
／
 

ATRテクニカルレ ポート表紙

〔公開〕

TR-M-0009 

Interval Scripts : a Design Paradig皿

for Story-Based Interactive Syste皿s

クうりディオ t'ンヤネス

Claudio S. Pinhanez 

間瀬健 二

Kenj i Mase 

1 9 9 6 

r-aン痕l:''ク

Aaron Bobick 

1 0 . 1 

ATR知能映像通信研究所



Interval Scripts: a Design Paradigm 
for Story-Based Interactive Systems 

Claudio S. Pinhanez * 

MIT Media Laboratory 

Kenji Mase 

ATR-MIC Research Lab. 

Aaron Bobick 

MIT Media Laboratory 

20 Ames St. -E15-368C 

Cambridge MA  02139 -USA 

+1 617 253 0335 

pinhanez@media.mi t .ed u 

Seika-cho Soraku-gun 

Kyoto 619-02 -Japan 

+81 774 95 1440 

mase@mic.atr.co.jp 

20 Ames St. -El5-384B 

Cambridge M A  02139 -USA 

+l 617 253 8307 

bobick@media.mit.edu 

ABSTRACT 
A system to manage human interaction in immersive 

environments was designed and implemented. The in-
teraction is defined by an interval script which describes 
the relationships between the time intervals which com-
mand actuators or gather information from sensors. 
With this formalism, reactive, linear, and tree-like in-
teraction can be equally described, as well as less regu-
lar story and interaction patterns. Control of actuators 
and serisors is accomplished using PNF-restriction, a cal-
culus which propagates the sensed information through 
the interval script, determining which intervals are or 
should be happening at each moment. The prototype 
was used in an immersive, story-based interactive envi-
ronment called SingSong, where a user or a performer 
tries to conduct four computer character singers, in spite 
of the hostility of one of them. 

Keywords 

Interact1011 design, story-based immersive systems, tem-
poral scripts. 

INTRODUCTION 

The objective of this research is the design and imple-
mentation of an interaction manager system which is 
able to handle complex patterns of interaction evolv-
ing through time. The interaction manager should be 
able to track multiple concurrent stories, turned on or 
off according to the development of the story and the 
users'actions. For example, the user or users can be 
interacting with a virtual characters of the story, while 
the characters are also engaged in interaction among 
themselves. 

*This research was conducted at ATR Media Integration 
& Communication Research Laboratories; the author was 
supported by a Starr grant from the MIT/Japan Program 
and by ATR Research Laboratories. 

We are particularly interested in de:eloping a 
paradigm for scripting story-based interactive systems 
which can handle progression through time. That is, 
we want the behavior of the characters and the devel-
opment of the story to depend on the past interaction. 
This paper describes a script paradigm based on Allen's 
time intervals ([l]) which can be employed by an inter-
action manager by using the PNF calculus of Pinhanez 
and Bobick ((6]). 

We start by detailing some of the fundamental the-
oretical concepts behind the proposed script paradigm 
and its realization in the interaction manager. We then 
describe some of the issues involved in the implemen-
tation of such interaction manager, and our experience 
using the manager in a real system. 

MOTIVATIONS 

A long term objective of this research is to create im-
mersive, interactive environments which capture the in-
tensity and dramaticity of good stories. These environ-
ments can be either experienced directly by the user, 
as in the interactive cinema concept proposed by Tosa 
and Nakatsu ((8]); or employed in a computer theater 
performance, as described by Pinhanez (5]. With only a 
few exceptions (for example, (3]), immersive interactive 
environments have been eむploratory, i.e., the user's ba— 
sic objective is to navigate through an artificial world, 
discovering its interesting features and/or meeting with 
virtual creatures.'vVe believe that immersive systems 
can be significantly enriched by incorporating dramatic 
structure from stories. 

