
Internal Use Only (非公開）

. 002

TR-:IT-0317

Approximate Pattern-Matching

Agrep: a UNIX Command

Yves Lepage

December 1999

Abstract

We present a program for approximate pattern-matching that has been shown to

be asymptotically faster on average than a similar program by Wu and Manber,

~grep. We sketch the method used and show comparative results. This program
1s accessible under Unix and can be used as C functions. An option not found in

agrep allows this program to handle two-byte Japanese characters.

Keywords

Approximate pattern-matching, edit distances, Japanese characters.

◎ 1999 ATR音声翻訳通信研究所
◎ 1999 ATR Interpreting Telecommunications Research Laboratories

/― r

-1

Contents

Introduction ー

ー

2

3

4

Approximate pattern-matching
1.1 Edit distances
1.2 Exact pattern-matching

1.3 Approximate pattern-matching

1.4 Agrep: a sketch of the technique

Comparison of Agrep with agrep
2.1 Protocol . . . ・
2.2 Results . . . ．．．．．．．．．．．．．．．．．．．．．．
2.3 Analysis

Agrep as a Unix command line
3.1 , Functionality

3.2 . Options
3 .3 Examples
3.4 Use

Agrep as C functions

3

3

3

3

4

Conclusion

7

7

7

0

1

2

2

3

4

5

9

1

1

1

1

1

1

1

1

ー

11

List of Figures

2.1 Average runtimes by lengths and thresholds. 8
2.2 Average runtimes by threshold / length of the pattern ratio. . 9

lll

lV

Introduction

Approximate matching is similar to pattern-matching, i.e. the retrieval of a
pattern from a text, but is different in that''errors" are tolerated. Formally,

these errors are seen as edit operations performed on the pattern: character
insertions, deletions or substitutions. The minimum number of edit opera-
tions or errors necessary to transform a string into another string is called
the edit distance between the strings. To perform approximate matching,

usually, the maximum number of such errors is given as a threshold.

Thus, a program of approximate pattern-matching searches for those lines

in the text (of length n) that contain a substring at a distance less than or
equal to a given threshold k from a given pattern (of length m).
For example, when looking for the pattern analogy with a threshold of

2, from the following text:

analdgous

explanation
neuroanatomy

only the first and third lines are output:

analogous dist(analog, analogy)= 1 (insert y)

neuroanatomy dist(anatomy, analogy) = 2 (t⇔ 1 and m⇔ g)

Recently, Wu and Manber [Wu & Manber 92] proposed a practical imple-
men ta ti on of the Baeza-Yates and Gonnet method [Baeza-Yates and Gonnet 92],

which exhibits a behaviour of O(nk□ l), where w is in fact some constant.
w

agrep is considered the fastest practical algorithm for approximate pattern-

matching. agrep has been incorporated in a tool for searching local Web sites

(webglimpse, see http://glimpse.cs.arizona.edu/ webglimpse/index.html).
The present technical report describes a Unix command called Agrep

(with an uppercase A) which appears to be be a good competitor of agrep.

ー

2

Chapter 1

Approximate pattern-matching

1.1 Edit distances

Edit distances have been first proposed by the Russian computer scientist

Levenshtein [Levenshtein 65]. Algorithms for distance computation have
been first proposed by Wagner and Fischer [Wagner & Fischer 74]. They
rely on the computation of a matrix, by dynamic programming.

1.2 Exact pattern-matching

Pattern-matching has been thoroughly studied. Some very good documen-
tation exist on the Web. For instance, see http://www. dir. uni v-rouen. fr/
-charras/ string/ or http:/ /www-lsi. upc. es;-rbaeza/handbook/text_a.

html.

1.3 Approximate pattern-matching

The algorithms proposed for approximate pattern-matching are usually based

on the distance-matrix computation. For example: [Landau & Vishkin 88]
and [Baeza-Yates and Gonnet 92]. All these methods basically try to mini-

mize the number of cells computed in the distance-matrix.

