative

plays two roles: one, which is to summarize Lire movies c:ontent, ,tnd two, to

provide a recognition role tl叫 promptsLhe users memory into remembering

tl1e contents of lite movie. The former is very subjective, a pointヽvhichprovides

the prime 111otivation for U1e approach described below.

14

且ロロロロ
ロロロロ
ロロロロ

Extraction

Method

D
o

D
J□

0』

0
D
o
 Figure 6: Frame Extraction Problem

3.3 Other Approaches

Other approaches have been designed which are primarily computer directed.

They have relied mostly on computer vision techniques, concentrating on detect-

ing shot boundaries in film[2], detecting panning and selecting key frames across

the duration of the pan[:3], selecting multiple key frames per shot by identifying

significantly difference frames per shot[4], and finally, Wayne Wolf's met.hod

using motion analyses to detect dramatic moments within a shot[~]- Perhaps of

all of them, lhe hl-'>l is the 111ost successful, however it, like the others, larks in

two i111porta11t ways:

15

3.3.1 Objective versus Subjective, and the Common Sense problem

The processing of all the above methods is generally computer directed, allowing

for 110 user involvement in decision making. For example, images taken from

the local minima of motion analysis, the technique used in th~last method

mentioned above, is useful because it finds pauses in momentary action, which

are often signs of drn111atic empha.5is. However, this is clearly not the case in all

situ at.ions, a11d neither is dramatic emphasis by pausing the overriding factor in

representing a shot or segment of film.

It's fairly clear that these other factors would often require human intelli-

gence to pinpoint. A clear example of this would be scenes where the director

is not attempting to attract any special attention to, but which are relevant

to the plot, pacing, mood, etc of the story. This occurs in suspense movies,

which has details the director wants to include for completeness, but doesn't

want toovertly give away before the suspense scenes.

It's also clear that these representative frames might be subjective. What is

representative of a movie for one person, may not necessarily be representative

for another.

It is for these two reasons, that a proper extraction scheme for representative

frames from video should be hu111a11 directed, rather thau computer directed.

r「heuser should guide an algorithm according to his or her desires.

3.3.2 Tinw iufornrntiou

Another problem that most of these methods surprisingly lack, is proper use

o「lernporalinformation. Some ,tlgoritl1111s, for ex孔rnple,will remove duplicate

fra111es simply because they a.c;su111e they do not represent any extra information.

llowever, pa,cing is a very irnporし；t11t fador in directing, and sometimes the

repetition of a scene is used purposefully to slow the pacing of a movie down.

16

Therefore, duplicating these fra11:es in the set of representative images would be

appropriate.

3.4 This Approach

This approach entails providing the user with a Storyboard interface, and allow-

ing for an N-ary type search for representative frames, using weighted values for

selecting the search boundaries. It is human directed in that the user selects the

frames as well as provides the guiding characteristics of the search boundaries.

lt contains time information in that the search boundaries are fixed on temporal

partitioning, in other words, a sequence is broken up into N partitions of equal

length in time and the boundary frames are selected from those partitions.

3.4.1 N-ary Search

Like a binary search, an N-ary search performs a recursive search by partitioning

a set and selects a particular partition to further search upon. So, given a set

of frames F with elements fo . .fN, and a fixed number of partitions p, we open

the storyboard with p images(representing the search boundaries at the highest

level). Rather than worrying about weighting issues before the user ha.5 a chance

to interact with the process, we simply select the middle frame of each partition

as a boundary frame. for example, we have lhe partitions le11gth N /p, then we

have the partitions:

(0, 1 N/p), (l N/p, 2N/p), (2N /p, :IN /p) .. ((p -l)N /p, N))

Andしhedisplay on the storyboard would be one image selected from each

partition according to the weighted mea.: ゞureof the characteristics selected by

Ll1e user. Tlie two end i111ages, seledeJ fro111 Lhe first. and last p:trLitions, are

Lhe first :wd last i111ages of thaL segrne11t, respectively.

17

From here, the user can either select key frames from those provided, or

continue to search for frames between two boundary images display. For ex-

ample, if two images display from the previous segment of time t1 and time t2,

then the Storyboard will clear, and provide p images, with the first and pth

image representing the temporal boundary, and the p -2 images in between,

representing the maximum waited images accordi11g to the respective partitions

and characteristics selected. See Figure 7.