To enable the design of such environments, many 
technological developments are necessary: improvement 
of sensiりgtechnology, human action understanding, 
wireless mterfaces, etc. But it is also fundamental to 
develop paradigms and tools for scripting systems and 
stories able to handle a variety of interaction situations. 
Most story-based environments till now have relied on 
scripts which are either reactive or shaped in a tree-like 
structure. In reactive systems, the story (if it exists at 
all) unfolds as a result of the firing of behaviors as a 
response to the user's actions (for example, (4, 7]). In 
tree-like scripts, the user typically chooses between dif-
ferent paths in the story through some selective action 
(for example, [3]). 
Those scripting methods are not good for describing 



A ----B 

A --- -A  BEFOREB 
B 

A --- - AMEETB B 

A 
_,_ 

- - A OVERLAP 8 B 

A --—',, ―A DURING 8 8 

A _, -―― A START B B 

A --—·— A FINISH 8 B 

A EQUAL 8 

A ----8 
A 1BEFORE 8 

A ----8 
A iMEET B 

A --' - - AュOVERLAPB B 

! --B 

--8 

A iDURING B 

A --A iSTART B 

A _,,,,,, __ . 
- -AュB 

FINISH B 

Figure 1: The possible 13 primitive time relationships 
between 2 intervals (1). 

and managing the complex interactivity we are plan-
ning for our future immersive environments. It is hard 
to express progression of time in creatures controlled by 
reactive systems, and handling parallel events in a tree-
like, multi~le choice script is cumbersome. In the fol-
lowing sect10n, we propose a scripting paradigm which 
has the potential to handle multi-pattern interaction in 
story and scenario-based interactive environments. 

INTERVAL SCRIPTS 

An interval script 1s a low level interactive script 
paradigm based on explicit declaration of the relation-
ships between the time intervals corresponding to ac-
tions and to sensor activities. In an interval script, the 
designer of the interactive system declares the time in-
tervals corresponding to the different actions and events 
and the time relationship between some of those pairs of 
intervals, i.e., whether two intervals happen in sequence, 
overlap, or are mutually exclusive. No explicit time ref-
erences are neeclecl, for either duration, start, or finish 
of an interval. Examples of interval scripts are provided 
later in this paper. 

Allen's Interval Algebra 

To model the time relationships between two intervals 
we employ the interval algebra proposed by Allen (1]. 
The interval algebra is based on the 13 possible primi-
tive relationships between two intervals which are sum-
marized in fig. l. In any actual situation, two intervals 
relate to each other exactly as described by one of the 
possible primitive time relationships. 

Given two situations in the real world, their possible 
time relationship can always be clescribecl by a disjunc-
tion of the primitive time relationships. For instance, we 
can say that the action of driving a car either STARTS 
or FINISHES or happens DURING or is EQUAL to 
the interval when the car engine is turned on. That 
is, the time relationship between driving and having a 
car engine on can be described by the disjunction of 

{START DURING FINISH EQUAL . , } Of course, m a real 
occurrence of a driving action, only one of the relation-
ships actually happens. 

Most of the interest in Allen's representation for time 
intervals comes from a mechanism by which the time re-
lationships between the pairs of intervals can be prop-
agated through the collection of all intervals. For in-
stance, if interval A is BEFORE B, and B is BEFORE 
C, Allen's representation enables the inference that A 
is BEFORE C. In fact, [l] provides an algorithm, later 
revised by [9], which propagates the time relations 
throug~a collection of intervals, determining the most 
constramed disjunction of relationships for each pair of 
intervals which satisfies the given relationships and is 
consistent in time. 

There are many reasons to use Allen's algebra to de-
scribe relationships between intervals. First, no explicit 
mention of the interval duration or specification of rela-
tions between the interval's extremities is required. 

Second, the existence of a time constraint propaga-
tion algorithm allows the designer to declare only the 
relevant relations, leading to a cleaner script. Allen's 
algorithm is able to process the definitions and to gen-
erate a constrained version which defines only the scripts 
which satisfy those relations and are consistent in time. 

Third, the notion of disjunction of interval relation-
ships can be used to declare multiple paths and inter-
actions in an story. As we mentioned before, any in-
stance of an actual interaction determines exactly one 
relationship for each pair of intervals. Thus, we can see 
the interval script as the declaration of a graph struc-
ture where each node is an interval, and whose links are 
constrained by the structure of time. An interval script 
describes a space of stories and interactions. 

Fourth, it is possible to determine whether an interval 
is or should be happening by properly propagating oc-
currence information from one interval to the others as 
described in the next section. In other words, it is pos-
sible to construct an interaction manager which takes 
relationships between intervals as a description of the 
interaction to occur and which by getting input from 
sensing routines can determine which parts of the script 
are occurring, which are past, and which are going to 
happen in the future. 

RUN-TIME MANAGEMENT OF INTERVAL SCRIPTS 

Allen's interval algebra describes a way by which the 
relationships between intervals can be propagated by a 
transitive rule. To use the relations between intervals 
in a system to manage real-time interaction we employ 
the PNF calc・ulus developed by Pinhanez and Bobick 
[6] which de恥 esa method for propagating occurrence 
information through a network of intervals. 

