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2 Overview 

The goal of the Statistical Parsing Group has been, and continues to be, the development of an 

accurate and fast parser of unrestricte_d English text which supplies grammatical analyses that are 

extremely detailed both syntactically and semantically. Our conviction has been that only such 
thoroughgoing linguistic analyses have a chance of being genuinely useful over the entire spectrum 

of language-based applications within Artificial Intelligence. To be as useful as possible to this set 

of applications is the purpose of the work of our group. 
The present report will describe and detail the actions we have taken in our attempt to realize 

our goal of producing a fast and accurate parser for unlimited-domain, unrestricted English text. 

We have not fully realized this aim as yet, but we feel we are within sight of it. Further, we have 

quantified the degree of help to various Artificial Intelligence applications (speech recognition and 

speech synthesis) accruing from the linguistic analyses of our system, for the hypothetical case 

in which we are always able to deliver the correct analysis, with respect to our grammar. vVe 
believe that the magnitude of this help is such as to amply justify our continuing effort to achieve 

a very high degree of accuracy in predicting the correct grammatical analysis, with respect to our 

grammar, for any input sentence of English. 
The organization of this report is as follows: Section 3 describes our approach to linguistically 

annotating English text, and in particular discusses the roughly-I-million-word training database 
we have constructed in order to supply a large number of examples of correctly analyzed English 

text to our machine-:-learning, predictive algorithms. Section 4 describes the first of two predictive 
devices which we have constructed with the aim of supplying, for any input sentence of English, the 

correct grammatical analysis as implied by our system of linguistic annotation of text: this is our 

part-of-speech tagger, whose function is to associate with any string of English words a sequence 

of labels, one per word, which identify the syntactic and semantic functioning of that word in the 

sentence in which it occurs. Section 5 gives an account of our parser, which is the second of the two 

predictive devices mentioned just above. Its function is to associate with a part-of-speech-tagged 

sentence of English, its correct grammatical (syntactic and semantic) structure, as implied by our 

system of linguistic annotation of text (our grammar). 

Section 6 of this report presents the results of applying our system of linguistic annotation of 
text to two different, classic, language-based tasks within Artificial Intelligence: speech recognition 

and speech synthesis. Together, the two sets of results we present serve to illustrate the quite 
considerable value which can be provided to typical Artificial Intelligence applications when the 

detailed and exacting level of linguistic analysis which our annotation scheme delivers, is projected 

accurately onto new and previously unknown sentences of English with which some particular 

application finds it has to deal. This advantage in turn represents a challenge for the future work of 

the Statistical Parsing Group: the challenge is to so hone the predictive capacities of our machine-

learning component, that we are able reliable and quickly, to locate the correct parse, the correct 

tag, for a given sentence or word in the context in which it has occurred. This is the task our 
group confronts in its continuation under the new research program which is to be the successor 

to the Interpreting Telecommunications Laboratory: to take our success at annotating language in 

a manner full enough of "information" to yield substantial improvements in the functioning of a 

range of typical language-based Artificial Intelligence tasks—to take that success and build on it 
by enhancing our ability to find the exactly correct analysis for a sentence or word, among many 

possible such analyses available from the grammar, up to a point where the potential improvements 

in Artificial Intelligence tasks which we have already deomnstrated, can be realized in action. 
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3 Providing Training Data: Annotation System for English Text 

Note: This section is taken from an article presented in 1996, so that occasional wording reflects 

this out-of-dateness. However, notes within the text have been added to update information where 

necessary (EB 1999). 

3.1 Introduct10n 

A treebank is a body of natural-language text which has been grammatically annotated by hand, 

in terms of some previously-established scheme of grammatical analysis. Tree banks have been used 

within the field of natural-language processing as a source of training data for statistical part-of-

speech taggers (Black et al., 1992; Brill, 1994; Garside et al., 1987; Merialdo, 1994; Weischedel et 

al., 1993) and for statistical parsers (Black et al., 1993; Brill, 1993; Garside et al., 1987; Jelinek et 

al., 1994; Magerman, 1995; Magerman and Marcus, 1991; Sekine and Grishman, 1995). 

In this section, we present the ATR/Lancaster Treebank of American English, a resource for 
natural-language-processing research, which has been prepared by Lancaster University (UK)'s 

Unit for Computer Research on the English Language, according to specifications provided by 
ATR (Japan)'s Statistical Parsing Group. First we provide a "static" description, with (a) a 

discussion of the mode of selection and initial processing of text for inclusion in the treebank, and 

(b) an explanation of the scheme of grammatical annotation we then apply to the text. Second, we 

supply a "process" description of the treebank, in which we detail the physical and computational 

mechanisms by which we have created it. Finally, we lay out plans for the further development of 
this new treebank. 

All of the features of the A.TR/Lancaster Tree bank that are described below represent a radical 
departure from extant large-scale (Eyes and Leech, 1993; Garside and McEnery, 1993; Marcus et 

al., 1993) and smaller-scale (Sampson, 1994; van Halteren and van den Heuvel, 1990) treebanks. 
We have chosen in this section to present our treebank in some detail, rather than to compare and 

contrast it with other treebanks. But the major differences between this and earlier treebanks can 
easily be grasped via a comparison of the descriptions below with those of the sources just cited. 

3.2 General Description of the Treebank 

3.2.1 Document Selection and Preprocessing 

The ATR/Lancaster Tree bank consists of approximately 500,000 words1 of grammatically-analyzed 
text divided into roughly 650 documents ranging in length from about 30 to about 3600 words. 

The idea informing the selection of documents for inclusion in this new treebank was to pack 

into it the maximum degree of document variation along many different scales-document length, 
subject area, style, point of view, etc.-but without establishing a single, predetermined classifica-

tion of the included documents.2 Differing purposes for which the treebank might be utilized may 
favor differing groupings or classifications of its component documents. Overall, the rationale for 

seeking to take as broad as possible a sample of current standard American English, is to support 
the parsing and tagging of unconstrained American English text by providing a training corpus 

which includes documents fairly similar to almost any input which might arise. 

Documents were obtained from three sources: the Internet; optically-scanned hardcopy "oc-

casional" documents (restaurant take-out menus; fundraising letters; utility bills); and purchase 

1this reached 700,000 by Spring 1996, and ultimately 1.1 million words (EB 1999) 
2as was done, by contrast, in the Brown Corpus (Kucera and Francis, 1967). 
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Empire Szechuan Flier (Chinese take-out food) 

Catalog of Guitar Dealer 

UN Charter: Chapters 1-5 
Airplane Exit-Row Seating: Passenger Information Sheet 

Bicycles: How To Trackstand 

Government: US Goals at G7 
Shoe Store Sale Flier 

Hair-Loss Remedy Brochure 
Cancer: Ewing's Sarcoma Patient Information 

Table 1: Nine Typical Documents From ATR/Lancaster Treebank 

from commercial or academic vendors. To illustrate the diverse nature of the documents included 

in this treebank, we list, in Table 1, titles of nine typical documents. 
In general, and as one might expect, the documents we have used were written in the early 

to mid 1990s, in the United States, in "Standard" American English. However, there are fairly 

many exceptions: documents written by Captain John Smith of Plymouth Plantation (1600s), 

by Benjamin Franklin (1700s), by Americans writing in periods throughout the 1800s and 1900s; 

documents written in Australian, British, Canadian, and Indian English; and documents featuring 

a range of dialects and regional varieties of current American English. A smattering of such 
documents is included because within standard English, these linguistic varieties are sometimes 

quoted or otherwise utilized, and so they should be represented. 
As noted above, each document within the treebank is classified along many different axes, in 

order to support a large variety of different task-specific groupings of the documents. Each docu-

ment is classifed according to TONE, STYLE, LINGUISTIC.LEVEL, POINT.OF.VIEW, PHYSI-

CAL.DESCRIPTION.OF.DOCUMENT, GEOGRAPHICAL.BACKGROUND.OF.AUTHOR, etc. 

Sample values for these attributes are: "friendly", "dense", "literary", "technical", "how-to guide", 

and "American South", respectively. To convey domain information, one or more Dewey Decimal 

System three-digit classifiers are associated with each document. For instance, for the cv of a phys-

iologist, Dewey 612 and 616 (Medical Sciences: Human Physiology; Diseases) were chosen. On a 

more mundane, "bookkeeping" level, values for TEXT.TITLE, AUTHOR, PUBLICATION.DATE, 
TEXT.SOURCE, etc. are recorded as well. 

An SGML-like markup language is used to capture a variety of organizational-level facts about 

each document, such as LIST structure; TITLEs and CAPTIONs; and even more recondite events 
such as POEM and IMAGE. HIGHLIGHTing of words and phrases is recorded, along with the 

variety of highlighting: italics, boldface, large font, etc. Spelling errors and, where essential, other 

typographical lapses, are scrupulously recorded and then corrected. 

Tokenization (i.e. word-splitting: Edward's —• Edward's) and sentence-splitting (e.g. He said, 

"Hi there. Long time no see."ー(Sentence.l:)He said, (Sentence.2:) "Hi there. (Sentence.3:) 

Long time no see.") are performed by hand according to predetermined policies. Hence the treebank 

provides the resource of multifarious correct instances of word-and sentence-splitting. 

ご
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3.2.2 Scheme of Grammatical Annotation 

Heretofore, all existing large-scale treebanks have employed the grammatical analysis technique 

of skeleton parsing (Eyes and Leech, 1993; Garside and McEnery, 1993; Marcus et al., 1993), in 

which only a partial, relatively sketchy, grammatical analysis of each sentence in the treebank is 

provided.34 In contrast, the ATR/Lancaster Treebank assigns to each of its sentences a full and 

complete grammatical analysis with respect to a very detailed, very comprehensive broad-coverage 

grammar of English. Moreover, a very large, highly detailed part-of-speech tagset is used to label 

each word of each sentence with its syntactic and semantic categories. The result is an extremely 

specific and informative syntactic and semantic diagram of every sentence in the treebank. 

This shift from skeleton-parsing-based treebanks to a treebank providing full, detailed gram-

matical analysis resolves a set of problems, detailed in (Black, 1994a), involved in using skeleton-

parsing-based treebanks as a means of initializing training statistics for probabilistic grammars 

(Black et al., 1993). Briefly, the first of these problems, which applies even where the grammar 

being trained has been induced from the training treebank (Sharman et al., 1990), is that the syn-

tactic sketchiness of a skeleton-parsed treebank leads a statistical training algorithm to overcount, 

in some circumstances, and in other cases to undercount instances of rule firings in training-data 

(treebank) parses, and thus to incorrectly estimate rule probabilities. The second problem is that 

where the grammar being trained is more detailed syntactically than the skeleton-parsing-based 

training tree bank, the training corpus radically underperforms in its crucial job of specifying correct 

parses for training purposes (Black, 1994a). 

In addition to resolving grammar-training problems, our Tree bank provides a means of training 

non-grammar-based parsing procedures (Brill, 1993; Jelinek et al., 1994; Magerman, 1995) at new, 

higher levels of grammatical detail and comprehensiveness. 

Treebank sentences are parsed in terms of the ATR English Grammar, whose characteristics we 

will briefly describe. 

The Grammar's part-of-speech tagset resembles the 179-tag Claws tagset developed by UCREL 

(Eyes and Leech, 1993), but with numerous major and minor differences. One major difference, 

for instance, is that the ATR tagset captures the difference between e.g. "wall covering", where 

"covering" is a lexicalized noun ending in -ing, and "the covering of all bets", where "covering" is a 

gerund. In Claws practice, both are NNl (singular common noun). The ATR tagset innovates the 

tag type NVVG for gerunds. Another major difference is the (limited) use of "sub categorization", 

e.g. VDBLOBJ for double-object verbs (teach Bill Latin, etc.). 

Each verb, noun, adjective and adverb in the ATR tagset includes a semantic label, chosen from 

42 noun/adjective/adverb categories and 29 verb/verbal categrories, some overlap existing between 

these category sets. These semantic categories are intended for any "Standard-American-English" 

text, in any domain. Sample categories include: "physical.attribute" (nouns/adjectives/adverbs), 

"alter" (verbs/verbals), and "interpersonal.act" (nouns/adjectives/adverbs/verbs/verbals). They 

were developed by ATR staff and then proven and refined via day-in-day-out tagging for six months 

at ATR by two human "treebankers", then for four months at Lancaster by five treebankers, with 

daily interactions among treebankers, and between the treebankers and ATR staff. 

3The 1995-release Penn Treebank adds functional information to some nonterminals (Marcus et al., 1994), but 
with its rudimentary (roughly-45-tag) tagset, its non-detailed internal analysis of noun compounds and NPs more 
generally, its lack of semantic categorization of words and phrases, etc., it arguably remains a skeleton-parsed tree-
bank, albeit an enriched one. 

4 A different kind of partial parse—crucially, one generated automatically and not by hand-characterizes the 
"treebank" produced by processing the 200-million-word Birmingham University (UK) Bank-of-English text corpus 
with the dependency-grammar-based ENGCG Helsinki Parser (Karlsson et al., 1995). 
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<S id=112011 count=13> 

<HIGH rendition ="italic"> 

[start [sprpd1 [sprime4 [sd1 [nbar6 It_PPH1 nbar6] 

[ vbar2 [08 has_ VHZ 08] [ v2 meant_vVNMEAN [nbar12 [j 1 great_J JDEGREE j 1] 

[nia savings_NN2MONEY nia] nbar12] v2] vbar2] sd1] 

[iebar2 , _, [iie [pr1 [rmod1 [r2 both_RRCONCESSIVE r2] rmod1] 

[pi in_IIIN [coord1 [nbar1 [nia time_NN1 TIME nia] nbar1] 

[coord3 [cc3 [cc1 &_CCAMP cc1] cc3] 

[nbar1 [nia gas_NN1SUBSTANCE nia] nbar1] coord3] coord1] pi] pr1] iie] 

iebar2] sprime4] [rand3 ! _ ! 11 _ "R rand3] sprpd1] start] 

</HIGH> 

</S> 

Figure 1: ATR/Lancaster Treebank Sentence (wordlength: 13; sentence italicized) from Credit 

Union Brochure 

If we ignore the semantic portion of ATR tags, the tagset contains 165 different tags. Including 

the semantic categories in the tags, there are roughly 2200 tags. As is the case in the Claws tagset, 

so-called "ditto tags" can be created based on almost any tag of the tagset, for the purpose of 

labelling multiword expressions. For instance, "will o'the wisp" is labelled as a 4-word singular 

common noun. This process can add considerable numbers of tags to the above totals. 

Sentences in the Treebank are parsed with respect to the ATR English Grammar. The Gram-

mar, a feature-based context-free phrase-structure grammar, is related to the IBM English Gram-

mar as published in (Black et al., 1993), but differs more from the IBM Grammar than our tagset 

does from the Claws tagset. For instance, the notion of "mnemonic" has no application to the ATR 

Grammar; the ATR Grammar has 67 features and 1100 rules, whereas the IBM Grammar had 40 

features and 750 rules, etc. 

The precisely correct parse (as pre-specified by a human "tree banker") figures among the parses 

produced for any given sentence by the ATR Grammar, roughly 90% of the time, for text of the 

unconstrained, wide-open sort that the Tree bank is composed of. The job of the tree bankers is to 

locate this exact parse, for each sentence, and add it to the Treebank. 

Figure 1 shows a sample parsed sentence from the ATR Treebank. Because it is informative to 

know which of the 1100 rules is used at a given tree node, and since the particular "nonterminal 

category" associated with any node of the tree is always recoverable,5 nodes are labelled with ATR 

Grammar rule names rather than, as is more usual, with nonterminal names. Figure 2 shows two 

Treebank sentences from a Chinese take-out food flier. 

3.3 Producing the Treebank 

In this part of the article, we turn from "what" to "how", and discuss the mechanisms by which 

the A.TR/Lancaster Treebank was produced. 

5It is contained in the rule name itself. 

l
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<S id="39" count=8> 

<HIGH rendition="italic"> 
[start [quo (_ ([sprpd23 [sprime2 [ibbar2 [r2 Please_RRCDNCESSIVE r2] ibbar2] 

[sc3 [v4 Mention_VVIVERBAL-ACT [nbar4 [d1 this_DD1 d1] 

[n1a coupon_NN1DDCUMENT n1a] nbar4] [fa1 when_CSWHEN 

[v1 ordering_vVGINTER-ACT v1] fa1] v4] sc3] sprime2] sprpd23]) _) quo] start] 

</HIGH> 

</S> 

<S id="48" count=5> 

<HIGH rendition ="large"> 
[start [sprpd22 [coord3 [cc3 [cc1 OR_CCOR cc1] cc3] 

[nbar13 [d3 ONE_MC1WORD d3] [j1 FREE_JJSTATUS j1] [n4 [n1a FANTAIL_NN1ANIMAL n1a] 

[n1a SHRIMPS_NN1FOOD n1a] n4] nbar13] coord3] sprpd22] start] 

</HIGH> 

</S> 

Figure 2: Two A TR/Lancaster Tree bank Sentences (8 words, italicized; 5 words, large font) from 

Chinese Take-Out Food Flier 

3.3.1 The Software Backbone-GWBTool: A Treebanker's Workstation 

GWBTool is a Motif-based X-Windows application which allows the treebanker to interact with 

the ATR English Grammar in order to produce the most accurate treebank in the shortest amount 

of time. 
The treebanking process begins in the Treebank Editor screen of the treebanker's workstation 

with a list of sentences tagged with part-of-speech categories. The treebanker selects a sentence 

from the list, for processing. Next, with the click of a button, the Treebank Editor graphically 

displays the parse forest for the sentence in a mouse-sensitive Parse Tree window (Figure 3). Each 

node displayed represents a constituent in the parse forest. A shaded constituent node indicates 

that there are alternative analyses of that constituent, only one of which is displayed. By clicking 

the right mouse button on a shaded node, the treebanker can display a popup menu listing the 

alternative analyses, any of which can be displayed by selecting the appropriate menu i tern. Clicking 

the left mouse button on a constituent node pops up a window listing the feature values for that 

constituent. 

The Treebank Editor also displays the number of parses in the parse forest. If the parse 
forest is unmanageably large, the treebanker can partially bracket the sentence and, again with 

the click of a button, see the parse forest containing only those parses which are consistent with 

the partial bracketing (i.e. which do not have any constituents which violate the constituent 

boundaries in the partial bracketing). Note that the tree banker need not specify any labels in the 

partial bracketing, only constituent boundaries. The process described above is repeated until the 

treebanker can narrow the parse forest down to a single correct parse. Crucially, for experienced 

Lancaster treebankers, the number of such iterations is, by now, normally none or one. 
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Figure 3: The GWBTool Treebanker's Workstation Parse Window display, showing the parse forest 

for an example sentence. On the far right, the feature values of the VBAR2 constituent, indicating 

that the constituent is an auxiliary verb phrase (bar level 2) containing a present-tense verb phrase 

with noun semantics SUBSTANCE and verb semantics SEND. The fact that the number feature 

is variable (NUMBER=V5) indicates that the number of the verb phrase is not specified by the 

sentence. The shaded nodes indicate where there are alternative parses. 
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3.3.2 Two-Stage Part-Of-Speech Tagging 

Part-of-speech tags are assigned in a two-stage process: (a) one or more potential tags are assigned 

automatically using the Claws HMM tagger (Garside et al., 1987); (b) the tags are corrected by 
a treebanker using a special-purpose X-windows-based editor, Xanthippe. This displays a text 
segment and, for each word contained therein, a ranked list of suggested tags. The analyst can 

choose among these tags or, by clicking on a panel of all possible tags, insert a tag not in the ranked 

list. 
The automatic tagger inserts only the syntactic part of the tag. To insert the semantic part of 

the tag, Xanthippe presents a panel representing all possible semantic continuations of the syntactic 

part of the tag selected. 
Tokenization, sentence-splitting, and spell-checking are carried out according to rule by the 

treebankers themselves (see 2.1 above). However, the Claws tagger performs basic and preliminary 

tokenization and sentence-splitting, for optional correction using the Xanthippe editor. Xanthippe 

retains control at all times during the tag correction process, for instance allowing the insertion 

only of tags valid according to the ATR Grammar. 