On the contrary to these algorithms, our algorithm bases on represent-

ing factored string subsequences [Lepage 97]. This method is the object of

3

a pending Japanese patent (Application no. 9-232902, day of application:

August 28th, 1997). An international patent is also pending.

The implementation of this method as a UNIX command is called Agrep
(with an uppercase A), to mimic the name of agrep (with a lowercase a) by

Wu and Manber.

1.4 Agrep: a sketch of the technique

Agrep bases on representing factored string subsequences with only three

integers: past distance, last position in the pattern and potential insertion
length.

Our method tries to detect the longest common subsequence between the
pattern and the text, rather than to compute the edit distance (the two prob-
lems are" dual"). Any candidate longest subsequence may be characterised
by just three integers: the last position matched in the pattern (pas), the

past distance up to that point (sum of the maximums of the lengths of the

corresponding non-matching parts of the pattern and the text, dis), and the

length of a gap ahead (ins).

Hence, the core data of our algorithm is a table containing arrays of three
integers, each array representing a possible candidate match being built.

p『
~e::~r: -r-ごてtr-1.~----

I pos I dis I ins I

H-½-H

At a given position in the text, if the next character read from the text

belongs to the pattern, a new candidate may be computed over all compatible

candidates, by taking the minimal past distance possible.

In any case, the next character may be considered as a gap added ahead.
Hence, for all candidates, this gap, represented by ins, is incremented.

From this sketch of the algorithm, one could conclude that the set of
candidates will always grow. Fortunately, four constraints may be applied
so as to reduce it, so that it always remain reasonable during execution. In

4

our experiments (see Chapter 2) it practically remains at 0.5, which is that

in average, there is only one candidate every second position in the text
searched, and no candidate elsewhere.

The technique also crucially relies on the order in which the triples are

examined at each step, i.e., the sort used for the arrays is the key to the
efficiency of Agrep. An enumeration of the candidates in decreasing order of
pos and dis values has proved to accelerate the execution of the algorithm.
For each character from the searched text, scanning the candidate array can
start exactly on the right candidate until the end of the set, thus considering

only the candidates with a relevant position, and thus avoiding checking the
constraint for all candidates in the set.

5

6

Chapter 2

Comparison of Agrep with agrep

2.1 Protocol

We searched for every word of an English dictionary, in the dictionary itself,

with all possible thresholds, from 1 to the length of the word血nus1. The
size of the dictionary was 200 Kb. As the nu:rp.ber of words was 25143 and the
average length of a word was 7.22, this represented approximately 181 500
runs of the search.

2.2 Results

By comparing the outputs of agrep and of our algorithm, we verified that

both algorithms yield exactly the same results in all the cases.

However, we found that our algorithm is more robust than agrep, and
could not perform extensive comparisons with patterns of indefinite length
with large thresholds, as agrep seems to have inherent limitations: agrep

is shipped with a limited threshold of 8. We extended this limit to 64 by
changing some constants in the source code, so that the experiments could
be run. Even by doing that, we obtained wrong results for thresholds larger

than 12 with different edit operation weights. These errors did not appear
for equal weights.

Also, we found a bug in agrep which is that some solutions overriding
the end of the input buffer are not output.

We drew the execution times by lengths of patterns, by thresholds, and

by ratios of threshold over length of pattern in Figures 2.1 and 2.2.

7

ooco

‘ヽ、
、‘
、＇、`
，、
、'‘

,‘
 ，

、'

¥
[

‘ヽ
¥

z

、¥

g

栂＇：沿＇ー・州

胴
い
｀
＼

O
L

菌
t
4

告
t

、

9
L

芯

渕

斜

徊

＇

，

翡

直

呼

＂

目

'

、

‘
1
4

．`ヽ

ー

、

‘

．

叩

＇

由

｀

．．
 ¥
遠
¥
g
,
‘
.
'

忍‘

\
＼

7
ぷ
~
哨
卓
＇
：
哨

'
9
9
9
9

吼
，
＼
悉
，
｀

，＇ヽ
，ヽ、

¥

‘

、

祠

ol

‘、

¥,

、‘

ヽ`
＼

認

，

、

‘べ

、

¥

¥

、

＇

、

'

.