Although the PNF calculus makes the essential link 
between the concept of interval and current time, all the 
PNF-related concepts are completely transparent for the 
designer of an interactive application: an interval script 
talks about the activity of actuators and sensors in the 
real world, and how they interact locally. However, to 
understand how it is possible to represent and detect the 

＂
弓



A MEET 8 

A 

--- 8 一
A 

--- B 一PAST~NOW PAST_.. PN 

A BEFORE 8 

A 

■ -—-一 B一PAST~NOW 

A 

■ -—-一 B一PAST _.,. PNF 

Figure 2: Examples of PNF value propagation using 
the PNF-restriction algorithm. Two different cases are 
exemplified: in the first, A MEET B; in the second, A 
BEFORE B. 

current situation within a script given the input of some 
sensors and the information about the past interaction, 
we describe briefly the principal concepts of the PNF 
calculus in the following paragraphs. 

PNF Calculus 

The PNF calculus is based on the assignment of a primi-
tive state value, either past (PAST), now (NOW), or fu-
ture (FUT), to each interval at each instant of time. 
Those values correspond to the intuitive notion of inter-
val occurrence relatively to a given moment of time. To 
match the structure of the interval relationships (which 
uses disjunctions of primitive relationships), the current 
state of each interval can be characterized by a disjunc-
tion of possible primitive states, a PNF-state. There are 
7 possible PNF-states: PAST, NOW, FUT, PN, PF, NF, or 
PNF. 

For instance, PN (PAST or NOW) describes the situa-
tion where it is known that the interval started some 
time in the past but it is unknown if the interval has 
already finished. PNF (PAST or NOW or FUT) stands for 
the situation where no information about the interval is 
presently known. 

The PNF-restriction algorithm developed by Pinhanez 
and Bobick [6] enables the propagation of known PNF-
states of some intervals through a network of intervals. 
Typically in the cases described in this paper the cur-
rent PNF-state of some intervals are obtained by sen-
sor devices. By using the PNF-restriction algorithm, the 
PNF-state of intervals related to actuators can be deter-
mined. Actuators in the NOW state are activated, and 
those which are in the PAST state are disabled. 

Figure 2 shows some simple examples of propagation 
of values considering the relationship between two in-
tervals A and B. In the first case, A MEET B: if B is 
NOW then it is clear that A is in the past (considering 
that intervals are supposed not to contain the endpoi叫
However, if it is known that A is PAST, then we can only 
conclude that B is PAST or NOW that is, PN. In the sec-
ond case, if A BEFORE B, the information that A is PAST 
is virtually useless, since B may have already happened 
(PAST) or be happening (NOW) or be in the future (FUT) 

table of interval 
relationships ~ ~-
ロ
ロscript -------.._ sensor actuator 

routine routine 
sensor 
routine 

Figure 3: Diagram of the interaction manager. 

characterizing a PNF state. 
In [6], Pinhanez and Babick also discuss the idea of 

time expanding a PNF-state. Basically, given the PNF-
state of an interval, the time expansion of the interval 
is the PNF-state corresponding to possible states of that 
interval in the next instant of time. If an interval is NOW, 
in the next instant it may be NOW or PAST, or PN; if it 
is PAST, it remains in PAST; if it is FUT it goes to NF. 
A comprehensive description of the PNF-restriction algo-
rithm can be found in [6], together with some theorems 
about its computational complexity and completeness. 

Connecting to the Real World 

According to our proposal of interval scripts, the in-
teraction of a system is described by intervals of time 
and their relationships. Some intervals are connected 
to sensors and some are connected to actuators. Con-
nectors with real world events are generally referred as 
externals. In the interval script paradigm, the designer 
has two basic tasks: to define the act叫 sensingand 
actuating routines corresponding to different externals 
and to determine the relationships between the intervals 
defined by those externals. 

An external is the concept abstracting the internal 
mechanisms required to run the different sensors and 
actuators. In fact, an external seamlessly encapsulates 
the connections between a designer's routine and the 
PNF structure used to manage the interaction. Quite 
commonly more than one interval is associated to one 
external, as shown later. 