3.3.3 The Annotation Process 

Initially a file consists of a header detailing the file name, TEXT.TITLE, AUTHOR, etc., and the 
text itself, which may be in a variety of formats; it may contain HTML mark-up, and files vary in 

the way in which, for example, emphasis is represented. The first stage of processing is a scan of 

the. text to establish its format and, for large files, to delimit a sample to be annotated. 

The second stage is the insertion of SGML-like mark-up. As with the tagging process, this is 

done by an automatic procedure with manual correction, using microemacs with a special set of 
macros. 

Third, the tagging process described in section 3.2 is carried out. The tagged text is then 

extracted into a file for parsing via GWBTool (See 3.1.1). 

The final stage is merging the parsed and tagged text with all the annotation (SGML-like 
mark-up, header information) for return to ATR. 

3.3.4 Staff Training; Output Accuracy 

Even though all Treebank parses are guaranteed to be acceptable to the A.TR Grammar, insuring 

consistency and accuracy of output has required considerable planning and effort. Of all the parses 
output for a sentence being treebanked, only a small subset are appropriate choices, given the 

sentence's meaning in the document in which it occurs. The five Lancaster treebankers had to 

undergo extensive training over a long period, to understand the manifold devices of the A.TR 
Grammar expertly enough to make the requisite choices. 

This training was effected in three ways: a week of classroom tr叫ningwas followed by four 

months of daily email interaction between the treebankers and the creator of the A.TR Grammar; 

and once this training period ended, daily Lancaster/ A.TR email interaction continued, as well as 

constant consultation among the treebankers themselves. A body of documentation and lore was 

developed and frequently referred to, concerning how all semantic and certain syntactic aspects of 
the tagset, as well as various grammar rules, are to be applied and interpreted. (This material is 

organized via a menu system, and updated at least weekly.) A searchable version of files annotated 
to date, and a list of past tagging decisions, ordered by word and by tag, are at the tree bankers' 
disposal. 
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In addition to the constant dialogue between the treebankers and the ATR grammarian, Lan-

caster output was sampled periodically at ATR, hand-corrected, and sent back to the treebankers. 
In this way, quality control, determination of output accuracy, and consistency control were han-

dled conjointly via the twin methods of sample correction and constant tree banker/ grammarian 

dialogue. 
With regard both to accuracy and consistency of output analyses, individual tree banker abilities 

clustered in a fortunate manner. Scoring of thousands of words of sample data over time revealed 
that three of the five tree bankers had parsing error rates (percentage of sentences parsed incorrectly) 

of 7%, 10%, and 14% respectively, while the other two treebankers'error rates were 30% and 36% 

respectively. Tagging error rates (percentage of all tags that were incorrect), similarly, were 2.3%, 

1.7%, 4.0%, 7.3% and 3.6%. Expected parsing error rate worked out to 11.9% for the first three, 
but 32.0% for the other two tree bankers; while expected tagging error rates were 2.9% and 6.1 % 

respectively. 6 

What is fortunate about this clustering of abilities is that the less able treebankers were also 

much less prolific than the others, producing only 30% of the total treebank. Therefore, we are 
provisionally excluding this 30% of the tree bank (currently about 150,000 words) from use for 

parser training, though we are experimenting with the use of the entire treebank (expected tagging 
error rate: 3.9%) for tagger training. Finally, parsing and tagging consistency among the first three 

treebankers appears high. 

3.4 C onclus1on 

Within the next two years, we intend to produce Version 2 of our Treebank, in which the 30% of 
the treebank that is currently suitable for training taggers but not parsers, is fully corrected.7 

Over the next several years, the ATR/Lancaster Treebank of American English will form the 
basis for the research of ATR's Statistical Parsing Group in statistical parsing, part-of-speech 
tagging, and related fields.8 

4 Predicting Word Meaning and Function: Part-Of-Speech Tag-

g1ng 

Note: Some of the performance results in this section are slightly dated, taken as the section is 

from work published in 1997. In particular, overall tagging results on our "golden-standard" test 
set (see Section 5) are currently around 85%. Further, the article on which this section is based 

partakes of a somewhat polemical orientation, which is best overlooked in the current context as 
being beside the point. 

4.1 Introduction: Building On The Successes To Date In Part-Of-Speech Tag-

gmg 

Part-of-speech tagging-using computers to automatically associate the words of a text with their 

grammatical parts of speech-has been one of the success stories of the Natural Language Processing 

6 Al most a I tagging errors were semantic. 
'Seven-tenths of this 30% is already correct, so that the task involved is re-parsing 30% of 30% (= 9%) of the 

treebank. Further note (EB 1999): the correction of this 30% of the treebank was in fact finally begun in late 1998, 
and is ongoing as of this writing. 

8This is in fact what happened (EB 1999). 
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Empire Szechuan Flier (Chinese take-out food) 

Catalog of Guitar Dealer 

UN Charter: Chapters 1-5 

Airplane Exit-Row Seating: Passenger Information Sheet 

Bicycles: How To Trackstand 

Government: US Goals at G7 

Shoe Store Sale Flier 

Hair-Loss Remedy Brochure 

Cancer: Ewing's Sarcoma Patient Information 

Table 2: Nine Typical Documents From ATR/Lancaster Treebank 

field to date. Computers have equalled human accuracy at tagging the Wall Street Journal, Brown 

Corpus, Associated Press, and Canadian Hansard corpora,9 using the rudimentary, 45-tag UPenn 

Tagset,10 and stripped-down versions of the fuller CLAWS tagset.11 

But what will the ability to tag with these relatively low-level tagsets do for complex applica-

tions such as machine translation, sophisticated document-searching, and open-vocabulary speech 

recognition? The logical next move for part-of-speech tagging is to build on its successes and 

undertake more complex and challenging tagging tasks. 

Three directions for expansion seem indicated: (1) tag using much more detailed tagsets, in-

eluding a large-scale semantic classification as well as more syntactic detail; (2) test performance 

on treebanks which reflect the huge gamut of dom叫ns,styles, functions, and usages found among 

real-world applications; and (3) understand the magnitude of the unknown-word and unknown-tag 

problems, then overcome them. 

One way to confront all these problems is to tag using the 700,000-word12 ATR/Lancaster 

Treebank of American English (Black et al., 1996). Divided into roughly 950 documents of length 

30-3600 words, this treebank achieves a high degree of document variation along many different 

scales-document length, subject area, style, point of view, etc. (See Table 1 for titles of nine typical 

documents.) Text is tagged and parsed using the ATR English Gramma,(2720 different tags). Each 

verb, noun, adjective and adverb tag includes one of about 60 semantic categories intended for any 

Standard American English text in any domain. Even the syntax-only version of the tagset has 443 

different tags. (Compare 45, 76, and 163 tags for the tagsets used in (Brill, 1994; Weischedel et al., 

1993; Merialdo, 1994; Black et al., 1992).) The unknown-word and unknown-tag problems13 are 

quantified below and turn out to be much more severe than one might have thought. Unknown-tag 

difficulties are sufficiently acute in ATR/Lancaster-Treebank test sets to form a spur to solving the 

problem. 

9(Brill, 1994; Weischedel et al., 1993; Merialdo, 1994; Black et al., 1992; Marcus et al., 1993; Kucera and Francis, 
1967; Garside and McEnery, 1993) 
10(Marcus et al., 1993) 
11 (Eyes and Leech, 1993; Garside et al., 1987; Garside and McEnery, 1993) 
12now 1.1-million-word (EB 1999) 
13viz., the word to be tagged (a) has never been encountered in the training corpus (unknown-word); or (b) is in 

the training corpus, but not with the tag which it needs to be assigned in the case at hand (unknown-tag) 
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4.2 Real-World Part-Of-Speech Tagging 

In Section 2, we document the problems of tagging with larger, more sophisticated tagsets (2.1), 

and of tagging unknown words and words occurring with a given tag for the first time in test data 

(2.2), and show why it is important to solve these problems. Section 3 describes the solution we are 

attempting, using dedsion-tree modelling and discarding the notion of a dictionary entirely (3.1); 

and presents experimental results and future research plans (3.2). 

4.2.1 Tag Using Tagsets Of Increased Size And Complexity 

This subsection seeks to convey a "feel" for the increasing levels of detail of the tagsets utilized so 

far in tagging work-including the new ATR tagsets. Then, specific cases are discussed of syntactic 

details captured in the ATR tagset but not in tagsets used for prior tagging experiments, and it is 

shown why these details matter. 

Exemplifying The Tagsets Used So Far Tables 2-5 display the full text of a 1989 Wall Street 

Journal article entitled, "Enserch Tender Offer Results", tagged using first the full 2720-tag ATR 

tagset (ATR-Full); then the 443-tag syntax-only version of the ATR tagset (ATR-Syntax); then 

the 163-tag mapped-down version of the CLAWS tagset which was used in (Black et al., 1992); 

then finally the 45-tag UPenn tagset used in (Brill, 1994). 

(See footnotes for glosses of ATR-Full, ATR-Synt邸，14mapped-down CLAWS,15 and UPenn16 

tagged versions.) 

14Gloss (ATR-Full in italics; ATR-Syntax in boldface); tags common to both in boldface: . period; , comma; 
APP$ possessive pronoun, pre-nominal: my, our; AT article, either singular or plural: the, no; ATl singular 
article: a, every; CC coordinating conjunction; CCAND "and"; CCOR "or"; CSN "than" as conjunction: nicer 
than I thought; CST "that" as conjunction: that he is here; DAR comparative after-determiner: more, less; 
DB before-determiner: all, half; DDl singular determiner: this, another; II preposition; IIFROM "from"; IIOF 
"of"; IION "on"; IITO "to"; JJVVN past participle used as adjective; JJVVNINTER-ACT "inter_action": the 
deposed Shah, the stolen car; JJVVNCONTROL "control": unsecured notes, management-led buy-out; MC  digital 
cardinal number: 2, 3; MCWORD21, MCWORD22 two-part cardinal number, in words: six hundred, three 
dozen; MDATEWORD date, in words: Monday, April; NNUNUM number followed by unit of measurement: 
6cc, Sin.; NNl singular common noun; NNJCOMP-B "complex_behavior": bankruptcy, research; NN1MONEY 
"money": grant, fine; NN1P ERS-ATT "personal_attribute": ability, nose; NN1S YSTEM-PT "system_part": cabi-
net (meeting), precinct (caucuses); NN1VERB.-1.L-ACT "verbaLact": (the) claim, revelation; NN2 plural common 
noun; NN2ABS-UNIT "abstract_unit": alternates, breaks; NPl singular proper noun; NP1CITYNM "cityname": 
Toronto; NP1FRiVINM "firmname": GE, Hitachi; NP1INSTIT "instit": School, Club; NP1INSTITNM "institname": 
Harvard, 4-H; NP1POSTFRMNM "postfirmnname": Inc., Ltd.; NP1PREPLCNM "preplacename": St. (Louis), Los 
(Alamos); RR general adverb; RRDEGREE "degree": absolutely, approximately; RRINTER-ACT "inter_action": 
jointly, closely; TO pre-infinitival element: to (walk), to (go); VBDR were; VBI infinitive form of verb "be": be; 
VMPRES "present" modal auxiliary: can, will; VVD simple past verb; VSA YINGD "saying": claimed, stated; 
VVDINCHOATIVE "inchoative": achieved, created; VVDVERBAL-ACTSD "verbal-act", takes sentential comple-
ment: implied, mentioned; VVI infinitive verb; VVIALTER "alter": adjust, slacken; VVIPROCESSIVE "processive": 
continue, break; VVN past participle; VVNINTER-ACT "inter_action": (It was) sold, (They were) arrested. 
15Gloss (non-obvious tags only): NN.J organization noun, neutral for number; NNLl singular locative noun; 

NNO numeral noun, neutral for number; NNU unit of measurement, neutral for number; NPDl singular weekday 
noun; RG degree adverb; (NB: "in response tぷ wouldbe tagged II31,Il32,II33 (three-word preposition), using the 
CLAWS tagset, of which the present tagset is a mapped-down version). 
16Gloss (non-obvious tags only): CD Cardinal number; IN Preposition or subordinating conjunction; M D  Modal; 

NN Noun, singular or mass; NNP Proper noun, singular; NNS Noun, plural; PRP$ Possessive pronoun; RB 
Adverb; TO to; VB Verb, base form; WDT Wh-determiner. 
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Table 3: Sentence 1・

IWU.H,lJ IAT.tt 
Enserch 

NVNRMPPVR(Cl! DWD(F(PEVORMOGERSRREDTNB2FMAE 1 R） ) LM-ANCMT) SD) sCaoid rp. 

about 
12 
million MCWORD22 
， 

C， C(OR) or 
93 
％ NNUNUM 
， 

罰，F) of 
the 
publicly 

IIRJNAJRNP(VOP(2VINF($ AN) TB(IESN-RTU-AN E CT) traded R-ACT) 
units IT) 
of 
its ＄ 
limited JNJNVHVSNY (CONTROL) 
partnership (STEM-PT) 
， ， 
Enserch 

NP!/需PP霊OO霊SSTT心FF闊RRM M 
Exploration NNl 
Partners NPl NMj 
Ltd. NPl NM 
， 

V， BDR were 
tendered 冒llVV(!N N(!NTER-ACT) 
m 
response REAL-ACT) 
to 
an 
offer NNl(INTER-ACT) 
that CST 
expired 
Monday 

VMVDDA(T INCHOATIVE) 
EWORD 

Table 4: Sentence 2・ 
IWUKlJ IATH, 
Enserch NPlD (FRMNML ) 
said VV (VERBA -ACTSD) 
the AT 
tendered J JVV!(AN B(INS-TER-A CT) 
units NNM2P (UNIT) 
will V RES 
raise VVPI(S ALTER) 
its AP 
ownership NNl(PERS-ATT) 
of IIAT (OF) 
the 
partnership NN靡l(）S）YSTEM-PT) 
to II 
more D 
than CSN 
gg 
％ NNUNUM 
from II(FROM) 
87 
％ NNUNUM 

ILanc Upenn 
NPl NNP 
NNJ NNP 
VVD VBD 
RG RB 
MC CD 
NNO CD 

如 cc 
CD 

NNU NN 
， ， 
IO IN 
AT DT 
RR RB 
VVN VBN 
NN2 1'NS 
IO IN 
APP$ PRP$ 
JJ JJ 
NNl NN 
， ， 
NPl NNP 
NNl NNP 
NN2 KNP 
JJ i¥'NP 
， ， 
VBDR VBD 
VVN VBN 
II I:N 
II KN 
II TO 
ATl DT 
NNl KN 
CST WDT 
VVD VBD 
NPDl KNP 

!Lane LJpenn 
NPl N;¥P 
VVD VBD 
AT DT 
.J .J VBN 
NN2 NJ¥S 
VM MD 
VVI VB 
APP$ PRPS 
NNl NN 
IO IN 
AT DT 
NNl Ni'i 
II TO 
DAR JJR 
CSN Ii¥ 

CD 
!¥"NU N:¥ 
II Il¥' 

CD 
.NNU Ne¥' 
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Table 5: Sentence 3: 
Lane Upenn 

out RR DEGREE R RB 
900 000 MC MC CD 
units NN2(ABS-UNIT) NN2 NNS 
will VMPRES VM MD 
continue VVI(PROCESSIVE) VVI VB 
to TO TO TO 
be VBI VBI VB 
publicly RR(INTER-ACT) RR RB 
traded VVN(INTER-ACT) VVN VBN 
on II ON) 
the A~ 

II IN 
AT DT 

New NPl PREPLCNM) NPl NNP 
York NPl¥CITYNM) NPl NNP 
Stock NNl MONEY) NNl NNP 
Exchange NPl(INSTIT) NNLl NNP 

Enserch NPl(FRMNM) NPl NNP 
said VVD(SAYING) VVD VBD 

Table 6; __ Sentence 4・ 
WUH,U IAT.K, Lane Upenn 
Enserch NPlD (FRMNM) NPl NNP 
had VH VHD VBD 
offered VVN(INTER-ACT) VVN VBN 
one-half DB DB NN 
a ATl ATl DT 
share N隣Nl(ABS-UNIT) NNl NN 
of II IO IN 
its A $ APP$ PRP$ 
common NN(lA(MN ONEY) NNl JJ 
and CC D) cc cc 
s ＄ 
1 MPRICE NNU CD 
m 

IIN((DI INFIO; M R 

II IN 
cash N ONEY) NNl NN 
for II)  IF IN 
each D DDl DT 
unit NNl(ABS-UNIT) NNl NN 

WSJ Article "Enserch Tender Offer Re-
suits", Tagged Using ATR-Full, ATR-
Syntax, Mapped-Down CLAWS, And 
UPenn Tagsets. 

Within "ATR" column, portions of a tag 
present in ATR-Full but not ATR-Syntax 
are parenthesized. 

Note tokenization (word-splitting) differ-
ences between ATR, CLAWS on one hand, 
and UPenn on other: 99% and $1 are one 
word for the former tagsets, two words for 
the latter. 



Expanded Syntactic Detail: The ATR-Syntax Tagset The ATR-Syntax tagset is a revised 

and expanded version of the CLAWS tagset. Three areas of ATR-Syntax's increased syntactic detail 

vis-a-vis previously-utilized tagsets are now discussed. 

Ditto Tags For Multiword Lexical Units The CLAWS tagset features so-called ditto tags 

for multiword lexical units. For instance, well__NN121 being_NN122 is a two-word noun, inJI31 

responseJI32 toJI33 a three-word preposition.17 Many more ditto tags are contained in ATR-

Syntax than in CLAWS, with 276 of the 443 ATR-Syntax tags being ditto tags.18 

All CLAWS ditto tags are mapped out of both the (Merialdo, 1994) and (Black et al., 1992) 

experiments, so that no published experiments have appeared to date with tagsets featuring ditto 

tags. In (Black et al., 1992), the "ditto endings" are dropped, so that e.g. welLNN121 being__NN122 

becomes wellぶNlbeing_NNl. It is not clear how ditto tags were handled in (Merialdo, 1994); in 
any case, the full mapped-down 76-tag tagset is exhibited in (Merialdo, 1994), and no ditto tags 

are included. 

・what is the advantage of marking certain multiword lexical units, and why is it more useful to 

have explicit ditto tags than mapped-down ones as in (Black et al., 1992)? One answer concerns 

what happens when one runs a parser19 on tagged text. Briefly, tagging e.g. inJI31 responseJI32 

toJI33, tells the parser to treat the three words as a single preposition, and so to ignore possible 

breakdowns like: "He nodded (in response) (to show he was following)", of the the sentence con-

taining the phrase when so tagged. This can turn out to be a significant aid to parsing accuracy, 

if ditto tags appear frequently in correctly-tagged text, since large numbers of mistaken parses are 

eliminated which might otherwise be considered correct by the parser. 

Dropping the "ditto" sequence markers, i.e. mapping the above to inJI responseJI toJI, as 

was done in (Black et al., 1992), goes part-way towards the above goal, in that it prevents parsing 

mistakes like the one above. But it does nothing to block errors such as partitioning the phrase, 

"the comments he made in response to this question" as if it were of the form, "the options he chose 

from among (in this case)" or, "the option he chose from (among (in this case) five possibilities)", 

etc. 

An extremely frequent and potentially havoc-wreaking ditto-tag scenario occurs where a mul-

ti word adverb occurs at the end of a sentence, especially a long sentence. Locutions like, "as_RR21 

welLRR21", "a且R21lot玉R22","by玉R31and且R32large_RR33" are common in this position. If 
we denature the ditto tags into a series of two or three adverbs, the number of otherwise-preventable 

spurious parses now open to an unsuspecting parser can be huge. Even among short sentences there 

are many variations: He (paid ($5000 precisely) (wholly willingly)); (He (paid ($5000 precisely) 

unhesitatingly) sometimes); (He (spent money (terribly freely)) always); etc. 

Digit-Based And Number-Word-Based Lexical Units: Price, Time, Etc. Among 

the 276 ditto tags in the ATR tagset, 170 are for digit-based or number-word-based lexical units, 

e.g. MPRICE:31, MTIMEWORD22, MZIP21. In addition, the set of standard (non-ditto-tag) 

17 Obviously, only appropriate occurrences of these word sequences are tagged as above. E.g., "He nodded in 
response to indicate he was listening" would not be so tagged. 
18Since this leaves only 167 tags, it might be thought that apart from ditto tags, the CLAWS and ATR-Syntax 

tagsets are the same. This is far from true, however, since 39 of these 167 non-ditto ATR-Syntax tags are absent 
from the CLAWS tagsets, and 51 of the 179 tags of the CLAWS2a tagset, for instance, (Eyes and Leech, 1993), do 
not figure in the A.TR-Syntax tagset. Broad discussion of these differences is beyond the scope of this article, but 
two important cases will be dealt with in the next two subsections. 

