
Internal Use Only (非公開）

TR-IT-0306

-Boardedi t: A Multilingual Board Editor -

From Interactive Tree Editing

To Analysis by Analogy

Nicolas Auclerc Yves Lepage

September 1999

Abstract

002

This report describes a multilingual application called Boardedi t designed for Nat-

ural Language Processing, and more precisely for the data preparation of some

linguistic applications. Boardedi t is a board editor. A board is the pair constituted

by a text and its linguistic structure, generally a tree. Correspondences, which are

an original feature of boards, are links between the linguistic tree and the sentence.

In order to edit a board and build tree banks, Boardedi t proposes simple and fast

editing facilities, on texts, as well as on trees. It also integrates some searching

methods, as well as analysis by analogy.

Keywords

Board, interactive tree edition, parsing aids, approximate matching, analysis by

analogy.

◎ 1999 ATR音声翻訳通信研究所

◎ 1999 ATR Interpreting Telecommunications Research Laboratories

Contents

ー Introduction

1.1 Generalities

1 1 1 . . Natural language processmg
1.1.2 1・. 1ngmst1cs .

1.1.3 Tree structures in linguistics

M h' ac me translat10n . . . ．． ．．．．．．．．

1.2.1 Analysis

1.2.2 Transfer . . . ．． ． ．．

1.2.3 Generation

Boards ... ．． ．． ．．

1.3.1 Bi-directionality ．． ．．

1.3.2 Non-directionality ．． ．． ..
1.3.3 Correspondences

1.2

1.3

2

Background

2.1 Objectives ．． ．．．

2.2 Aim ．． .. ．．

2.2.1 Editing ．．

2.2.2 Searching methods and parsing aids

Previous realisations

Project environment

2.4.1 wx Windows

2.4.2 GTK+ ... ．．．．． ．． .. ．．

2.4.3 YLlib

2.3

2.4

1

1

1

2

2

3

4

4

4

5

6

6

7

3

Editing Facilities

3.1 A model of tree edition

3.1.l Parallel between text and tree editing

11

11
12

12

13

15

19

20

21

22

23

2:3
23

3.1.2 Edition ．．

3.2 Label editing mode: editing using the keyboard

3.2.1 Edit transaction

3.3 Structural editing mode

3.3.1 Editing using the keyboard.

3.3.2 Editing using the mouse ..

3.3.3 Editing using the clipboard

3.4 wxForestedit implementation

3.4.1 The MVC model

3.4.2 The wxForestedit component

3.4.3 The wxForestedit component in Boardedi t .

3.4.4 Exporting wxForestedit

4 Search Functionality

4.1 Ideal case

4.2 Reality . . .
4.3 Integration under Boardedi t .

4.3.l Find dialog box

4.3.2 Use of the editing facilities

4.3 .. 3 Plug-in facility ..

4.4 Parsing using Boardedi t ..

4.4.1 Using exact match .
4.4.2 Using closest match .

4.4.3 Using analogical completion

4.5 C onclus1on ..

5 Internationalisation (118n)

5.1 Locales

5.1.1 The concept of locale .
5.1.2 Locale categories

5.2 L ocalisation . .

5.2.1 GNU gettext

5.2.2 Files conveying translations

5.3 Input n冗 thodediting styles

5.3.1 On-The-Spot composition style

5.3.2 Over-The-Spot composition style

5.:3.:3 Root Window composition style .

5.:3.4 Off-the-Spot composition style .

11

24

25

25
28

28

28

28

29
29
31

31

33

35

35

35
36

36

38

39
40

40
40

41
42

45

46

46
46

48

48

49
49

50
51

51

51

5.4 GTK+ Il8n . 51

5.4.1 Manipulatmg text 51

5.4.2 Input 52

5.4.3 Output 52
5.5 Internationalisation of Boardedi t 53

5.5.1 Input 53

5.5.2 Output 54

6 Conclusion

A Sensitive areas in tree editing

B Boardedi t as a command line

C ATRForestedit: a screen shot

9

5

7

9

5

6

6

6

D TreeCanvas: a simplified user's manual 71
D.1 Prompt option . 71
D.2 Supported tree formats 72

D.2.1 -F: feature structure 72

D.2.2 -D: drawn form . 72

D.2.3 b -ra: cons1tuent bracketing convention 72
D.2.4 -TeX: LaTeX . 73

Index 75

Ill

JV

List of Tables

3.1 The parallel between text-editing and tree-editing 24

V

VI

List of Figures

1.1 Analysis, transfer and generation process 4

1.2 A board: text and associated tree 5

1.3 A board with incomplete tree for non-directional completion . 7

2.1 Mac versron of Boardedi t 15

2.2 Old version of treecanvas (notice the wrong window title ...) 16

2.3 011 U . c mx versron of Boardedi t 17

2.4 A demonstration interface for analysis by analogy 18

2.5 The layered structure of an application like Boardedi t 19

3.1 The MVC model 30

3.2 The wxForestedit component 32

3.3 The bdForestedit component 33

4.1 Find dialog box 37

4.2 File selection dialog box 38

4.3 Approximate matching option 39

4.4 Exact match result 41

L!.5 Closest match First result 42

4.6 Closest match second result 43

4. 7 Analogical completion result 44

5.1 Same version of Boardedi t using different locales 50

5.2 Architecture of XIM ,52

5.:3 Typing a k. 55

5 .4 The series [k, o心 n,りい]is translated in .Japanese hiragana. . . 56

5.5 After selecting the kanj i corresponding to koNnili.57

,5.6 After typing tl 1e entrre sentence.58

C.l ATRForesteclit screen shot 70

VJJ

D.l Graphical display of a tree in TreeCanvas

D.2 Result obtained by the LaTeX antree style

Vlll

73

74

Chapter 1

Introduction

This report describes a multi-platform application called Boardedi t designed

for Natural Language Processing, and more precisely for the data preparation

of some linguistic applications (e.g., the analysis task for a machine trans-

lation system). Boardedi t proposes an easy-to-use editor for constituting a

treebank which will aid linguistic investigations.

Thanks to this tool, linguists will be able to type in a sentence in the

same way as they do in any usual text-editor. Then, they will be able to

draw a tree above it. As a final touch, they will give the correspondences

between the tree they have designed and the sentence.

vVe give a general description of the project and explain the background

of the Boardedi t project. Then we explain the Editing Facilities implemen-

tation. And finaly we explain the different methods of the Search functions.

1.1 Generalities

1.1.1 Natural language processing

The Boardedit project is designed for natural language processing, i.e., the

application of computers to the study of language, or their application for en-

hancing of the technology of the computer itself. Natural language processing

encompasses voice recognition, text retrieval and machine-aided translation.

We will concentrate on the part which is concerned with the study of

language also known as linguistics.

ー

1.1.2 Linguistics

The study of language, or linguistics, was born quite recently, at the be-

ginning of the century. The founder of modern linguistics, Ferdinand de

Saussure, defined the task of linguistics as the description of what he called

signe: the association of two things, the signifiant or acoustical image, and

the signifie or concept [Saussure 16]. He insisted that both the signifiant and

the signifie have their own structures 1.

If we draw a parallel between the signe and the objects NLP researchers

work with, we can consider any text as a signifiant and any linguistic repre-

sentation as a signifie.

1.1.3 Tree structures in linguistics

In a century of history, linguistics attained many achievements and was

marked by many different streams. vVe will mention two of the most widespread

linguistic structure representations: Dependency and Constituency struc-

tures.

Dependency structures The structuralist approach (the school of

Prague, Tesnieres). vVe only grossly recall that linguists belonging to this

trend proposed representations of sentences based on a logical interpreta-

tion, similar to Prolog terms in computer science:

the cat eats a mouse→ eat (mouse (the), cat (a))

1 In a structure, in the structuralist meaning of the word, elements have no absolute
existence. They exist thanks to their relationships or oppositions to other elements. The
concept of structure gives rise to the distinction between phonology (the study of functional
or opposition features of the sounds of a given language) and phonetics (the study of the
articulatory or perceptive aspects of the sounds of one or many languages).

