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Chapter 1 

Introduction 

This report describes the work that I did during my 6 months stay at the 
Advanced Telecommunication Research Laboratories Media Integration and 
Communication Labs (ATR-MIC) in Kyoto, Japan. I was sent there from 
the Fraunhofer Institute for Computer Graphics in Darmstadt, Germany, 
where I was working in the department for Visualisation and Virtual Reality 
pursuing a PhD in computer science. 

The purpose of my visit was twofold. On the one hand, I was asked to use 
my expertise in high-quality, high-speed rendering to optimize and integrate 
different pieces of interactive computer art together with the artists Christa 
Sommerer and Laurent Mignonneau. As a result of this work the piece'MIC 
Exploration Space II -The Garden'described in chapter 3 was created and 
exhibited very successfully at the ACM's annual computer graphics confer-
ence SIGGRAPH in New Orleans from Aug 4th to Aug 9th, 1996, and in an 
enhanced incarnation at the annual ATR Open House on Nov 7th/8th, 1996. 

The second aspect was to jointly develop their artistic ideas in a scientific 
direction. This was done in the form of a new paradigm for the creation 
of computer graphics forms that actively encourages the creation of direct-
interactive objects, which mediate a very organic and natural interaction, 
described in chapter 4. 
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Chapter 3 

Optimizing and Integrating 
Static and Dynamic Objects 

Sommerer and Mignonneau have a history of very successful artistic projects 
in interactive computer art. Two basic types of works can be distinguished: 
static. and dynamic works. 

Static works are works in which iteratively a beautiful and very detailed 
image of a world is created. Examples for this kind of work are Transplant 
(1995), Anthroposcope (1993) and Transplant2 (1996), which is the basis for 
the MIC Exploration Space. 

In the dynamic works creatures are created according to nature-based 
rules and they have a chance to move and live in their environment. The 
environment in these cases in relatively simple (a pool in A-Volve (1994), a 
black space in GenMa (1996)). 

The reason for this is the limited capability even of today's most powerful 
graphics computers. The static worlds have a very high complexity easily 
exceeding 10 million polygons and can not be rerendered in real time for 
every move a creature makes. My task was to find a way to unite these two 
apparently ununifiable worlds of static and dynamic objects. 

The result of this part of my work was the'MIC Exploration Space II 
-The Garden'piece which was exhibited very successfully at the ACM's 
Annual Computer Graphics Conference SIGGRAPH as a part of the art 
show'The Bridge', from Aug 4th to Aug 9th, 1996, and in an enhanced 
incarnation at the annual ATR Open House on Nov 7th/8th, 1996. 

To understand the topics involved a little introduction to the setup is 
warranted (s. fig 3.1). 

The system includes two users, each standing on a white carpet in front of 
a video projection screen and with a backlit screen behind. A camera on top 
of the projection screen takes the image of each person and this image is used 
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CHAPTER 3. OPTIMIZING AND INTEGRATING STATIC AND DYNAMIC OBJECTS 7 

Top B&W camera 

Front color camera 

Space of Interaction 

Figure 3.1: Setup of the 
merer&Mignonneau) 

3.1 Basis 

MIC Exploration 

Front color camera 

Space system ((C) Som-

to analyze the position and actions of the persons. Furthermore the images of 
both users are luminance-keyed and sent through Sommerer/Mignonneau's 
patented 3D-Key system, which extracts the position of the person from 
the top camera's image, to be integrated with each other and the computer 
generated image. Fig. 3.2 shows a resulting image. The persons are pixel-
accurately keyed into the computer-generated scene and can be in front or 
behind each other, but this only as a whole, as the depth of the person is 
assumed to be constant.For the static parts to make sense at all the observer's 
viewpoint is not changed. 

As a basis for the integration Sommerer-saii and Mignonneau-san created 
two new systems. 

The first is a flower generation system (fig.3.3). The flowers have a stem 
surrounded by a bunch of leaves and a group of blossoms at the top. There 
are a number of different kinds of blossom designs and all parts have a random 
variation built in, so that no two flowers look alike. Furthermore the shape 
can be influenced by the form and size of the user of the system, so that 
every person gets his own style of flowers. They are the static part of the 
system. 

The second part is an insect generation system (fig.3.4).There are two 
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CHAPTER 3. OPTIMIZING AND INTEGRATING STATIC AND DYNAMIC OBJECTS 8 

~. 

Figure 3.2: The combined and keyed image ((c) Sommerer&Mignonneau) 

different kinds of insects generated: 

• fly-or bee-like insects with a short body and one pair of small wings 

• dragonfly-like insects with a long body and two pairs of long and thin 
wmgs 

The insects are built using a random variation of different parameters for 

body and wing shape and size. The shape and size of the body is used to 
calculate the flight behavior of the insect, so that no two insects look alike 
or fly alike. These are the dynamic objects in the system. 

My task was to optimize the existing programs, which from a GL stand-
point were already pretty good, and integrate them into one system. 
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Figure 3.3: An example output of the flower generation system 

3.2 Optimizing 

As the whole system as to be shown on SIGGRAPH had to be optimized, 
there were two distinct parts to work on: graphics and the main program. 

3.2.1 Graphics 

The basis programs, as given to me by Mignonneau-san, already made effec-
tive use of the underlying graphics hardware. 

He used a low number of polygons to generate high quality output by 
calculating good normals and using smooth shading. The lighting model 
was chosen to be computationally cheap, but with good results (non-local 
lighting with only two directional light sources). The polygons were send 
using triangle strips, so no unnecessary vertices had to be transformed. 

The target machine was an SGI infinite Reality, so this suggested some 
changes in the structure. The infinite Reality is Silicon Graphics latest flag-
ship and has unprecedented calculation power (the combined peak perfor-
mance of the iR's geometry subsystem is 2 GFLOPS), much higher than 
the main processor's floating point power, so it made sense to offload some 
work onto the graphics board. This mainly included the normalization of the 
normals used for lighting, which requires a square root and a division, two 
extremely costly operations, which for highest graphics performance should 
be avoided, but in our case the work had to be done anyway and was not 
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CHAPTER 3. OPTIMIZING AND INTEGRATING STATIC AND DYNAMIC OBJECTS 10 

Figure 3.4: Some insects generated by the insect system 

going to be repeated (as the plants are only rendered once), so it made sense 
to utilize the graphics hardware for it. 