.

、

＼

ー

'

、

¥

、

'

`

，

＇

P

、'

,1,

＼`ー，
1

，ー，1

，ヽ、

、‘
ヽ

．．
 ，＇

五
‘
、
t:n6ue1
E
g

i
e
d

，、
J
1了

P
l
0
q
s色
qi

‘ヽ、̀

0
0ト

0
0
9

B
u
1
4
o
i
e
w
 e
i
e
u』
1xoidde

0
 O
S

お
quel,IIJ
p
u
e
 n
M

0
0寸

o
o
e

o
o
a

O
O
L

0
 0
8

0
0
ト

0
0
9

0
0
9

0
0寸
o
o
e

o
o
z

O
O
L

゜゚

a6-eda7

Figure 2.1: Average runtimes by lengths and thresholds.

8

4ゞ
,
t,n6ue1 w
e
i
r
e
d
 /
 Pl
 0
 4
s
e
J
4
i

0
0ト

0
 0
9

0
0
9

5
U
!
l
P
l
B
W
 8
l
B
 E
 !X
O
J
d
d
B

お
quel/¥l
p
u
e
 n
M

o

o

v

o

o

e

O
O
N

O
O
L

0
0ト

0
0
9

o
o
s

o
o
v

o
o
c

゜
,
｀
↓
〇

．`
 ’̀
ヽ

ヽ

．．

S
O
s
O
4

ヽ`
‘
-

,

、

-

5

9

4『

`

4

4

、4

9

,

‘

＼

斜

"Q.;r

,＇

・、

H
7
.
o
.`
‘,'’,．,＇’'`
吋

．．

＇

,

'

¥

,

’

'

,

9
6
'
0
'
1
'
'

●

9
9
,
•
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
,
4

凡
q
ぶ

t
、

9
9
9
ヽ
9

9

,

4

¥

，̀
..、

ー！

'、

Y

寸

e・o
、勾り`

`

4

4

、

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

,•9

.

.

.
 ,

．．．．
―…
5
,
I
i
"
:
＇‘、.＇．貨

．．．
，＇’

．．
 ,…
••959-,

;;

•9-…-·…,.':;

......
，

．．．． -•…;

．．． ;…;:

-9-·

…
•9-9

.

.
 .

ヽ
..、
'‘

o
o
a

O
O
L

a6ada7

Figure 2.2: Average runtimes by threshold / length of the pattern ratio.

，

2.3 Analysis

In average, for measures by pattern lengths, although the results for agrep
extend from 100 to 400 ms, those of Agrep are framed between 100 and 200

ms.
For measures by thresholds, the runtimes of agrep roughly increase by
50 ms when the threshold increases by 1, and our algorithm is shown to be
approximately twice faster in average as agrep.

Relatively to the threshold / length of the pattern ratio, the results for
agrep extend roughly linearly from 20 ms up to 600 ms. On the contrary,
for our algorithm, the average execution times are approximately constant:
they lay around 200 ms, and always remain under 250 ms . Our algorithm is

significantly faster when the ratio threshold / length of the pattern becomes

greater than 0.4.

10

Chapter 3

Agrep as a Unix command line

We present the command line options of Agrep. Hereafter is the result of the

command Agrep -h which displays on-line help.

Also, in the next sections, one will find the description of Agrep as found

in its man page.

use: Agrep [-n] [-w] [-J] [-BJ

default:

job:

options:

[-D<d>] [-I<i>] [-S<s>]

[-<n>] <string> [-in=<filename>]

Agrep <string> means Agrep -0 -D1 -Ii -S1 <string>

approximate search of <string> with distance threshold <n>

with costs <d>, <i> and <s> for deletion, insertion and

substitution respectively.