う
l

Constituency structures The Chomskyan approach. Again, we will

only consider the fact that linguists from this approach interpret a sentence

in the way words can be grouped together:

the cat eats a mouse→ ((the), cat), (eats, ((a) ,mouse))

s

t

a

t
/
 ｀`

e

1.2 Machine translation

Historically, machine translation was the first application of computers to a

task other than computing with numbers. The first generation of machine

translation in the 50's (mainly in the USA and Russia) relied on the idea

that translating was just a matter of word-to-word translation followed by

rearrangement of the words (exchange, insertion, deletion).

The second generation of machine translation systems (mainly in France,

Germany, and the USA) were designed with the belief that, before translating

words, a step of understanding the structure of the sentence was necessary.

This step is called analysis. Moreovec in the second generation, the linguistic

models are clearly separated from the computational models.

In the ATR-MATRIX systems of ATR-ITL [http://www.itl.atr.co.jp/matrix],

as in many other current machine translation systems, translation is per-

formed in three steps: analysis, transfer and generation.

3

苧

u
I
S

—fo
p
m

i
j

-
}

一

翠
[

迫
ー
和

,'1 ¥

i
g

100 c:a1回 ss mo甲 B

1ra rt:i1紀「
jり

1::i:'. 心ru

/
.,..----....

池 0 ----.__ .

I
nei:z.um1

池 ょ

唸
日
g
宮
ヨr

ー、

』

滋~o 頃叩umi'rHO 1虹 masu

Figure 1.1: Analysis, transfer and generation process

1.2.1 Analysis

Analysis is the step of building a structure to understand the text. In many

systems, this structure is of one of the forms presented above (dependency or

constituency). In some systems, many structures adopting various linguistic
points of view are built. In all of these systems, the phase of building a

structure, which is always equivalent to a tree, is called analysis.

1.2.2 Transfer

In the second generation system, the rearrangement does not take place any
longer on the level of words, but on the level of structures. This phase is

called transfer.

1.2.3 Generation

Generation is somehow the reciprocal to the task of analysis (see 1.3.1). This

operation starts with a linguistic tree and builds a sentence.

4

1.3 Boards

A board is the pair constituted by a text and its linguistic structure. The

following two objects are commonly used in this pair:

• a text is a string, and

• a structure is a tree.

In current grammars, a grammar "element" is either a chunk of struc-

ture (S→ NP VP or det→ the are the same as S(NP1 VP) and det(the}
respectively) or a string pattern (in grammars inspired by Harris).

In a board, both aspects are present. In this way, the structural aspect

of linguistic works can be mixed with examples. Figure 1.2 shows a sentence

and its associated representation in a board.

9・・・・・・・・・・・'
：
 ．．．．．．．．．．．
9

.•••••••••••..••.••........••••

,

•••••

,.,
．．． 浮・・・・・一

＂
度
奏
・
谷
翌
資
裔
望
腿
＂
え
、
ク
・
る
、
没
玲
菱
認
浴

"9"

没
奇
・
ベ
翌
妥
｀
冷
ヽ
汎
合
さ
爵
．
5

．f
t•••••

「

．．

苓ざ・笈＂
r

店
翡
喜
素
．
5

後羞笈・・ぶ＂．．`
．和．森・ふ・；

t
・

言

喜

i‘
苧

羞
ニ

響

彎＝

'{．

i

3

翌も

l

炉・一

一

迄臼-‘

-
9
9
9
9

沢
一

く

翠

三

十
一

[
[
i『
〗
[

一
三
三竺`

八
A

＼
ー
[

[

l

">

な

AT/。
[

-

/
E
T
/

は

_
|
0
]
"
翠

[i[

Figure 1.2: A board: text and associated tree

Because a board can also be read from the tree to the text, it can also be

used for generation (or synthesis). So a board is bi-directional. Moreover,

we will see that it is also non-directional.

ス

3

1.3 .1 Bi-directionality

The term non-directionality was used by [Winograd 83] to characterize context-

free grammars, because rules can be applied in both directions: analy-

sis and generation. Nowadays, non-directionality has been replaced by bi-

directionality. In fact, as [Zaharin 90] observed, the reverse operation of

analysis would imply starting from the start symbol only. But, in actual

NLP systems, it starts with a complete structure. So generation is not the

exact reverse operation of analysis.

Many formalisms are said to be bi-directional, but often, some extensions

or tricks in programming make grammars suitable only for analysis (or only

for generation). In other systems, only the formalism (or the source code

to adopt a programmer's point of view) is bi-directional, and a compilation

delivers two different executable codes, one for analysis, and one for gener-

ation. This means that the engine (or the executable code, to follow our

comparison) is not bi-directional.

1.3.2 Non-directionality

Boards are not only basic objects in grammar, they can also be input and

output objects for analysis and generation. This view of analysis and gener-

ation gives birth to a more general operation which we call non-directional

completion. Bi-directionality appears to be a particular case of what we call

non-directionality, to revive the term [Lepage叫

Non-directional completion consists of proposing an incomplete string

and an associated incomplete tree to the system. Figure 1.:3 shows a non-

directional completion.

The system has to deliver complete strings associated with complete trees

which match the uncomplete input and which come from the grammar.

This is impossible with a compilation of grammar delivering two clif「crcnt
specialised modules, one for analysis and one for generation. It is possible

for a proposal such as the one in [Lepage 9L!] because the basic object is not

only bi-directional but also non-directional. As a matter of fact, the general

function of the system proposed in the abovementionecl report is to deliver

complete correspondences for partially specified correspondences.

6

Wiil~ 脚&mf1邑曲 ・-

S:l 5氾

NP:2冨~
［

VP:l 2+3 5/0 ---

pron:2_3/2_3

，

1ー た

aux:1 2/1 2 verb:3 4/3 4

Figure 1.3: A board with incomplete tree for non-directional completion

1.3.3 Correspondences

There is a link between the linguistic tree and the sentence because the

linguistic tree is another representation of the sentence. The relationship be-

tween the sentence and its structural representation is called correspondences.

Correspondences are an original feature of boards.

[Zaharin 87] proposed that there would be two kinds of correspondences:

• one from node to text;

• one from subtrees to texts.

Also, because in linguistic structures only some kinds of subtrees are

（ used, he proposed that only complete subtrees the entire tree under a given

node) be considered. He called these two kinds of correspondences ST REE

and SNODE [Zaharin and Lepage 92]. In the figure below, the entire tree

starting at the root eat corresponds to the entire text, hence the first interval

under eat is Q_5, because the entire text extends from O to ,5. But, as a node,

r
i

eat corresponds only to the chunk of text eats, which spans from 2 to 3. So,

the second interval mentioned under eat is 2_3.

The two kinds of links are thus :

• between (possibly a list of) words and nodes;

• between (possibly non-connex) substrings and complete subtrees (des-
ignated by their root).

3

ダ‘.,．,．、.，；，

"
J
l写f
i

『ユ芸
奄―窓斧[

 浬禁巽[：
 苫

"・

一一一
『

一
罪
i

一
if

好k

t
"

}-

A cat1f 0_2 mcuse:4_513_5

I the:□_ 1/0」 f3_4/3_ 4

[Lepage 89] more clearly defined the idea that correspondences be con-

strained. He claimed that three constraints (global, inclusion and member-

ship) are enough to represent the usual kinds of linguistic structures (mainly

constituency and dependency). These constraints are explained as follows:

• Global correspondences: the whole tree corresponds to the whole text.
It is an error if there exists a word in the text which does not correspond

to any node in the tree and vice versa. In the example above, global

correspondences imply that the first interval under eat is 0_5 (the entire

text).

• Inclusion: if a tree corresponding to text r「lis a subtree of another

tree corresponding to text T2, then Tl is included in T2. This con-

straint implies that, for example, the text which corresponds to the

8

tree cat (the), which is the cat, is included in the text corresponding

to the entire tree: the cat eats the mouse.

• Membership: if a node corresponding to words Tl is member of a tree

corresponding to text T2, then Tl are in T2. This implies, that, for

example 3-4 (the second interval under a) which shows the word in

correspondence with the node a, is in the first interval under mouse,

which shows the text corresponding to the tree mouse (a) .