19 a device for automatically diagramming sentences 
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ATR tags cont叫ns21 other tags for single-word lexical units of this type. All 191 of these tags 

are identical for the ATR-Full and ATR-Syntax tagsets. That is, in both, a full panoply of tags 

for prices, times, zipcodes, and the like, is included, along with a variety of tags for "just pl叫n

numbers", e.g. fifty.MCWORD21 three_MCWORD22, LMCl, nexLMDWORD, 325-92..MC-MC 

(e.g. a 325-92 vote). The rationale here is that it is feasible for a tagger to learn to demarcate 

multiword price, time, zipcode, etc., expressions, and that specifying the internal structure of 

these expressions is probably of lesser utility in general. What is quite important is to locate the 

boundaries of these wordstrings, which often include highly frequent words which if not rendered 

harmless in this fashion, might encourage significant numbers of misparses. For instance, the "a" 

of "a hundred fifty", the "the" of "Tuesday the 19th", and the "bits" of "two bits" ,20 need to be 

identified as occurring inside numerical lexical items, if they are not to sow confusion. 

Are these tags "syntactic"? Merely to pose this question suggests a need for at least ten years 

of "Wittgensteinian therapy". If anyone wishes, we can change the name "ATR-Syntax tagset" 
to "ATR-Syntax-With-Some-Semantics tagset". The point about numbers, prices, times, etc., is 

that in many kinds of document, they are devilishly frequent. Hence one could conceive of uses for 

a tagger which accurately assigns this class of tag, within applications such as document scanning 

and information retrieval, among other places. 

Verbal vs. Ordinary Adjectives And Nouns Arguably a problem with the tagsets which 

have been used so far in large-scale tagging experiments, has been the lack of an adequate treatment 

of verbal (as opposed to ordinary) adjectives and nouns (forms 1,5,9 of Table 6; contrast forms 

2,6,10).21 CLAWS conflates forms 1 and 2; 5 and 6; and 9 and 10. UPenn conflates 5 and 6. It 

assigns two different tags to 1 and 2, and to 9 and 10; however, the tag chosen for 1 is also the tag 

for 3,4,7,8; and the tag chosen for 9 is also the tag for 11 and 12. In contrast, the ATR tagsets 

feature different tags for cases 1 and 2; 5 and 6; and 9 and 10; the tag for case 1 differs from all of 

tags 2-12; and the tag for case 9 differs from all other cases 1-12. 

Thus ATR can, but the other tagsets cannot, distinguish between "of a retiring_JJVVG em-

ployee" and "of a retiring_J J nature"; between "a forced_J JVVN march" and "a forced_J J smile" ;22 

and between "Hog callingぶVVGis a dying art" and "Bill has found his callingぷ Nl".Further, 

both senses of Chomsky's sentence "Flying planes can be dangerous" receive the same tagging by 

UPenn, but not by ATR (nor by CLAWS).23 

Why does this matter? One place it matters is in machine translation. It makes sense that 

cases 1 and 9 should be translated differently from cases 2 and 10, since the former can be thought 

of as reflecting "regular lexical processes", whereas the latter are the result of "lexicalization", 

hence highly idiosyncratic. It would be absurd, in a process as complex as translation, to claim 

20 American slang for 25 cents 
21Terminology of (Kruisinga, 1931). (Long, 1961) uses participial adjectives and gerundial nouns vs. adjectives, 

nouns. 
22 Again, the UPenn tagset does make these two distinctions, but then throws away their utility by using for case 

1 the same tag as for cases 3,4,7,8, and for case 9 the same tags as for cases 11, 12, causing much potential confusion 
to a parser, e.g. with the Chomskian chestnut quoted below. 
23Further, UPenn tags identically all three senses of e.g. "Singing lessons can be fun." In practice, the UPenn 

WSJ Treebank apparently fails to consistently capture any patterns over -ed and -ing adjectives and nouns. There is 
only mild correspondance between the tagging decisions prescribed for these forms in the UPenn Tagging Guidelines 
(1995 edition; contact sparnum@unagi.cis.upenn.edu), and those actually made in the WSJ Treebank. What results 
is relatively patternless labelling. For instance, in a 14,900-word sample of latest-version (D.75) WSJ Treebank, 
taken from three widely separated places in the corpus, only 93 of 159 -ed and -ing adjectives and nouns (58%) were 
correctly labelled with respect to the Tagging Guidelines. 
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-ing/-ed Form ATR CLAWS UPENN 

(1) The sleeping baby JJVVG JJ VBG 

(2) An interesting idea JJ JJ JJ 

(3) Ed is running away VVG VVG VBG 

(4) Th e man running away VVG VVG VBG 

(5) A sleeping pill NVVG NNl NN 

(6) He makes a good living NNl NNl NN 

(7) Finding gold is hard VVG VVG VBG 

(8) Speaking softly helps VVG VVG VBG 

(9) The offered amendment JJVVN JJ VBN 

(10) A forced smile JJ JJ JJ 

(11) Ed has sold his farm VVN VVN VBN 

(12) The man given $5 VVN VVN VBN 

Table 7: Tagging Verbal Adjectives and Nouns・with ATR, CLAWS and UPenn Tagsets 

that "form x in English is translated via form y in French". But what we do find is a tendency to 

translate the two forms using a different gamut of structures. 

Informant work in French, Japanese, and Korean suggests a tendency to translate case-1 forms 

(JJVVGs) via participles, and case-2 forms (JJs ending in -ing, often "lexicalized") with adjectives. 

Further, one author conducted an informal test using the 1986 Canadian Hansard French/English 

database,24 in which 10 JJVVGs and 10 JJs ending in -ing were selected at random from the 

ATR Tree bank. The first "adjectival" occurrence of each of these words in the 1986 Hansards was 

located, along with its French translation. The structural types of the translations were noted and 

tabulated. The "translation profile" which emerged of the -ing-form J J s was very different from 

that of the JJVVGs. Whereas in 4 cases, the JJs were translated via unambiguous adjectives, this 

never occurred for the J JVVGs. In both cases, 3 words were translated via present participles (-ing 

forms); but other than that, the entire profile was totally different for the two cases. 

4.2.2 Confront The Unknown-Word And -Tag Problems 

We know of no attempts to date to quantify the unknown-word and unknown-tag problems (viz., 

the word to be tagged (a) has never been encountered in the training corpus (unknown-word); or 

(b) is in the training corpus, but not with the tag which it needs to be assigned in the case at hand 
(unknown-tag).) 

Table 7 shows the findings of a detailed exploration of the unknown-word problem involving 

the A.TR Treebank and the UPenn WSJ Treebank. It just happens that the UPenn WSJ and 

ATR vocabularies each have 75% coverage of the other. (I.e. 75% of the different words (types) 

occurring in ATR figure on the list of types occurring in the UPenn WSJ Tree bank.) We took 

great care to make the comparison as meaningful as possible, by (a) mapping all words to low-

ercase before comparing the two wordlists; (b) omitting consideration of plain numbers and digit 

sequences, digit-based words except meaningful ones like 9-foot, "non-words" of many stripes (e.g. 

black◎ itl.atr.co.jp, hellooooooo); and (c) compensating for any "tokenization" differences between 

24 supplied by the Linguistic Data C・(  onsortrnm sparn um@unag1.cis. upenn.ed u) 
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Covering Database Covered Database Category of Coverage Covera゚ae 
UPenn WSJ Treebank ATR Treebank wordlist 75% 

ATR Treebank UPenn WSJ Treebank 75% 

UPenn WSJ Treebank ATR Treebank runnm. 。o-wor d s 94% 

ATR Treebank UPenn WSJ Treebank 94% 

UPenn WSJ Treebank ATR Treebank sentences 69% 
CUVOALD92 Dictionary ATR Treebank 60% 

CUVOALD92 Dictionary ATR Treebank 80% 
+ UPenn WSJ Treebank 

Table 8: Mutual Coverage Statistics For ATR and UPenn Treebanks 

the two treebanks (e.g. UPenn converts "$500" into"$ 500", while ATR leaves it as is). Still, for 

various reasons, we can only guarantee the first two figures cited to within 5%. 

vVe were even more careful in calculating the coverage for running words. I.e. what percent of 

all the word occurrences (tokens) in the UPenn WSJ Treebank (over 1 million) figure on the list 

of types in the ATR Tree bank? And vice-versa. Here our answer, 94%, is estimated to within 1 %. 

And here again, it just happened that the same answer applied in both directions. Thus, if one 

selects a word at random from, say, the UPenn WSJ Treebank, the chances are 94 in 100 that it is 

in the list of words occurring in the ATR Treebank. 

So far, the unknown-word problem may appear fairly har叫 ess. However, a further finding 

remains. We calculated the distribution of unknown words among sentences in the ATR Tree bank. 

I.e. we calculated the percentage of ATR-Treebank sentences within which one or more words 

are unknown to the UPenn vVSJ Treebank. (To ensure that the non-covered words were "real 

words", we also removed from consideration in this test all last names and names of cities. This 

represents a decision that e.g. "Martin" and "Nevada" are "words", whereas, say, "Hogs bristle" 

and "Oshkosh" are not.) That percentage, estimated to within 1%, was 69%! That is, about 3 of 

every 10 ATR-Treebank sentences are not "covered" by the UPenn WSJ Treebank! This suggests 

that in real-world tagging, the unknown-word problem is a serious one. 

Further, we tested the coverage provided by a "dictionary", in a more conventional sense of the 

term than the one often used in tagging research.25 That is, we tested the sentence-wise coverage 

of the ATR Treebank, by the CUVOALD92 Dictionary,26 an expanded, computer-usable version, 

containing inflected forms, etc., of the Oxford Advanced Learner's Dictionary Of Current English27 

Again we omitted all last and city names, and again we verified carefully that only "real words" 

were counted in the comparison process. Results were that 60% of ATR-Treebank sentences were 

covered by CUVOALD92. Finally, even when we used both the UPenn-WSJ Treebank and the 

CUVOALD92 Dictionary, coverage of ATR-Treebank sentences was still only 80%. One in five 
sentences is not covered using this "dictionary". 

vVe have made a start on a similar analysis of the unknown-tag problem; our results are shown 

in Figure 1. Crucially, we do not yet have figures on the distribution of unknown tags over (ATR-

and UPenn-Treebank) sentences. However、onecan see the effect of increasing tagset size on the 

simple incidence of unknown tags. For the A TR-Full tagset, unknown tags represent 8% of running 

叫 iz.,a list of all words in some tagged corpus, and the tags with which each word is associated once or more 
26produced by Roger Mitton; available from: ftp://black.ox.ac.uk/ota/dicts/710 
27Third Edition, Oxford University Press, 1974. 
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Figure 4: Percentage of running words in A.TR and UPenn test corpora unknown in or having tags 

not used in the training set, as a function of training-set vocabulary size. Words consisting entirely 

of digits or punctuation are ignored. A.TR training set, thus purged, contains 271,852 running 

words and a vocabulary of 21,627; UPenn, 885010 and 35,756, respectively. 

words; for the UPenn tagset, around 1%. 

4.3 The Non-Dictionary 

vVe have attempted to tag using a more-detailed tagset, on a comprehensive treebank, and to 

confront the unknown-word and unknown-tag issues. What tools did we use, and how far did we 

get? 

We call our approach the Non-Dictionary, or dictionaryless tagger. Why throw away the die-

tionary? Given the magnitude of the unknown-word and unknown-tag problems, well-developed 

means are necessary anyway of dealing with these cases of dictionary failure. More generally, the 

wider-ranging the treebank being tagged, and the larger and more detailed the tagset employed, 

the more quixotic it is to think that the universe of tags can be listed for a given word: "pumpkin" 

becomes an adjective when it is listed as the color of a sweater in the L.L. Bean catalog; "The" and 

"An" turn out to be first names in a text discussing the teaching of English As A Second Language 

in Southeast Asia; "As" shows up as a plural proper noun, on the sports page, as the name of a 

baseball team. It does not follow that the dictionary is a hindrance; but by pushing a dictionaryless 

approach as far as possible, we can concentrate on unknown-word and -tag issues, and later factor 

in a dictionary if we wish. 

So, we in effect consider every word for tagging to be an unknown word. Instead of asking 

which tags have been seen for the word being tagged-in our training set, in an online dictionary, 

or in either place-we ask about: parts of words (sometimes formal affixes, sometimes not); certain 

"whole words"; the words surrounding the word being tagged; characteristics of the overall sentence; 

tags (or features of tags) which the tagger has already assigned; etc. We attempt to capture "trends" 

in a tagged tree bank, trends which have to do with groups of words but which are much more varied 

and subtle than the tendency of specific part-of-speech trigrams to occur, or of a given word to have 
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been tagged a certain way a certain percent of the time.28 (Brill, 1994; Black et al., 1992) exploit 

somewhat similar trends, but, in the first case, a different modeling approach is used, and in the 

second case, while a similar model to ours is used, crucially, (a) a dictionary is employed, (b) only 

self-organized questions are asked of the data (see below), and (c) a simpler tagset (mapped-down 

CLAWS) is employed. 
So far the questions we have utilized are mainly aimed at doing syntactic tagging. We are 

at work, however, on many additional questions for use in syntactic-plus-semantic tagging. We 

generate questions both by hand and via self-organized methods, and we apply these questions 

to our training data by means of statistical decision trees. The outcome of the tagging process is 

essentially a probability distribution for each tag sequence for a sentence, over all tags in the tagset. 

4.4 The Model 

4.4.1 Mututal Information (MI) Bits 

In addition to asking about affixes, capitalization, etc. of words in isolation, we can ask whether 
a given word is a member of a particular class of words匹 Wedefine word classes using the self-

organizing approach of (Brown et al., 1992)-automatic clustering on large, untagged corpora, in 
this case 20,000,000 words of Wall-Street-Journal text. We assign each of the 70,000 most frequent 

words in this database to its own class, then iteratively merge the two classes which are most often 

used in similar situations. Specifically, if c; represents the ith class, the mutual information of class 

bigram pairs is: 

I三 Lp(c1心）log 
p(c1,c砂

ci,c2 
p(c1)p(c2)・ 

(1) 

We find the pair of classes whose merger into a single class will least decrease the mutual information 

(Ushioda, 1996). By keeping track of the order in which classes are merged, we can define a binary 

tree which spans all levels of detail from one class per word to a single class for all words. When 

these classes are utilized for constructing a decision-tree tagging model (see below), the decision 

tree can determine what level of detail to exploit. 

4.4.2 Dec1s10n Trees 

Decision trees are a formalization of the game of "20 questions" (Breiman et al., 1984; Black et 

al., 1992). The model consists of a tree-structured set of questions, with a probability distribution 

associated with each leaf of the tree. To estimate a conditional distribution using the tree, follow a 

path from the root to a leaf based on answers to the questions at each node. The leaf's associated 

distribution is the estimator. Training a decision tree model requires two steps: first, picking a 

question to ask at each node; and second, determining a probability distribution for each leaf, using 

the distribution of events in the training set which reach each node. As discussed in (Black et al., 

1992), at each node we choose from among all possible questions (that is, all possible bits describing 

the current word and its context) that question which maximizes entropy reduction. 

Assigning a tag is a two-stage process. First, a decision tree assigns one of 20 "generalized 

parts-of-speech"30 (G POS's) to the word based on a large set of word(-part) and context questions. 

28as is relied upon in e.g. (Merialdo, 1994) 
29In asking both manually-created and self-organized questions, we follow (Magerman, 1994). 
30actually a value for the feature "pos" for the tag, as our tagset is feature-based 
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Second, a separate decision tree assigns a tag to the word based on an additional large set of word(-

part) and context questions as well as its predicted GPOS. In this second stage, there is a separate 

decision tree for each GPOS. Breaking the process up this way allows us to concentrate on different 

word characteristics and different aspects of the context for different classes of tag. 

4.4.3 The Tagging Process 

Tagging proceeds from left to right, with the goal of maximizing th: jojnt pr_obability of the tag 

sequence for the entire sentence. That is, we find the set of tags { t1, t2, ... , tN }, where ii is the 

predicted tag for the ith word of the N word sentence w1 w2…WN, which maximizes 

A A A 

P 三 p(t1,t2,…iN□, Wか…凱v)
N 

= ITp(i I ＾＾  i叫，．．．，飢V,f1, ... , ti-1) 
i==l 

ヽ
‘
j

、ーノ

2

3

 

（
＇
ー
、

Decision trees are used to extract relevant features from the conditions in these distributions. Note 

that we have not invoked the Markov assumption here—the predicted tag for even the last word 
of the sentence can, in principle, depend on the first word and its predicted tag. Whether this 

dependence in fact shows up in our models depends on whether the decision trees find it to be 

important for the training set. If we represent the deterministic process of using the answers to 

context-dependent questions to find a leaf in the tree as: 

L; 三 leafto which the context w1, ... , w凡 i1,…, i;-1 leads, (4) 

and the probability distribution associated with leaf L as仇， thenthe decision trees approximate 

the required conditional distributions by 

』 lw1,…, W凡八，..., ii-1)~ 四(ii)

and the function our search procedure tries to maximize is, 

N 

II肛(ii)~p
i=l 

(5) 

(6) 

One final technicality is that we split the tagging process into two parts, first assigning a GPOS 

using one decision tree, then a tag using a separate decision tree specialized for the predicted GP OS. 

Thus in practice, the GPOS prediction uses the conditions above, while tag prediction uses these 

conditions plus the GPOS predicted for the current word. 

When the first word of a sentence is considered, the context consists of the words and their 

arrangement in the sentence. The decision tree predicts the probability of each GPOS for this word 

in this context. Next, for each predicted "generalized part-of-speech", the appropriate decision 

tree is used to evaluate the probability of each possible tag. A search over this space determines the 

overall ranking for each tag. Then, the next word is considered. Relevant questions now include 

both the tag-independent questions used for the first word of the sentence, and questions which 

depend on the tag of the first word. For each different tag assigned to the first word, a $et of 

GPOS's and then a set of tags are predicted. A search over the space of first-and-second-word 

tag-pairs determines overall ranking. This procedure continues until every word in the sentence 
has been tagged. 
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Our overall choice of the "best" tag for each word is intended to ma泣mizethe joint probability 

of the entire set of tags. This means we must evaluate the probability for a set of tag sequences 

which grows exponentially with the length of the sentence. We can either exhaustively enumerate 

and score all the cases (which is reasonable for a small tagset such as UPenn), or use a stack 

decoder algorithm (Bahl et al., 1983; Jelinek, 1969; Paul, 1990) to search through the most probable 

candidates (as is necessary for the ATR-Full tagset). 

4.4.4 Example Questions 

Here is a sampling of decision-tree questions created by our team grammarian. 

Context Questions: (1) For the word being tagged: (a) position within sentence; (b) quadrant 
of sentence; (2) Final word of sentence: (a) question mark; (b) period or exclamation point; (3) 
Anywhere in sentence: (a) by (b) than; (4) For word sequences including word being tagged: (a) 

Specific ditto-tag words; (b) Any oflarge list of likely contexts for particular tag or GPOS; (c) Any 

of list of likely contexts for particular word used in particular sense—this for many words which 
share a semantic identity. 

Word Questions: (asked of all words within two positions of the word being tagged, plus the 

word itself): (1) How many letters long (2) Contains "at-sign" (for email addresses, etc.) (3) any 
kind of determiner, article, pronoun; (4) ends in probable adjective suffix, yet not on exception list; 

(5) adjective in -wide (complex set of conditions: either the word "wide"; or word ending in -wide, 
and having either a hyperbolic prefix, or a number in digits or words as a substring); (6) on list of 

words, signalling start of subject noun phrase (and not on exception list); (7) has "time-adverb" 
prefix; (8) contains hyphenated preposition as "midstring"; (9) on list of synonyms for "remember"; 

(10) contains name of wild animal. 

4.5 Experimental Results 

The focus of the research being reported here is tagging with the ATR tagsets, on the 

ATR/Lancaster Tree bank. As a point of reference for our results, however, we have also tagged 

the one publicly-available corpus, the UPenn Wall-Street-Journal Treebank, for which there are 

results utilizing various tagging approaches. 