The second consequence of an infinite Reality being the machine was to 
allow me to mix OpenGl and IrisGL. Officially this is not possible, and it is 
not possible for most SGI machines. For the newest machines like Impact, 
infinite Reality and 02, IrisGL is set as a layer on top of OpenGL and 
the machines no longer have special microcode for IrisGL. Thus if one is 
very careful about the OpenGL state it is possible to mix the two. This 
proved to be very important, as some of the features needed for integration 
(s. sec.3.3) did not work at the maximum performance or not at all in the 
IrisGL emulation the infinite Reality employed. 

A different strategy was used for the insects. As they are constructed 
from essentially rigid parts (body and wings) which only move as a whole 
they could be put into GL objects, thus being optimized by the graphics 
library to be rendered at the full processor speed. The same could have been 
done by using my own, optimized rendering loops from Y, but that would 
have meant to completely change the program and was considered to not be 
worth the effort. 
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3.2.2 Main program 

The second part to be optimized was the main program. 
The whole system would facilitate two users and consist of three machines: 

• an SGI Indy R5000 running pFinder for the first person 

• an SGI Indy R5000 running pFinder for the second person 

• an SGI Onyx for the simulation and the image generation 

3.2.2.1 pFinder 

The pFinder system was initially developed at MIT and has been customized 
and improved for the use in this installation by Roberto Lopez of ATR In-
ternational. He also did the communication part between the Indys and the 
Onyx. 

To do this communication he used the RPC mechanism, as it is well 
established, easy to use and automatically supported by the IRIX operating 
system. To prevent unnecessary waiting for data from pFinder (which can be 
expected at a rate of 20-25 Hz, while the main program was targeted to be 
run at 30 or 60Hz), non-blocking I/0 using the select system call was used. 

While the select call is indeed non-blocking, it can still take a lot of time, 
up to 7 ms or more. This might not seem to be a lot of a time for many 
problems, but for interactive graphics applications, which are targeted to 
an update rate of 60 Hz, it is. At 60 Hz a new image has to be generated 
every 16.6 ms, so if 7 ms are spent waiting, there is not enough time left to 
complete the image in time. This results in a stuttering movement on screen 
and is very disturbing. ・ 

The remedy was to put the communication task into a separate thread. 
This thread would sleep most of the time only to awake when new data 
from pFinder was received. This data is then transformed into the format 
needed by the main program and the main program is notified via a flag 
located in shared memory that new data has arrived. On the next pass 
through the main loop the main program would just switch a pointer to the 
new data and notify the pFinder thread, again via a shared memory flag, of 
that fact. Thus the next time new Finder data arrives, the former data can 
be overwritten and the memory reused. This forms a ping-pong buffer, an 
important construct for efficient multi-process data communication. 

The result was, that the separate thread does not noticeably contribute to 
the system load (< 1% CPU load), and at the same time the communication 
part of the main program does not appear in the profile, so in the end the 
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communication with the external pFinder processes is effectively free, a very 
pleasing result. 

3.2.2.2 Simulation and Graphics 

The main loop of the program divided itself into two distinct parts: the 
simulation of plant growth or insect flight and the rendering of the simulated 
image. 

These two tasks invited themselves to be distributed across multiple pro-
cessors, as the demo machine was expected to have at least two processors, 
just as the development machine available to me at ATR. 

Passing data between the two tasks was again done using the ping-pong 
buffer methodology described in 3.2.2.1. A complication of this process was 
the constraint imposed by the IrisGL, that only one thread can access a 
graphics window, so all graphics actions had to be done by the rendering 
thread. To keep as much flexibility as possible in using and extending the 
program without tying it too much into the one given situation a FIFO 
command queue was set up in shared memory between the two threads, 
so that the simulation thread could keep on simulating and acting without 
having to wait for the rendering thread. Furthermore this allowed to insert 
synchronization as an explicit command, allowing to reduce synchronization, 
which always is costly, to a bare minimum. 

3.2.2.3 Results 

The results of these combined efforts were encouraging. The pFinder com-
munication turned out to be free, compared to a noticeable amount of time 
and possibly frame drops before the splitting. 

The graphics results were less apparent, as the plants grow frameless 
and thus objective comparisons are difficult. Subjective comparisons did 
point to a noticeable speedup, which inclines it to be 1.5 or higher. For the 
insects, which have defined frame boundaries the speedup was measurable to 
the extent that about twice as many insects could be rendered at the same 
framerate. 

3.3 Integrating 

An important new target of this work was the integration of the static and 
the dynamic objects into a joined image. 

The problem is how to do it. Rerendering the static objects is not possible, 
as they can easily contain more than 10,000,000 polygons. Even theoretically, 
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i.e. using benchmark numbers, this would take a whole second on an infinite 
Reality, which is not even remotely interactive. 

But what is constant, no matter how complex the scene, is the number 
of pixel. Thus using an image based integration, if feasible, would allow the 
integration independent of scene complexity. 

One additional complication is the threedimensional nature of the scenes 
that are handled here, i.e. the information needed to perform hidden surface 
removal has to be saved and restored, too, otherwise the insects would not 
correctly interact in depth with the plants. Luckily the hidden surface re-
moval technique employed by the Silicon Graphics hardware is the Z-buffer 
and it can be accessed much like the color buffers. Thus copying of color and 
Z-buffer was chosen for the integration. 

An open question is the place where the background copy of the image 
should be stored. The simplest solution would be to transfer the data into 
main memory and transfer it back from there. The drawback of this solution 
is the limited bandwidth of the main memory-graphics connection. A better 
and faster solution is to keep the data in the graphics subsystem itself, thus 
the bottleneck on the way to main memory is circumvented. 

For the color buffers there are several alternatives where to store them, 
e.g. in the accumulation buffer. This is not the case for the depth buffer, 
though. Depth buffer data can only be copied to another depth buff er, thus 
an area with a depth buffer had to be found. The easiest and chosen solution 
was to just double the window height (s. fig 3.5) and use the free area as 
the backup store. As the output used is NTSC at a format of 646x486 there 
is enough space on a standard 1280xl024 screen to handle two copies of the 
image. 

To reduce the necessary amount of copying the course of the usage of the 
program was split into two phases. In the first phase the plants would grow 
without any insects flying around. So in this phase no copy is necessary. 