Sho~MovloS匹uon~

0 0 0 0 0 0 -0 0 0 0 0 0
↓

Partttlon Into P segman臼

,-----------―ー・ -----―ー・ー・―--- -・--・-・ー・----.--------------:0 0 0::0 0 0ピー..—···- :0 0 0 :0 0 0
---------・――--』・-------------： ↓ .T・ー・ー・----・'・-----------; ―

Storyb守rd,using character! 試lewe~hled maxlmas V

。
0 -------・・・・・・・0

--------------匹 r叫 eflnes綱 uencebound●ri●● 0 USGl'selects呵 wesenlZltlvefn,m⇔

し」

Figure 7: Frame Extraction Algorithm

3.5 Weighting Characteristics

3.5.1 Introduction

。

A key aspect of this particular method are the weighting characteristics. "「hese

are, but are not limited to: 1110しion,luminance, cornplexity, and panning. They

represent extracted inforn1atio11 frorn the frames of the storyboard and are useful

for constraining the search the user performs. For example, the user might want

Lo find frames from Lhe 1110Lion wit.It 111axi111um lu111inance. This would be useful

？

18

for finding representative frames from a movie segment where the majority of

the frames are completely dark. Or motion, to find action scenes with lots of

explosions, or images with minimum motion -to represent dramatic emphasis.

A control panel on the screen is shown to display the characteristics, and the

user is allowed to select how little or how much they weigh when determining

the representative frames. Here, I provide a brief description of each and how

they're calculated:

3.5.2 Motion

Motion is calculated using image difference, with the change in intensity values

giving a rough estimate of how much the image is changing. This is then nor-

malised over the image. To solve the problem of camera panning, directional

vectors are necessary. The effect of camera panning can then be reduced by

reducing the weight of similar direction vectors. Motion is a useful cue and can

be used to detect dramatic emphasis a.5 well as action, such as fights, car chases,

and explosions.

3.5.3 Lun1iuance

Luminance is calculated using the simple equation:

luminance= 0.2QQ!?, + 0.5870 + 0. 11,JB

Lurni11ance h,i.'> m,wy uses, most noteahly to detect change in lighting, elirni-

ttating dark scenes when lighting co11ditio11s are too low, or to select dark sce11es

whe11 lighti11g conditions are too high.

3.5.4 Complexity

Co111plexity ca11 be rnlculated in two different w,tys. Firstly, it can be calculated

using tire Sta11dard deviatio11 of i11te11sily values. This works roughly, but ca11

19

have difficuHy with many complex objects in a scene which have similar color

composition. Another way which also uses the semantic information from the

image(but loses out in that objects with same color composition represent a

non-complex scene) is to mea.5ure the nu~ber of edges in the scene. An edge

detector is applied to the frame, and the number of on pixels, normalized over

the image, can represent the complexity metric.

Complexity is a subtle characteristic which is difficult to use unless the user

has an idea of what they're looking for. It would be especially useful for locating

scenes with particular semantic composition, such as a country image with an

open field or a city scene, with lots of buildings.

3.5.5 Panning

Panning is calculated by measuring motion vectors which are uniformally direc-

tional, divided by the standard deviation.

こ叫c,2

By minimizing Panning and maximizing motion, motion-intense scenes which

may have camera panning can be eliminated.

3.6 Description of Software

Here are the uses of the four components which make upしhestoryl3oard thin

client.

Control Panel: ¥Vitlt this, the user can select the weighted characteristics to

constrain the N-ary search (Figure 8).

Parlitio11: r「hepartition window or "Storyl3oard Search'" ,vindow, contains

the images which represent their v,trious 1rnrtilio11s. Click on down to re-define

the parlitio11 bou11daries(Figure !J).

20

Figure 8: Control Panel Window

History: This has a history of partitions which have been examined before.

Note this is especially useful a.5 images in the history have been cached(Figure 10).

Storyboard: This window contains all the extracted images so far(Figure l l).