-D<d>: set deletion cost to <d>

-I<i>: set insertion cost to <i>

-S<s>: set substitution cost to <s>

<d> and <s> must be positive integers

<i> must be a non-negative integer

-n: output line prefixed by line number

-w: forces to match words, e.g.'win'will not match'wind'

-J: use two-byte characters (useful for Japanese characters)

-B: output closest match

-in=<f ilename>: search in file <filename>

-T: display execution time in ms (not useful to the user)

11

3.1
．．

Funct1onahty

Agrep searches the standard input for any line containing the pattern with at

most n errors (distance threshold) according to edit distance. Each line found
is copied to the standard output. Approximate matching allows finding lines
that contain the pattern with several errors, namely substitutions, insertions,
or deletions. For example, edible matches eatable with 3 errors (one insertion
and two substitutions). Running Agrep -3 edible < foo outputs all lines
in foo containing any string with at most 3 errors from edible.

3.2 Options

-< n> n is a non-negative integer (no limitation) specifying the maxi-
mum number of errors permitted in finding the approximate matches. Each
insertion, deletion, or substitution normally counts as one error.

-D<d> Set the cost of a deletion to <d> (<d> is a positive integer).

-I< i> Set the cost of an insertion to < i> (< i> is a positive integer).

-S<s> Set the cost of a substitution to <s> (<s> is a positive integer).

-J The input file is read as a 2-byte character file (useful for Japanese).

-B Best match mode. Search is performed subsequently for all error

numbers from O up to the length of the pattern minus 1, until some matches
are found. The best match mode is not supported for standard input, i.e.
pipeline input. To designate the file where to search, use option -in=.

-n Each line that is printed is prefixed by its record number in the file.

-w Search for the pattern as a word (i.e., composed only of alphanu-

meric characters and surrounded by non-alphanumeric characters. Non-

alphanumeric characters will surround the match, and are not part of it; they

do not count as errors. For example, Agrep -w -1 car will match cars, but

not carpenters. As another counter-example, Agrep -w -1 youxhave will
not match you have.

12

-in=<filename> File <filename> is the file where to search. This
option is mandatory when option -B is in use.

3.3 Examples

Agrep -5 abcdefghij < /usr/dict/words outputs all words contain-
ing at least 5 of the first 10 letters of the alphabet in order:

Philadelphia

Agrep -2 -S3 enamel < /usr/dict/words outputs all words contain-
ing the word enamel with at most two extra or deleted characters:

adrenal

adrenaline

ameliorate

tournament
venal

Vietnamese

Agrep -B -w approixmate -in=/usr/dict/words performs spell check-

ing of the word approixmate using the Unix dictionary. Outputs:

approximate

Agrep -J -B二面様ーin=nec.text performs a best match search from

the texts of the ATR-NEC treebank, using two-byte characters. Outputs:

お二人様別々の席になられてもよければ空いております。

申し訳ありませんがコースは二名様からとなっています。

二名様ですね。

13

3.4 Use

The program is accessible at ATR as the command Agrep

• under the directory /home/lepage/bin for Solaris門

• under the directory /home/lepage/bin/ alpha for Alpha machines.

These directories are normally accessible to all users. By the way, anyone

is welcome to use any other program from these directories, which would be

of interest for him. Descriptions of the commands are found in the file INFOS.

1We do not support SunOS, as this sytem is supposed to be not Y2K compliant, and
Sun Microsystems is said not to support SunOS after 1999.

14

Chapter 4

Agrep as C functions

The functionalities of Agrep are proposed as four C functions. For their use,
please mail to lepageci tl. atr. co. jp. They have been integrated under

the general library we have been building at ATR for years [Lepage 92b].

We list hereafter the C header file for the corresponding functions.