Figure 3 shows the basic structure of the interaction 
manager. The script defines the relationships between 
intervals, which are stored in a table, and used by the 
interaction manager when running the PNF algorithm. 
The interaction manager considers the PNF-state of all 
intervals at time t -1 to compute the PNF-states at time 
t. These values are converted - as discussed later -
and used to call the designer's sensing and actuating 
routines. The outputs of those routines are mapped 
back into PNF-states of appropriate intervals, completing 
the cycle. 

Sensors 

In interactive environments, sensors can play the roles 
of chooser, locator, val叫 or,etc. (see [2]). We have 



Multiple events desired OFF I ON I OFF 

activity 
interval •~ 
event~ 
interval 

OFF I ON I OFF 

- -NOT_HAPPEN f--HAPPEN-I NOT_HAPPEN卜HAPPEN-j NOT _HAPPEN 

Trigger (activity z.,i四 Tevent) 

activity 
interval~ 
event -
interval 

OFF I ON I OFF 

NOT_HAPPEN 

I 一I-HAPPEN~ NOT_HAPPEN 

Figure 4: Intervals associated with a sensor, in two dif-
ferent configurations. 

analyzed and implemented only the binary case of a 
chooser sensor, that is, a sensor which detects whether 
something is happening or not. However, all sensors 
have at least two time intervals naturally associated to 
them: an activity interval which determines when the 
sensor is active, and a event interval which corresponds 
to an occurrence of the sensor. 

In the case of binary-choosing sensors, the designer 
of the interactive system has to provide a routine which 
receives as input a switching command (ON, OFF, RESET) 
and returns one of the following 3 values: HAPPENING, 
NOT-HAPPENING, or UNKNOWN. During the time the ac-
tivation interval is or may be happening (NOW, PN, NF), 
the interaction manager sends an ON command to the 
designer's routine, and OFF otherwise. 
The output of the sensing routine affects the state of 

the event interval as follows: 

HAPPENING: the event interval is set to the NOW state 
by the interaction manager; 

NOT-HAPPENING: the event interval is set to PF; 

UNKN□ 関N:the event interval is set to PNF. 

Figure 4 shows the intervals associated with a sensor. 
In the top example, it is shown that the event interval 
can occur many times while the activity interval is 
in the NOW state (and therefore, sending ON messages to 
the sensing routine). The second example shown in the 
bottom of fig. 4 exemplify the case of triggers, which 
turn on only once; this is achieved by automatically in-
corporating into the script the relationship stating that 
the activity interval MEET the event mterval. 

Actuators 

In the case of actuators, the designer has to provide 
a routine which accepts a switching command (ON, 
OFF, RESET) and returns a state-descriptive message: 
NOT-DOING, DOING, or DONE. The feedback from the rou-
tine is important because actions in the real world have 
their own timing and priority, independent of the desires 
of the designer or of the script. A situation might call 
for the playing of a sound, but the sound might be de-
layecl by a network problem or might not happen at all, 
if, for instance, another actuator has already grabbed 
some required hardware connection. 

interval • 
actual • 
interval NOT_DOINGI DOING I DONE 

Figure 5: Intervals associated with an actuator. 

Timers 

Although the general objective of this proposal is to 
write a script without explicit time references, some-
times it is necessary to constrain the duration of an 
action or a sensing activity. In our conceptualization, 
a timer is a special case of an actuator, thus defining 
desired and actual intervals. The desired interval is 
used to turn the timer on and off; the actual interval 
- especially its end - can be used to trigger another 
actions as the timer expires. 

Running Cycle 

Before the interaction manager can act叫 lyrun the in-
teraction described by the interval script, Allen's algo-
rithm must be executed to assure that the relationships 
between every two intervals is as restricted as possible. 

Just before the interaction starts, the interaction 
manager sets every interval state to PNF, except for the 
special interval start, which is assigned the value ND見
During run-time, the following basic cycle is repeated 
till the special end interval becomes NOW: 

1. at the beginning of each cycle, all designer's routines 
connected to externals are called, considering the PNF-
state of each interval to decide which of the switching 
commands (ON, OFF, RESET) is passed to the routine. 

-

t

 

These characteristics of actuators are reflected in our 
system by associating two intervals to actuators: a de-
sired interval and an actual interval. Figure 5 shows 
the relationship between the intervals and the actuator 
routine provided by the designer. When the desired in-
terval is happening (i.e., has value NOW), the interaction 
manager sends ON messages to the designer's routine. 
When, and if the actuator goes on, the returning DOING 
message moves the actual interval into the state NOW. 