，

10

Chapter 2

Background

2.1 Objectives

A treebank is a corpus in which each sentence carries a linguistic description

(in fact, a tree) input by hand by an indexer. The interest of such banks is

undeniable as a linguistic resource, and some statistical approaches in anal-

ysis already use treebanks. A famous treebank for English is the Upenn

treebank, which was designed at the University of Pennsylvania (Web page:

http://cis.upenn.edu). Department 3 of ATR-ITL has been building a

treebank for English known as the ATR-Lancaster treebank [Black et al. 96].

Similar efforts for Japanese are in process for constituent structures [Kawata et al. 98]

and dependency structures [Lepage 96].

The construction of a treebank is a very cumbersome and time-consuming

process. To speed up this process, we propose a tool, an editor with extra

functionality. Also, the consistency of the data in treebanks is often prob-

lematic: similar portions of texts are sometimes assigned different structures.

This is a particularly sensitive point if these data are to be used by statistic

models. But checking the consistency of data requires an enormous amount

of time.

vVe propose to view the construction of a treebank as a sequence of editing

and searching steps, as follows [Lepage & Ando 96]:

• edit a new sentence (input it);

• find similar sentences, to retrieve their associated structures, so as to
propose possible candidate linguistic structures;

• edit the new linguistic structure (build it);

11

• find similar structures in order to check or ensure consistency with
previous data in the treebank.

This procedure has a beneficial effect: the larger the treebank, the faster

and the more realiable its extension.

2.2 Aim

The aim of the project is to implement a tool, Boardedi t, that will allow

a user to build a treebank in a faster and more consistent way. This tool

must be user-friendly and must allow the user to edit sentences, in various

languages, as well as trees.

2.2.1 Editing

In order to speed up the creation of new data in the treebank, our tool will
propose simple and fast editing facilities, on texts, as well as on trees.

Text-editing With our tool, text-editing will be carried out as it is with

modern text editors. Cut, copy and paste commands will be available, as

well as selection by a double or triple click of the mouse (for words and lines

respectively).

Tree-editing Some viewers for trees are available for free, but they have

to be ruled out for our purpose as they do not allow tree-editing. There are

certainly some tools which allow tree-editing, like that of University Sains

Malaysia, or xoobr (of Stern Mark), but, with these tools, tree-editing is

particularly cumbersome (requiring a dialogue box to input a label, adding

of new nodes only by menu, etc.)

With our tool, tree-editing will be as simple and direct as text-editing

is. The interaction will be done directly in the tree, without the use of any

dialogue boxes.

That is possible thanks to a rigorous parallel between nodes and subtrees

on the one hand, and words and lines on the other hand. This parallel

underlies all functions of editing on trees: any function (click, select, insert,

cut, copy, paste, etc.) for the edition of trees will have exactly the same

behaviour as in text-editing.

12

Not only direct selection by mouse will be possible, but also the insertion

of a node will be possible by pointing the mouse directly where the node

should be inserted. New branches will be automatically created.

Text-and-tree editing Correspondences will be an interesting function

in our tool. They will establish links between the text and the tree so as

to make explicit which part of the text corresponds to which part of the

tree [Boitet and Zaharin 88]. That is of much significance for non-projective

representations, like dependency structures.

2.2.2 Searching n1ethods and parsing aids

In order to increase the consistency of new data created, our tool will contain

some searching methods and parsing aids.

Pattern-matchmg Approximate matching refers to searching for those

lines in a file that contam a substring at a distance less than or equal to

a certain threshold k from a given pattern p (of length m). This distance

is the minimum number of character insertions, deletions or substitutions
necessary to transform the substring into the pattern.

For example, when looking for analogy with a threshold of 2, only the

first and third lines of the following file are output.

analogous dist(analog, analogy) = 1

explanation (msert y)
neuroanatomy dist(anatomy, analogy) = 2

(substitute 1 fort and g form)

Wu and Manber [Wu & Manber 92] proposed a practical implementation

of the Baeza-Yates and Gonnet method, which exhibits the behaviour of

O(nk「引）， wherew is in fact some constant. agrep is considered the fastest

practical algorithm of this kind.

However, agrep is limited in the length of the pattern (2L! characters) and

in the threshold (8 edit operations). Also, agrep handles only ascii characters,

and we shall need 2-byte characters for .Japanese. [Lepage 97] proposes a new

algorithm, called Agrep, which is faster than Wu & Manber's algorithm in
average when the ratio threshold/pattern length becomes greater than 0.4.

Also, for multilangual pruposes, Agrep handles 2-byte (and even 4-byte)

character searches.

1:3

Analysis by analogy The technique of analysis by analogy relies on the

idea that, if there is analogy on some low representational level, for instance,

that of syntactic classes:

The signal is off : The green signal is on = The lamp turns on : The green lamp turns off

then, there should be analogy on a higher representational level (see [Itkonen 94]),

for instance, that of structural representations. For example, if we picked up

the last three sentences above by searching with the first sentence, for which

we want a structure, x, the tool may compute the following proposal:

C,

~
C,

p

バハ、
P: A P =~P:

へハ、 バ＼ハ
/)p

det adj verb adv det verb adv det adj be adv d△ 心'dv

Here, note the difference between the first and the third trees due to the

absence of an adjectival phrase. x is different from the second tree in that

verb has been replaced by be. This tree is an exact description of the sentence

the signal is off.

14

2.3 Previous reahsat1ons

There are already preliminary versions of Boardedi t but as they reflect an

early stage of research, they are all either uncomplete or not finished. There

are three such versions: a Mac version and two Unix versions.

Mac version The Mac version implements all the editing functions de-

signed (see section 2.2.1), including correspondences. Nevertheless, in this

version no search functionality was implemented. This tool has been imple-

mented by Goh Chooi Ling [Goh 96] of the Universiti Sains Malaysia, as a

:fi nal year project, using a collection of C functions [Lepage 92a] [Lepage 92b].

This tool is in use at Projek Terjemahan melalui Komputer (PTMK) [Tang 96].

s

-------ヘNP・

.L ""パ五[、
~

We would like

ビ
mpn

ビ
co

Audi

Figure 2.1: Mac version of Boardedi t

Unix version For visualisation only, a by-product of the Unix version was

treecanvas, an onlinc command which automatically opens a window in

which a parenthesised tree given on the standard input is displayed. For

1.s

example, the tree would(like(we,room(a,nice,with(view(a))))) is dis-

played in Figure 2.2. As the basic data structure is in fact that of a forest,

this tool is able to display any parenthesised forest. Under Openwindow,

this tool was easily integrated under the text editor Textedit to visualise any

parenthesised tree selected.

図::__ ;r1-···························-~:
••• —· ―.・・................... ・. .-. -. .--.--.:-~Q.~_rl.i.--~~-it~_t; ●．ぷ．ざ：：・芯・芯・尺・尻忍・芯・・.-・.-・.-・.. ・.:; 忍:¥:、... ·• ・・・........... ·•.:·::.•. ・................... ·•.·•.:··· ·• ・-・..... —-· 一と—c,:_•• ~

~Jould

1

J

-

．

,

t

e

¥．
1

.

1

M

"

I

I

V

已

om¥

e

．し。バ＇

|
i
k
¥
r
パ1

,

．me

ー

／

／

a

L
e

／

M"

a

: ::.-::.-:-・.-:. ・_. :-・_. :-・_. :-・_. ::.-: :_. ::.-: :_. :-・.-:-・.-:-・_. ::.-:-・.-:-・_. ::.-:-・.-:-・_. :-・.-:-・_.:. ・_.:. ・.-:-・.-:-・_. :-・_. :-・.-:-・.-:-・_. :-・_. :-・.-:-・_. ::.-: :_. ::.-:-・.-:. ・.-:: ・: ・・:-:_-::-:-
・J_::_-_. ::.-:.--.::::.:•.:-. :. ・-:-.-_.._-.-._: ..

Figure 2.2: Old version of treecanvas (notice the wrong window title ...)