After a specific action by the user is executed (e.g. touch the flowers) a 
copy would be made . Then the insects would appear and fly through the 
plants. For every frame the background copy has to copied to the foreground, 
then the insects have to be rendered and using the Z-buffer are correctly 
integrated into the scene. Thus only one screen-screen copy has to be made 
per frame. 

Of course it would be possible to have growing plants and flying insects 
at the same time. To do that one would have to restore the image, let the 
plants grow one cycle, store the image and then draw the insects. This idea 
was abandoned for different reasons. First it would have overwhelmed the 
user with action in the scene that he would hardly be able to control at the 
same time and second the second copy operation would be too expensive. 
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once 

for 

every 

frame 

Figure 3.5: A double height window is used to store the background copy of 
the image 

It turned out that the copy operation takes a significant amount of time. 
About 40% of the available rendering time are used up by the copy oper-
ation. For the new quality of the experience this can be accepted, as the 
infinite reality is fast enough to render interesting dynamic objects in the re-
maining 60%. The second copy however would have reduced the amount of 
time available for the dynamic objects to 20%, and that would have severely 
limited the expressive power of the dynamic objects, thus this solution was 
not used. 

3.4 Insect Behavior 

After the integration and optimization was done the basic behavior of the 
insect had to be refined to show the capabilities that pFinder offers. 

For the first version shown at SIGGRAPH two basic interactions were 
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implemented. First after being born the insects would fly around the persons 
body and follow him whereever he went (for simplicity the male pronoun is 
throughout this paper). The distance that the insects deemed to be a save 
distance was influenced by the speed of the person's arm movements. If the 
person moved too vigorously the insects would find it too dangerous to stay 
close and would go to the other person. 

The reason why the person's movements are dangerous for the insects is 
the second interaction. Insects that bump into the persons body or into his 
hand (determined from the body centroid's position or the hands'positions 
by using a screen-space aligned elliptical catch range) would stop their wings, 
fall to the floor and die. 

To counter the diminishing number of insects in flight resulting from 
insects being caught they were given an opportunity to reproduce. Two 
insects getting close enough to each other would create an offspring. To 
prevent a stream of offspring from two close flying insects each pair was 
allowed to mate only once. And to prevent the created child to immediately 
create new children with its parents children were assumed to be immature 
for a limited amount of time. 

The resulting interaction was very active, as a swarm of 50 insects flying 
around a person at 60 Hz creates quite a commotion on the screen. One 
problem was that the catching and dying of insects was very hard to notice, 
as they moved fast and the stopping of the wings would result in them falling 
down into the plants'leaves and disappear. It was interactive nonetheless, 
but some people did show signs of disbelief about the amount of information 
extracted from the camera image. 

Thus for the ATR Open House 1996 the interaction model was changed. 
The insects are not be as shy anymore. After they are born they still 

choose a person as a target and fly around him. But when he raises his 
hands they slow down and come close to the hands, as if being fed. And 
indeed they only reproduce while being fed. 

They follow the person's hand whereever he moves, unless the movement 
is too fast, and only for a limited time. After that they accelerate and fly 
around the person's body again, for a limited time until the hands are raised 
again. 

This interaction turned out to be much more direct, as the persons could 
directly notice their hand being detected and followed. By the time of this 
writing the Open House has not yet happened, but first tests with users show 
a very positive response. 
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3.5 Summary 

A new integrated interactive computer graphics art piece was created. The 
basic elements were designed by the artists Christa Sommerer and Laurent 
Mignonneau. These were two separate programs to generate two different 
kinds of the aesthetic forms of plants and creatures they are known for. My 
task was to integrate the two parts graphically as well as programmatically 
together with a client library to access pFinder data and optimize the system 
to get the best possible performance. 

The optimization consisted of slightly adapting the given programs to the 
target machine infinite Reality and splitting the program into three threads: 
pFinder communication, simulation and rendering, and connect the threads 
with a fast communication link. This was done using shared memory and 
ping-pong buffers. 

The integration was done on an image basis, as the complexity of the 
scene prohibited a geometrical integration. The image integration is still 
expensive, but it is feasible and leaves enough room for expressive dynamic 
objects. 

After the integration and optimization was done the existing basic flight 
model was enhanced to give a better feedback to the user and show the 
capabilities of the used pFinder software. 

The result was exhibited to the public at two events, ran stable and fast 
and got generally only positive comments. 



Chapter 4
 

A Dire ct-Inter active Dynamic 
Form Synthesizer 

The second part of my work done at ATR was the attempt to utilize the 
creative ideas and concepts of the two artists I was working with in a scien-
tific context. As a result we designed and prototyped the Direct-Interactive 

Dynamic Form Synthesizer described in this chapter. 

4.1 Idea 

Sommerer /Mignonneau's pieces are very beautiful and aesthetically pleasing, 
but the programs used to create them are unique, and they have to be rebuilt 
for a new piece. The idea was to create a new system that could be used as 
a basis for a more generalized approach. 

One main target was the creation of fully dynamic forms, i.e. every aspect 
of the form was to be changeable at any time. Furthermore the design of 
direct-interactive objects and behaviors was to be encouraged. What do I 
mean by direct-interactive? 

Two basic concepts for the creation of interactive programs are rule-based 
and expression-based. 

The rule-based system, unless fuzzy logic is applied, is decision based: 

a rule is active, and depending on the rule being active or not an action 
is performed or not. Thus the changes are usually very abrupt, as soon as 

a magic border is crossed something happens. If this is not very carefully 
balanced it can easily surprise the user and destroy his confidence in the 
understanding of the system, resulting in lower subjective usability. 

The expression-based system expresses the actions to be taken as an arith-
metic expression of the user's actions. This allows the response to be con-

17 
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tinuous and thus much more natural. Physical constraints make all actions 
occuring in nature continuous, thus discontinuous actions are perceived as 
less natural. Expression-based systems, via the use of continuous expressions, 
allow a very gradual and natural response to the user's actions. Furthermore 
the response is not necessarily limited to a specific zone of response, it can 
be ubiquitous due to the possible continuous decrease of reaction depending 
on the user's distance to the point of action. 