UPenn training and testing sets used consist of random sentences from the UPenn WSJ Treebank31 

(1,072,7.S.S words of training, 133,293 smoothing, 49,624 testing data).32 The random-document 

sets consist of randomly-selected documents from the ATR Treebank (319,903 words of training, 

38,667 smoothing, 60,667 testing data). ATR random-sentence sets consist of randomly-selected 

sentences from the ATR Treebank (388,0.58 words of training, --l3,189 smoothing, 12,1.SO testing 
data). Clearly, the random-document sets represent a fairer appro泣mationof real-world tagging 

tasks. 

Obviously, it is harder to tag with the ATR-Full tagset than with the UPenn tagset, but how 

much harder'? We have tried to quantify the inherent difficulty of the various tasks for comparison. 

Table 9 displays the results of a "trivial tagger", which uses the most frequently seen tag for 

each known word, and the most frequent overall tag for every unknown word.33 This provides a 

convenient baseline for judging the difficulty of the tagging tasks. The first column of Table 9 gives 

31Version 0.75; annotated by the Penn Treebank Project; copyright University of Pennsylvania 
32This includes every token that receives a tag. Approximately 200,000 of these are punctuation tags. 
33¥Ve considered using a Hidden Markov Model for these comparisons, but felt it would not be informative because 

of the complexity of the task. 
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Figure 5: Histograms showing relative frequency of occurrence of words as function of number of 

distinct tags with which word is associated. Not shown: >25 (ATR-Full). 

tagset corpus trivial perplexity perplexity 

% correct training set testing set 

UPenn UPenn 89.6 1.18 1.16 

ATR sentence 82.4 1.30 1.19 

Syntax document 83.6 1.30 1.26 

ATR sentence 69.3 1.73 1.36 

Full document 69.3 1.72 1.57 

Table 9: "Trivial tagger": results 

the tagging accuracy for this trivial tagger; the second and third show the perplexity of the training 

and testing data with respect to this model. We interpret the difference between perple泣tiesfor 

the training and testing sets to mean that we are still in a data-limited regime. In other words, the 

estimates differ in the case of ATR-Syntax and ATR-Full because the sample sizes are not large 

enough to provide stable estimates, whereas for UPenn they are. As a final means of comparing 

tagging difficulty among the three tagsets, we display Figure 5, which shows relative frequency of 

words with N tags, for each of the tagsets. The largest number of tags for a single word in the 

UPenn training set is 7, accounting for 0.1% of the running words. By contrast, 21.9% of the 

running words in the ATR-Syntax training set and 33.5% of the running words in the ATR-Full 

training set have more than 7 tags. The maximum for ATR-Syntax is 19 tags (1.9% of running 

words; 8.3% for ATR-Full). 

Results are shown in Table 10, in several categories:34 For "% correct" the set is every word 

in the test set; for KvVT, only known words—those words which also appeared in the training set; 

34(EB 1999): Again, as noted at the beginning of this section, these results are out of date. Our current figures for 
ATR Full, document test set, is 85% on our "golden standard" test set (see Section 3). 
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tagset corpus % correct KWT KWKT KWUT 

UPenn UPenn 96.0 96.7 99.6 61.0 

ATR sentence 92.6 94.7 95.2 52.2 

Syntax document 90.8 93.8 94.6 41.2 

ATR sentence 76.5 79.4 83.6 8.5 

Full document 71.8 76.8 81.7 8.2 

Table 10: Non-Dictionary tagger: results 

tagset 

UPenn 

ATR Syntax 

ATR Full 

full model 

96.0 

90.8 

71.8 

w/o MI bits 

95.3 

89.9 

68.8 

only MI bits 

94.6 

86.1 

69.4 

uw 

91.9 

82.9 

79.6 

63.7 

53.9 

Table 11: Percentage of running words tagged correctly for models which ignore mutual information 

bits or which use only mutual information bits. Results using both mutual-information and human-

created questions shown for comparison. The ATR results are for the document-random test set. 

for KWKT, only known words with known tags; for KWUT, only known words with an unknown 

tag; for UW, only unknown words. The results indicate that our methods work reasonably well on 

unknown words, and unknown tags for known words, although not on unknown tags for the ATR-

Full tagset. To date, our efforts have largely concentrated on the ATR syntax tagset; we expect 

that work on questions suitable for the semantic parts of the ATR tagset will improve performance 
there. 

All the results shown here use the mutual information bits described in 4.4.1. As shown in 

Table 11, we have found that incorporating these bits yields a statistically significant improvement, 

even though the vocabulary they use is specific to the WSJ corpus.35 

Our plans for further research include exploring methods of factoring "dictionary" information 

(i.e. tag distribution by word in training data) into our models; manual question-creation for 

ATR-Full, while improving ATR-Syntax questions; and possibly clustering a much larger dataset 
for improved MI questions.36 

4.6 Experiments In Tagging Improvement (1) 

Note: One of the directions we have pursued in our efforts to improve prediction of tag assignment 

in English text, is the use of information outside the sentence in which the word occurs which is 

35The ¥VSJ data from which our MI bits were created included the million words corresponding to the UPenn 
WSJ Treebank. Hence the 0.7% contribution of the MI bits to UPenn T reebank taggmg results should be interpreted 
cautiously. However, the performance of these bits on ATR-Treebank tasks, e.g. the 0.9% contribution to our ATR-
Syntax score, suggests that most or all of the 0.7% contribution to the UPenn score would stand if we reclustered 
omitting these million words from the 20-million-word dataset used. 
36(EB 1999): All of th f. ese means o 1mprovmg results are currently being pursued, with the exception of further 

MI bit clustering. 
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being tagged. This subsection presents the first of two sets of experiments undertaken towards that 

end. The upshot of the two sets of experiments, both presented in this report, has been to encourage 

us in the direction of working extrasentential information into our routines for tag prediction, and 

based on the results of this first set of experiments, in parse prediction as well. The specific means 

we ultimately choose of incorporating such factors into our predictive software are currently being 

determined. In fine, expanding the sources of information which are interrogated in the effort to 
predict tag assignments is one theme of the work we will be pursuing in the successor laboratory 

to ITL, in order to fulfill our goal for the new research period, of realizing the potential of our 

linguistic analysis approach, by bringing prediction of tag and parse assignments up to near-human 

levels of accuracy. The original presentation of our experimental work follows immediately below: 

If a person or device wished to predict which words or grammatical constructions were about to 

occur in some document, intuitively one of the most helpful things to know would seem to be which 

words and constructions occurred within the last half-dozen or dozen sentences of the document. 

Other things being equal, a text that has so far been larded with, say, mountaineering terms, is a 

good bet to continue featuring them. An author with the habit of ending sentences with adverbial 

clauses of confirmation, e.g. "as we all know", will probably keep up that habit as the discourse 

progresses. 
Within the field of language modelling for speech recognition, maintaining a cache of words 

that have occurred so far within a document, and using this information to alter probabilities 

of occurrence of particular choices for the word being predicted, has proved a winning strategy 

(Kuhn et al., 1990). Models using trigger pairs of words, i.e. pairs consisting of a "triggering" 

word which has already occurred in the document being processed, plus a specific "triggered" word 

whose probability of occurrence as the next word of the document needs to be estimated, have 

yielded perplexity37 reductions of 29-38% over the baseline trigram model, for a 5-million-word 

Wall Street Journal training corpus (Rosenfeld, 1996). 

This subsection introduces the idea of using trigger-pair techniques to assist in the prediction 

of rule and tag occurrences, within the context of natural-language parsing and tagging. Given 

the task of predicting the correct rule to associate with a parse-tree node, or the correct tag to 

associate with a word of text, and assuming a particular class of parsing or tagging model, we 

quantify the・information gain realized by taking account of rule or tag trigger-pair predictors, i.e. 

pairs consisting of a "triggering" rule or tag which has already occurred in the document being 

processed, plus a specific "triggered" rule or tag whose probability of occurrence within the current 

sentence we wish to estimate. 

In what follows, subsection 4.7 provides a basic overview of trigger-pair models. subsection 4.8 

describes the experiments we have performed, which to a large extent parallel successful modelling 

experiments within the field of language modelling for speech recognition. In the first experiment, 
we investigate the use of trigger pairs to predict both rules and tags over our full corpus of around 

a million words. The subsequent experiments investigate the additional information gains accruing 

from trigger-pair modelling when we know what sort of document is being parsed or tagged. 

vVe present our experimental results in subsection 4.9, and discuss them in subsection 4.10. In 
subsection 4.11, we present some example trigger pairs; and we conclude, with a glance at projected 

future research, in subsection 4.12. 

37 See Section 2. 
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4. 7 Background 

Trigger-pair modelling research has been pursued within the field of language modelling for 

speech recognition over the last decade (Beeferman et al., 1997; Della Pietra et al., 1992; Kupiec, 

1989; Lau, 1994; Lau et al., 1993; Rosenfeld, 1996). 
Fundamentally, the idea is a simple one: if you have recently seen a word in a document, then 

it is more likely to occur again, or, more generally, the prior occurrence of a word in a document 

affects the probability of occurrence of itself and other words. 

More formally, from an information-theoretic viewpoint, we can interpret the process as the 

relationship between two dependent random variables. Let the outcome (from the alphabet of 

outcomes Ay) of a random variable Y be observed and used to predict a random variable X (with 
alphabet Ax). The probability distribution of X, in our case, is dependent on the outcome of Y. 

The average amount of information necessary to specify an outcome of X (measured in bits) 
is called its entropy H(X) and can also be viewed as a measure of the average ambiguity of its 

outcome. .38 

H(X) = L -P(x)log2 P(x) (7) 
xEAx 

The mutual information between X and Y is a measure of entropy (ambiguity) reduction of X 

from the observation of the outcome of Y. This is the entropy of X minus its a posteriori entropy, 

having observed the outcome of Y. 

I(X;Y) = H(X)-H(X/Y) 

= L L P(x, y)log2 P(x, y) 

xEAx yEAy P(x)P(y) 
(8) 

The dependency information between a word and its history may be captured by the trigger 

pair.39 A trigger pair is an ordered pair of words t and w. Knowledge that the trigger word t has 

occurred within some window of words in the history, changes the probability estimate that word 

w will occur subsequently. 

Selection of these triggers can be performed by calculating the average mutual information 

between word pairs over a training corpus. In this case, the alphabet Ax = { w亙},the presence 

or absence of word w; similarly, Ay = {t, t}, the presence or absence of the triggering word in the 
history. 

This is a measure of the effect that the knowledge of the occurrence of the triggering word 

t has on the occurence of word w, in terms of the entropy (and therefore perplexity) reduction 

it will provide. In all our experiments, the first term of equation (3) makes by far the largest 
contribution. Clearly, in the absence of other context (i.e. in the case of the a priori distribition of 

X), this information will be additional. However, once related contextual information is included 

(for example by building a trigram model, or, using other triggers for the same word), this is no 

longer strictly true. 

Once the trigger pairs are chosen, they may be used to form constraint functions to be used in a 

maximum-entropy model, alongside other constraints. ?¥Iodels of this form are extremely versatile, 

38 A more intuitive view of entropy is provided through perplexity (Jelinek et al., 1977) which is a measure of the 
number of choices, on average, there are for a random variable. It is defined to be: 2H(X). 
39For a thorough description of trigger-based modelling, see (Rosenfeld, 1996). 
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allowing the combination of short-and long-range information. To construct such a model, one 

transforms the trigger pairs into constraint functions f (t, w): 

J(t,w) = { 1 :e:;:. 二~r::d

゜
otherwise 

The expected values of these functions are then used to constrain the model, usually in combina-

tion of with other constraints such as similar functions embodying uni-, bi-and trigram probability 

estimates. 

(Beeferman et al., 1997) models more accurately the effect of distance between triggering and 

triggered word, showing that for non-self-triggers,40 the triggering effect decays exponentially with 

distance. For self-triggers,41 the effect is the same except that the triggering effect is lessened 

within a short range of the word. Using a model of these distance effects, they are able to improve 

the performance of a trigger model. 

We are unaware of any work on the use of trigger pairs in parsing or tagging. In fact, we have 
not found any previous research in which extrasentential data of any sort are applied to the problem 

of parsing or tagging. 

(9) 

4.8 The Experiments 

4.8.1 Experimental Design 

In order to investigate the utility of using long-range trigger information in tagging and parsing 

tasks, we adopt the simple mutual-information approach used in (Rosenfeld, 1996). We carry over 

into the domain of tags and rules an experiment from Rosenfeld's paper the details of which we 

outline below. 

The idea is to measure the information contributed (in bits, or, equivalently in terms of per-

plexity reduction) by using the triggers. Using this technique requires special care to ensure that 

information "added" by the triggers is indeed additional information. 

For this reason, in all our experiments we use the unigram model as our base model and we 

allow only one trigger for each tag (or rule) token.42 We derive these unigram probabilities from 

the training corpus and then calculate the total mutual information gained by using the trigger 

pairs, again with respect to the training corpus. 

・when using trigger pairs, one usually restricts the trigger to occur within a certain window 

defined by its distance to the triggered token. In our experiments, the window starts at the 

sentence prior to that containing the token and extends back W (the window size) sentences. The 

choice to use sentences as the unit of distance is motivated by our intention to incorporate triggers 

of this form into a probabilistic tree bank-based parser and tagger, such as (Black et al., 1998; Black 

et al., 1997; Brill, 1993; Brill, 1994; Collins, 1996; Jelinek et al., 1994; Magerman, 1995; Marquez 

et al., 1997; Ratnaparkhi, 1997). All such parsers and taggers of which we are aware use only 

intrasentential information in predicting parses or tags, and we wish to remove this informatiori, 

40i.e. words which trigger words other than themselves 
41・ 1.e. words which trigger themselves 
42By rule assignment, we mean the task of assigning a rule-name to a node in a parse tree, given that the constituent 

boundaries have already been defined. 
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1868 documents 

80299 sentences 

904431 words (tag instances) 

1622664 constituents (rule instances) 

1873 tags utilized 

907 rules utilized 

11.3 words per sentence, on average 

Table 12: Characteristics of Training Set (Subset of ATR/Lancaster General—English Treebank) 

as far as possible, from our results 43. The window was not allowed to cross a document boundary. 

The perplexity of the task before taking the trigger-pair information into account for tags was 

224.0 and for rules was 57.0. 

The characteristics of the training corpus we employ are given in Table 12. The corpus, a 

subset44 of the ATR/Lancaster General-English Tree bank (Black et al., 1996), consists of a sequence 

of sentences which have been tagged and parsed by human experts in terms of the ATR English 

Grammar, a broad-coverage grammar of English with a high level of analytic detail (Black et 

al., 1996; Black et al., 1997). For instance, the tagset is both semantic and syntactic, and includes 

around 2000 different tags, which classify nouns, verbs, adjectives and adverbs via over 100 semantic 

categories. As examples of the level of syntactic detail, exhaustive syntactic and semantic analysis 

is performed on all nominal compounds; and the full range of attachment sites is available within 

the Grammar for sentential and phrasal modifiers, and are used precisely in the Treebank. The 

Treebank actually consists of a set of documents, from a variety of sources. Crucially for our 

experiments (see below), the idea45 informing the selection of (the roughly 2000) documents for 

inclusion in the Tree bank was to pack into it the maximum degree of document variation along many 

different scales-document length, subject area, style, point of view, etc.-but without establishing 

a single, predetermined classification of the included documents.46 

In the first experiment, we examine the effectiveness of using trigger pairs over the entire train-

ing corpus. At the same time we investigate the effect of varying the window size. In additional 

experiments, we observe the effect of partitioning our training dataset into a few relatively homo-

geneous subsets, on the hypothesis that this will decrease perplexity. It seems reasonable that in 

different text varieties, different sets of trigger pairs will be useful, and that tokens which do not 

have effective triggers within one text variety may have them in another.47 

To investigate the utility of partitioning the dataset, we construct a separate set of trigger pairs 

for each class. These triggers are only active for their respective class and are independent of each 

other. Their total mutual information is compared to that derived in exactly the same way from 

a random partition of our corpus into the same number of classes, each comprised of the same 

43This is not completely possible, since correlations, even if slight, will exist between intra-and extrasentential 
information 

44 specifically, a rough]y-900,000-word subset of the full A.TR/Lancaster General-English Treebank (about 1.05 
million words), from which all 150,000 words were excluded that were treebanked by the two least accurate 
A TR/Lancaster tree bankers (expected hand-parsing error rate 32%, versus less than 10% overall for the three re-
maining tree bankers) 
45see (Black et al., 1996) 
46as was done, say, in the Brown Corpus (Kucera and Francis, 1967) 
47Related work in topic-specific trigram modelling (Lau, 1994) has led to a reduction in perplexity. 
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Part. 1: Source Part. 4: Source Plus Document Type Part. 5: Source Plus Domai1 

Class Name Sents Class Name Sents Class Name 

1: Assoc. Press, WSJ 8851 1: Legislative (incl. Src.2) 5626 1: Recreation 

2: Canadian Hansards 5002 2: Transcripts (incl. Src.4) 44287 2: Business 

3: General English 23105 3: News (incl. most Src.1) 8614 3: Science, Techn. 

4: Travel-domain dialogs 43341 4: Polemical essays 5160 4: Humanities 

Part. 2: List Structure 5: Reports; FAQs; listings 11440 5: Daily Living 

Class Name Sen ts 6: Idiom example sents 666 6: Health, Education 

1: Contains lists 14147 7: Novels; stories; fables 741 7: Government, Polit. 

2: Contains no lists 66152 8: Letters; diaries 1997 8: Travel 

Part. 3: Source Plus List Structure 9: Legal cases; cnsttutns 1768 9: Social Sciences 

Class Name Sents 10: Idiom xmp. sents 

1: Assoc. Press, WSJ 8851 11: Canad. Hansards 

2: Canadian Hansards 5002 12: Asso. Press, WSJ 

3: Contains lists (Gen.) 11998 13: Travel dialogs 

4: Contains no lists (Gen.) 11117 
5: Travel-domain dialogues 43341 

Table 1:3: Training Set Partitions 

number of documents. 

Our training data partitions naturally into four subsets, shown in Table 13 as Partitioning 
1 ("Source"). Partitioning 2, "List Structure", puts all documents which contain at least some 
HTML-like "List" markup (e.g. LI (=List Item))48・ m one subset and all other documents m 
the other subset. By merging Partitionings 1 and 2 we obtain Partitioning 3, "Source Plus List 

Structure". Partitioning 4 is "Source Plus Document Type", and contains 9 subsets, e.g. "Letters; 
diaries" (subset 8) and "Novels; stories; fables" (subset 7). With 13 subsets, Partitioning 5, "Source 

Plus Domain", includes e.g. "Social Sciences" (subset 9) and Recreation (subset 1). Partitionings 4 
and 5 were effected by actual inspection of each document, or at least of its title and/or summary, 

by one of the authors. The reason we included Source within most partitionings was to determine 
the extent to which information gains were additive.49 

4. 9 Experimental Results 

4.9.1 Window Size 

Figure 1 shows the effect of varying the window size from 1 to 500 for both rule and tag tokens. 

The optimal window size for tags was approximately 12 sentences (about 135 words) and for rules 
it was approximately 6 sentences (about 68 words). These values were used for all subsequent 

experiments. It is interesting to note that the curves are of similar shape for both rules and tags 

and that the optimal value is not the largest window size. Related effects for words are reported in 

(Lau, 1994; Beeferman et al., 1997). In the latter paper, an exponential model of distance is used 

48 • .¥11 d ocuments m our tra1mng set are marked up in HTML-like annotation. 
49For instance, compare the results for Partitionings 1, 2, and 3 in this regard. 
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Figure 6: Mutual information gain varying window size 

Partitionin゚o・ Perplexity reduction for tags Perplexity reduction for rules 

Meaningful partition Random Meaningful partition Random 

1: Source 28.40% 16.66% 15.44% 6.30% 
2: List Structure 20.39% 18.71% 10.55% 7.46% 

3: Source Plus List Structure 28.74% 17.12% 15.61% 6.50% 
4: Source Plus Document Type 30.11% 18.15% 16.20% 6.82% 

5: Source Plus Domain 31.55% 19.39% 16.60% 7.34% 

Table 14: Perplexity reduction using class-specific triggers to predict tags and rules 

to penalize large distances between triggering word and triggered word. The variable window used 

here can be seen as a simple alternative to this. 