When the desired interval goes to PAST, the inter-
action manager starts sending an OFF message to the 
actuator routine. However, the end of the actual in-
terval is decided by the routine itself: it may happen 
before, at the same, or some time after the routine re-
ceives the OFF message, depending on the properties of 
the device being controlled. 

Another issue is what to do when the PNF-state of 
the desired interval is PN, NF, PF, or PNF: should an 
ON or an OFF message be sent to the designer's routine? 
Our current solution is to make the designer define the 
desired interval to be RELAXED or ANXIOUS. In the for-
mer case, only pure NOW PNF-states send an ON message; 
in the later, any state containing NOW - except PNF― 
starts the actuator's routine. 

．
｀
~
ー



2. the outputs of the designer's routines, translated into 
PNF-states are attributed to the appropriate interval 
connected to each external; 

3. intervals which are not connected to externals (if they 
exist) have the values in the previous iteration time-
expanded. 

4. the PNF-restriction algorithm is applied, propagating 
the current values of some intervals through the whole 
network; 

5. if the end interval is not NOW, the cycle is repeated. 

According to this cycle, if an interval becomes PAST, 
it remains with this value until the end of the run. This 
information is used in the upcoming cycles, constrain-
ing the values of other intervals and making the system 
progress through the story defined by the interval script. 

Implementation 

Allen's interval algebra, the PNF-restriction algorithm, 
and the "external" procedures have been implemented 
in C++. In the current version of the interaction man-
ager, the designer's routines are also written in C++, 

including the declaration of externals and their relation-
ships. The interval script is simply a C++ file which uses 
classes corresponding to the different externals. 

Since the computational complexity of the PNF-
restriction algorithm is worst-case quadratic in the num-
ber of intervals - and linear in memory usage - ([6]), 
the interaction manager can run the PNF-restriction al-
gorithm at intervals compatible with sensor accuracy. 
Typically:, we have been running a new cycle of the man-
ager at video rates, that is, 30 times a second. 

AN EXPERIMENT: Singsong 

The methodology and algorithms described in this pa-
per were tested in a story-based, interactive system 
named SingSong. SingSong was designed to be enjoyed 
both as an user experience and as a computer theater 
performance. In the later case, as described by Pin-
hanez in [5], our system provides computer-generated 
partners to the human performer which are not only 
reactive, but are also able to follow the script. 

The transition between the performance and the user 
mode is seamless, enabling the user to experience the 
story as lived by the performer. Typically, a performer 
is able to produce a more vivid and interesting result for 
those observing from outside the system because she can 
clearly react to the situations, and expressively displays 
her emotions. 

Figure 6 shows the basic structure of S-ingSong: a 
big video screen shows four computer graphics-animated 
characters which can "sing" musical notes (as produced 
by the synthesizer). A camera watches the user or per-
former, determining the position of her head, hands, 
and feet. Those positions are recovered by the software 
pfinder developed at the MIT Media Laboratory ([10]). 

All the interaction is nonverbal: the user or performer 
gestures and the CG-characters sing notes and move. 
There is a CG-object - a pitching fork - which the 

image 
processing camera 

三こ二這
positional↓ data 

笠~\詈丁旦〗ニ
MIDl¥commands 

~~speaker 
synthesizer 

Figure 6: The basic setup of SingSong. 

user employs during one of the scenes. Sounds of ap-
plauses can also be generated by the system. SingSong 
is an environment which immerses the user or performer 
in a simple story which unfolds as the interaction pro-
ceeds: 

Singers of a chorus (the CG-creatures) are animat-
edly talking to each other. The conductor enters, 
and commands them to stop by raising her arms. 
One of the singers - # 1 - keeps talking, till the 
conductor asks it to stop again. Singer#} stops, 
but complains (by expanding and grudging sounds). 
The pitching fork appears and the conductor starts 
to tune the chorus: she points to a singer, and 
"hits" the pitching fork by moving her arm down. 
Any singer can be tuned at any time. However, 
singer#l does not get tuned: it keeps giving back 
the conductor a wrong note till the conductor knees 
down and pleads for its cooperation. After all the 
singers are tuned, a song is performed. The con-
dzictor controls only the tempo: the notes are played 
as she moves her arms up. When the song is fin-
ished, applause is heard, and when the conductor 
bows back, the singers bow together with her. Just 
after that, singer#} provokes the conductor again, 
and the singers go back to talking to each other. 