3. 7 Implementation

The storyBoard architecture(Figure 12) is also client/server in nature. The

client is made up of four windows: the control panel, the storyBoard(for storing

extracted frames), the part it ions(where the representative frames from each

partition is displayed) andしhehist,ory(which ha.'> a history of the partitions

examined).

The server is nrnde up of a t¥."etwork Server which handles boundary defini-

Lions fro111 the thin client and returns images from the image dat.abaRe, which

iR organised handled by a series of directory names.

'.Z l

Figure 9: Partition Window

Figure 10: History Window

3.8 Client Files

3.8.1 storyiloardApplet.java

The main java file. story13oard Panel is the rnost i rnportan t c]a...-;s, hand Ii ng the

startup, layout; of the user interface, and handling events. The other two irn-

port.ant c¥a..-;ses are the sideWindowFrarne, used for co11trolli11g which segment

to view, and the buLtonMenu, the control panel listing tl,e characteristics. sto-

ryl3oardAppleL contains definitions for the following cl,c1.-;ses:

22

Figure 11: storyBoard Window

submit

boundary

Network Server

三

send

images

Image Database

Figure 12: storyBoard Architecture

storyl3oard・d -top win ow, con ta1ns story Doarcl Panel

story13oardApplet -applet, called by html file

frnrnePoint -srnall d,tta structure for frame data

sl.oryBo,udPanel -rnain cl忍 laysout interface and images

also handles client/server connection and

evenしhandling

story 13oarclCanva~、- canv心， curr叫 lyempty cl吟

side¥VindowFra111e -lrnndles list of segments viewed

l111ageCanvas -used for pai11tir1g i111ages 011lo frame

2:1

Client Files

storyBoardApplet.java

util.java

downButton

buttonMenu

3.8.2 util.java

Server Files

cserver.c, cserver.h

SocketHandler.cc, SockerHandler.hh

server.cc, server.hh

imageServer .cc

Figure 13: storyBo.trd Files

-button between irnages

-control panel with characteristics

Image manipulation files

processlmage.c

Utility file, contains a routine called tokenize for splitting up strings in tokens.

3.9 Server Files

The files cserver.c, cserver.h, SocketHandler.cc, SocketHandler.hh, server.cc,

server.hh are used from the previous imple111entations.

3.9.1 imagcScrvcr.cc

The imageServer.cc file contains definitions for functions which score frames and

shols according to the control panel selections and returns representative frame

names to lhe partition window.

2'1

3.10 Image Manipulation Files

3.10.1 processlmage.cc

This file defines functions which, given an imagename, processes using various

algorithms and writes to the imagename.sts file the results. Used by the image-

Server to constrain searches according to selections from the control panel.

4 Sound Indexing

4.1 Introduction

As with video indexing, it would be useful to represent a large amount of sound

information with a smaller, extracted sample. An practical example of this is

the indexing feature on the CD players ,vhich allows the user to select songs to

play after hearing the first 15 seconds. Another possible method is to hat first

15 seconds may sound like the same fifteen seconds in every song Problem

4.2 Other Approaches

At lea.5t two other approaches to this problem exist, one of which has been

implemented on typical CD track programming devices. In the first ca.5e, the

first N seconds of a song are extracted and played. This approach has tlie

problem of being rather simple-minded in that no particularly representative

audio information exists in the first N seconds. The second approach involves

scene analysis, where the score for the instrumental song is extracted. ¥Vhile this

is interesting key information, it has the proble111 o「beingdifficult. to understand

by the average individual.

'25

4.3 This Approach

4.3.1 Melodic Contour

This particular approach entails something similar to extracting the first N sec-

onds of audio, but rather than simply the first N seconds, it finds the optimum

contigous subset of N seconds in the audio file. This optimum subset will be

the measured melodic contour of the audio file.

Melodic contour is a feature of music that stands out distinctively for the

listener on first hearing. It conists of the overall pattern of intervals that make

up a melody.

An interval consists of two things: size and quality. Quality is the change

between two notes, and size is the length in half-steps before the next note takes

over the soundspace.