Direct-interactivity is the usage of an expression-based system for multi-
ple users. It is a very small step to make the expressions based on the actions 
of two different users, still retaining the degree of continuity and ubiquitous-
ness. Thus the interaction between the users is very direct. They always 
interact in a consistent way, their interactions just change the degree of re-
sulting actions. Thus no mediator is needed, the direct interaction between 
the users is used to control the whole system. 

Based on this an expression-based system to support the interaction of 
two or more users was designed. As it was supposed to be used an experi-
mental platform and toolkit for further exploration it had to be very flexi-
ble, powerful, modularized and easily extendable. An important target was 
a system supporting interactive design, as during the design phase constant 
changes to the used expressions and the values used to weight the expressions 
was expected. This automatically implies the need for a checkpoint/restore 
facility, as redoing the whole interactive design for every run of the program 
is not feasible. Of course the system also had to support full performance 
rendering, otherwise I couldn't bear seeing my name on it. 

4.2 Concept 

Based on the requirements a new concept for dynamic form generation was 
developed. The nomenclature is based on an abstracted tree structure, as 
this was context it was developed in. It takes ideas from discussions with 
Mignonneau-san and Sommerer-san, based on the experience in developing 
their artistic programs over the years. 

The structure consists of the following elements: 

• Rings 

• Ring Operation Sets 

• Tubes 

• Trees 
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• Operators 

4.2.1 Rings 

direction 
~ 
_, ー一
そて~又~vertices

.,,. 
----

I 
I 

1 scale 
/ 
I 

Figure 4.1: Ring structure 

The ring is the lowest level form element (s. fig 4.1). 
It's basic defining attribute is an array of vertices. These don't have to 

lie an a plane, although it is the natural way to think about it. Each vertex 
has an associated 3D position and an associated color as well as texture 
coordinates. For consistency reasons all the attributes are stored as a 3 
dimensional vector of floating point values. Even if the texture coordinates 
only use two of these values, a three dimensional vector makes sense in the 
context of operators (s. sec .4.2.5). 

Apart from the individual vertices there is a set of attributes that influence 
the ring as a whole. The ring has a position vector to define where in space 
the ring is located. To define it's orientation a single vector for the direction 
of the X-Z plane of the vertices is used. The remaining degree of freedom is 
covered by a second directional vector indicating the direction of the vertices' 
Y-axis and thus called up. 

To simplify modifications of the whole ring without having to resort to 
changing every single vertex (for reasons becoming apparent in sec. 4.4) two 
additional attributes are introduced. One is a vector to define scale values 
that are applied to the ring as a whole, the second is a color value for the ring 
as a whole. This color value is only used when there are no vertex colors, 
so it is a sort of fallback value (if not even a ring color value is defined the 
natural color of the material is used). 

The ring is little more than the collection of attributes described here. It 
can be manipulated by a set of ring operations, which is the last attribute a 
ring has. 
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4.2.2 Ring Operations 

A single ring in itself is not very useful. Neither is a static ring that doesn't 

change. 
Thus rings can be manipulated by ring operations. The ring operation 

type is a collection of operators of each ring attribute. The exact specification 
of operators is given in sec. 4.2.5, here it might suffice to say that they have 
a vector input and a vector output and can do some kind of calculation. 

Any element of a ring operations set can be empty, in that case the 
output is not changed. For the whole arrays of vertices/vertex colors/vertex 
texcoords there is only one operator which is in turn applied to every element 
of the array. All valid operators are applied, thus a ring color operator is 
executed even if it's result will be ignored because there is also a vertex color 

operator. 
After the vectors that define the orientation of the ring in space (dir & 

up) have been changed by their operators they might not be orthogonal or 
unit length any more. If only one of them was changed it is assumed that the 
other one should be adjusted, thus it is renormalized and made orthogonal 
to the first vector again. If this is not the desired result, a dummy copy 
operator can be inserted for the other vector, in that case the two vectors 
will be left alone. 

Ring operations are used in different places, thus it made sense to create 
a separate object for them. Their most important use is to connect the rings 

of a tube. 

4.2.3 Tubes 

The tubes are the basic structure element, and they are the only rendered 
element. 

They are a container for rings, thus they have an array of rings. In the 
standard case these rings are connected to each other with polygons to form 
the graphical image of the tube. This is just the default case, however, 
any other interpretation is possible. For example the wire tube connects 
corresponding vertices on a ring with lines to form a set of lines following the 

tube. 
How are tubes generated? The basis for the tube is it's template ring. 

When the tube grows, this ring is copied and appended to the tube. The 
attributes of the ring are generated from the attributes of the former last 
ring of the tube via the ring operations stored in the ring template. Thus the 
attributes of the new ring depend on the history of the tube and don't have 
to be calculated completely new, a relative operation is enough. They can 
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Figure 4.2: the tube structure 

be, though. It is in the operator's freedom to completely ignore the input. 
Growth itself is also controlled by an operator. The growth operator is 

evaluated after all the rings of the tube have been evaluated and the first 
element of it's return value decides, if the tube has to get longer or if rings 
should be removed from the end of the tube. 

Dynamics and movement come into the picture through iteration. For 
every frame the tube is regenerated in the same fashion it was created in the 
first place. Beginning from the base the ring operations are applied to all 
the rings in a sequential way, thus the whole structure of the tube can be 
changed at any time. 

With the capabilities covered so far, a single dynamic tube can be created. 
A lot of interesting things can be done with a single tube, but a lot more 
interesting things result from the combination of a number of tubes in a 
branching fashion. 

To do that a decision has to be made, when and where to create new 
branches. In the interest of continuity it makes sense to connect new branches 
to an easily identifiable unit whose position can be easily obtained. Thus it 
makes sense to link the decision and position to individual rings. A tube has 
a branch operator, a binary decision that is checked during the update of the 
tube if a new branch should started here and now. If this decision evaluates 
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to true, a new branch is created. 
If the new tube was just created at the place where it used to be at the 

time of creation it would become disconnected as soon as the parent moves. 
Keeping them connected might become arbitrarily difficult for complex move-
ments of the parent. To simplify this important operation the new tube has 
a connection to it's parent, the base ring. The base ring is a reference to 
the ring in the parent. Together with a special ring operation set it is used 
to update the first ring in a tube. Thus by just copying the postion from 
the base ring to the first ring the child tube will always stay attached to 
the parent tube, no matter how the parent tube moves or deforms. If the 
base operation set also honors the direction of the base ring, the child tube 
can also move following the moves of the parent. But of course it can also 
completely ignore any information handed down and detach itself from the 
parent moving freely. 