Writing An Interval Script for Singsong 

SingSong portrays a very simple, quasi-linear story. The 
choice of a story with some linearity was intentional: 
interval scripts are naturally fit to describe reactive en-
vironments, and we wanted to test the limits of the con-
cept in a very constrained interactive story. The follow-
ing paragraphs show some examples of how semi-linear 
and parallel structures can be described by the interval 
script approach. 

Commanding Multiple Characters 

In the first scene of SingSong, singer#l has a different 
role than the other singers: it does not obey the con-
ductor promptly, and after being commanded to stop, it 
complains. After the singers stop chatting, they start to 
stare to the conductor following him around the space. 



I BeQmet 1 
I I 

: ~ 
＇ I 1 Chattini/#2 I ＇ 

I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~ 
I 
I 

Chattin町1

StareConductor#2 

i i BeQuiet2 I 
I r--

＇ ＇ ＇ ReactionTime→'  "'''''''''''' 

i~m 
, StareConductor#l 

4
 

s

#

 

r
 

e

3

 

g
#
 

sm
立

-.• 

―
 

Singer #1 

BeQuiet 
activity 

BeQuiet 
activity 

START 
EQUAL 
iSTART 

START 
EQUAL 
iSTART 

Chatting#l 
desired 

Chatting#2 
desired 

BeQuiet 
event 

BeQuiet 
event 

BeQuiet 
event 

Figure 7: Diagram of the temporal relations in the first 
scene of SingSong. 

k~.j 

As we see, there are several externals involved in this 
scene: 

Chatting (actuator): 4 copies, one for each singer, con-
trols the sound and the mouth movements which sim-
ulate chatting; 

BeQuiet (trigger sensor): fires if the user raises both 
arms on top of his head; 

BeQuiet2 (trigger sensor): identical to BeQuiet; 

StareConductor (actuator): 4 copies, makes the eyes 
of the creatures follow the conductor around the 
space; 

ReactionTime (timer): provides a pause of 3 seconds 
between the conductor's gesture and the complaint; 

Complain (actuator): only for singer #1, controls the 
sounds and graphics related to the complaining ac-
tion. 

Figure 7 displays a diagram showing how the differ-
ent intervals of each external are related. The diagram 
shows the relationships for singer#l and singer#2; the 
relationships for the other two singers are identical to 
those of #2. Figure 8 shows the interval script corre-
sponding to the first scene (where the details of the C++ 
code were omitted for clarity). 

Initially, the desired interval of all Chatting actua-
tors and the activity interval of BeQuiet are de恥 eel
to start together. This is shown in the first part of 
fig. 8 which states that the activity interval of the 
sensor BeQuiet START or EQUAL or iSTART the desired 
interval of Chatting#1 and Chatting#2. In fig. 7 we 
represent this definition by the dashed line joining the 
beginning of both intervals. The beginning of these in-
tervals is triggered by other intervals, from the prologue, 
not shown here. 

The next de恥 itionstates that BeQuiet. event fin-
ishes the desired interval of Chatting#2, i.e., the 
singers stop chatting when the conductor raises his 
arms. The event ofBeQuiet also turns off the activity 
of Be Quiet, what makes this external a trigger sensor. 

BeQuiet 
event 

MEET 
BEFORE 

MEET 
BEFORE 

START 
EQUAL 
iSTART 

START 
EQUAL 
iSTART 

Chatting#2 
desired 

BeQuiet 
activity 

StareConductor#2 
desired 

BeQuiet2 
activity 

BeQuiet2 
event 

BeQuiet2 
event 

START 
EQUAL 
iSTART 

START 
EQUAL 
iSTART 

ReactionTime 
desired 

StareConductor#l 
desired 

Reaction 
Time evenヒ

MEET Complaim 
desired 

Figure 8: Interval script corresponding to the first scene 
of SingSong. 

Also, this event starts StareConductor#2. desired. 
The turning on and off of intervals is described by the 
START or EQUAL or iSTART, and the MEET or BEFORE re-
lationships, respectively, as shown in fig. 8. 

However, since singer#l does not stop chat-
ting till the conductor raises his arms for a sec-
ond time, BeQuiet. event does not neither turn off 
Chatting#1 nor turn on StareConductor#1. Instead, 
BeQuiet. event START or EQUAL or iSTART-i.e., trig-
gers - BeQuiet2.activity. 

A detection of an event by BeQuiet2 shuts off the 
sensor's activity, starts the StareConductor#1, and the 
desired interval of timer ReactionTime. The end of 
ReactionTime. actual starts the Complain actuator, 
恥 ishingthe first scene. 