For example, we have Bach's The i-Vell Tempe・red Clav-ie,{6], where the usage

of Melodic Contour is very striking. At three points in the piece, Bach has a set

of notes which have similar intervals. It is interesting to note, however, that at

the second point in the piece the notes are not the same: merely the size and

quality are the same.

We also notice from this piece two qualities of melodic contour: first, that

it is overlapping. r「hatis, two occurences of melodic contour can overlap one

another. The second quality, is that. it is shift-invariant.. Though a set, of not.es

may be shifted up and down or forw孔rdand back on I.he scale, I.he change in

pit.ch or the length bet.ween not.es does not change.

4.3.2 Extracting Melodic Contour

Melodic co11しouris exLracted a, ヽ follows.First., Llte following equaLion

LLL叫/;-hj+l;I

2fi

i=O…N, where N is 10% of the audio length

k=O ... N

j=O ... L, where L is the audio length

a, b are vectors describing the intervals which exist in the audio file.

is used to describe the score for a particular N length window in an audio

file as being the most representative of the melodic contour. Basically, it means

that every possible contigous window of length N in the audio file is compared

against all the other contigous windows of length N. The window which has

the lowest score(in other words, the least distance bewtween it's vectors and

the vectors of other windows) is considered the window which represents the

melodic contour.

Interval vectors are extracted by taking the average mu-law encoded ampli-

tude of an 8Khz file over a period of 1/Sth of a second or a 1000 samples. We

then take the inflection points to be the position of each interval. The length of

an interval is the number of samples between two inflection points, the change in

pitch is merely the change between two inflection points(or interval positions).

4.4 Testing

In order to test this hypothesis, it is necessary to see if the melodic contour does

indeed help the listener remember the instrumental song upon first l1earing. We

do this by using two cases, extracting an N sized window using the melodic

contour algorithm, ,tnd extracting an IV si,1e wi11dow using a completely random

selection algorithm. ¥Ve then play the songs the sar11ples were extracted from,

; u1dしhe11ask a test subject, lo 111aLch up ll1e Sitrtlples with the songs they were

extracted front.

_1
2

In order to keep it so it isn't obvious on first hearing which songs match up

with which samples, it was necessary to find the most similar songs. It would be

a trivial task to match up a piano piece with a piano sample, if the other song

to be matched up was all distorted guitar-and thus the testing would return no

useful information.

4.4.1 Similarity Metrics

These similar songs were selected a.5 follows:

1. 50 aiffc instrumental songs were gathered and converted to sun audio,mu-

law encoded, 8 Khz files.

2. each song was matched up with the most''similar" four songs from the

set of 50(excluding itself).

3. the top 3 sets of 5 were selecしed,with the total difference between songs

the minimum of the whole set.

The similarity metric was as follows:

区a;-b, 十 L(a;+1-a;) -(bi+l -b;)

where:

a;, bi are samples from two songs.

This particular metric measures two things: the similarity in amplitude(the

"loudness''of the instrument) and Llie sirnilarity in rate of change or the''speed"

of the song. These are particularly crude 111ea.'l11re111ents, but served well enough

in that it provides a rneasurec1,ble selection procedure raLher than a subjective

one.

4.4.2 Experiment

r「lieexperi111e11L w;-1.-, perfom11:d i11 Netscape, using a .lava Applet(see Figure).

r「hefollowi11g sl<:ps took place whe11 the test wa; ゞperfor111edupon ,t subject:

'28

1. 3, 4, or 5 songs were played, depending on the choice of the subject.

2. After every song was played once(and only once), :3 samples were played.

3. After a sample was played, the subject wa.5 then asked to select a song

from the list which it most likely came from.

4. The subject then submitted the data.

Two things to note here: firstly, the songs were an average of ;3 minutes each.

Secondly, the samples were 10% of the length of the song they were extracted

from. As stated earlier, these sample sets were either completely selected by

a random extraction method, or they were completed selected by the melodic

contour extraction algorithm.