To ease individualisation the tube also has an operator that is only exe-
cuted once, at the time the tube is branched from it's parent. This operator 
can be used to initialize variables specific to this tube, e.g. an initial rotation 
constant that should be different for every tube. 

To organize the tubes into units the trees are added. 

4.2.4 Trees 

Trees are a pretty shallow wrapper around an array of tubes. They have a 
creation operator, that decides whether a new instance of this kind of tree 
should be created and a tube template used to start the tree with. 

4.2.5 Operators 

The operators are the basic active element, and they make this system direct-
interactive. 

An operator is a small procedure with a defined interface. It has one 
vector valued input and one vector-valued output. Additionally the context 
in which this operator is invoked is available, holding information about 
which ring in the tube this operation is for, how far this is away from the 
root of the tree etc. 

On top of these an operator can have an arbitrary number of parameters. 
These do not change during the run of the program, only for interactively 
changing the structure of the targetted result. The parameters can have a 
number of different types: floats, integers, strings and vectors. And the most 
important parameter is a reference to an operator. Using this mechanism 
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operators can be cascaded, allowing arbitrarily complex expressions to be 
constructed. 

Some examples for operators: 

• constant: just returns a constant value to its output 

• global value: e.g. the mouse position or the user's position in the 
space. This is the place that allows interaction with the user. And 
this also makes the extension to two or more users obvious (as long as 
the number is fixed): you can just access each user's data and combine 

them into a common result 

• context value: e.g. time or the position with a tube. This allows 
operations depending on where within the evaluation chain the operator 
is. Typical applications for time are as input to oscillators (s. below), 
mostly in combination with the index in the tube, to create a movement 
that depends on time and moves along the length of the tube 

• addition / subtraction / multiplication / division: basic arithmetic 
operations 

• component selection / splicing: to mix different inputs componentwise 
into one output 

• oscillation, sinusoidal or sawtooth: for cyclical changes 

• rotation around/to a vector: to orient structures according to inputs 

• color space conversion: to convert a color from HSV to RGB space or 
vice versa 

• commandline: shorthand notation for complex arithmetic expressions 
which otherwise take a lot of operators to construct 

• etc. 

As operators are an essential part of the flexibility of the system, they have 
to be small, easy to write and to change, without the need to change other 
parts of the system, and if possible without having to recompile the system. 
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4.3 Realization 

The described concept has been prototypically realized. 
As the whole concept is very object-oriented and easy extendability was 

important, C++ was chosen as the implementation language. Each of the 
described elementary types was realized as one (or more, where sensible) 
classes. On top of that a set of templated support classes for an automatically 
generated user interface (s. sec. 4.3.1) were built. 

Special care was taken to ease the addition of new operators, as this is 
an action that is expected to be executed very often. To add a new operator 
only the file of the new operator has to be created. No other files have to 
be touched, the system just needs to be recompiled (even though that may 
change in the future (s. sec. 4.5)). Thus apart from the small programming 
overhead described in sec. 4.3.1 no additional knowledge about the system 
is needed, just copy an example operator and change it. In this way simple 
operators can be added in less than 10 minutes. 

It was tried to keep the system efficient. To achieve that goal a fast library 
for the very often needed vector/matrix functions was written. Furthermore 
in all inner loops data is passed around by reference and is never copied when 
it is not needed. 

To achieve the goal of full performance rendering the data structures were 
optimized for the infinite Reality. All rendering data is stored in directly 
accessible stripes. The consequence of this is a duplicated storage of the 
vertices, but it allows the usage of OpenGL's VertexArray extension to render 
them with very little load on the main system. Furthermore the already 
known iR datatypes (short normals, byte colors) were used. 

Another step in optimizing the system was the use of a pipelines archi-
tecture. In this case the pipeline has three stages: 

• simulation 

• normal calculation 

• rendering 

The first stage is the main simulation and interaction loop. This stage han-
dles all user interaction and interfacing aspects as well as the simulation and 
behavior of the objects. 

For a system like this, where all the objects can completely change all 
their vertices for every frame a step that was not so important in the MIC 
Exploration Space system needs more attention: the calculation of normals. 
Good quality normals are important for interactive systems, as they allow 
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the use of a smaller number o~polygons when used with Gouraud shading. 
But the calculation of normals 1s an expensive operation, as it has to be done 
for every vertex and takes a crossproduct and 6 vector additions. This can 
easily become one of the most expensive parts of the system, thus using a 
separate thread for this calculation is useful. 

The rendering thread in the system is not very intelligent yet. There is no 
command pipeline between the different processes, as all of them are working 

on the same types of data and every frame is exactly the actionwise, thus a 
complicated flow control is not needed. It is however possible, and needed, 
to synchronize the three threads at specific points. 

As this is a very dynamic system, in which lots of objects are created and 
destroyed, memory management is a special problem. But as there is three 
stages deep pipeline behind everything, the objects that are deemed unused 
in the simulation are still needed in the rendering two frames later. Thus 
the memory can not be freed so easily. To prevent usage of objects in the 

rendering that have not yet gone through he normal calculation stage the 
renderer keeps a list of new objects in contrast to the list of active objects. 

Newly created objects stay on the new object list for 2 frames before 
they are rendered, thus the security of having been correctly handled by the 
normal calculation stage is given. 

For the deletion of objects there are three KillBuffers. The actual Kill-
Buffer contains the objects that have been marked'to be deleted'by the 
application three frames ago. Before the next frame is started, these objects 
are deleted, as they are old enough to be safely destroyed. 

To correctly handle these lists the three processes have to be synchronized 
and cannot work on the data while the organizational changes are made. This 
is a potentially expensive operation like every synchronization, even more in 
this case, as three processes have to be synchronized. Thus this synchroniza-
tion is only executed if the New List or the KillBuffer have elements on them, 
otherwise it can be ignored. 