One explanation for this effect in our data is, in the case of tags, that topic changes occur in 

documents. In the case of rules, the effect would seem to indicate a short span of relatively intense 

stylistic carryover in text. For instance, it may be much more important, in predicting rules typical 

of list structure, to know that similar rules occurred a few sentences ago, than to know that they 

occurred dozens of sentences back in the document. 

4.9.2 Class-Specific Triggers 

Table 14 shows the improvement in perplexity over the base (unigram) tag and rule models 

for both the randomly-split and the hand-partitioned training sets. In every case, the meaningful 
split yielded significantly more information than the random split. (Of course, the results for 

randomly-split training sets are roughly the same as for the unpartitioned training set (Figure 6)). 

4.10 n・ lSCUSSlOil 

The main result of the work reported in this subsection is to show that analogous to the case of 

words in language modelling, a significant amount of extrasentential information can be extracted 
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＃ Triggering Tag Triggered Tag I.e. Words Like These: Trigger Words Like These: 

1 NPlLOCNM NPlSTATENM Hill, County, Bay, Lake Utah, Maine, Alaska 

2 JJSYSTEM NPlORG national, federal, political Party, Council, Department 

3 VVDINCHOATIVE VVDPROCESSIVE caused, died, made, failed began, happened, became 

4 IIDESPITE CFYET despite yet (conjunction) 

5 DD PPH02 any, some, certain them 

6 PNlPERSON LEBUT22 everyone, one, anybody (not) only, (not) just 

7 ．．． MPRICE ...'.......'............. $452,983,000, $10,000 

8 IIATSTANDIN MPHONE22 at (sent.-:final, +/-":") 913-3434 (follows area cd.) ， IIFROMSTANDIN MZIP from (sent.-final, +/-":") 22314-1698 (postal zipcd.) 

10 NNUNUM NNlMONEY 25%, 12", 9.4m3 profit, price, cost 

Table 15: Selected Tag Trigger-Pairs, ATR/Lancaster General-English Treebank 

＃ A Construction Like This: Triggers A Construction Like This: 

la Interrupter Phrase-> * Or - Sentence-> Interr. P+Phrasal Constit (Non-S) 
lb Example: *, - Example: * DIG. AM/FM TUNER 

2a VP-> Verb+Interrupter Phrase+Obj/Compl Interrupter Phrase-> , 十Interrupter+,
2b Example: starring-surprise, surprise-men Example: , according to participants , 

3a Noun Phrase-> Simple Noun Phrase+Numerical Numerical-> Numcl +PrepP with Numcl Obj 
3b Example: Lows around 50 Example: (Snow level) 6000 to 7000 
4a、 Verb Phrase-> Adverb Phrase+ Verb Phrase Auxiliary VP -> Model/ Auxilliary Verb+Not 
4b Example: just need to understand it 恥 ample:do not 
5a Question-> Be+NP+Object/Complement Quoted Phrasal Constit -> "+Phrsl Constit+" 
5b Example: Is it possible? Example: "Mutual funds are back." 

Table 16: Selected Rule Trigger-Pairs, ATR/Lancaster General-English Treebank 
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# Triggering Tag Triggered Tag I.e. Words Like These: Trigger Words Like These: 

； 1~ ド言贔 1 悶悶喜言~II 悶［『，p~二ご，efakeI~::: 塁二芯：t: 
For training-set document class Recreation (1) vs. for unpartitioned training set (2) 

31 VVOALTER I NN2SUBSTANCE II inh枷 t,affect, modify I tumors, drugs, agents 
4 JJPHYS-ATT NN2SUBSTANCE fragile, brown, choppy pines, apples, chemicals 

For training-set document class Health And Education (3) vs. for unpartitioned training set (4) 

~l 悶畠喜FRMNMl芯悶雷 ll『::芸二〗：:~s~ 悶:~e l~ ご芯s~:~二:s~:〗:;g~:~c;;ices
For training-set document class Business (5) vs. for unpartitioned training set (6) 

; I gg心 LGり~ II~ 心且:hat,another, each I : 仇芯
For training-set document class Travel Dialogues (7) vs. for unpartitioned training set {_§) 

Table 17: Selected Tag Trigger-Pairs, ATR/Lancaster General-English Treebank: Contrasting 

Trigger-Pairs Arising From Partitioned vs. Unpartitioned Training Sets 

from the long-range history of a document, using trigger pairs for tags and rules. Although some 

redundancy of information is inevitable, we have taken care to exclude as much information as 

possible that is already available to (intrasentential-data-based, i.e. all known) parsers and taggers. 

Quantitatively, the studies of (Rosenfeld, 1996) yielded a total mutual information gain of 0.38 

bits, using Wall Street Journal data, with one trigger per word. In a parallel experiment, using the 

same technique, but on the ATR/Lancaster corpus, the total mutual information of the triggers 

for tags was 0.41 bits. This figure increases to 0.52 bits when tags further away than 135 tags (the 

approximate equivalent in words to the optimal window size in sentences) are excluded from the 

history. For the remainder of our experiments, we do not use as part of the history the tags/rules 

from the sentence containing the token to be predicted. This is motivated by our wish to exclude 

the intrasentential information which is already available to parsers and taggers. 

In the case of tags, using the optimal window size, the gain was 0.31 bits, and for rules the 

information gain was 0.12 bits. Although these figures are not as large as for the case where 

intrasentential information is incorporated, they are sufficiently close to encourage us to exploit 
this information in our models. 

For the case of words, the evidence shows that triggers derived in the same manner as the 

triggers in our experiments, can provide a substantial amount of new information when used in 

combination with sophisticated language models. For example, (Rosenfeld, 1996) used a maximum-

entropy model trained on 5 million words, with only trigger, uni-, bi-and trigram constraints, to 

measure the test-set perpexity reduction with respect to a "compact" backoff trigram model, a 

well-respected model in the language-modelling field. When the top six triggers for each word were 

used, test-set perplexity was reduced by 25%. Furthermore, when a more sophisticated version of 

this model50 was applied in conjunction with the SPHINX II speech recognition system (Huang et 

al., 1993), a 10-14% reduction in word error rate resulted (Rosenfeld, 1996). We see no reason why 

this effect should not carry over to tag and rule tokens, and are optimistic that long-range trigger 

50 trarned on 38 million words, and also employing distance一')'-;—- -gram constrarnts, a unigram cache and a conditional 
bigram cache (this model reduced perplexity over the baseline trigram model by 32%) 
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information can be used in both parsing and tagging to improve performance. 
For words (Rosenfeld, 1996), self-triggers—words which triggered themselves—were the most 

frequent kind of triggers (68% of all word triggers were self-triggers). This is also the case for tags 

and rules. For tags, 76.8% were self-triggers, and for rules, 96.5% were self-triggers. As in the case 
of words, the set of self-triggers provides the most useful predictive information. 

4.11 Some Examples 

We will now explicate a few of the example trigger pairs in Tables 15-17. Table 15 Item 7, for 
instance, captures the common practice of using a sequence of points, e.g. ………., to separate each 
item of a (price) list and the price of that item. Items 8 and 9 are similar cases (e.g. "contact/call 

(someone) at:" + phone number; "available from:" + source, typically including address, hence 
zip code). These correlations typically occur within listings, and, crucially for their usefulness as 

triggers, typically occur many at a time. 
When triggers are drawn from a relatively homogeneous set of documents, correlations emerge 

which seem to reflect the character of the text type involved. So in Table 17 Item 5, the proverbial 
equation of time and money emerges as more central to Business and Commerce texts than the 

different but equally sensible linkup, within our overall training set, between business corporations 

and money. 

Turning to rule triggers, Table 16 Item 1 is more or less a syntactic analog of the tag examples 

Table 15 Items 7-9, just discussed. What seems to be captured is that a particular style of listing 

things, e.g. * + listed item, characterizes a document as a whole (if it contains lists); further, 

listed items are not always of the same phrasal type, but are prone to vary syntactically. The same 

document that contains the list item "* DIG. AM/FM TUNER", for instance, which is based on 

a Noun Phrase, soon afterwards includes "* WEATHER PROOF" and "* ULTRA COMPACT", 

which are based on Adjective Phrases. 

Finally, as in the case of the tag trigger examples of Table 7, text-type-particular correlations 

emerge when rule triggers are drawn from a relatively homogeneous set of documents. A trigger 

pair of constructions specific to Class 1 of the Source partitioning, which contains only Associated 
Press newswire and Wall Street Journal articles, is the following: A sentence containing both 

a quoted remark and an attribution of that remark to a particular source, triggers a sentence 

containing simply a quoted remark, without attribution. (E.g. "The King was in trouble," Wall 

wrote. triggers "This increased the King's bitterness.".) This correlation is essentially absent in 

other text types. 

4.12 Conclus10n 

In this subsection, we have shown that, as in the case of words, there is a substantial amount of 

information outside the sentence which could be used to supplement tagging and parsing models. 

We have also shown that knowledge of the type of document being processed greatly increases the 

usefulness of triggers. If this information is known, or can be predicted accurately from the history 
of a given document being processed, then model interpolation techniques (Jelinek et al., 1980) 
could be employed, we anticipate, to exploit this to useful effect. 

Future research will concentrate on incorporating trigger-pair information, and extrasentential 

information more generally, into more sophisticated models of parsing and tagging.51 An obvious 

first extention to this work, for the case of tags, will be, following (Rosenfeld, 1996), to incorporate 

51 (EB 1999): As stated in the opening note to this entire subsection, this work is ongoing. 
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＃ Triggering Tag Triggered Tag I.e. Words Like: Trigger Words Like: 

1 NPlLOCNM NPlSTATENM Hill, County, Bay Utah, Maine, Alaska 

2 JJSYSTEM NPlORG national, federal Party, Council 

3 VVDINCHOATIVE VVDPROCESSIVE caused, died, made began, happened 
4 IIDESPITE CFYET despite yet (conjunction) 

5 DD PPH02 any, some, certain them 

6 PNlPERSON LEBUT22 everyone, one (not) only, (not) just 
7 ... MPRICE ... , ....... , ............. $452,983,000, $10,000 
8 IIATSTANDIN MPHONE22 at (sent.-final) 913-3434 ， IIFROMSTANDIN MZIP from (sent.-final) 22314-1698 (zip) 
10 NNUNUM NNlMONEY 25%, 12", 9.4m3 profit, price, cost 

Table 18: Selected Tag Trigger-Pairs, ATR General-English Treebank 

the triggers into a maximum-entropy model using trigger pairs in addition to unigram, bigram and 

trigram constraints. Later we intend to incorporate trigger information into a probabilistic English 

parser /tagger which is able to ask complex, det叫ledquestions about the contents of a sentence. 
From the results presented here we are optimistic that the additional, extrasentential information 
provided by trigger pairs will benefit such parsing and tagging systems. 

4.13 Experiments In Tagging Improvement (2) 

Note (EB 1999): The work in the present subsection represents a followup to that of the previous 

subsection. Again, the upshot, for our work, is to encourage us to incorporate extrasentential 
inofrmation into our tag prediction, in one form or another, though not necessarily in any form 

directly linked to the work presented here. The original report of this work follows directly below: 
It appears intuitively that information from earlier sentences in a document ought to help reduce 

uncertainty as to a word's correct part-of-speech tag. This is especially so for a large semantic 

and syntactic tagset such as the roughly-3000-tag ATR General English Tagset (Black et al., 

1996; Black et al., 1998). And in fact, (Black et al., 1998) demonstrate a significant "tag trigger-

pair" effect. That is, given that certain "triggering" tags have already occurred in a document, 

the probability of occurrence of specific "triggered" tags is raised significantly-with respect to the 

unigram tag probability model. Table 18, taken from (Black et al., 1998), provides examples of the 
tag trigger-pair effect. 

Yet, it is one thing to show that extrasentential context yields a gain in information with respect 

to a unigram tag probability model. But it is another thing to demonstrate that extrasentential 
context supports an improvement in perplexity vis-a-vis a part-of-speech tagging model which 
employs state-of-the-art techniques: such as, for instance, the tagging model of a maximum entropy 
tag-n-gram-based tagger. 

The present subsection undertakes just such a demonstration. Both the model underlying a 
standard tag-n-gram-based tagger, and the same model augmented with extrasentential context叫

information, are trained on the 8.S0,000-word ATR General English Treebank (Black et叫.,1996), 

and then tested on the accompanying .53,000-word test treebank. Performance differences are 

measured, with the result that semantic information from previous sentences within a document is 
shown to help significantly in improving the perplexity of tagging with the indicated tagset. 
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In what follows, subsection 4.14 provides a basic overview of the tagging approach used (a 

maximum entropy tagging model employing con~traints equivalent to those of the standard hidden 
Markov model). Section 4.15 discusses and offers examples of the sorts of extrasententially-based 

semantic constraints that were added to the basic tagging model. Section 4.16 describes the ex-

periments we performed. Section 4.17 details our experimental results. Section 4.18 glances at 

projected future research, and concludes. 

4.14 Tagging Model 

4.14.1 ME  Model 

Our tagging model is a maximum entropy (ME) model of the following form: 

K 

p(tlh) =III吟(h,t)Po 

k=O 

where: 

-t is tag we are predicting; 

-h is the history (all prior words and tags) of t; 

K Jk(h,t) 
-1 is a normalization coefficient that ensures: ~ 仁。廿lk=O匁 Po=1; 

-L is the number of tags in our tag set; 

-IYk is the weight of trigger fk; 

-f k are trigger functions and f廷{O,1}; 

(10) 

-Po is the default tagging model (in our case, the uniform distribution, since all of the infor-

mation in the model is specified using ME constrain ts). 

The model we use is similar to that of (Ratnaparkhi, 1996). Our baseline model shares the 

following features with this tagging model; we will call this set of features the basic n-gram tagger 
constrain ts: 

l. w = X & t = T 

2. L1 = X & t = T 

3. L2L1 = XY & t = T 

where: 

-w is word whose tag we are predicting; 

-t is tag we are predicting; 

-L1 is tag to the left of tag t; 

-L2 is tag to the left of tag L1; 
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Our baseline model differs from Ratnaparkhi's in that it does not use any information about 

the occurrence of words in the history or their properties (other than in constraint 1). Our model 

exploits the same kind of tag-n-gram information that forms the core of many successful tagging 

models, for example, (Kupiec, 1992), (Merialdo, 1994), (Ratnaparkhi, 1996). We refer to this type 

of tagger as a tag-n-gram tagger. 

4.14.2 
． 

Trigger selection 

We use mutual information (MI) to select the most useful trigger p叫rs(for more details, see 

(Rosenfeld, 1996)). That is, we use the following formula to gauge a feature's usefulness to the 

model: 

MI(s,t) = P(s,t)log皿
+ P(s, t)log血P{t) 
+ ， P(百，t)logどPP凶f.(tt豆) ) 

+ P(百，t)log四
P(t) 

where: 

-t is the tag we are predicting; 

-s can be any kind of triggering feature. 

For each of our trigger predictors, s is defined below: 

Bigram and trigram triggers : sis the presence of a particular tag as the first tag in the bigram 

pair, or the presence of two particular tags (in a particular order) as the first two tags of a 

trigram triple. In this case, t is the presence of a particular tag in the final position in the 

n-gram. 

Extrasentential tag triggers : sis the presence of a particular tag in the extrasentential history. 

Question triggers : s is the boolean answer to a question. 

This method has the advantage of finding good candidates quickly, and the disadvantage of 

ignoring any duplication of information in the features it selects. A more principled approach is to 

select features by actually adding them one-by-one into the ME model (Della Pietra et al., 1997); 

however, using this approach is very time-consuming and we decided on the MI approach for the 

sake of speed. 

4.15 The C onstramts 

To understand what extrasentential semantic constraints were added to the base tagging model 

in the current experiments, one needs some familiarity with the ATR General English Tagset. 

For detailed presentations, see (Black et al.. 1998; Black et al., 1996). An apercu can be gained, 

however, from Figure 7, which shows two sample sentences from the ATR Treebank (and orig-

in ally from a Chinese take-out food flier), tagged with respect to the ATR General English 

Tagset. Each verb、noun,adjective and adverb in the ATR tagset includes a semantic label, 
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(_(Please_RRCONCESSIVE Mention_VVIVERBAL-ACT this_DD1 coupon_NN1DOC田・!ENT

when_CSWHEN ordering_VVGINTER-ACT 

OR_CCOR ONE_MC1WORD FREE_JJMONEY FANTAIL_NN1ANIMAL SHRIMPS_NN1FDOD 

Figure 7: Two ATR Treebank Sentences from Chinese Take-Out Food Flier (Tagged Only -i.e. 

Parses Not Displayed) 

chosen from 42 noun/adjective/adverb categories and 29 verb/verbal categories, some overlap ex-

isting between these category sets. Proper nouns, plus certain adjectives and certain numerical 

expressions, are further categorized via an additional 35 "proper-noun" categories. These seman-

tic categories are intended for any "Standard-American-English" text, in any domain. Sample 

categories include: "physical.attribute" (nouns/adjectives/adverbs), "alter" (verbs/verbals), "in-

terpersonal.act" (nouns/adjectives/adverbs/verbs/verbals), "orgname" (proper nouns), and "zip-

code" (numericals). They were developed by the ATR grammarian and then proven and refined via 

day-in-day-out tagging for six months at ATR by two human "treebankers", then Yia four months 

of tagset-testing-only work at Lancaster University (UK) by five treebankers, with daily interac-

tions among treebankers, and between the treebankers and the ATR grammarian. The semantic 

categorization is, of course, in addition to an extensive syntactic classification, inrnh・ing some 165 

basic syntactic tags. 

Starting with a basic tag-n-gram tagger trained to tag raw text with respect to the ATR 

General English Tagset, then, we added constraints defined in terms of "tag families・・. A tag family 

is the set of all tags sharing a given semantic category. For instance, the tag family "MONEY" 

contains common nouns, proper nouns, adjectives, and adverbs, the semantic component of whose 

tags within the ATR General English Tagset, is "money": 500-stock, Deposit, TOLL-FREE, 

inexpensively, etc. 

One class of constraints consisted of the presence, within the 6 sentences (from the same 

document)52 preceding the current sentence, of one or more instances of a given tag family. This 

type of constraint came in two varieties: either including, or excluding, the words within the sen-

tence of the word being tagged. Where these intrasentential words were included. they consisted 

of the set of words preceding the word being tagged, within its sentence. 

A second class of constraints added to the requirements of the first class the representation, 

within the past 6 sentences, of related tag families. Boolean combinations of such events defined this 

group of constraints. An example is as follows: (a) an instance either of the tag family "person" or 

of the tag family "personal attribute"(or both) occurs within the 6 sentences preceding the current 

one; or else (b) an instance of the tag family "person" occurs in the current sentence, to the left of 

the word being tagged; or, finally, both (a) and (b) occur. 

A third class of constraints had to do with the specific word being tagged. In particular, the 

1vord-b℃ m-g-℃ -1祁伽d~i-s-i·eq11-rrecl- to belong to a set of words which have been tagged at least once, 

in the training treebank, with some tag from a particular tag family; and which, further, always 

shared the same basic syntax in the training data. For instance, consider the words "currency" 

and "options". Not only have they both been tagged at least once in the training set with some 

member of the tag family ":vIONEY" (as well, it happens, as with tags from other tag families); 

"2(Black et al., 1998) determined a 6-sentence window to be optimal for this task. 
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but in addition they both occur in the training set only as nouns. Therefore these two words would 

occur on a list named "MONEY nouns", and when an instance of either of these words is being 

tagged, the constraint "MONEY nouns" is satisfied. 
A fourth and升nalclass of constraints combines the first or the second class, above, with the 

third class. E.g. it is both the case that some avatar of the tag family "MONEY" has occurred 

within the last 6 sentences to the left; and that the word being tagged satisfies the constraint 

"MONEY nouns". The advantage of this sort of composite constraint is that it is focused, and 

likely to be helpful when it does occur. The disadvantage is that it is unlikely to occur extremely 

often. On the other hand, constraints of the first, second, and third classes, above, are more likely 

to occur, but less focused and therefore less obviously helpful. 