A complete version of Boardedi t was never finished under Unix. At-

tempts have been implemented with either Openlook (see Figure 2.:3) or with

16

wxWindows 1.6. This resulted in multiple versions which almost always in-

tegrate the entire editing facilities. However, selection does not work in some

versions; an old, slow version of approximate matching works in other ver-

sions, while correspondences partly work in still other versions. Our project

aims to have a look at all these earlier versions and, most of the time, restart

programming from scratch to finalise Boardedit.

;hrase

GN GV proposition

det coo rd
~ ~

nom ve rbe GN conj GV ,~
une GA et GA

I I/¥ I~
souris mange det nom pour verbe GN

/"- I I I I /¥
adv adj gou rmande un chat venger det nom

I I I I
tres grosse ses soeurs

une tres grosse et gourmande souris mange un chat pour venger ses soeurs
., , ヽ,.... .,, .. ….,,.,.,,.,, . ..,.,,.,,.,, . ..,.,,.,,.,., ,.,., .. ,.・ .. ・ ふ........................., ・•.............. ・...ベ ・・.., •.

Figure 2.3: Old Unix version of Boardedit

As for the searching facilities, a demonstration of analysis by analogy was

made in November 1997 during the ATR open house. For this purpose, a

program was developed under Openlook (see Figure 2.4), and uses the display
part for trees of Boardedi t.

17

s

--ベ
↓

~
磁'¥, 研^‘

el), .I¥
↓ ↓ ん

↓

' -------、，，一ャ
↓

--
一----

げ冷R

晏ヘへャ 呵--・-.• ¥
~. ,

,I如
~\

"'" Li i ＂^
 9

`
 ^

叉忍¢
’

A
、.＂

日

I

ャ↓｛

S
.

、

ゃ

↓

¥ー，

汗
、

／

/
¥

1

中

令
ノ．

茄

一
芯

り` り`

Figure 2.4: A demonstration interface for analysis by analogy

18

2.4 Project environment

Because the GUI (Graphical User Interface) of the tool to be built in this

project is required to run on several platforms, we had to find a multi platform

GUIDE (Graphical User Interface development environment) which would

support Unix Xll, Mac Os and Microsoft Windows.

There are not many such GUIDEs and most of them are not free. As an

exception, wxWindows is free. Moreover, as we saw in Section 2.3 the first

attempt at implementing Boardedi twas done with wxvVindows 1.68. These

considerations justified our choice of wxvVindmvs 2.0.

Under Unix, wxVVindows 2.0 relies on a low-level graphic layer, which

may be either Motif 1.2 or GTK + l .x. A requirement for Boardedi t is to

allow the input of Japanese data. As internationalisation (i18n) is better

supported under GTK+ l.x than under Motif 1.2, we chose GTK+. Also

GTK+ is free. Moreover, the resource editor for wxvVindows, wxDialog, is

not yet available for Motif.

YLlib is the collection of C functions already mentioned for the Mac

version of Boardedi t.

The overall structure of our application is shown in Figure 2.5.

application (e.g. Boardedit)

I
wxWindows 2.0 Yllib

GTK+ 1.2

ii Sn
I internationalisation

XI I R6 (X window)

「―- '
UNIX

——- -- ••••• • •. -----血—→一-· 一

Figure 2.,5: The layered structure of an application like Boardedi t

19

2.4.1 wxWindows

wxWindows [Smart 92] (Web page: http:/ /web. ukonline. co. uk/ j ulian.

smart/ wxwin) is a C++ framework providing GUI and other facilities on

more than one platform. Version 2.0 currently supports MS Windows (16-

bit, ・windows 95 and Windows NT) and GTK+, with Motif and Mac ports

in an advanced state.

wxvVindows is implemented as a set of libraries that allows C++ graphical

applications to run on several different types of computer, with minimal

source code changes. There is one library per supported GUI (such as Motif,

or Windows). However a common API (Application Programming Interface)

is provided for GUI functionality, which makes it possible to access commonly

used operating system facilities, such as copying or deleting files. wxvVindows

is a'framework'in the sense that it provides a lot of built-in functions, which

an application can use or overload as needed, thus saving the programmer a

great deal of coding effort: e.g., basic data structures such as strings, linked

lists and hash tables are supported.

History wxWindows was started in 1992 at the Artificial Intelligence Ap-

plications Institute, University of Edinburgh, by Julian Smart for MFC 1.0

and XView (hence w for・windows and x for X). As it became clear that

XView would no longer be supported, a Motif port was written.

During 1995, a port of wxVVindows to Xt, the X toolkit, was released.

From wxWindows 2.0, the need was felt for APis. in August 1997, wxVVin-

dows 2.0 was ported to GTK, a graphical toolkit built on top of Xl 1. GTK's

major problem was that it is C-based, and only a thin (and unportable)

C++ wrapper existed for it. In iVIay 1998, the Windows and GTK ports

were merged into a CVS repository. In September 1998, a new version of the

wxMac 2 port was started and a beta version was released in February 1999.

A BeOS port was started shortly after.

An official release of the wxGTK and wxMSvV was distributed in early

1999.

Requirements To make use of wxWinclows, one of the following setups is

necessary.

• Unix:
Almost any C++ compiler, including GNU C++.

20

Almost any Unix workstation, and one of: GTK+ l.x, Motif 1.2 or

higher, Les st if.

At least 60 Mb of disk space.

• MAC OS:
A MAC OS compiler: supported compilers include Metrowerks Code-

Warrior.

At least 60 Mb of disk space.

• MS Windows:
A 486 or higher processor.

A Windows compiler: most are supported. Supported compilers in-

elude Microsoft Visual C++ 4.0 or higher, Borland C++, Cygwin,
Metrower ks Code vVarrior.

At least 60 Mb of disk space.

2.4.2 GTK+

GTK+ ("Web page: http://www. gtk. org) is a multi-platform open source

GUI toolkit. It is a set of libraries to create graphical user interfaces. It works
on many Unix-like platforms, and a・windows version is under development.

GTK+ is released under the GNU Library General Public License (GNU
LGPL), which allows for flexible licensing of client applications.

GTK+ is also called the GIMP toolkit because it was originally written

for developing the General Image Manipulation Program (GIMP), but GTK

has now been used in a large number of software projects, including the

GNU Network Object Model Environment (GNOME) project. GTK is built

on top of GDK (GIMP Drawing Kit) which is basically a wrapper around the

low-level functions for accessing the underlying windowing functions (Xlib in

the case of the X windows syste叫
GTK+ has a C-basecl object-oriented architecture. Bindings for other

languages have been written, including C++, Objective-C, Guile/Scheme,

Perl, Python, TOM, Acla95, Free Pascal, and Eiffel.

GTK+ consists of the following component libraries:

1. GLib: A lower-level library that provides many useful data types,

macros, type conversions, string utilities, memory allocation, warnings

and assertions and a lexical scanner.

21

2. GDK: A wrapper for low-level windowing functions that lies on top

of Xlib. GDK also provides routines for determining the best available
color depth and the best available visual, which is not always the default

visual for a screen.

3. GTK+: The set of advanced widgets.

2.4.3 YLlib

This is a collection of C functions which offers a set of basic algorithmic

objects: atoms, lists, AVL trees, forests, etc. [Lepage 92b]. The most rele-
vant features for our project are the data types for correspendences, and the

handling of various tree formats [Lepage 92a].

22

Chapter 3

Editing Facilities

3.1 A model of tree edition

The board editor must incorporate a tree editor. vVe have looked at several

applications and solutions to the problem of editing a tree.

As we have already seen with already available tools, tree-editing is partic-

ularly cumbersome as they use the root window editing method (see section

5.3). For instance, a dialogue box opens when inputting a label, one can only

add new nodes by means of a menu, etc.

This way of operating would be highly criticised if it were adopted for a

text editor. For example, suppose the user had to click on a zone marked

"new word" each time he wanted to insert a new word. Then, he would have

to double-click on the newly created word place. A box would appear which

would say: "type in the new word," etc. This is much too complicated. In

the same way text editing has been made natural, we want our tree-editing

method to be natural (on-the-spot method, see section .S.3.1)

3.1.1 Parallel between text and tree editing

The board editor incorporates a very special case of trees: nodes bear only

labels, and no further information. Moreover, in the design of boards, there

has always been a tendency to unify the data structures of the tree and

the text part. This was realised by the work on the wood data structure

[Lepage 94], which allowed the text and the tree part to be considered as

being the same data structure, and hence allowed them to share exactly the

same functions and operations.