I* Copyright (c) 1999, Yves Lepage *I
／＊

* Approximate matching functions
＊／

#include <stddef.h>

#include <stdio.h>

／＊

* Function approxmatch:
* All arguments version:
* input (1st arg and 3rd to
* input file
* searched pattern of type x

last args):

(1st arg),

* (3rd arg),
* threshold,
＊

deletion weight,

＊ 1nsert1on weight,

* substitution weight,
* display line numbers in output (0/1),
* search inside words only (0/1),
* size of x, i.e., sizeof(x),

15

＊ 1: 1-byte char,

＊ 2: 2-byte char, useful for Japanese character,

＊ 4: 4-byte char, pointers (void*) on sun machine,

＊ 8: 8-byte char, pointers (void*) on alpha machine,

* output:

* output file (2nd arg)

* contains those lines of the input file which

* contain at least one substring at a distance

* of atmost the threshold

＊

* At the end of the function approxmatch,

* the input and output files are rewinded

* so that they are ready for further use
＊

* Function closestmatch:

* same arguments as approxmatch, but

* threshold does not exist

* (approxmatch is applied repeatedly

* from threshold=O to length(pattern)-1

* until something is found)

* output:

* threshold for which something was found

* -1 if nothing was found

＊／

void approxmatch(FILE *istream, FILE *ostream, unsigned char

*pattern, int threshold, int dd, int ii, int ss, int linenbron, int wordon-

lyon, size_t nbyte) ;

int closestmatch(FILE *istream, FILE *ostream, unsigned char *pat-

tern, int dd, int ii, int ss, int linenbron, int wordonlyon, size_t nbyte) ;

／＊

* Simplified versions:

* the pattern is of type unsigned char*,

* hence: (in approxmatch:)

* sizeof (x) = 1 (10th arg = 1)

* and

＊

deletion weight= 1 (5th arg = 1),

16

＊

＊

＊

＊

＊

1nsert1on weight= 1

substitution weight= 1

do not display line numbers in output

search inclusive of word frontiers

* input:

* input file,

* pattern of type unsigned char*,

* threshold for approxmatch1

* output:

* output file (2nd arg)

(6th arg = 1),

(7th arg = 1),

(8th arg = 0) ,

(9th arg = 0),

* threshold for which something was found for closestmatch1

＊／

void approxmatchl (FILE *istream, FILE *ostream, unsigned char
*pattern, int threshold) ;

int closestmatchl (FILE *istream, FILE *ostream, unsigned char *pat-
tern) ;

17

18

Conclusion

Agrep has been shown to be faster than agrep in average on a one fifth
million run experiment of retrieving words with all possible thresholds from

a 200 Kb size file. It is definitely faster for larger thresholds (k > 3), and for
threshold over pattern length ratios greater than 0.4. The algorithm used in
Agrep is also more robust, and does not imply any limitation in the number
of errors on the contrary to agrep.
Any bug reports or comments will be appreciated. Please mail them to

lepage@i tl. atr. co. jp

19

20

Bibliography

[Baeza-Yates and Gonnet 92] Ricardo Baeza-Yates and Gaston H. Gonnet
A New Approach to Text Searching
Communications of the ACM, Vol. 35, No. 10, October 1992, pp. 74-
82.

[Landau & Vishkin 88] Gad M. Landau and Uzi Vishkin
Fast String Matching with k Differences
Journal of Computer and System Sciences, Vol. 37, 1988, pp. 63-78.

[Levenshtein 65] V.I. Levenshtein
Binary codes capable of correcting deletions, insertions and rever-
sals
Dok!. Akad. Nauk SSSR, vol. 163, No. 4, August 1965, pp. 845-848.
English translation in Soviet Physics-doklady vol。10,No. 8, Febru-
ary 1966, pp. 707-710.

[Lepage 92b] Yves Lepage
Easier C programming
Some useful objects
ATR report TR-I-0294, Kyoto, November 1992.

[Lepage 97] Yves Lepage
String Approximate Pattern-Matching
55th Meeting of the Information Processing Society of Japan,

Fukuoka, August 1997, vol. 3, pp. 139-140.

[Wu & Manber 92] Sun Wu & U di Manber

Fast Text Searching Allowing Errors
Communications of the ACM, Vol. 35, No. 10, October 1992, pp. 83-
91.

21

[Wagner & Fischer 74] Robert A. Wagner and Michael J. Fischer
The String-to-String Correction Problem

Journal for the Association of Computing Machinery, Vol. 21, No.

1, January 1974, pp. 168-173.

22