4.16 The Experiments 

4.16.1 The Four Models 

To evaluate the utility of long-range semantic context we performed four separate experiments. 

All of the models in the experiments include the basic ME tag-n-gram tagger constraints listed in 

subsection 4.15. The models used in our experiments are as follows: 

(1) The first model is a model consisting ONLY of these basic ME tag-n-gram tagger constraints. 

This model represents the baseline model. 

(2) The second model consists of the baseline model together with constraints representing ex-

trasentential tag triggers. This experiment measures the effect of employing the triggers 

specified in (Black et al., 1998) -i.e. the presence (or absence) in the previous 6 sentences of 

each tag in the tagset, in turn-to assist a real tagger, as opposed to simply measuring their 

mutual information. In other words, we are measuring the contribution of this long-range 
information over and above a model which uses local tag-n-grams as context, rather than 

measuring the gain over a naive model which does not take context into account, as was the 

case with the mutual information experiments in (Black et al., 1998). 

(:3) The third model consists of the baseline model together with the four classes of more sophis-

ticated question-based triggers defined in the previous section. 

(4) The fourth model consists of the baseline model together with both the long-range tag trigger 

constraints and the question-based trigger constraints. 

vVe chose the model underlying a standard tag-n-gram tagger as the baseline because it rep-

resents a respectable tagging model which most readers will be familiar with. The ME framework 

was used to build the models since it provides a principled manner in which to integrate the diverse 

sources of information needed for these experiments. 

4.16.2 E xperrmental Procedure 

The performance of each the tagging models is measured on a 53,000-word test treebank hand-

labelled to an accuracy of over 97% (Black et al., 1996; Black et al., 1998). We measure the model 

performance in terms of the perplexity of the tag being predicted. This measurement gives an 

indication of how useful the features we supply could be to an n-gram tagger when it consults its 
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Description Number 

Tag set size 1837 

Word vocabulary size 38138 

Bigram trigger number 18520 

Trigram trigger number 15660 

Long history trigger number 15751 

Question trigger number 82425 

Table 19: Vocabulary sizes and number of triggers used 

＃ Question Description MI (bits) 

1 Person or personal attribute word in full history 0.024410 

2 Word being tagged has taken NNlPERSON in training set 0.024355 

3 Person or personal attribute word in remote history 0.024294 

4 Person or personal attribute or other related tags in full history 0.020777 

5 Person or personal attribute or other related tags in remote history 0.020156 

Table 20: The 5 triggers for tag NNlPERSON with the highest MI 

model to obtain a probablity distribution over the tagset for a particular word. Since our intention 

is to gauge the usefulness of long-range context, we measure the performance improvement with 

respect to correctly (very accurately) labelled context. We chose to do this to isolate the effect of 

the correct markup of the history on tagging performance (i.e. to measure the performance gain 

in the absence of noise from the tagging process itself). Earlier experiments using predicted tags 

in the history showed that at current levels of tagging accuracy for this tagset, these predicted 

tags yielded very little benefit to a tagging model. However, removing the noise from these tags 

showed clearly that improvement was possible from this information. As a consequence, we chose 

to investigate in the absence of noise, so that we could see the utility of exploiting the history when 

labelled with syntactic/semantic tags. 

The resulting measure is an idealization of a component of a real tagging process, and is a 

measure of the usefulness of knowing the tags in the history. In order to make the comparisons 
between models fair, we use correctly-labelled history in the n-gram components of our models as 

well as for the long-range triggers. As a consequence of this, no search is nescessary. 

The number of possible triggers is obviously very large and needs to be limited for reasons of 

practicability. The number of triggers used for these experiments is shown in Table 19. Using 

these limits we were able to build each model in around one week on a 600MHz DEC-alpha. The 

constraints were selected by mut叫 information.Thus, as an example, the 82425 question trigger 

constraints shown in Table 19 represent t 1e :...4・.) question rigger cons rain s wiTl1th~e予犀

゜mutual information. 

The improved iterative scaling technique (Della Pietra et al., 1997) was used to train the 

parameters in the ME model. 
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＃ Model Perplexity Perplexity Reduction 

1 Baseline n-gram model 2.99 0.0% 

2 Baseline + long-range tag triggers 2.76 7.6% 

3 Baseline + question-based triggers 2.41 19.4% 

4 Baseline + all triggers 2.35 21.4% 

Table 21: Perplexity of the four models 

4.17 The Results 

Table 21 shows the perplexity of each of the four models on the testset. 

The maximum entropy framework adopted for these experiments virtually guarantees that mod-

els which utilize more information will perform as well as or better than models which do not include 

this extra information. Therefore, it comes as no surprise that all models improve upon the baseline 

model, since every model effectively includes the baseline model as a component. 

However, despite promising results when measuring mutual information gain (Black et al., 1998), 

the baseline model combined only with extrasentential tag triggers reduced perplexity by just a 

modest 7.6% . The explanation for this is that the information these triggers provide is already 

present to some degree in the n-grams of the tagger and is therefore redundant. 

In spite of this, when long-range information is captured using more sophisticated, linguistically 

meaningful questions gener訊edby an expert grammarian (as in experiment 3), the perplexity 

reduction is a more substantial 19.4%. The explanation for this lies in the fact that these question-

based triggers are much more specific. The simple tag-based triggers will be active much more 

frequently and often inappropriately. The more sophisticated question-based triggers are less of a 

blunt instrument. As an example, constraints from the fourth class (described in the constraints 

section of this paper) are likely to only be active for words able to take the particular tag the 

constraint was designed to apply to. In effect, tuning the ME constraints has recovered much 

ground lost to the n-grams in the model. 

The final experiment shows that using all the triggers reduces perplexity by 21.4%. This is a 

modest improvement over the results obtained in experiment 3. This suggests that even though 

this long-range trigger information is less useful, it is still providing some additional information 

to the more sophisticated question-based triggers. 

Table 20 shows the five constraints with the highest mutual information for the tag NNlPERSON 

(singular common noun of person, e.g. lawyer, friend, niece). All five of these constraints happen 

to fall within the twenty-five constraints of any type with the highest mutual information with 

their predicted tags. Within Table 20, "full history" refers to the previous 6 sentences as well as 

the previous words in the current sentence, while "remote history" indicates only the previous 6 

sentences. A "person word" is any word in the tag family "person", hence adjectives, adverbs, and 

both common and proper nouns of person. Similarly, a "personal attribute word" is any word in 

the tag family "personal attribute", e.g. left-wing, liberty, courageously. 

4.18 Conclus1011 

Our main concern in this subsection has been to show that extrasentential information can provide 

significant assistance to a real tagger. There has been almost no research done in this area, possibly 

due to the fact that, for small syntax-only tagsets, very accurate performance can be obtained 
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labelling the Wall Street Journal corpus using only local context. In the experiments presented, 

we have used a much more detailed, semantic and syntactic tagset, on which the performance is 

much lower. Extrasentential semantic information is needed to disambiguate these tags. We have 

observed that the simple approach of only using the occurrence of tags in the history as features did 

not significantly improve performance. However, when more sophisticated questions are employed 

to mine this long-range contextual information, a more significant contribution to performance is 

made. This motivates further research toward finding more predictive features. Clearly, the work 

here has only scratched the surface in terms of the kinds of questions that it is possible to ask of 

the history. The maximum entropy approach that we have adopted is extremely accommodating 

in this respect. It is possible to go much further in the direction of querying the historical tag 

structure. For example, we can, in effect, exploit grammatical relations within previous sentences 

with an eye to predicting the tags of similarly related words in the current sentence. It is also 

possible to go even further and exploit the structure of full parses in the history. 

5 Predicting Meaning and Function of Phrases and Sentences: 

Parsing 

Note (EB 1999): This subsection presents our approach to parsing, i.e. to finding the correct 

parse with respect to our grammar of English for any sentence of English. The experimental results 

presented are roughly current. 

5.1 Introduction 

This subsection describes a grammar-based probabilistic parser, and presents experimental results 

for the parser as trained and tested on a large, highly varied treebank of unrestricted English 

text. Probabilistic decision trees are utilized as a means of prediction, roughly as in (Jelinek et 

al., 1994; Magerman, 1995), and as in these references, training is supervised, and in particular is 

treebank-based. In all other respects, our work departs from previous research on broad-coverage 

probabilistic parsing, which either attempts to learn to predict grammatical structure of test data 

directly from a training treebank (Brill, 1993; Collins, 1996; Eisner, 1996; Jelinek et al., 1994; 

Magerman, 1995; Sekine and Grishman, 1995; Sharman et al., 1990), or employs a grammar and 

sometimes a dictionary to capture linguistic expertise directly (Black et al., 1993; Grinberg et al., 

199.5; Schabes, 1992), but arguably at a less detailed and informative level than in the research 
reported here. 

In what follows, subsection 5.2 explains the contribution to the prediction process of the gram-

mar and of the lexical generalizations created by our grammarian. Subsection 5.3 shows, from 

a formal standpoint, how prediction is carried out, and more generally how the parser operates. 

Subsection 5.4 presents experimental results. Finally, subsection 5.5 details our efforts to radically 

expand the size of our training corpus by employing techniques of treebank conversion. 

5.2 How the Grammar and Lexical Generalizations Help 

5.2.1 How the Grammar Helps 

Figure 8 shows a sampling of parsed sentences from the one-million-word ATR/Lancaster Tree bank 

of General English (Black et al., 1996), which we employ for training, smoothing and testing our 
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[start [sprpd1 [sprime4 [sd1 [nbar6 It_PPH1 nbar6] 

[vbar2 [08 has_VHZ 08] [v2 meant_vVNMEAN [nbar12 [j1 great_JJDEGREE j1] 

[n1a savings_NN2MONEY n1a] nbar12] v2] vbar2] sd1] 

[iebar2 , _, [i1e [pr1 [rmod1 [r2 both_RRCONCESSIVE r2] rmod1] 

[p1 in_IIIN [coord1 [nbar1 [n1a time_NN1TIME n1a] nbar1] 

[coord3 [cc3 [cc1 &_CCAMP cc1] cc3] 

[nbar1 [n1a gas_NN1SUBSTANCE n1a] nbar1] coord3] coord1] p1] pr1] i1e] 

iebar2] sprime4] [rand3 ! _ ! "_ "R rand3] sprpd1] start] 

[start [quo (_ ([sprpd23 [sprime2 [ibbar2 [r2 Please_RRCDNCESSIVE r2] ibbar2] 

[sc3 [v4 Mention_VVIVERBAL-ACT [nbar4 [di this_DDi di] 

[nia coupon_NN1DOCUMENT nia] nbar4] [fai when_CSWHEN 

[vi ordering_vVGINTER-ACT vi] fai] v4] sc3] sprime2] sprpd23])_) quo] start] 

[start [sprpd22 [coord3 [cc3 [cc1 OR_CCOR cci] cc3] 

[nbari3 [d3 ONE_MCiWDRD d3] [j i FREE_JJSTATUS j i] [n4 [nia FANTAIL_NNiANIMAL nia] 

[nia SHRIMPS_NNiFODD nia] n4] nbari3] coord3] sprpd22] start] 

Figure 8: Three ATR/Lancaster English Treebank Sentences: One from Credit Union Brochure, 

and Two (Non-Sequential) from Chinese Take-Out Food Flier 

parser. The Treebank consists of a correct parse for each sentence it contains, with respect to the 

ATR English Grammar翌 Everynon-terminal node is labelled with the name of the ATR English 

Grammar rule54 that generates the node; and each word is labelled with one of the 2843 tags in the 

Grammar's tagset.55 Together, the bracket locations, rule names, and lexical tags of a Treebank 

parse specify a unique parse within the Grammar. In the Grammar parse, rule names and lexical 

tags are replaced by bundles of feature/value pairs. Each node contains values for 66 features, and 

there are 12 values per feature, on average. 

Prediction in our parser is conditioned partially on questions about feature values of words and 

non-terminal nodes. For instance, when we predict whether a constituent has ended, we ask how 

many words until the next finite verb; the next comma; the next noun; etc. In tagging, we ask if 

the same word has already occurred in the sentence, and if so, what its value is for various features. 

By labelling Treebank nodes with Grammar rule names, and not with phrasal and clausal 

names, as in other (non-grammar-based) treebanks (Eyes and Leech, 1993; Garside and McEnery, 

1993; Marcus et al., 1993), we gain access to all information provided by the Grammar regarding 
each Treebank node. 

It would be difficult to attempt to induce this information from the Treebank alone. The parent 

of a rule in the Grammar often contains feature values that are not derived from any of its children. 

Further, the parent inherits some feature values from one child, and some from another. Each rule 

in the Grammar is associated with a primary and secondary head, and head information is passed 

530n the ATR English G b 1 rammar, see e ow; for a detailed descnpt10n of a precursor to the Grammar, see (Black 
et al., 1993). 
s4Th ere are 1155 rules rn the Grammar. 
55See (Black et al.、1996).
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up the parse tree. Finally, extensive Boolean conditions are imposed on the application of each 

individual rule. These conditions are intended to permit only useful applications of a given rule, 

and reflect experience gained by parsing millions of words with the Grammar, and crucially, by 

generalizing this experience in ways believed appropriate. 

Since the ATR English Grammar was created specifically for use in machine parsing, some 

of its features are designed expressly to facilitate parse prediction. For example, the feature 

"np皿 odification"helps to predict attachment events by carrying up to the top node of each 

noun phrase, data as to how much more modification the noun phrase can probably take. At one 

extreme, a noun phrase may not have been modified at all so far, and so, other things being equal, 

it is a prime target for post-modification. At the other extreme, it may already have been modified 

in a way that tends not to permit further modification, such as a noun phrase followed immediately 

by a postmodifying comparative phrase ("Such as can understand the topic (may attend)"; "More 

reasons than you can imagine (were adduced)"). 

Another feature of this type is "det_pos", which reveals, concerning a noun phrase, whether it 

includes a determiner phrase, and if so, what type. Determiner less noun phrases tend to have differ-

ent chances of occurring in certain grammatical constructions than noun phrases with determiners, 

and this feature makes it possible for our models to take account of this tendency. Note that it 

is far from trivial to capture and then percolate this information up a treebank parse without a 

grammar: demarcation of the determiner phrase in each case is involved, along with identification 

of the type of determiner phrase, and other steps. 

The ATR English Grammar is particularly detailed and comprehensive, and this both helps 

in parse prediction and enhances the value of output that is correctly parsed by our system. For 

instance, complete syntactic and semantic analysis is performed on all nominal compounds, e.g. 

"the Third Annual Long Branch, New Jersey Rod and Gun Club Picnic and Turkey Shoot", or "high 

fidelity equipment". Further, the full range of attachment sites is available within the Grammar for 

sentential and phrasal modifers, so that differences in meaning can be accurately reflected in parses. 

For instance, in "She didn't attend because she was tired, and didn't call for the same reason," the 

phrases "because she was tired" and "for the same reason" should probably postmodify their entire 

respective verb phrases, "didn't attend" and "didn't call", for maximum clarity. A full range of 

attachment sites are available in the Grammar, are used precisely in the Treebank, and are required 

to be handled correctly by our parser for its output to be considered correct. 

5.2.2 How L ・ex1cal Generahzat10ns Help 

Prediction in our parser is conditioned not only on questions about feature values of words and 

non-terminal nodes, but also on questions about "raw" words, wordstrings, and whole sentences. 

One category of contextual question asks about characteristics of a sentence as a whole. For 

instance, very short "sentences" in our training data tend to be free-standing noun phrases or 

other non-sentential units. Many of these are titles, speaker-tum indicators, etc. So we ask about 

11 " the length of the overa sentence・m all models. In tagging, for instance, there tend not to be 

了 行iteverbs in these contexts, and this fad nelps with the task of可rn・'.西石孔iatmg,say, preterで

forms from past participles functioning adjectivally, e.g. "Said plaintiff and plaintiff's counsel:". 

Similarly, the first and last words of a sentence can be powerful predictors. If the first word of a 

sentence is a typical beginning for sentential premodifying phrases (e.g. "Since"), and if there is 

just one comma in the sentence, and that comma occurs in the first quadrant, then there is a good 

chance that the overall structure of the sentence is: premodifying phrase, then main clause. 
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Effective questions about words and expressions, for the purpose of predicting the semantic 

portion of the lexical tags, are essential to the success of our models. One strategy we utilize is 

to identify contexts strongly associated with a given semantic event. For instance, the context: 

FirstName "X" LastName (e.g. Edward "Stubby" Smith) is one of many that are associated with 

the semantic category NickN ame. 

5.2.3 Formulating Grammar and Lexical Questions For Prediction 

We have developed a flexible language for formulating grammar-based and lexically-based questions 

about Treebank text. The answers to these questions are made available to the models in our parser. 

The language provides facilities for navigating a parse tree, determining feature values of a given 

node, and making simple boolean or arithmetic computations. In addition, it allows us to translate 

answers returned by the question into a more natural format for input to the decision-tree models. 

The language provides easy access to word and tag nodes at any offset from the beginning 

or end of the sentence. It also provides a reference position— the "current" node, i.e. the node 

about which a prediction is being made. It is easy to navigate from any node to previous nodes, 

parent/child nodes, and word/tag nodes relative to the node's constituent boundaries. The navi-

gational commands are recursive, so that, for example, one can arrive at a grandchild of a node by 

asking about a child's child. 

There is nothing in the language itself which restricts the context which can be used in models. 

For example, changing a bigram tagger into a trigram tagger requires only adding questions about 

the additional nodes. More generally, the ability to ask questions about the entire sentence (and, 

in the future, document), means that the "context" is of variable length. 

Every question has access to the current parse state, which contains everything known or pre-

dicted about the parse tree up to the time the question is asked. Any of this information is available 

for a selected node. For word nodes, this includes membership on vocabulary lists, whether the 

word contains various pre且xes,suffixes, substrings, etc. In addition, for tag and nonterminal nodes, 

the name of the label and the values of all the Grammar's features (including those based on infor-

mation propagated up the parse tree from lower down) at that node are also available. Finally, for 

nonterminal nodes, general information about the number of children, span, constituent boundaries, 

etc. is available. 

Answers to the questions are of various types: Boolean, categorical, integer, sets of integers. 

But we transform all these types of answers into binary strings. Some transformations are obvious. 

Boolean values, for example, are mapped to a single bit. Other transformations are based on 

clustering, either expert or automatic. For example, the sets of tags and rule labels have been 

clustered by our team grammarian, while a vocabulary of about 60,000 words has been clustered 

by machine (Brown et al., 1992; Ushioda, 1996; Ushioda, 1996b). 

5.3 How Prediction Is Carried Out 

5.3.1 System Design 

The ATR parser is a probabilistic parser which uses decision-tree models. A parse is built up from a 

succession of parse states. each of which represents a partial parse tree. Transition between states is 

accomplished by one of the following steps: (1) assigning syntax to a word; (2) assigning semantics 

to a word; (3) deciding whether the current parse tree node is the last node of a constituent; (4) 
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assigning a (rule) label to an internal node of the parse tree. Note that the first two steps together 

determine the tag for a word, and the third determines the topology of the tree. Working from the 

bottom up, left to right, constrains the parser to produce a unique derivation for each parse state. 

Alternatively, we can tag the entire sentence first, then work from tags up, left to right, which also 

yields a unique derivation for each parse state. 

Statistical models corresponding to each type of step provide estimates of the probability of each 

step's outcome.56 Each model uses as input the answers to a set of questions about context designed 

specifically for that model by our team grammarian, using the language described in Section 2.3. 

Thus the probability of each decision depends on features extracted from the context, including 

information about any word(s) in the sentence and any tags and parse structure already predicted. 

The estimated probability of any parse state is the product of the probabilities of each step taken 

to reach that state. Strictly speaking, we estimate relative likelihoods rather than probabilities, 

since we make no attempt to normalize over all possible parses for a given sentence. 

Given a set of models for estimating the probabilities of parse steps, the problem of predicting a 

parse reduces to searching the space of possible parses for the most likely one. We use a chart parser 

(Kasami, 1965) to build a compact representation of all legal parses for the sentence, which in turn 

constrains the search to consider only those parse steps guaranteed to lead to a complete (legal) 
57・ parse. Even so, because the Grammar generates a large number of parses for each sentence, rt 

is not feasible to rank the parses exhaustively. Fortunately, incomplete parse states are assigned 

probabilities, which can be used to guide a search by ruling out unlikely parses without constructing 

the complete parse. We have found that a greedy search, which chooses the most likely outcome 

for each parsing step, us叫 ly升ndsa good candidate parse. Occasionally, though, choosing a less 

likely step at one point leads to a parse with higher overall likelihood. To allow for this possibility, 

we use the greedy candidate parse to "seed" the stack-based decoder described in (Jelinek, 1969). 