As it can be seen in fig. 8, all the structure is described 
by the time relationships between intervals, and there 
are no explicit references to duration of intervals. ~his 
scene of SingSong is a good example of parallel act10ns 
that start from a single event. 

Other Possibilities 

The complete script of SingSong includes many differ-
ent constructions which are handled conveniently by the 
time interval relationship paradigm, The detailed ex-
amination of those constructions are beyond the scope 
of this paper. However, it is useful to mention typi-

-



cal cases of interaction which were addressed during the 
development of SingSong. ・ 

The tuning scene is basically a loop of short tuning in-
teractions between the conductor and one of the singers, 
until all the singers are tuned. This is handled by a 
third interval associated with all externals, the reset in-
terval. Whenever a reset interval happens (i.e., the 
interval has a NOW PNF-state), the other intervals as-
sociated with that particular external are set to PNF. 
Basically, this enables a movement backwards in time 
which, when coupled with a sensor of loop termination, 
makes the construction of loops possible. 

Another interesting case occurs in the singing scene. 
The singing of the melody is implemented as a loop 
where each note is triggered by an upwards movement 
of the conductor's arms. However, to avoid breaking the 
flow of the melody, a timer starts in parallel with the 
activity interval of the raising-arms sensor. If the con-
ductor takes too much time to trigger the next note, the 
timer expires and activates the singing actuator. In the 
case of SingSong, this mechanism generates a nice sen-
sation of uninterrupted musical flow during the singing 
scene. 

Interacting with Singsong 

SingSong was designed considering both user and per-
former interaction. Figure 9, left, shows a user reacting 
to singer#l complaints (just after it was commanded to 
stop chatting); the right side displays a miming clown 
conducting the chorus during the singing scene. 

An a叫 ysisof the SingSong experience is beyond 
the scope of this paper. However, it is interesting to 
point out some observations we made during the runs 
of SingSong with users and performers, which, in our 
opinion, underscores our interest in immersive, story-
based systems. ・ 

Users seemed to be quite comfortable in assuming the 
role of the conductor. In particular, they appeared to 
have a great time conducting the chorus. The simplic-
ity of the interface coupled with the joy of generating 
interesting music provided a very pleasant experience. 
Also, the well-defined end to the interaction sig叫 ed（ 

） by the applauses makes SingSong terminate just after 
a dramatic climax. These are precisely the kind of ef-
fects we should expect in story-based environments, in 
opposition to "exploring the world" immersive systems. 

SingSong in the performance mode constitutes a typ-
ical experiment in computer theater, as defined in [5]. 
The choice of a clown costume, complete with red 
nose, produces an interesting effect: a more harmonious 
blending of real and the CG world. The performer's 
characterization as a clown somewhat puts him in a 
world as fantastic as the singer's virtual world. 

DISCUSSION 

This research began with the observation that there 
are almost no paradigms and methodologies for script-
ing complex interactive systems. Especially in the 
case of stories with multiple, concurrent threads, cur-
rent systems based on the reactive and on the tree-like 
paradigms seem to be insufficient and inadequate. 

The interval script paradigm proposed in this paper 
is a first step towards more general tools and paradigms 
for interactive script writing. The method seems to have 
the required expressive capabilities, but, as the analysis 
of fig. 8 quickly reveals, it still lacks clarity and simplic-
ity. Partial blame should be put in the task itself: it is 
very hard to describe and visualize multiple, sometimes 
unrelated activities. 

But we do believe that the interval script paradigm, 
as described in this paper, still employs primitives which 
are too low-level: it is almost an "assembly" language 
for events in time. However, through our experience 
writing the interval script for SingSong, we have de-
tected patterns of interval interconnection appearing 
many times in different situations in the script. Those 
patterns can be embodied in higher level externals defin-
ing, for example, chains of events, conditional branch-
ing, and loops. Nevertheless, a complete abstraction 
into those primitives may restrict the expressiveness of 
interval scripts to tree-like levels. 

It is important to notice that immersive environments 
pose more diffi叫 tscripting problems than normal com-
puter interfaces. The current interaction between com-
puter and human is mostly based on non-gestural events 
(key typing, locator, selector). Both the sensing and 
the generation of gestural events require complex pat-
terns of time interaction. In our paradigm, this was re-
flected in many instances, as, for example, in the need 
for des ired and actual intervals for actuators. 