4.4.3 Results

Machine Songs Type Results ＃

rniris56 4 M 2-2,3-3,0-0, 1-1 4

rnrnaclO 3 M 2-2,0-1,1-0 I

hokusai 4 M 0-0,2-2, 1-1.3-0 3

rniris37 4 M 2-2,1-3,3-2,0-0 2

miris37 3 M 0-0. 1-1,2-2 3

rnirisSO 5 M 1-1.4-4.2-2.3-3,0-0 5

mirisSO 5 M 1-1.4-0,2-0.J-J,0-0 3

miris56 3 R 1-1.2-2,0-0 3

rnrnaclO 4 R 2-0,3-2,0-1,1-3

゜rns29 4 R 1-0,2-2.3-2.0-1 I

ms29 4 R 1-1,2-2,3-2,0-3 2

Figure 14: Sound Extraction Hesult.s

llesult.s(Figure 111) are very encouraging, with 82% of the s,w1ples extracted by

the lllelodic co11tou「algoriLh111correctly rnatchecl up with Lhe songs from which

the sarnples were extracted fro111. l11 the case o「ra11do111lyselected samples, only

2D

40% of the samples were correctly matched. Note however that the number

of subjects was fairly low, and thus this evidence may be mostly anecdotal.

However, we believe that it warrants further study.

4.5 Description of Software

,,.,y'"'"""°'""''"'
:.,, .. ヽ--・・ ・・ ー--~-・蜘―~"-如- -~-,

況::::::氾^芯む芯::;;: こここ

筐□ヽ........ : ・帽ら，...,, —... ,
,;,::;,,_心
．、~~・と風ォ虹.... . _,,.,_, ・···•-"'"•·-··... 如 ,... ,., ●ふ●●町'、...~·-···-.,,c .. —▼呵＾・...心.. ·~·····'·• —.. 疇.......ー・9〇べ,,.. ,,.,.,. ヽ メ ・....●ー・・響，........●'.,, ・・~~
·--~.... よ. ~~---,、一ャい叶......

.. .,_, ·-~·-····,.., .. , , ● _, .. ,~....

＇＂ー・.,.ー..... ー・^‘-...... , ゞ"",.,.'~ 心....., ,.,. ,.~.. -~.. ., .. , ..
,,_._,, 一4●』"~・

Figure 15: Sound Extraction Test Applet

The applet(Figure 15) can be executed by opening a netscape window at the

address: file:/raid5-1 /diskl/java/sound/c&5e.html. After it's opened, follow the

instructions given here(can also be found in the HTML page):

l. Select the number of songs from the top button bar

2. Select "Next Song" every time a song is finished

:1. Select" Next Sample" after all the songs are finished

'1. Using the 111ouse, click on one o[the''o Song#" for Lhe

5. Select''Next Sample" ;-i,ft,er each sarnple lr;i.-; been !tea.rd

ti. Finally, select "Sub111it [)叫".
•\I

~iO

Client Files

sound62.java

case.html

Repeat from # l for 4 and 5 songs.

4.6 Implementation

soundApplet

html file

submit

data

send

audio files

/ Network Server

audio manipulation

Figure 16: Sound Extraction Architecture

Audio files are manipulated, to find the similar audio files and to ex:tract the

melodic contour or a completely random sample. They are also converted from

various formats and me邸 uredin various ways. See software use for more infor-

mation. See Figure 16.

The softヽvareincludes the following files:

Server Files

cserver.c, cserver.h

SocketHandler.cc, SockerHandler.hh

server.cc, server.hh

soundServer.cc

Sound Manipulation Files

play.c

libaudio.h

libaudio.o

Figure 17: Sound IりxしrnctiorrFiles

:n

4. 7 Client Files

4. 7.1 sound.java

This is t~e main test file, with all classes publicly defined in tl1e java file. The

sound class file is the most important, with the user interface and the main

event handler being defined. Data is submitted through a network connection

to the host computer.

The following classes are defined:

sound -main classes, sets up interface and main event handler

soundCanvas -canvas to handle lists of songs and samples played

message Label -message utility to send messages to user

soundList -extension of hashtable to provide sound dictionary

soundLoader -loads sounds, can be multithreaded if so desired

songSet -class to return the names of songs, given a base

randomBox -class to return a set of unique random numbers

between O and some limit.

4. 7.2 case.html

Simple html file, witlt instructions and a link to the sound applet. Best editted

with NeしscapeGold ediしor.Nol.e tlte use of t.ahles.