3

ぅ
]

Tree

label of node I word
node

complete subtree I lines

Table 3.1: The parallel between text-editing and tree-editing

This leads to a parallel between nodes and subtrees on the one hand, and

words and lines on the other hand (shown in table 3.1) [Lepage & Ando 96].
This parallel underlies all functions of editing on trees: any editing function

(click, select, insert, cut, copy, paste, etc.) for trees will have exactly the

same behaviour as in text-editing.

Although the parallel clearly shows that a node is different from a label

for a naive user, the distinction between a node and a label is usually not

intuitive. On the contrary, people usually think that "a label is a node" To

make our tool intuitive to users, we shall not contradict this way of thinking

as much as possible. Only in certain cases of edition where the difference

between a label and a node is unavoidable shall the editor make the difference

(see section 3.2.1, notion of an editing transaction).

3.1.2 Edition

In our model, there are two types of edition:

• Selection.

• Manipulation.

Selection: structural object & editing mode

Thanks to the parallel shown in table 3.1, two selectable structural objects

appear:

• Nodes.

• Complete subtrees.

Hence, we proprose the following interpretations of clicks which correspond

to two di仔erentkinds of manipulation: label editing mode and object or

structural editing mode.

24

• One click on a node: label editing mode.

• Double and triple click on a node: structural editing mode for selection

of node and selection of complete subtree, respectively.

Manipulation

There are three ways to manipulate a tree:

• Editing using the key board.

• Editing using the mouse.

• Editing using the clipboard.

Manipulation corresponds to the two different kinds of editing mode:

• Label editing mode: manipulation of a node label using the keyboard,

and

• Structural editing mode: manipulation of a node or complete subtree
using the keyboard, mouse and clipboard.

3.2 Label editing mode: editing using the

keyboard

Like with a text editor, trees can be edited with the keyboard. Many parallels

exist between editing text and editing a node label using the keyboard.

Editing a node label using the keyboard is only possible when the user is

in label editing mode. Label editing mode is signalled by a cursor appearing

under the current node. If the tree editing window loses the focus, the cursor

automatically changes.

3.2.1 Edit transaction

In our editor, a new node is created with an empty label, except for nodes

created using the clipboard. If a user changes the edit mode, a node with an

empty label will be automatically deleted. This implies the notion of an edit

transaction, as there are two states:

只
J-

ぅ
l

• An insecure state: it starts when a label is empty and remains until

the user enters the node label.

• A secure state: the end of the edit transaction, when the user confirms

the node label.

When a tree is displayed, there is no difference between editing a node

or editing a label of the node, but internally during an edit transaction, a

node can exist with an empty label. This is an insecure state, because until

the user enters the node label, he may change his mind and do something

else. An empty node label is represented by the symbol character <>, which
disappears as soon as the node label contains one character.

Semantics of the space bar

vVith a text editor, words are separated by a space. In a parallel way, when

editing a label, hitting the space key automatically creates a node sister for

the previous node. This method implies two things: a label of a node cannot

contain a space, and typing a space adds a right sister to a node (the direction

of the text input is left to right).

食べる 食べる

ま は

Of course, if a space marks the separation between two words, the deletion

of the space between two words implies the concatenation of the two words.

The parallel is kept for label editing: the deletion of the space between two

sister nodes, either by hitting the clel key at the encl of the left sister, or by

hitting the backspace key at the beginning of the right sister, merges the two

nodes into one, and concatenates their labels.

26

Semantics of the return key

With a text editor, the user adds or inserts a new line by hitting the return

key. Because of our parallel, in the label editing mode, hitting the return key

will create a daughter to a node. This implies that a label is necessarily on

a single line (no two-line labels).

食べる

は

＼
庄
且

＼

＼

ヽ

る7

,＼

ー
r,

/

食
，
＇
’

r,
／

辻

丑

寸

{

．．

^

Of course, the deletion of the first character of the first left sister node

implies, as with any text editor, that all the daughters of this node become

her right sisters. In the same way, in the middle of a label, if the enter key

is hit, the label will be cut at the cursor position and a daughter node will
automatically be created, with the last part of the label as its label.

Semantics of the arrow keys

In all text editor, the arrow keys enable the user to browse the text. In the
same way, in our tree-editor, arrow keys allow the user to traverse the tree

node by node.

Although there is no equivalent in us叫 texteditors, the arrow keys

associated with the shift key will have a special meaning: they create a

new empty node in the direction of the arrow key. For example, the shift

key together with the up key creates a new mother mode to the current

node. The new node is created with an empty label (noted <>), and an edit
transaction is entered. Unless the user types in a label, the new node will

disappear with any other action (see Section 3.2.1).

[
l

9]

3.3 Structural editing mode

As the name implies structural editing mode is used to modify of the structure

of the tree. In the structural editing mode, the user is able to select a

structural object. The user can select a structural object in the same way as

he selects words and lines by double or triple clicking the mouse respectively,

in a text editor.

3.3.1 Editing using the keyboard

In the structural editing mode, when a structural object is selected, any

editing key will delete the entire selection, as is also true in a text editor,

and put the last node or the root node of the subtree, into the label editing

mode.

3.3.2 Edit・ 1ng using the 1nouse

In a text editor, a new word is inserted by simply clicking where the new

word is to be added, and then typing in the word. Similarly, in the tree

editor, a new node is added by simply clicking in the corresponding position

in the tree where the node is to be added. This implies that clicking on

some special areas on the screen will automatically create a new node, hence

creating new branches where necessary.

There is another way of editing called drag and drop. The effect of a

drag and drop operation is similar to the use of the clipboard to cut, copy

and paste data. A description of editing using the clipboard is given in the

following section.

3.3.3 Editing using the clipboard

Cut/copy /paste

vVhen editing text, it is common to move objects around, for example, to

exchange two words. This has been abstracted thanks to the intuitive paper-

and-scissors metaphor into three basic actions: cut, copy and paste. These

items are common in any editing tool.

The Copy command copies a selected structural object into a special

container, the clipboard. The Cut command is the same as copy, but it

28

deletes the selected object from the screen. The Paste command inserts the

content of the clipboard into a selected place which can be a node or a special

area (see section 3.3.2). It doesn't change the content of the clipboard, so

that it is possible to paste a node or a complete subtree several times.

Drag and Drop

Drag and Drop (DnD) is a data transfer mechanism and allows an application

to transfer a piece of data of any type to the same process or to another one.

To start a DnD operation, the user presses mouse button 1 (left) on the

selected structural object and drags the selected object to the same window

or to another one which must be at least partially visible on the screen. To

encl the operation, the user releases the button. The default DnD operation

is "copy," but pressing <Ctrl> simultaneously performs a "cut."

3.4 wxForestedit implementation

3.4.1 The MVC model

The MVC model (Model, View, Controller) is a way of breaking an applica-

tion, or even just a piece of an _application's interface, into three parts: the

model of the application, the view, and the controller. MVC was originally

developed to map the traditional input, processing and output roles into a

GUI.

Input

Controller
→ P rocessmg

→ Model

→ Output

→ View

The user input, the modeling of the external world, and the visual feed-

back to the user are separated and handled by the model, viewport and con-

troller objects. The controller interprets mouse and keyboard inputs from the

user and maps these user actions into commands that are sent to the model

and/or viewport to effect the appropriate change. The model manages one

or more data elements, responds to queries about its state, and responds

to instructions to change states. The viewport manages a rectangular area

of the display and is responsible for presenting data to the user through a

combination of graphics and text.

29

The model is used to manage information and notify observers when that

information changes. It contains only data and functionality that are related

by a common purpose.

The view or viewport is responsible for mapping graphics onto a device.

A viewport typically has a one-to-one correspondence with a display surface

and knows how to render it. A viewport attaches to a model and renders

its contents to the display surface. In addition, when the model changes,

the viewport automatically redraws the affected part of the image to reflect

those changes. There can be multiple viewports on the same model and each

of these viewports can render the contents of the model to a different display

surface.