There is some freedom in the order in which the parsing steps are taken. The context in which 

a model makes its prediction includes any parts of the parse tree which have already been built. 

Hence, the order chosen determines what information is available to each model. We choose to tag 

the entire sentence first, producing an N-best list of tag sequences. Specifically, starting from a 

sequence of words, we first tag the sentence as follows: 

• estimate the probability for each part-of-speech of the first word; 

• choose one or more most likely parts-of-speech; 

• estimate the probability for each tag for the first word, given the part-of-speech decision(s) 
made above; 

• choose one (or several) likely tag(s); 

• repeat the steps above for each word in the sentence. 

¥"ext, starting from the tag of the first word, which is the left-most leaf node of the parse tree, we 

屈詑 liefcrll碑 ir g s e p s : 

• estimate the probability that the current node of the parse tree is the last child of its parent 

(e.g. the probability that a constituent ends at this node); 

56For efficiency we break down the semantic model further into a set of models, one for each syntactic category. 
打 tsParse Base (Black et al., 1993) is 1.76. 
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• if a constituent is deemed to end at this node, estimate the probability of possible rule labels 

for that consitutent, i.e. of only those rules which are known to lead to legal parses; make 

that node the current node; and return to the first step; 

• otherwise, make the top of the next subtree to the right the current node and return to the 
first step. 

This approach decouples the search over tag sequences from the search over parse trees. 

5.3.2 Decision-Tree Models 

The parser requires models which estimate the probability of membership in a class given an input 

vector. We use class probability trees, a slight modification of classification trees, as described in 

(Breiman et al., 1984; Quinlan, 1986; Bahl et al., 1983), with a few enhancements. We can choose 
among several different standard splitting criteria for the trees. The trees are pruned using the 

minimal cost-complexity algorithm (Breiman et al., 1984). In addition, estimates for probability 

distributions are smoothed using the Forward-Backward algorithm (Baum, 1972). 

The models are trained using bitstring answers to questions about each state encountered while 

parsing each sentence in the training set. We build binary trees, in which each node can split the 

data based on the value of any bit in the bitstring. There are situations in which an entire question 

does not apply—for example, a question about the previous word when the first word of a sentence 

is under consideration. These situations are flagged so that the decision tree will split out this data 

before it asks about any of the bits in the answer to this question. 

5.4・Experimental Results 

5.4.1 Evaluation Methodology 

In our view, any effective evaluation methodology for automatic grammatical analysis must confront 

head-on the problem of multiple correct answers in tagging and parsing. That is, it is often the 

case that there is more than one "correct tag" for a word in context, where that word could be 

considered to be functioning as: a proper or a common noun; an adjective or a noun; a participle 

or an adjective; a gerundial noun or a noun;.58 an adverbial particle or a locative adverb; and even 

an adjective or an adverb. This is true even where there are highly detailed and well-understood 

guidelines for the application of each tag to text. And obviously the existence of multiple correct 

taggings for a word is to be expected a fortiori where a highly ramified system of semantic categories 

is involved. It follows that multiple correct parses exist for many sentences, since by definition any 
change in tag means a change in parse. But other sources of multiple correct parses exist as well, 

and range from, say, several equally good attachment sites within a parse for a given modifier, even 

given full document context, to cases where the grammar itself provides several equally good parses 

for a sentence, through the presence of normally independent rules whose function nonetheless 

overlaps to some degree. 

Barring the recording of the set of correct tags for each word, and of the set of correct parses 

for each sentence, in a treebank, the next-best solution to the problem of multiple correct answers 

is to at least provide such a recording in one's test set, i.e. to provide a "gold standard" test set 

58terminology of (Long, 1961), for e.g. a sleeping pill vs. to make a good living 
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with all correct tags and parses for each word in context. This is the solution that was adopted in 

creating the ATR/Lancaster English Treebank. 

The way we evaluate our tagger is to compare its performance to the set of correct tags for each 

word of each sentence of our "gold standard" test data. Thus, in all cases we are able to take into 

account the full set of "correct" answers.59 Since 32% of running words in our test data have 2 

or more correct tags, potential differences in performance evaluation are large vis-a-vis traditional 

metncs. 60 

Similarly, in the case of the parser, we evaluate performance against a special "gold standard" 

test set which lists every correct parse with respect to the Grammar for each test sentence. ¥Ve 

utilize two measures. First is exact match with any correct parse listed for the sentence. Second is 

"exact syntactic match": exact match with the bracket locations and rule names only. Notice that 

in a parse considered correct by our second metric, the syntax61 of all tags must be correct. 

The average number of different correct "exact syntactic matches"62 per sentence in our test 

data is 3. Among test-data sentences, 72% have more than one correct exact syntactic matches, and 

32% have 5.63 For critiques of other approaches to broad-coverage parser and tagger evaluation, 

see (Black, 1994b). 

It is worth inquiring how well expert humans do at the parsing task that we are attempting 

here by machine. Accordingly, we present statistics below on the consistency and accuracy of 

expert humans at parsing using the ATR English Grammar. The ATR/Lancaster treebanking 

effort features a grammarian, who originated the Grammar, and a treebanking team, who apply 

the Grammar to treebank text. We can therefore distinguish two different types of evaluation as to 

how well expert humans do at parsing using the Grammar: consistency and accuracy. Consistency 

is the degree to which all team members posit the identical parse for the identical sentence in the 

identical document of test data. Accuracy is the expected rate of agreemnt between a treebanker 

and the grammarian on parsing a given sentence in a given document of test data. 

In a first experiment to determine consistency, we asked each of the three team members to 

declare either correct or incorrect a particular parse for a sentence of test data. The parses had 

been generated with respect to our Grammar, by trained humans, but whose skills at parsing with 

the Grammar were not as good as those of our three team members. 384 sentences of test data 

were utilized. The result was a 6.7% expected rate of disagreement among the team members on 

this task.64 In a second consistency experiment, we located all sentences occurring twice or more 

in the Treebank; if there were more than two duplicates, we selected just two at random. vVe then 

determined the number of duplicate-sentence pairs that were exact matches in terms of the way 

59'vVe limit the set of correct tags to five tags; however, for only 2% of running words of test data were as many as 
5 tags provided by our human experts; so in general, we are accounting for "all correct tags" for the given word in 
context. 

60 Actually, so far, we have found about a 10% improvement both in tagging and parsing results when we test 
against the full set of correct answers, as opposed to testing against the single answer in the original treebank parse 
of a sentence. 

61 and often some of the semantics 
62・ 1.e. parses with a unique set of bracket locations and bracket labels (Grammar rule names) 
F-i'fe-is-廿re-n証 xhn11-m-nu-m berof—-cbnect-ぷ訳←叩虚砒,n訂chです一t'ha:戸v-e~a:s·炉0711'.-向 誼

sentence, for test data. 
64 In a parallel experiment to determine consistency on tagging, we asked each of the three team members to choose 

the first correct tag from a ranked list of tags for each word of each sentence of test data. These ranked lists were 
hand-constructed, and an effort was made to make them as difficult as possible to choose from. About 4,800 words 
(J 5・2 sentences) of test data were utilized. The result was a 3.1 % expected rate of disagreement among the team 
members on the exact choice of tag 
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length 

1-10 

11-15 

16-23 

# sentences 
1044 

248 

201 

翌
81.8% 

30.2% 

17.4% 

top-95-72-48 

cross 

89.1% 

43.1% 

28.4% 

constits/sent 

7.6 

23.9 

34.2 

Table 22: Parsing from text which starts out correctly tagged: percentage of parses which exactly 

match one of the human-produced parses. "Cross" indicates percentage of test-data sentences 

whose top-ranked parse contains O instances of "crossing brackets" with respect to the most prob-

able treebank parse of the sentence. 

they were parsed and tagged. 76% of these 248 sentence pairs were such exact matches.65 

Finally, in an experiment to determine accuracy of our team members'parsing using the Gram-

mar, the ATR grammarian scored for parsing and tagging accuracy some 308 sentences of Tree bank 

data from randomly-selected Tree bank documents.66 The result of this scoring was a 8.4% expected 

parsmg error rate. 67 

5.4.2 Experimental Results 

As discussed in 3.1, our first step in parsing is to tag each sentence. The tagger currently 

produces an exact match 74% of the time for the 47,800-word test set, comparing against a single 

tag sequence for each sentence.68 We present parsing results both for text which starts out correctly 

tagged (Table 22)69 and for raw text (Table 23). Results for parsing from raw text are given for 

both the exact-match and exact-syntactic-match criteria described in 5.4. 

The performance of the parser on short sentences of correctly tagged data is extrememly good. 

We feel this indicates that the models are performing well in scoring the parses. 

The results deteriorate rapidly for longer sentences, but we believe the problem lies in the 

search procedure rather than the models. A measure of the performance of a search is whether it 

suggests any candidates which are as likely as the correct answer. If not, the parser has erred by 
"ommission" rather than by "commission": it has ommitted the correct parse from consideration, 

but not because it seemed unlikely. It is entirely possible that the correct parse is in fact among 

the highest-scoring parses. These types of search error are non-existent for exhaustive search, but 

become important for sentences between 11 and 15 ¥¥lords in length, and dominate the results for 

longer sentences. 

The results in Table 23 reflect tagging accuracy as well as the performance of the parser models 

per se. Note that tagging accuracy is quoted on a per-word basis, as is customary. From previous 

work, we estimate the accuracy of the tagger on the syntactic portion of tags to be about 94 %. 

650f these 248 sentence pairs, 85% were exact matches in terms of the way they were tagged. 
66 Actually, the documents were selected from our'・main General-English Treebank" of 800,000 words. 
6 7・ r.e. the parse was wrong if even one tag was wrong; or, of course, if a rule choice was wrong. For the tags assigned 

to the roughly 5000 words in these 308 sentences, expected error rate was 2.9%. Essentially none of these tagging 
errors had to do with the use of the syntactic portion of our tags; all of the errors were semantic; the same was true 
in the two tagging consistency experiments related above. 
68 As noted in 4.1 fn. 8, our experience indicates that we can expect a roughly 10% improvement in this score when 

we compare performance against "golden-standard" test data in which all correct answers are indicated; this would 
bring our tagging accuracy into the SO-percent area. Futher note (EB 1999): We are currently at about 85% on this 
metric. 

69 For the definition of the term "crossing brackets" used in Table 1, see (Harrison et al., 1991). 
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Length I exact match 

二11-15 1.2% 3.6% 

syntactic exact match 

口`旦
Table 23: Parsing from raw text: percentage of parses which exactly match one of the human-

produced parses ("exact match") or which match bracket locations, rule names, and syntactic 

part-of-speech tags only ("syntactic exact match"). 

Feature IBM Manuals Treebank A.TR/Lancaster Treebank 

Vocabulary Type Restricted Open 

Vocabulary Size (Training Corpus) 3,000 3.5,9.52 

Domain IBM Computer Man叫 s Unrestricted English 

Tagset Size 193 2,843 (440 Syntax-Only) 

Nonterminal Labels 17 1,155 

Test-Data Source ？ Entire Documents 

Training Set Size (in words) about 438,000 676,401 

Test Set Size (in words) about 25,000 47,800 

Average Sentence Length (Training Corpus) about 15 15.8 

Average Sentence Length (Test Corpus) 16.9 13.1 

Number of Constits in 20-Word Sentence about 11 about 34 

Table 24: Comparison of IBM Manuals and ATR/Lancaster General-English Treebanks 

Thus there is typically at least one error in semantic assignment in each sentence, and an error in 

syntactic assignment in one of every two sentences. It is not surprising, then, that the per-sentence 

parsing accuracy suffers when parses are predicted from raw text. 

Clearly the present research task is quite considerably harder than the parslng and tagging tasks 

undertaken in (Jelinek et al., 1994; Magerman, 199.S; Black et al., 1993b), which would seem to 

be the closest work to ours, and any comparison between this work and ours must be approached 

with extreme caution. Table 24 shows the differences between the treebanks utilized in (Jelinek et 

al., 1994) on the one hand, and in the work reported here, on the other.70 Table 4 shows relevant 

70Figures for Average Sentence Length (Training Corpus) and Training Set Size, for the IBM Manuals Corpus, are 
approximate, and come from (Black et al., 1993). 

Table 2.S: Parsing results reported by .Jelinek et. al. for IBM Manuals task; see Table 24 above 
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parsing results by (Jelinek et al., 1994). Even starker contrasts obtain between the present results 

and those of e.g. (Magerman, 1995; Black et al., 1993b), who do not employ an exact-match 

evaluation criterion, further obscuring possible performance comparisons. Obviously, no direct 

comparisons of the results of Tables 22-23 with previous parsing work is possible, as we are the 

first to parse using the Treebank. 
In our current research, we are emphasizing the creation of decision-tree questions for pre-

dicting semantic categories in tagging, as well as continuing to develop questions for syntactic tag 

prediction, and for our rule-name-prediction model. 

5.5 Towards Radically Expanding Training-Set Size Via Treebank Conversion 

5.5.1 Introduct10n 

As an additional means of improving the accuracy of our parser, we have been working towards 

effecting a dramatic increase in the size of our training tree bank, via tree bank conversion techniques. 

We employ a statistical method for converting treebank from a less-detailed format—and we have 
chosen the IBM/Lancaster Treebank (Eyes and Leech, 1993; Garside and McEnery, 1993) as a first 
representative of such tree banks— to a more-detailed format, that of the ATR/Lancaster Tree bank. 

There has been very little previous work on treebank conversion. (Hughes et al., 1995) describe 

an effort to hand-annotate text using the tagging schemes employed in various different treebanks, 

as a preliminary to attempting to learn, in a way to be determined, how to convert a corpus 

automatically from one style of tagging markup to another. (Wang et al., 1994) take on the problem 

of converting treebank conforming to their English grammar into a format conforming to a later 

version of the same grammar, and report a conversion accuracy of some 96% on a 141,000-word 

test set. They employ a heuristic which scores source-treebank/target-treebank parse pairs based 

essentially on the percentage of identically-placed brackets in the two parses. However, their target 

grammar 71 generates only 17 parses on average per sentence of test data. Although they exhibit 

no parses with respect to their grammars, it can be assumed that they feature only rudimentary 

tag and non-terminal vocabularies. 

The problem we face in learning to convert IBM/Lancaster Tree bank parses into ATR/Lancaster 

Tree bank parses is rather more difficult than this. For instance, as noted in 5.3, the Parse Base of the 

ATR English Grammar, which generates the parses of the ATR/Lancaster Treebank, is 1.76, which 

means that on average, the Grammar generates about 200 parses for 10-word sentence; 2000 parses 

for a 1.5-word sentence, and 70,000 parses for a 20-word sentence. Further, far from featuring a 

rudimentary set of lexical tags and non-terminal node labels, the ATR/Lancaster Tree bank utilizes 

roughly :3,000 lexical tags and aboi.rt 1,100 different non-terminal node labels,72 as mentioned in 

5.2. Figure 9 shows a parse for a sample sentence, first from the IB:vI/Lancaster Treebank, and 

next from the ATR/Lancaster Treebank. An impression of the difficulty of the treebank conversion 

task undertaken here can be gained by closely contrasting the two parses of this Figure. 

143,8:37 words included in the IBM/Lancaster Treebank-:35,575 words of Associated Press 

newswire and 108,262 words of Canadian Hansard legislative proceedings-were treebanked with 

respect to the ATR English Grammar, in the exact same manner as the data in the ATR/Lancaster 

Treebank. We will refer to the IBM/Lancaster Tree bank version of this data as the parallel corpus. 

As a preliminary step to treebank conversion, we aligned the parallel and ATR corpora. 87.3% of 

71 and presumably their source grammar as well 
72actually, rules names with respect to the ATR English Grammar; cf. 2.1 
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Ho'ilever_RR, ー，[NGM_NNJ NJ [V has_ VHZ announced_ VVN [N plans_NN2 

[Ti to_TO cut_ VVO back_RP on_II [N frames_NN2 NJ [P in_II 

[N efforts_NN2 [Ti to_ TO [V [V& conserve_ VVO [N space_NN1 NJ V&] 

and_CC [V+ reduce_VVO [N'ileight_NN1 NJ 

[P in_II [N ne'il—JJ cars_NN2 NJ P] V+] VJ Ti] NJ P] Ti] NJ VJ 

[start [sprpd1 [sprime2 [ibbar1 [iig [r2 Ho匹ever_RRCONCESSIVEr2] i1g] 

9ー， ibbar1] [sd1 [nbar1 [nia GM_NP1FRMNM nia] nbar1] [vbar2 [08 

has_VHZ 08] [v4 announced_VVNVERBAL-ACT [nbarq4 [nbar1 [nia 

plans_NN2PROGRAM nia] nbar1] [iib [ti [vibar1 to_TD [v36 cut_VVIALTER 

[r2 back_RP r2] [pi on_IION [nbar1 [nia fr皿 es_NN2DEVICE-PTnia] 

nbari] pi] v36] vibari] ti] iib] nbarq4] [pi in_IIIN [nbarq4 [nbari 

[nia efforts_NN2INTER-ACT nia] nbari] [iib [ti [vibari to_TD [v2 [v4i 

[v40 conserve_VVIHELP [nbari [nia space_NNiMEASURE nia] nbari] v40] 

and_CCAND [v40 reduce_VVIALTER [nbari [nia口eight_NNiMEASUREnia] 

nbari] v40] v4i] [pi in_IIIN [nbari2 [j i ner,;_JJTIME j i] [nia 

cars_NN2DEVICE nia] nbari2] pi] v2] vibari] ti] iib] nbarq4] pi] v4] 

vbar2] sdi] sprime2] . _. sprpdi] start] 

Figure 9: IBM/Lancaster Treebank and ATR/Lancaster Parses For Same Sentence 
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the parallel data-125,530 words-aligned essentially perfectly, and for the work reported here, we 

decided to operate only on this satisfactorily-aligned data. 

5.5.2 The Treebank Conversion Problem 

Ideally, our tree bank-conversion models should take full advantage of data in the full target tree bank 

(i.e. the full ATR/Lancaster Treebank) as well as the parallel corpus. A direct model of the 

conditional probability of the ATR parse given the source-treebank parse, p(AIF), uses only data 

in the parallel corpus. A more efficient use of data would be to build two models: one to estimate 

the likelihood of an ATR parse, p(A), given raw text; the other to estimate p(FIA). Then, using 

Bayes'rule, one would write p(AIF) as: 

p(AIF) 0(p(FIA)p(A) (11) 

The model for p(FIA) uses only the parallel corpus, but the model for p(A) makes full use of the 

data in the ATR treebank. 

In our software environment, this approach would require constructing a feature-based grammar 

for the source treebank. A simpler, but probably adequate approach would combine the two models 

p(A) and p(AIF) heuristically, using p(AIF) to rescore the N best parses found by the model p(A). 

The top-ranked candidate from the rescored parses is selected as the ATR parse. This way takes 

advantage of both data sets, though not as efficiently as the Bayesian approach. We have chosen 

to explore the problem using an even simpler approach: ignoring the ATR treebank and working 

only within the model for p(AIF). This yields lower bounds on potential accuracy at low cost. 

We also considered filtering the parses considered by the ATR parser to ensure they satisfied 

certain constraints implied by the source-treebank parse. This proved to be impractical because 

the constraints were not "hard", i.e. the exact circumstances in which they should be applied were 

difficult to determine. Instead, we relied on the models to learn the constraints and the conditions 

for their application directly from the data. However, the issue of applying such constraints is 

specific to the two treebanks being used; there may well be cases in which such constraints are not 

hard to develop. 

The source-treebank-to-ATR conversion model was built using the same system described in 

5.3, the sole difference being that the question language was extended to allow for questions about 

the source treebank. Since the topology of the parallel tree may be very different from that of the 

ATR parse tree, it is not obvious what the analog of a node in the ATR tree is. We chose to use 

the "least enclosing" node: that is, the lowest (non-preterminal) node in the parallel tree which 

spans (at least) the set of words spanned by the node in the ATR parse. 