4.8 Server files

'「hefiles cserver.c, cserver.h, Socketllitncller.cc, Sockellla11dler.hl1, server.cc,

server.hh are used froru tl1e previous i111plerne11l,tlio11s. Tl1e only origirrnl file

is sounc!Server.cc wl1ich de什nesa simple routine to accept and display submit-

led resulls fro111 the sou11c.l applet. Can be extended to send out rn11clo111 1ut111es

書
、
rヽ
~

iヽ

:l2

for sound files to increase testing breadth.

4.9 Sound Manipulation Files

4.9.1 play.c

Extensive set of utilities for manipulating and converting sun audio files. Note

that Aiffc files should be first converted into sun audio before using these utili-

ties.

4.9.2 libaudio.h

Contains a description of some builtin audio manipulation routinesぬ,well &5 a

description of the header attached to sun audio files.

4.9.3 libaudio.o

Include this library when compiling. Currently, compilation will only work on

mic2.atr.co.jp, as this is the only machine that this file ha.5 been installed on.

However, the library is not dynamic and will run on ms74.mic.atr.co.jp after

compilation.

5 Conclusion

5.1
.

Integration

In conclusion, I would like to describe how this project. can be used for 111ulti-

llledi,t databases. n.efering to Figure 18 below, we see that the query interface

can provide a potential interfaceしoa complex 111ull.imedia dal.,tba..,e. i¥s key

index 111alerial, for browsing the results of queries, we could use image frames

:i:1

and audio samples garnered by the algorithms for frame extraction and sound

extraction.

The software includes the following files:

HMrntimedi,1/1

Frame Extraction
'

Query

Tool

Interface

I
疇

Tool
Database

I

~AudioE,t, 叩 i●n

Tool

Figure 18: Integration of Software

5.2 Other Applications

There are many other types of applications, but two in particular I'd like to

mention are Video browsing and Instrumental Song browsing. By using the

aforementioned algorithms it would be possible to browse large collections of

audio and visual 111ulti111edia, without concerning oneself with t.he query tree

user interface.

6 Appendix I: File Locations

l. r「heycan be found in sliepli,trn/software on rns71l.111ic.atr.co.jp.

.l
Nole lliat these files co11tai11 lhe code for ll1e servers and clients for ,tll three

:H

／

projects. Data is also included for each project, except for the images required

by the imageServer for the Frame Extraction project. These files can be found

on:

2. /raid5-l/diskl/shotframes

These files include the segmented shots for the first few scenes of the movie

Heat. They have been broken up into various directory names and these names

are vital to work with the imageServer which is stored on ms74.

3. /raid5-l/diskl/SOUNDS

These are some useful audio files which have been converted from AlFFC to

Sun AUDIO.

4. miris:n

No vital files are being stored on miris:37. However, pie邸 enote that since no

developmental enviroment exists on rns74, it will be necessary to either install

a developmental envirornent on 111s74(suc:h as gee) or change the installation

settings on the files 011 miris:~,.

:15

References

[1] Won Kim. Introduction lo Object Oriented /Jalabase8 The MIT Press, 1990

[2] A. Nagasaka and Y. Tanaka, "Automatic video indexing and full-video

search for object appearances," in Vis・ual Databases Systems II, Elsevier

Scene Publishers, 1992, pp 113-127.

[3] K. Otsuji, Y. Tonomura, and Y.Ohba, "Video browsing using brightness

Data," in Visual Com:mur1・icalions and /Mage Processing 1991, Bellingham

WA: SPIE, vol. 1606, 1991, pp.980-98fi.

[4] Behzad Shahraray,''Scene change deleclion and content based sampling of

video sequences, " in ll . .J. Safranek a11d A .A. Rodriguez, eds. , Digital Video

Compression: Algorithm and 7セclmologles19.95, Bellingham WA: SPIE, vol

2419, 1995.

[5] Wayne ¥Volfe "Key Frame Selection by Motion Analysis" IEEE Multimedia,

Fall 1996, pp. 1228-12:31

(6] Edited by I社taAiello with John A. Sloboda, ルfo.,icalPerceptions, Oxford

University Press, 1994

:rn

f

	001
	002
	003