A controller is the means by which the user interacts with the applica-

tion. The controller accepts input from the user and instructs the model and

viewport to perform actions based on that input. In effect, the controller

is responsible for mapping end-user actions to application responses. For

example, if the user clicks the mouse button or chooses a menu item, the

controller is responsible for determining how the application should respond.

~ ~I~ ~I~ 馨ぶ，11~』，i ぶ~lj~I

三D
Display

Figure 3.1: The MVC model

The model, viewport and controller are intimately related and in constant

contact. Figure 3.1 illustrates the basic Model-View-Controller relationship.

It shows the basic lines of communication among the model, viewport and

30

controller. In this figure, the model points to the viewport, which allows

it to send the viewport weakly-typed notifications of change. Of course,

the model's viewport pointer is only a base class pointer; the model should

know nothing about the kind of viewports that observe it. By contrast,

the viewport knows exactly what kind of model it observes. The viewport

also has a strongly-typed pointer to the model, allowing it to call any of

the model's functions. In addition, the viewport also has a pointer to the

controller, but it should not call functions in the controller aside from those

defined in the base class. The controller has pointers to both the model

and the viewport and knows the type of both. Since the controller defines

the behavior of the triad, it must know the type of both the model and the

viewport in order to translate user input into application response.

3.4.2 The wxForestedit con1ponent

We implemented a non runnable component for forest edition with a general

tree specification called wxForestedit. wxForesteclit is not a widget (graphical

object). wxForestedit has been designed according to the MVC model. This

MVC model is show in Figure 3.2.

wxForestedit comprises three C++ classes:

• wxForestEditCtrl (controller): reads from a file or a string. It act on

the set of nodes by adding or deleting a mother, a daughter or a sister

by functions which take as argument the current node number. This

object verifies the general tree specification.

• wxForestEdit View (viewport): manages scrollbars when the forest is
bigger than the viewport. wxForestEdit View is only able to display a

forest from the top to the bottom. However, the MVC model makes it

easy to envision any other way.

• wxForestEdit (Model): is just a hashtable for the set of nodes and the

Set/Get methods associated. A node has a unique identifier in time,

which easies the implementation of the Undo functionality

3.4.3 The wxForestedit co1nponent in Boardedi t

In Boardedi t, wxForestedit has to handle forests with special data like cor-

respondences.

:31

叡 Foresteditcomponent Widget

9 ● ... , 三ロ
Display

Figure 3.2: The wxForestedit component

Because wxForestedit is not a widget, we implemented a widget and a

new controller to manage the forest in Boardedi t show in Figure 3.3.

bdForestedit Widget vVe created a widget for forest edition according to

the specifications described in the previous sections 3.1, 3.2 and 3.3 and based

on the wxForesteclit component with a more specific controller, bclForested-

itCtrl.

bdForesteditCtrl vVe created an inherited class of wxForestEclitCtrl (which

is the controller of wxForesteclit) called bclForesteditCtrl. This new controller

verifies all the editing choices explained in section 3.1.2. bdForesteclitCtrl is

able to read and manage the C FOREST type, which is a basic C type in

our C library ([Lepage 92b]). For Instance, the search functionality makes

use of the C FOREST type.

ぅl3

dbForestedit component

日ロ

Figure 3.3: The bdForestedit component

3.4.4 Exporting wxForestedit

wxForestedit as a MVC model can be exported to other systems or GUIDEs.

based on this component, we have proposed the construction of an ActiveX

control (OCX) which could become a product for the PC MS-Windows en-
vironment. Also we reimplemented TreeCanvas, a tool mentioned in section

2.3.

ATRForestedit OCX enables developers to display and manipulate a for-

est in a program. ATRForestedit OCX has the same features as wxForestedit

under wxvVindow. It was implemented and successfuly demonstrated under

some MS-Windows applications (MS vVord, Internet Explorer). See appendix

C.
TreeCanvas allows to diplay a tree or a forest. Interestingly, it acts as a

filter between different formats of tree. See appendix D.

3 3

:34

Chapter 4

Search Functionality

The aim of Boardedi t is to allow a tree banker to build a tree bank in a faster

and more consistent way. We propose to view the construction of a treebank

as a sequence of editing (see section 2.1) and searching steps, as follows:

• edit a new sentence (input it);

• find similar sentences, to retrieve their associated structures, so as to
propose possible candidate linguistic structures;

• edit the new linguistic structure (build it);
• find similar structures in order to check or ensure consistency with

previous data in the treebank.

4.1 Ideal case

The ideal way of obtaining a linguistic structure for a new sentence is to have

a complete parser for the language in which the sentence is written, and to

feed the sentence to this parser. Hence the steps would be:

• edit a new sentence (input it);

• get the structure from the parser.

4.2 Reality

Unfortunately, as parsing is still an object of research, and as Boardedi t is

designed to be an aid in this kind of research, Boardedi t proposes to grad-

ually fill the gap between editing by hand and complete automatic parsing.

Hence we propose some parsing aids:

ズ
J3

• Exact match

• Closest match
• Analogical completion

These three searching methods work as well on single-byte characters

(such as French) as on multi-byte characters (such as .Japanese). But the

treebanker has to be precise concerning the type of characters for which the

base file is encoded.

Exact match is performed to search in the base file for the exact sentence

selected by the treebanker.

Closest match is performed to search for the closest sentence in the base

file selected by the treebanker. This method uses approximate matching by

setting the threshold, and stops when it gets a result.

Analogical completion is more than a searching method, it is a parsing

aid. It does not only propose candidate linguistic structures, but builds an

adapted candidate for the sentence selected from the base file. It is based on
analysis by analogy.

4.3 Integration under Boardedi t

4.3.1 Find dialog box

So as to easily select a search method, we implemented a Find dialog box.

This dialog box appears when a treebanker pushes the Option button or

chooses Find in the Edit menu.

To perform a search in Boardedi t, the search method and the treebank

(base file name) must be set. These can be set at the Boardedi t launch (see

appendix B). But the treebanker can change them with the Find dialog box.

Figure 4.1 shows the Find Dialog box. On the left, the treebanker can

choose the search method by clicking on the search method name. On the

right, there is a push button for setting the name of the base file and an

option button to set the granularity. In the Figure Ll.1, there is also another

search method ca.lied approximate matching, which will be explained in a

later section.

;35

Figure 4.1: Find dialog box

Base file or treebank can be set by pushing the button. This action will

open a File selection dialog box (see Figure 4.2) to browse all directories and

files. When a file name is selected, its name will appear as the caption of the

button. The base file name can be changed at any time. vVhen the base file

is not set, the caption of the push button is "no file name."

Gra叫 anty 1s a discrete set. So the treebanker is able to change the

granularity by simply clicking on the option button and choosing the correct

granularity. As explained in appendix B, the granularity is often set with

the base file name. Granularity can also be set at the Boardedi t launch.

There are three types of granularity:

• Latin char: for French, English, etc.

• Japanese: for double-byte characters

• vVorcls: to perform a search by words, this is an option for the future.

r
/

3

Figure 4.2: File selection dialog box

4.3.2 Use of the editing facilities

Boardedi t is an editor which implements searching functions. The result

given by those search methods has to be edited to adapt it to the sentence.

So there is a link between the search method and the editing facilities.

• Exact match: copy /paste or DnD the result. It means that the sentence
was already in the treebank.

• Closest match: copy /paste or DnD the best proposed linguistic struc-
ture and edit it to fit with the sentence.

• Analogical completion: copy /paste or DnD the best built linguistic

structure.

;33

4.3.3 Plug-in facility

Thanks to the plug-in system we implemented to manage the different search

methods, Boardedi t is able to support many other parsing aids, like an anal-

yser. Boardedi t also proposes another seach method, approximate matching

[Lepage 97], which is already used by the closest match method. Approxi-

mate matching needs a new parameter: a threshold. All new options needed

for the new parsing aid will be added after the two default parameters: base

file name and granularity.

The approximate matching option in the Find dialog box is shown in

Figure 4.3.