4.3.1 User Interface / File 1/0 

As the design of a direct-interactive system is a very iterative process it should 
be done using an interactive system to eliminate turnaround times. As an 
interactive system it also needs a way to to save and restore the state during 
the work to be able to create and keep a work over multiple sessions. On 
the other hand the target was to create a very flexible and easily extendable 
system, so that the creation of a new user interface for every new operator 
was not an option. 
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To solve these problems the attribute types of all the objects in the system 
were restricted to a limited set: 

• integers (32 bit) 

• enumerated values 

• single precision floating point values 

• character strings 

• threedimensional single precision floating point vectors 

• vector arrays 

• pointers to the basic object types: 

-operators 

-rmgs 

-rmg operat10n sets 

-tubes 

-trees 

-materials 

-textures 

For all these types an ASCII printing format was designed. For all the pointer 
types this was done using a template, thus the coding expense is minimalized 
while keeping type security. Furthermore for each of these types a small user 
interface element was designed using the FORMS library. 

Each of the objects that want to be saveable or manipulable by the user 
interface have a new attribute: an array of structures describing the fields 
this object has, giving a name, the type and the offset of the fields from the 
start of the object. 

From this information an ASCII version of the object can be created. An 
example would look like this: 

Operator PosTo2 sub 
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｛
 sub1 User2Center 

sub2 value { 
context in 
direction get 
name''pos'' 
input OxO 

｝ 
｝
 

This text describes an operator named PosTo2 which is a sub operator. it 
has two attributes, sub1 and sub2. 

Both of them are operators, which can not be seen from the code itself, but 
is known to the system by the declaration done by the sub operator. sub1 
just given the name of the operator to be used, in this case User2Center, 
sub2 uses an anonymous operator which is saved inline. It is a value op-
erator which gets the the value pos from the in context and has an input 
attribute that is not used. in and get are enumerated values, while pos is 
a character string. 

This is exactly the format that is printed to a file to be read again in a 
later session to restore the state of the system. To do that the objects have 
to be written in the order that allows to dereference at the time of loading. 
To make this possible empty objects can be inserted as forward references 
(this is done automatically on saving). 

The same format is also used by the user interface to communicate with 
the system. In this case the objects can be identified using a pointer, so that 
names do not have to be resolved by search, which might take a measurable 
time when many objects are loaded. On top of that it also allows to help de-
bugging the system by printing the commands passed between user interface 
and the data management. 

The user interface is constructed from the field description in a similar 
manner. An example of an automatically constructed user interface looks 
like fig. 4.3. 

This example user interface displays an operator similar to the one in 
the text example, though slightly different. The left part shows all available 
operator instances. The top bar shows the type of the operator (sub), by 
clicking it new operators of this type can be created. The two arguments are 
inline operators, which are indicated by being slightly indented. The arrows 
pointing to the right symbolize a way to exchange this argument for any 
other of its type (here only operators). After pressing this button it stays 
pressed and any other operator, be it in the Instance list, the argument of 
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Figure 4.3: example user interface 

another operator or onthe Create New list can be transfered to the button's 
field. 

The inward arrow on the constant's value has a different meaning. As an 
important part of creating an interactive scene is the adjustment of constants 
a special user interface has been created for this purpose: the hotlist (s. fig. 
4.4). Different constant values can be collected in a hotlist. From here they 
can be manipulated using different interfaces appropriate to vector values 
(the main constant value type). It uses automatic border adjustment for the 
styles having limited ranges (slider/dials). For textual input the range is of 
course free, and when switching back to a limited range style the range is 
adjusted to the actual value: 

4.4 Results 

A number of different interactive dynamic forms have been created. Fig.4.5 

shows a typical working screen. It shows some dynamic forms that orient 
themselves according to the position and movement of the red tube, which 
symbolizes one user and is linked to the mouse for testing purposes. Some 
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Figure 4.4: an example hotlist 

windows showing ring operator sets and tubes for changing the rules govern-
ing the object's behavior, as well as a hotlist for some constants are visible. 
Any number of windows of any type can be active at the same time. 

The system lends itself to the creation of organic forms like the ones 
shown, but much more abstract forms are also possible. 

But the static images don't do the forms right, as their main strength is 
the complete freedom for change they possess. 

4.5 Future 

Different forms have been created, and some problems arose during the design 
that point to areas for future work. 

The user interface for inlined anonymous operators takes quite a lot of 
screen real estate. For moderately complicated expression the screen is al-
ready not high enough. Of course a vertical scrollbar has been employed 
to make bigger expression feasible, but the construction and management 
of these expressions is difficult. Thus for the more complex expressions a 
command line operator was used, that can handle arithmetic expression in 
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Figure 4.5: a typical working screen 

standard written form, has some shortcuts (e.g. for context values, global 
values or constant operators) and knows how to call any other operator by 
creating temporary internal anonymous operators. One approach to solve 
this problem in a more intuitive and graphical would be a graphical tree 
display of expressions with editing possibilities, similar to the tree widget 
available from SGI's ViewKit library. 

The system can be made even more flexible and easier to extend by sup-
porting dynamically loadable operators using dynamic shared libraries, avail-
able on SGI. This would obviate the need to recompile the system when in-
tegrating new operators. Even if it only takes some minutes, it still disturbs 
the work flow and it is thus a good idea to prevent it. 

As any interactive system is never fast enough the question how to speed 
this system up is an interesting area for further work. It turns out that the 
simulation is the main bottleneck. Thus a future work area would be the 
usage of multiple threads for the simulation. This raises a lot of synchroniza-
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tion and locking issues and is definitely going to be difficult in a system as 
flexible as this one. 

Another approach to the problem would be the creation of an expression 
compiler that creates customized throwaway operators that are dynamically 
compiled and loaded during the runtime of the program. This would allow 
the compiler to optimize whole expression and not only the small operators. 
This is expected to achieve a major speedup. 

As this system is designed to be extended even in very basic areas a 
wide array of direction for extensions is available. Some ideas that come to 
mind are the inclusion of a particle system metaphor. These particles would 
have some primitive acceleration-speed-movement behavior that is executed 
for every frame, while the more complicated target following or interaction 
behavior is only executed once for a number of frames for every particle. 
This would allow a big number of particles without adding an intractable 
workload on the simulation. Another idea would be to more fully use the 
data pFinder is able to deliver. For example the silhouette of the user can 
be extracted from pFinder and used as the form of a ring. 

Last but not least this is just a very low-level system. For more complex 
interactions a higher level of control is desirable. This was not the topic of 
my work, but will be needed for complex interactions. 
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Extending 

The following is a list of the program's files with an explanation what they 
do. .c and .h files are C-Code, .cc, .hh and .ice files are C++ code, with .ice 
being inline functions. These can be moved into the main modules as sepa-
rate functions (e.g. for debugging) by defining OUTLINE. Unless otherwise 
mentioned for evey .cc file there are corresponding .hh and .icc files, and .h 

files for every .c file. 