5.5.3 Decision-Tree Questions Asked 

vVe ask all decision-tree questions in our tree bank-con version models that we do normally in 

parsing with the ATR English Grammar.73 We then add further questions which ask about the 
source-treebank parse for the sentence being processed. 

We use an extremely basic set of question-language functions in querying the structure of 

the source-treebank parse. These permit us to ask about the least-enclosing node, and about 

children and parents of this source-treebank-parse node, or of its children or parents, to any level 

73Cf. 5.2 
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Length I treebank conversion 

1-10 I 6\~~I to贔り
parser 

叫63.0 92.6 

11-15 I 46.7 66.7 11 33.3 73.3 

Table 26: Parsing from text which starts out correctly tagged: percentage of parses which ex-

actly match the single parse in the treebank, for a 6,556-word test set. "Treebank-conversion" 

models are trained on 118,489 running words of ATR/Lancaster Treebank, together with aligned 

IBM/Lancaster Treebank. "Parser" models are trained on 676,401 running words of ATR/Lancaster 

Treebank alone. 

of structure. What we can ask about a node in the source-treebank parse is either what its non-

terminal label is, or how many children it has. In addition, we are able to ask whether there is a 

constituent in the source-treebank parse with the identical span as a given node of an ATR parse; 

and if so, what its non-terminal label is, or how many children it has. Similarly, we can ask about 
constituents that "cross" a given node of an ATR parse. Finally, we can ask about the tag of any 

word in the source-treebank parse. 

There is much farther that we can go in exploiting the information in the source-treebank parse 

to aid in predicting the ATR parse. For instance, we can define and query grammatical relations 

such as clausal subject and main verb. vVe can even define and query notions like "headword" with 

respect to the source-treebank parse, although this would involve appreciable work. Furthermore, 

carrying over to the source-treebank environment question types that seem helpful when asked 

about A.TR parses will not be difficult. 

5.5.4 E xperimental Results 

Evaluation Methodology We evaluate treebank conversion to ATR-Treebank format in the 

same way as we evaluate the parser when it is trained in the normal manner (cf. 5.4), except that 

test data consists of ATR-Treebank-format documents of which we also possess aligned source 

treebank (in this case, IBM/Lancaster-Treebank) versions. In the performance results cited below, 

however, we show exact match only with the single correct parse of the test treebank, rather than 

with any one of the correct parses indicated in the "golden standard" version of the test set. 

Experimental Results Table 26 d'I 1sp ays exact-mate 1 parsrn・results for a normal 6,.:i56-word g 
test set . Crucially, the amount of training data here, 118,489 words, is only 17..5% as large as 

for the models of Tables 22-23. Considering the simplicity of the approach, we think these results 

constitute a proof of principle for the idea of treebank conversion. They indicate that we can 

build treebank conver:sion models of 4ccu_rこi'LC_'l-.四皿pa叫坦い hP,11rrPnL1:i戌 Lil血戸直山」e

data. Of course, the results here do not include models used in tagging. The treebank conversion 

models tag with an accuracy of 62.8%. A detailed examination of those models shows that the 

syntactic models are better than the parser's, while the semantic models are worse. This is to be 

expected, because the IBM/Lancaster Treebank contains a great deal of relevant information about 

the syntax. but not so much about the semantics of the sentences they contain. One idea, therefore, 

74・ 1.e. not for a "golden standard" test set as described in 5.4, in which all parses are indicated for each test sentence 
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is to utilize large-scale treebank conversion in the tagging domain to overcome the problem noted 

in 5.5, that even with 94% accuracy at strictly syntactic tagging (i.e. effectively, on tagging with 

our 440-tag syntax-only tag subset), approximately one word is syntactically mistagged every two 

sentences, leading to an increased error rate at exact-syntactic-match parsing. A second direction 

which suggests itself is to pursue our scaled-down approach to treebank conversion, but with more 

training data than we have used so far. Third, we may decide to implement the more laborious 

two-model approach described earlier in this section.75 Overall, we expect that conversion models 

which take full advantage of the existing database as well as of the parallel corpus as outlined above 

should produce data of high enough quality to use as training data for our parser. 

6 Application To AI Tasks: Upper-Bound Experimentation 

6.1 Introduction 

In this section we present two sets of experiments, one in speech recognition and the other 

in speech synthesis— which represent inquiries into how much help our software could be to these 
two Artificial Intelligence tasks, assuming for a moment that our predictions were totally accurate. 

By asking the question in this mode (i.e. as a so-called "upper-bound experiment"), we focus 

specifically on the value of the information that is delivered by our linguistic analyses, when the 

right a':nalysis is found. That is, we inquire how valuable our particular way of "milking" the 

information in text is, in principle, for two major applications within Artificial Intelligence. If the 

answer is that a great deal of value would be contributed, if only our prediction were extremely 
accurate, then we are justified in continuing our work toward achieving just this degree of accuracy. 

If not, we may not be so justified. In fact, the results show very clearly the overwhelming benefit to 

these applications of the information we provide. The bulk of this section details the experimental 

work on the speech recognition application. At the end of the section, we refer the reader to 

the original published article presenting the extremely successful work on the speech synthesis 

application. Taken together, these two sets of experimental results furnish compelling justification 

for the continuaton of our effort to achieve extremely high prediction accuracy in our parsing and 

tagging. Below, then, is the original report of these experiments: 

It appears intuitively that information from earlier sentences in a document ought to help reduce 

uncertainty as to the identity of the next word at a given point in the document. (Rosenfeld, 1996) 

and (Lau et al., 1993) demonstrate a significant "word/word trigger-pair" effect. That is, given 

that certain "triggering" words have already occurred in a document, the probability of occurrence 

of specific "triggered" words is raised significantly. 

The present section undertakes to demonstrate that semantic/syntactic part-of-speech tags, and 

parse structure of previous sentences of the document being processed, can add trigger information 

to a standard n-gram language model, over and above the improvement delivered by word/word 

triggering along the lines of the work by Rosenfeld and Lau et al.76 We formulate "linguistic-

question" triggers which query either: (a) the tags of the words to the left of, and in the same 

75It seems worth mentioning that future large-scale treebank-creation efforts would probably benefit from con-
structing parallel data with respect to other large treebanks, right from the start. 
76(Chelba et al., 1998) explore the problem of utilizing the parse structure of the sentence in which the word to be 

predicted occurs. The current work can be viewed as complementary to the line of research of Chelba and Jelinek, 
in that we ignore, to a fair extent, the syntactic structure of the sentence in which thevヽordoccurs that is being 
predicted, and we focus instead on the syntactic and semantic information contained in the sentences prior to the 
one featuring the word being predicted. 
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sentence as, the word being predicted; or (b) parse structure and/or tags within any or all of the 

previous sentences of the document to which the word belongs that is being predicted; or both of 

(a) and (b) together. Each of these questions then triggers a particular word in the vocabulary, i.e. 

raises the probability of that word's being the next word of the document. 

As the source of both tags and parses in the present experiments, we use a 181,000-word subset 

of the approximately-1-million-word ATR General English Treebank (Black et al., 1996). This 

tree bank subset consists exclusively of text drawn from Associated Press newswire and Wall Street 

Journal articles. The 181,000 words are partitioned into a training set of 167,000 words and a test 

set of 14,000 words. We utilize this portion only of the tree bank, as opposed to the entire corpus, in 

order to match the text type of the raw data set used to train our baseline n-gram language model, 

which is AP and WSJ text in roughly the same proportions as in our treebank, and of course not 

including any portion of our training or test text. 

We train (i) a baseline 200-million-word n-gram language model; (ii) a model combining this 

baseline plus a word/word trigger model trained on a 10-million-word subset of the larger training 

corpus; and finally (iii) a model combining both (i) and (ii) with linguistic-question triggers trained 

as just indicated. Performance differences of (i/ii/iii) are measured, with the result that model (iii) 

is shown to yield a significant perplexity reduction vis-a-vis models (i) and (ii). 

Invヽhatfollows, subsection 6.2 provides a basic overview of the language modelling techniques 

employed; subsection 6.3 discusses and offers examples of the linguistic questions of model (iii); 

subsection 6.4 describes the language-modelling experiments we performed, and presents our ex-

perimental results; and subsection 6.5 discusses our results and indicates future research directions. 

6.2 The Language Model (LM) 

6.2.1 M E  Model 

Our language model is a maximum entropy (ME) model of the following form: 

K 

P(w[h) = 1 JI叶k(h,w)凡(w/ho)
k=O 

where: 

-w is the word we are predicting; 

-h is the history of w; 

-~I is a normalization coefficient; 

-E is the number of triggers; 

-ak(k = 0,1,・・・,K) is the weight of trigger fk; 

-fk(i = 0, 1, ・・・,I<) are trigger functions. f1.: E {O, l}; 

ー凡(w[ho)is the base language model. 

(12) 

In our experiments we use as base language models both a conventional trigram model and the 

extension of this model with long history word triggers. The improved iterative scaling technique 

(Della Pietra et al., 1997) is used to train the parameters in the ME model. 

-a 
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6.2.2 Trigger selection 

The linguistic-question information is embodied in our model in the form of "triggers". A 

trigger pair qw = (q, w) constists of a triggering question q together with a triggered word w. The 

number of possible triggers is the product of the number of questions with the number of words 

in the vocabulary. This gives rise to too many features from which to build an ME model in a 

reasonable time. We therefore select only those trigger pairs which can be expected to provide the 

most benefit to the model. We use mutual information (MI) to select the most useful trigger pairs 

(for more details, see (Rosenfeld, 1996)). That is, we use the following formula to gauge a feature's 

usefulness to the model: 

MI(q,w) 

where: 

-w is the word we are predicting; 

= P(q, w) log 且P(w) 
+ P(q, 布）log霜
+ P(可，w)log讐
+ P(q国）log 

P(布阿）
亨

-q is a triggering feature (e.g. the answer to a linguistic question). 

In the final trigger set, we use only those trigger pairs having the highest mutual information. 

6.3 L" . mgmstic Informat10n 

The experiments reported here consist in adding "linguistic-question constraints"77 to a baseline 

n-gram language model. To understand the linguistic questions used, one needs some familiarity 

with the ATR General English Treebank and the the ATR General English Grammar and Tagset. 

For detailed presentations, see (Black et al., 1998; Black et al., 1997; Black et al., 1996). Briefly, 

however, each verb, noun, adjective and adverb in the ATR tagset includes a semantic label, 

chosen from 42 noun/adjective/adverb categories and 29 verb/verbal categories, some overlap ex-

isting between these category sets. Proper nouns, plus certain adjectives and certain numerical 

expressions, are further categorized via an additional 35 "proper-noun" categories. These seman-

tic categories are intended for any "Standard-American-English" text, in any domain. Sample 

categories include: "physical.attribute" (nouns/adjectives/ ad verbs), "alter" (verbs/verbals), "in-

terpersonal.act" (nouns/adjectives/adverbs/verbs/verbals), "orgname" (proper nouns), and "zip-

code" (numericals). The semantic categorization is, of course, in addition to an extensive syntactic 

classification, involving some 165 basic syntactic tags. 

The ATR English Grammar is unrestricted in its coverage, and particularly detailed and compre-

hensive, vis-a-vis other existing grammars. For instance, complete syntactic and semantic analysis 

is performed on all nominal compounds. Again, see the above-cited references for details. 

Each parse of the ATR Treebank was entered by hand by a professional expert in parsing and 

tagging with the ATR English Grammar (Black et al., 1996). This Treebank is used as training 

data for an unrestricted-coverage parser of English (Black et al., 1997). 

77 as well as "word/word triggers" 
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＃ Question Description MI (bits) 

la Any reference to a female within the last 12 sents of doc 0.001210 

2a Many nouns, adj or adv of verbal action (e.g. statement) within last 100 sen ts 0.000803 

3a Many nouns, adj or adv of helping (e.g. assistance) within last 100 sents 0.000737 

lb Any subject pronoun to the immediate left 0.000579 

2b Subject of current sentence is a person and verb is likely 0.000407 

3b Many recent sents had person subjects and "saying" main verbs AND 

Subject of current sentence is a person and verb is likely 0.000314 

Table 27: Selected triggers from top-20-highest-MI linguistic-question triggers for the words 

"Mrs." and "added" 

One can get a feel for the type of linguistic-question triggers we defined via Table 27, which 

shows three triggers with high mutual information with the word "Mrs.", and three for "added". 

The trigger with the highest mutual information with the word "Mrs." among all linguistic-

question triggers does not ask either about tags or parse structure, but simply makes good use, 

over raw text, of our "Question Language", the flexible language for formulating grammar-based 

and lexically-based questions about Treebank text, which we normally use to compose context叫

questions about text which we are parsing with our probabilistic parser.78 Specifically, the question, 

defined over raw text, determines whether any reference has been made to a female, within the last 
12 sentences of the current document. 

A question which asks about tags is question 2a of Table 27. It queries the semantic portion 
of tags within the entire history of the document, and determines whether tags have frequently 

occurred which label nouns, adjectives or adverbs of saying, writing, objecting, or other verbal 
activities. A "yes" answer to this question turns out to raise the probability of the word "Mrs." as 
the next word of a document. 

Finally, question 3b queries the complex parse structure of previous sentences of the document. 

The question tests whether frequently in the history of the document, sentences occurred with 

a human subject and a main verb of verbal activity, e.g .. "Mr. Smith stated…" In addition, it 
tests the current sentence to see whether a human subject has just been received, and a verb now 

appears to be likely to occur. The expectation, thus, is that a verb of saying will now occur. This 

expectation turns out to be realized for the verb "added", as there is a relatively high correlation 

between a "yes" for this question and the occurrence of the word "added". 

6.4 The Experiments 

6.4.1 Experimental Procedure 

We used the well-known trigram LM as the base LM for our experiments. This model was 

selected because it represents a respectable language model which most readers will be familiar 

with. The ME framework was used to build the derivative models since it provides a principled 

manner in which to integrate the diverse sources of information needed for these experiments. 

In all models built for these experiments we use a word vocabulary of 20001 (the 20000 most 

frequent words plus a token for words not in the vocabulary). We used a corpus of newspaper text 

78For details, see (Black et al., 1997). 
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Model 
. 

umgram 

bigram 

trigram 

Tri20M.k4 

20001 

395663 

527782 

TrilOOM.k4 

20001 

1230040 

2724346 

Tri200M.k8 

20001 

1204727 

2492309 

Table 28: Trigram model size varying dataset size 

Model 

Tri20M.k4 

TrilOOM.k4 

Tri200M.k8 

Base PP 

153.0 

117.8 

108.0 

Base+Q's 

142.7 

110.0 

101.0 

Change(%) 

6.7 

6.6 

6.5 

Table 29: Effect of varying dataset size 

drawn from 1987-1996 Wall Street Journal and Associated Press Newswire in equal proportion. 

Certain types of words were mapped to generic tokens representing the class of word. These were: 

words representing time of day (e.g. 12:21), dates (e.g. 11/02/64), price expressions (e.g. $100) and 

year expressions (e.g. 1970-1999). The mapping was done using simple regular-expression pattern 

matching. The substitutions were implemented to assist the trigram model, which is unable to 

ask questions about the internal structure of words and cannot be expected to form useful n-

grams from this class of words. The linguistic questions, however, being able to query the word's 

internal structure, were more effective on the raw words themselves and were used in that way. 

The vocabulary, and therefore the words being predicted, was constructed from data in which 

these tokens had been mapped. 

The training set used to train the linguistic question-based triggers for all experiments was 

appro泊mately167,000 words of hand-labelled and -parsed ATR tree bank, drawn from Wall Street 

Journal and Associated Press texts. The test set consisted of 14,000 words of hand-labelled and -

parsed ATR treebank, again drawn in the same proportion from Wall Street Journal and Associated 

Press. We measure the test set perplexity (PP) to gauge the quality of the models produced. 

6.4.2 Effect of Dataset Size 

In this experiment we used base trigram models of three differing sizes. The three models: 

Tri20M.k4 (k4 = cutoff of 4), Tri100M.k4 and Tri200M.k8 were built from 20M, 100M and 200M 
words of training data, respectively. Table 28 shows the number of n-grams we used in our models. 

Table 29 shows the reduction in perplexity. Note that here we used 33000 question-based triggers 

and the question set size from which the triggers were produced was 396. 

In Table 29, "Base" is the perplexity of the base trigram model before any ME training. "Base 

+ Q's" is the perplexity of the full ME model after training. "Change" is the perplexity reduction 
resulting from using our question triggers. 

Notice that increasing the quality of the underlying trigram LM has little effect on the change 

in perplexity resulting from adding the information from linguistic questions. This indicates that 

the additional information will be useful to any trigram LM and that simply improving the LM by 
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Model 

Base (Tri200M.k8) 

Base + WTModel 

Base+ Q's 
Base+ WTModel + Q's 

PP Change (%) 
108.0 -

94.4 12.6 

95.8 11.3 

84.6 21.7 

Table 30: The effect of combining the models 

adding more data is no substitute for this information. 

6.4.3 Effect of Adding Word Triggers 

In this experiment we measure the effect of using long-range word triggers on our corpus together 

with the effect of combining these with our question-based triggers. 39367 long history word triggers 

are chosen by mutual information from 200 million words of data. Due to the prohibitively long 

training times needed to train models using word triggers we restricted the training set for the ME 

training to lOM words. The base language model was trained on the full 200M word corpus. We 

then used the ME model built by adding word-triggers to the base model as the base model for a 

second ME model which incorporated our question-based triggers. We found this approach effective 

in dealing with the large number of triggers involved. The number of question-based triggers used 

was 110,000 and the question set size from which the triggers were produced was 6,659. The results 

are shown in Table 30. 

6.5 Discussion 

The maximum entropy framework adopted for these experiments virtually guarantees that 

models which utilize more information will perform as well as or better than models which do not 

include this extra information. Therefore, it comes as no surprise that all models improve upon 

the baseline model, since every model effectively includes the baseline model as a component. The 

experiments presented here have focused on showing that that we can glean useful information 

from the parse structure and part-of-speech tags in the history of the word being predicted. Our 

main result is that this information is useful, and is of similar magnitude to that provided by the 

long-range word triggers used by (Rosenfeld, 1996). Moreover, when these triggers are used in 

conjunction with a model incorporating long-range word triggers, almost all of the perplexity gain 

is inherited by the new model. This indicates that the information we are providing is largely new 

and complementary. This is in line with our intuition, given the nature of the questions we ask. 

Furthermore, we obtained this gain from a very small 167,000 word training corpus (as opposed to 

the 10 million word corpus used to train the long-range word triggers). It is reasonable to expect 

significant improvement on domains where more data is available to train from. 

This work is a first attempt at exploiting the parse structure in the extrasentential history to 

assist a language model. A major practical concern is that the predictions are being made from 

correctly analysed text rather than the output of a parsing device. Our intention in this paper was 

to show that there is useful information in the parses in the history. In further research, we intend 
to incorporate a real parsing device. 
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When a real parser is used, the system (including the grammarian writing the questions) will 

need to overcome the errors made by the parser/tagger. However, one point in favour of this 

approach is that if we train from the output of the parser (one way to learn to predict from only 

the reliable parts of the parse), we will have a much larger corpus from which to train the question-

based component of the LM. Additionally, although we are currently able to ask quite sophisticated 

questions of the structure of parses in the history, we feel that we can realize considerable gain by 

further developing the language we are using to ask these questions, and thereby improving their 

expressive power. 

6.6 Application To Speech Synthesis Tasks 

The reader is referred to (Campbell et al., 1997) for an account of a second upper-bound exper-

iment aimed at quantifying the contribution of the English-text-analysis software being described 

here. In this work, the aim is to measure the diminution in error rate, due to our language-analysis 

software, of a state-of-the-art speech synthesis device, when use is made of the linguistic informa-

tion which we deliver, about text for "reading" by the device. The results reported in (Campbell 

et al., 1997) for this upper-bound experiment are that error rate for pause insertion is reduced 

by 56% and error rate for prominence assignment is reduced by 62%. Thus there appears to be a 

huge potential for our software to assist in the task of speech synthesis, once our accuracy can be 

brought to a level approaching that of human experts at the task of assigning language structure 

using our approach, and once speed can be sufficiently augmented. 
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