Figure 4.:3: Approximate matching option

39

4.4 Parsing using Boardedi t

In this section, an example of parsing will show how it is done using Boardedi t

with the Find dialog box. This example uses the ATR NEC treebank, which

is in Japanese. The following are some boards taken from this treebank:

か (IT(I,+えます（は(□))))
IT(I, +えません（は(□)))
か (IT(ET(I(は (0))'+て），います））

"食べ物は持ち込めますか。”

"食べ物は持ち込めません。”

"寝袋は持っていますか。"

The new sentence we have is寝袋は持っていません。 and we want its

linguistic structure. So we are going to parse this sentence using Boardedi t

help to get it.

4.4.1 Using exact 111atch

Figure 4.4 shows that there is no result with the exact matching method

because the sentence does not exist in the treebank. At this point, the

treebanker has to continue to search with Boardedi t help or just make the

linguistic structure himself with the editing facilities.

4.4.2 Using closest 1natch

The closest match method is more helpful than the exact match because with

this same sentence, it is able to find two answers in the treebank.

For the sentence寝袋は持っていません。， weget the following two results:

1. IT(ET(I(は (0)),+て），いません） "カードは持っていません。”

2. か (IT(ET(I(は (0)),+て），います）） ＇’寝袋は持っていますか。"

These two results are shown in Figures 4.5 and 4.6. They are not perfect

because they are only close to the given 令ence.The treebanker has thus

to edit the proposed linguistic structure.

In the first answer (Figure 4.5), カードは持っていません。， onlythe be-

ginning of the sentence has changed: カード replace寝袋. By chance, the

linguistic structure of the first answer, is adapted to the given sentence so

L10

<>
•II·

『 --部

Figure 4.4: Exact match result

the treebanker does not have to edit the linguistic structure. In the second
answer (Figure 4.6), 寝袋は持っていますか， onlythe encl of the sentence

(the form of the verb) has changed. But in this case the linguistic structure

has to be edited to adapt to the given sentence. The treebanker has thus to

edit the answerか (IT(ET(I(は (0))'+て），います））： delete the nodeか

because the given sentence is not a question and replace the nodeいます by

いません becausethe verb of the given sentence is in the negative form.

4.4.3 U . sing analogical con1pletion

The analogical completion method is more than a search method bcause the

technique creates an answer from the tree bank. Figure 4. 7 shows that there

is one answer when the treebanker uses analogical completion on the given

sentence. The linguistic structure we get is already adapted to the given

-11

<>
•II・

)T

／
ET いません

八

I

Figure 4.5: Closest match First result

sentence because the given sentence and the sentence of the answer are the

same since the answer has been built from sentences of the treebank.

4.5 Conclusion

In this chapter, we have seen three search methods and parsing aids: exact
match, closest match and analogical completion. These three methods were

explained from the most simple (exact match) to the one o『eringthe most

help (analogical completion), but when a treebanker wants to have the lin-

guistic structure of a sentence, he is free to choose his own way to use these

search methods. It seems to us that the most reasonable order in which to

use them is as follows:

42

<>
, 11・

すま‘, し

て八
—
は|
|
0

か□

IT/ET

Figure 4.6: Closest match second result

• Exact match: the given sentence already exists in the treebank; we get
the linguistic structure as the final answer.

• Analogical completion: the sentence does not already exist. So we may
look in the treebank to see if we can find sentences which are in an

analogical relationship (see paragraph 2.2.2) and then get the linguistic

structure by the analogical relationship with the linguistic structures

of the sentences found.

• Closest match: if an analogical relationship is found, then we may~ook
in the treebank to see if we can find a similar sentence to the given

sentence and edit the linguistic structure of the sentence found to get

a valid linguistic structure

43

<>
,1,

＼
元

ET

／
ー
は
ー
。

／

ふ
'
,
ぅ
ふ
・

[
r
,
'
乳
§
●
；
を
．
＂
．
ア
‘
.
A
‘
.｀t
.
4
;＂

,
4
9

ぃ
‘
．
．
辻
惰
〗
ぶ
．
ぶ
予
ふ
＂
．

Figure il, 7: Analogical completion result

4 4

Chapter 5

Internat1onal1sation (118n)

Boardedi t is designed to edit linguistic structures in order to build tree

banks for machine translation. This implies that Boardedi t should support

different languages, like Japanese or French, in displaying and editing.

Nowadays, there are general methods for handling different languages in

the same application. All of the description about a particular language is

found in a system called locale. Boardedi t will use the codeset defined by

the locale to display and draw the characters of the language. Boardedi t

also needs to display menus and messages in many languages as the tree

bankers may have different mother tongues. For this, GNU proposed a tool

named gettext.

Boardedi t must also allow the tree banker to edit languages like Japanese

which have more characters than can fit on a standard keyboard. So the

Japanese characters, like other Asian languages, are input with special meth-

ods called input methods.

The locale implies some special problems when mixing languages. For

example, Boardedi t in the .Japanese locale can edit and display French char-

acters like c-cedille, but the French locale cannot display and edit Japanese

characters.

wxvVinclows supports locales, but does not support input methods. Nev-

ertheless, this is supported by GTK+. As explained in section 2.4 and shown

in figure 2.5, Boardedit is built with wxWinclows but also relies on GTK+.

4,5

5.1 Locales

A locale describes the user's environment: the local conventions, culture,

and language of the user's geographical region. A locale is made up of a

unique combination of a language and a country. Two examples of locales

are: French/Canadian and English/U.S.

A language might be spoken in more than one country; for instance,

French is spoken in France, Belgium, Switzerland, Italy (val d'Aoste), Canada,

and many African countries. While these countries share a common lan-

guage, some national conventions (such as currency) vary among the coun-

tries. Therefore, each country represents a unique locale. Similarly, one

country might have more than one official language. Canada has two: French

and English. Therefore, Canada has two distinct locales.

5.1.1 The concept of locale

A locale is a language environment determined by the application at run time.

It includes the specification of a language, the territory, and the codeset.

Locale precedence rules are the rules determined by the definitions of

LANG, LC_ALL, and the other LC_ environment variables for setting the

locale associated with the various categories.

LANG is an environment variable which determines the locale for any

category not specifically selected via a variable starting with LC―. Additional

semantics of this variable, if any, are implementation-defined.

LC_ALL is an environment variable which shall override the value of the

LANG variable and the value of any of the other variables starting with LCー・

5.1.2 Locale categories

A category is a set of internationalisation (i18n) features all presented to the

user in the same locale. It is one of the following: Characters and Codesets,

Dates, Numbers, Currency, and Messages.

Characters and Codesets The 8-bi t ISO 8859-1 cocleset has special char-

acters needed to handle the major European languages. However, in many

cases, the ISO 8859-1 font is not adequate. The lG-bit .JIS 0208-0 (198:3)

codeset is used for .Japanese. Hence each locale will need to specify which

46

codeset they need to use and will need to have the appropriate character han-

dling routines to cope with the codeset. This part of the locale constitutes

the main use for Boardedi t, because one of the main function of Boardedi t

is to draw characters.

• The ANSI standard uses only a single byte to represent each charac-

ter, so it is lirnited to a maximum of 256 character and punctuation
codes. Although this is adequate for French or Canadian, it doesn't

fully support other languages.

• The Double Byte Character Set (DBCS) is used in most parts of Asia.
It provides support for many different East Asian language alphabets,

such as Chinese, Japanese, and Korean. DBCS uses the numbers O to

128 to represent the ASCII character set. Some numbers greater than
128 function as lead-byte characters, which are not really characters but
simply indicators that the next value is a character from a non-Latin

character set. In DBCS, ASCII characters are only 1 byte in length,

whereas Japanese, Korean, and other East Asian characters are 2 bytes

in length.

• Unicode is a character-encoding scheme that uses 2 bytes for every

character. The International Standards Organisation (ISO) defines a

number in the range of O to 65,5:35 for every character and symbol in
every language. Although both Unicode and DBCS have double-byte

characters, the encoding schemes are completely different.

Currency The symbols used vary from country to country as does the

position used by the symbol. Software needs to be able to transparently

display currency :figures in the native mode for each locale. This is not

important for Boardedi t.