• RCS/: Revision Control System repository for older sourcecode version 
(s. RCS(l)) 

• pfinder/: Lopez-san's pfinder client source code 

• objs/: the object codes 

• iiJiles/: SGI CC's instance information files repository 

• examples/: example data files 

• GNUmakefile, Makedepend: makefile and dependencies. GNU make 
(/usr/local/bin/make) has to be used to compile the system. 

• defs.h, defs.hh: general definition needed in every module and conve-
nience fundtions to add attributes and access function to a C++ class 

• dll.cc: code for templated doubly linked lists and iterators for them. 
To use it just derive your class from dllElemC<class>. 

• dynarr.cc: code for templated dynamically growing arrays and iterators 
for them. This is just a template class, usage should be obvious and it 
is used every throughout the system, so examples of usage are easy to 
find. 

32 
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• vector.cc, matrix.cc: high-speed threedimensional floating point vector 
and (4x4) ((4x3) used) matrix library. The speed is mostly achieved by 
providing most functions in a way that does not create new objects but 
rather manipulates the values of already existing objects, preventing 
the allocation of temporary objects. This might not be as convenient 

as the standard overloaded C++-operators (which are provided, too), 
but for simple operation the difference is acceptable and the speed 
increase is definitely worth the effort. 

• string.cc: simple character string handling functions, nothing fancy 

• time.cc: time handling and arithmetic. 

• cfb.c, picture.c, ppm.c, rgb.c, tiff.c, tiffdef.h, tiffio.h, yuv.c, libtiff.a, 
mem.h: image loading/ saving routines for a variety of formats. These 
routines are taken from the'Y'system (which in turn took them from 
the'Genesis'system), so the coding and naming conventions are dif-
ferent and some conversion macros have been defined in picture.h to 
make them compile. 

• forms.h, fd_inter.fd, fd_inter.c, fd_inter_cb.c, libforms.so.0.81, libforms.so: 
the FORMS interface library and the definition files for the user inter-
face, designed with fdesign. 

• port.cc: serial port handling object. Handles blocking/ non-blocking 
and binary/ ASCII IO 

• container.cc: container for vector values or references that can be ac-
cessed by name or index. Also has a generalVectorContainerC class 
that can be extended at runtime. 

• gLwindow.cc: OpenGL window /widget handler class. Also cares about 
redraws, resizes, input (mouse/key). Because it handles the redraws it 
also has to take care about the pipeline synchronisation issues. 

• render.cc: this module contains a number of classes for renderable ob-
jects. renObjC handles multibuffering for pipelining, renGLVertexC is 
a simple wrapper around a vertex's attributes, renTubeC is the main 
rendered object, being able to render every combination of attributes 

and materials/textures.renTube VertexiteratorC is used to change the 
vertices of a renTubeC by allowing to iterate over all the tube's ver-
tices taking care of multi buffering etc. ren WireTubeC is an example 
for a new rendered object based on renTubeC. It renderes it's vertices 
connected by lines. 
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• material.cc: wrapper class for OpenGL material state, including tex-
ture references (s. texture.cc). 

• texture.cc: wrapper class for OpenGL texture state. Also responsible 
for loading the textures using the image loading routines described 

above. 

• cim.cc: the Class and Instance Manager. This is the central database 
manager class. It defines a set of templated superclasses for types that 

want to handled. As the expressive power of C++ is not quite enough 

to handle all aspects of this, a couple of macros are defined, too, which 

should be included into the class definition. See the use of the manager 

in operator.cc and the individual operators for examples. 

• io.cc: Input/Output handling. Defines the IOFieldC class that is used 
to handle the single fields that are supposed to be written/read. Also 

defines the IOFieldSetCclass, which is part of every object type that is 

written/read.For the handling of the different types of an object kind 

(e.g. all the different operators) the IOTypeContainerC clas is used. 

• global.cc: defines the globalC class, which handles all user interface 

variable aspects (Mouse, pFinder, Mignonneau-san's camera interface). 

All the data is available through the globals globalC object. Further-

more the main loops are methods of this object. 

• ifJields.cc: the different fields used byt he automatic user interface. 

Individual fields know how to change the field it stands for and where 

in the interface panel they are. Hotlist fields are a special case that is 

only used in a hotlist (s. ifJiotlist.cc). 

• iLtypes.cc: templated class iITypeWinC is used to create the interface 
panels for the different types of objects (rings, tubes, etc.). 

• ifJiotlist.cc: special type of container for i田otlistFieldCsthat knows 

how to attach to a field and can grow and shrink acfcording to the 

numer of active hot fields. 

• if皿 ain.cc:main interface part. Handles the pull-down menus, File IO 

and some window callbacks. 

• operator.cc: define the operatorC superclass for all different operators. 

• ring.cc: defines the ringC and ringOpC classes as described in sec. 4.2.1 
and 4.2.2. 
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• tube.cc: defines the tubeC class as described in sec. 4.2.3. 

• tree.cc: defines the treeC class as described in 4.2.4. 

• inter_test.cc: the main program. Just a main loop to create the inter-
face and call FORMS. 

• operators: this directory contains the code for the different operators. 
Additions to this directory will automatically be added to the system 
on the next compiler run. 

-veclen.cc: returns the length of it's input 

-value.cc: read/write a value from the in, out, local, global or own 

context 

-sub.cc: subtract it's two inputs 

-splice.cc: takes the first element of it's first input, the second of 
it's second and the third of it's third to create the output 

-seq.cc: executes it's four operators in sequence 

-select.cc: 
rameter 

set's its output to the ind's element of it's vector pa-

-scale.cc: scale the input parameter by scale 

-sawtooth.cc: runs a sawtooth oscillator between start and stop at 
a speed of phase cycles per second. 

-rotate.cc: rotates in around/using vector angle degrees. 

-ref.cc: empty demo operator 

-random.cc: 
amplitude 

craetes a random vector between base and base + 

-ramp.cc: runs a ramp oscillator between start and stop at a speed 
of phase cycles per second. 

-print.cc: print's op's value and copies it to the output. 