On the other hand, story-based environments chal-
lenge event driven systems by requiring that past inter-
action to be taken into account. Meaning of gestures 
and actions must change as the action progresses. This 
is handled by the interval script paradigm by associating 
the same sensing routine with different externals (and 
thus, different intervals) in different scenes. As time 
progresses, the externals associated with the beginning 
of the script move into the past, turning off the sens-
ing for the scenes which had already happened. Then, 
the progression of the story may reach the point where 
the externals of a new scene are activated, mapping the 
sensing routine into a new time interval, and therefore 
to a different context. 

In some ways, we can see the interval mechanism as 
a way to switch the context of sensing and actuating 
routines. In SingSong we employed the same basic rou-
tines many times to produce completely different results 
in each scene: "arms up" means "stop chatting" in the 
chatting scene; later, it means "next note, please" in the 
srngmg scene. 

The interval script structure also simplified the pro-
cess of debugging the sensing and actuating routines, 
and the time structure itself. We designed general-
purpose debugging routines which, embedded in exter-
nals, were activated according to specific conditions or 
in conjunction with the "problematic" externals. The 
interval script paradigm enables easy connection and 
disconnection of those debugging devices, in addition to 
provide a common structure which facilitates the design 
of general-purpose debugging routines. 



Figure 9: Two scenes from SingSong. The left picture shows a user playing with the system, while the right picture 
portrays a performance case. 

We do not believe that it would be possible to im-
plement SingSong as fast as we did without the interval 
script structure. The interval script provided a flex-
ible method to change the script as we are designing 
new routines and testing the interaction. In spite of the 
low level of the language, and our lack of experience in 
thinking in terms of local relationships between inter-
vals in time, the interval script paradigm considerably 
simplified the task. 

With the experience provided by SingSong, we plan to 
implement higher level structures and externals to facil-
itate the understanding and reading of interval scripts. 
Among our future projects, we plan to use interval 
scripts to control an immersive, evolving diary describ-
ing a child's experience, as well as some further and 
more artistically ambitious experiments in computer 
theater. 

References 

[1] Allen, J. F. Towards a general theory of action and 
time. Artificial Intelligence 23 (1984), 123-154. 

[2] Fukumoto, M., Mase, K., and Suenaga, Y. Finger-
pointer: Pointing interface by image processing. 
Comput. & Graphics. 18, 5 (May 1994), 633-642. 

[3] Galyean, T. A. Narrative Guidance of Jnteractiv-
ity. PhD thesis, M.I.T. Media Arts and Sciences 
Program, 1995. 

[4] Maes, P., Darrell, T., Blumberg, B., and Pentland, 
A. The ALIVE system: Full-body interaction with 
autonomous agents. In Proc. of the Computer Ani-
mation'95 Conference (Geneva, Switzerland, Apr. 
1995). 

(5] Pinhanez, C. S. Computer theater. Technical 
Report 378, M.I.T. Media Laboratory Perceptual 
Computing Section, May 1996. 

[6] Pinhanez, C. S., and Bobick, A. F. PNF Calcu-
!us: Representing and propagating time constrains 
in Allen's interval algebra. Technical Report 389, 
M.I.T. Media Laboratory Perceptual Computing 
Section, Sept. 1996. 

[7] Tosa, N., Hashimoto, H., Sezaki, K., Kunii, Y., 
Yamada, T., Sabe, K., Nishino, R., Harashima, H., 
and Harashima, F. Network-based neuro-baby with 
robotic hand. In Proc. of JJCA1'95 Workshop on 
Entertainment and AI/ A life (Montreal, Canada, 
Aug. 1995). 

[8] Tosa, N., and Nakatsu, R. For interactive virtual 
drama: Body communication actor. In Proc. of 7th 
International Symposium on Electronic A rt (Rot-
terdam, The Netherlands, Sept. 1996). 

[9] Vilain, M., Kautz, H., and van Beek, P. Constraint 
propagation algorithms for temporal reasoning: A 
revised report. In Readings in Qualitative Rea-
soning About Physical Systems, D. S. Weld and 
J. de Kleer, Eds. Morgan Kaufmann, San Mateo, 
California, 1990, pp. 373-381. 

[10] Wren, C. R., Azarbayejani, A., Darrell, T., and 
Pentland, A. Pfinder: Real-time tracking of the 
human body. Technical Report 353, M.I.T. Media 
Laboratory Perceptual Computing Section, 1995. 

f‘ 


	01
	02
	09