-param.cc: access one of the parameter values like time,phase or 
generation. 

-osc.cc: runs a sinusoidal oscillator between start and stop at a 
speed of phase cycles per second. 

-logicop.cc: connect it's inputs by logical operations 

-le.cc: linear combination of it's inputs 

'
、
,
＇
,
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-hsvtorgb.cc: convert's betwwen the HSv and RGB color spaces. 

-glob.cc: access a global value like mouse or user position 

-generic.cc: a generic operator that calls a user-supplied function. 
This operator can not be saves and restored! 

-dist.cc: calculates the distance between it's points. 

-copy.cc: just copies input to output. 

-constcomp.cc: compares a constant value to an operator. 

-const.cc: just sets the output to a constant value. 

-comp.cc: compares two operators. 

-dine.cc: commandline. Can handle arithmetic expressions involv-

ing constants and operators. Vector comparisions are handled as 
the logical and of componenwise comparisions and are written us-
ing standard C comparison syntax. Comparison of only the first 
vector element is written with the following symbols (the mean-

ing should be obvious): <<, >>, >>=, <<=, === and !==. The 
understood arithmetic operations are +, -, *, /, -(exponentia-
tion), % (modulus), and the C ? : operator. Vector constants 
should be written as [O, 0, OJ .Other operators can be called as 

<opname> (<parameters>). Special cases exist for the reading 
of constant operators (write without ()), in-context, out-context, 

global or parameter values (write as inl<val>, outl<val>, globall<val> 
resp. parl<val>). The expression is compiled and optimized us-
ing constant folding and constant decision reduction. 

-clamp.cc: clamps value to not be lower than low and not be higher 
than high. 

-angle.cc: returns the angle between it's two params 

-add.cc: adds it's two inputs. 
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Appendix 

6.1 Operator Superclass Header 

This is the header describing the attributes and abilities of the operator 

superclass, the most important class in the system. 

// operator: Operations on vectors aided by 

vectorValueContainers 

#ifndef _OPERAT□R.JIH 
#define _OPERA TOR.JIH 

#include <iostream. h> 

#include <iomanip .h> 

#include 11defs.hh11 

#include "vector.hh" 

#include "dynarr.hh" 

#include "dll.hh" 

#include "container.hh" 

#include "io.hh" 

#include "cim.hh" 

／／ 

// abstract base class for operators 

／／ 

class operatorC; 

// global operator class and instance manager 

extern cimGlobalC<operatorC> opGlobals; 

37 
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class operatorC : public cimElemC<operatorC, operatorC> 
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rt 
public: 

static canst char *kindName; 

of this operator 

// kind name 

class paramsC // Parameters wrapper class to 

ease extension and reduce 

I I # passed parameters 

｛ 

public: 

paramsC(void); 

paramsC( vectorContainerC * 

_outcontext, 

vectorContainerC * 

_incontext, 

vectorContainerC * 

_localcontext, 

float _time = 0, 

float _localtime = 0, 

float _phase = 0, 
float ...maxphase = 0, 

float _globalphase = 0, 
float _generation = 0, 

float _subphase = 0, 
index for points in 

single ring (for shape 

and color) 

float ..maxsubphase = 0 

) ; 

paramsC (paramsC & _ops) ; 

／／ 

／／ 

／／ 

void set( vectorContainerC * 
_outcontext, 

l
'
 

誓
＇
．
ー
、

vectorContainerC * 
_incontext, 

vectorContainerC * 
_localcontext, 

float 

float 

float 

_time = 0, 

_local time = 0, 

_phase = 0, 
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•9 

｝
 
typedef operatorC * operatorP; 

// doubly linked lists definitions 

typedef dllC<operatorC> operatorDllC; 

typedef dlliteratorC<operatorC> operatorDllitC; 

// dynamic array definitions 

typedef dynArrC<operatorP> operatorPArC; 

typedef dynArriteratorC<operatorP> operatorPitC; 

// include inline functions (if wanted) 

#ifndef OUTLINE 

#include "operator.ice" 

#endif 

#endif 

6.2 An Example Operator: Addition 

The header file: 

// add: add operator, add its 2 operator inputs 

#ifndef _ADD丑H

#define _ADD且H

#include "defs.hh" 

#include "operator.hh" 

I: class add□peratorC: public operatorC, public 
cimElemC<operatorC, addOperatorC> 
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｛
 public: 

void operate(vec3fC & out, 

vec3fC & in, 

paramsC & params 

) ; 

addOperatorC(const addOperatorC & _op); 

addOperatorC(const operatorP _addi = 0, const 

operatorP _add2 = O); 

cimMembers(operatorC, addOperatorC, 11add11, 

opGlobals); 

private: 

operatorP add1, add2; 
•9 

｝
 
typedef addOperatorC * addOperatorP; 

#ifndef OUTLINE 

#include "add.ice" 

#endif 

#endif 

The source file: 

／／ 

// add operator 

／／ 

#include <stddef .h> 
#include 11add.hh11 

#ifdef OUTLINE 

#include "add.ice" 

#endif 

●

：

ー

1
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ciminitElem(operatorC, addOperatorC, 

operatorC: :kindName, "add", opGlobals) i 

void addOperatorC: :initClass(void) 

｛ 
iofields.addField(I□FieldCoperatorE, "add1", 

offsetof(add□peratorC,add1)); 
iofields.addField(I□FieldCoperatorE, "add2", 

offsetof(add□peratorC,add2)); 

opGlobals.addType(addOperatorC::typename, 

&cimElemC<operatorC, add□peratorC>: : create, 

&cimElemC<operatorC, add□peratorC>: : create, 

&cimElemC<operatorC, add□peratorC>: : change) ; 

｝ 

add□peratorC: : add□peratorC (const add□peratorC & _op) 

: addi (_op. addi) , add2 (_op. add2) 

｛ 
addOperatorC: : addOperatorC (const operatorP _add1, 

const operatorP _add2) 

add1(_add1), add2(_add2) 

｛
｝
 
// action 

void addOperatorC: : operate ( vec3fC & out, 

vec3fC & in, 

paramsC & params 

‘,ノ
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｛ 
if (add1 && add2) 

｛ 
vec3fC tmp; 

add1->operate(tmp, in, params); 

add2->operate (out, in, params); 

out.inc(tmp); 

｝ 
｝ 

/， 


	001
	002
	003