Dates The elate format varies between locales. For example:

• In French: luncli, 16 aof1t 1999, 09:38::36

• In .Japanese: 1999年08月 16日（月） 09時43分 17秒

Dates are not used by Boardedi t.

47

Numbers Numbers can be represented differently in different locales. For

example, the following numbers (same value) are both written correctly for

their respective locales:

French: 12 345,67

Japanese: 12,345.67

Messages The most obvious area is the language support within a locale.

This is where GNU gettext (see section 5.2) provides an easy way for develop-

ers and users to change the language that the software uses to communicate

to the user.
The concept of categories allows better organisation of the locale infor-

mation and the implementation of mixed language environments.

• Single language environment: an environment in which all 118N fea-
hues of a program are presented in the same locale.

• Mixed language environment: an environment in which some 118N fea-
hues of a program are presented in one locale and other 118N features

of the same program are presented in another locale.

As explained in the next section, Boardedi t uses GNU get text to display

menus and messages in the tree banker's mother tongue.

5.2
．．

Locahsat1on

Localisation is the process by which an application is adapted to a locale. It

involves more than just literal, word-for-word translation of the resources. It

is the meaning that must be communicated to the user.

5.2.1 GNU gettext

The GNU Translation Project is a formalisation of the internationalisation

problem into a workable structure, in order to achieve a truly multi-lingual

set of programs.

The GNU gettexl utilities are tools that provide a framework to help

other GNU packages produce multi-ling叫 messages.These tools include a

set of conventions about how programs should be written to support message

catalogs, a directory and file naming organisation for the message catalogs

48

themselves, a runtime library supporting the retrieval of translated messages,

and a few stand-alone programs to display in various ways the sets of trans-

latable strings, or already translated strings.

5.2.2 F0l 1 es conveying translations

The letters PO in'.po'files mean Portable Object, to distinguish them from

'.mo'files, where MO stands for Machine Object. This paradigm, as well as

the PO file format, was inspired by the NLS standard developed by Uniforum,

and implemented by Sun in their Solaris system.

匹 files are meant to be read and edited by humans, and associate each

ongmal, translatable string of a given package with its translation in a partic-

ular target language. A single PO file is dedicated to a single target language.

If a package supports many languages, there is one such PO file per language

supported, and each package has its own set of PO files. These PO files

are created by the xgettext program, and later updated or refreshed through

the tupdate program. The xgettext program extracts all marked messages
from a set of C files and initializes a PO file with empty translations. The

tupdate program takes care of adjusting PO files between releases of the cor-

responding sources, commenting on obsolete entries, initializing new ones,

and updating all source line references.

MO files are meant to be read by programs, and are binary in nature. A

few systems already offer tools for creating and handling MO files as part

of the Native Language Support coming with the system, but the format of

these MO files is often different from system to system, and non-portable.

5.3 Input method editing styles

Each platform (Unix/X, Macintosh, Windows) supports the input of several

Asian languages (e.g., .Japanese, Chinese, Korean) through a special system

service called an Input Method. An input method is a software component

that converts keystrokes into text input which cannot be typed directly. In-

put methods are normally used to input text for languages which have more

characters than can fit on a standard keyboard. Input methods are com-

49

Figure 5.1: Same version of Boardedit using different locales

monly used for Japanese, Chinese and Korean, but also show up in other

languages, like Thai and Hindi.

There are four basic styles of input method editing: on-the-spot, over-the-

spot, off-the-spot, and root-window. Unlike Macintosh and MS Windows, the

XIM (X Input Method) standard defines all four styles. The style used is

negotiated from the set of common styles supported by the application and

the input method.

In Boardedi t, the On-The-Spot style is the default input method.

5.3.1 On-The-Spot co111position style

The composed text is rendered inside a text window by the application,

by maintaining a special editing area "between" the text that exists before

the insertion point and the text that exists after the insertion point. The

composed text looks like the text part of the document, however, different

stylistic attributes are applied to the text to indicate that it is part of the

input method composing string. Different parts of the input method com-

posing string will have different styles applied to them, which indicates that

they are in different stages of editing. Once the composition text is finalised

by the user, it merges into the original document and is indistinguishable

from the surrounding text. The on-the-spot style is also known as inline

input on some platforms.

50

5.3.2 Over-The-Spot con1position style

The composed text is rendered over the insertion point in a "layer" above

the document window. The document text doesn't change until after the

user has committed the text, so the composed text ends up obscuring part

of the document during editing.

5.3.3 Root Window composition style

The composed text is rendered in an entirely separate window which has no

relationship to the application window. Once the input is committed, it is

then inserted into the document at the insertion point. The root window
style is also known as bottom line or floating window on some platforms.

5.3.4 Off-the-Spot co1nposition style

The off-the-spot composition style is very similar to the root window style.

These two styles are distinguished only by the position of the editing region.

The off-the-spot style draws the editing region in a status bar attached to

the bottom of the active window. Each application window has a status and

editing bar, instead of having a single independent window.

5.4 GTK+ Il8n

5.4.1 Manipulating text

The most basic task that GTK+ (and applications using GTK+) have to han-

die when dealing with international text is manipulating strings. The strings

in the GTK+ interfaces are handled in the multi-byte encoding (compatible

with double-byte encoding (DBCS)) for the locale. This allows good compat-

ibility with existing applications that aren't explicitly design for multi-byte

support. Internally, GTK+ converts these strings to wide-character strings

for easier manipulation, and the conversion routinesとueとdsoと1Vと1ilablefor

applications that ueecl these facilities .

. 51

5.4.2 Input

Internationalised input in GTK+ is done using the X Input Method extension

(XIM). The X libraries include a simple built-in input n:;iethod that does

compose-key handling for European languages. The more complicated input

method handling for Asian languages, such as .Japanese, is typically done by

an external program.

Application

Jnpuf
GTK+

T Outpul
I

I X Input Method , Fontset , I

. I I Xlib E~tens1on , Code ,
I I

Processing

三 ...

～三
()↓

三
Figure 5.2: Architecture of XIM

Figure 5.2 shows the basic architecture of XIM. GTK+ forwards the

keystrokes it receives to the input method via Xlib, and when a complete

input string is received, it is displayed to the user. From the point of view

of Boardedi t, such as one using only the standard GTK+ Text and Entry

widgets, this is all done transparently behind the scene, and the application

only sees the final strings.

5.4.3 Output

GTK+ handles the output of strings in different scripts using font sets. A

font set is a list of X fonts for different character sets. When drawing, [or

example, mixed Roman and .Japanese, Chinese or l(orean text, then the

two different fonts needed are extracted with multiple character sets. For

the .Japanese locale, they are two clif「erentfonts: one single-byte font for

katakana and Latin text and one double-byte [ont for kanji, hiragana, clc.

ぅl5

The font to use for a particular widget is generally determined in GTK +

using resource configuration (RC) files. There is a system-wide file that the

system admininstrator can set up, and additionally, each user can override

the settings by creating a file in his home directory. This mechanism has

been extended to deal with getting the correct fonts for each locale, even for

users that switch between different locales. When GTK+ reads in an RC file

it also looks for the same file with an extension corresponding to the current

locale. If the locale is ja for Japanese, then GTK+ will check for the file

gtkrc.ja. GTK+ ships with gtkrc files for Japanese, Korean, and Russian,

and a system administrator can easily create them for additional languages

as needed.

5.5 Internationalisation of Boardedi t

5.5.1 Input

Boardedit is able to input Japanese thanks to GTK+. Here is an example

of the input of a Japanese sentence into Boardedi t.

The .Japanese sentence to input is: 今日は週末なので料金は高くなりま

す。 (transcribedas konnitiha symtmatu nanode ryoitkin ha takaku nari-

mas叫）. To input this sentence into Boardedit, the user begins to type
phonetically into the edit area (text-editor or our tree-editor). The user

types the series [k,o,N,n,i,t,i] which the input method automatically trans-

lates into the two .Japanese syllables [こんにち]displayed on the figure. The

romanised "k" remains because its conversion is still ambiguous. As the user

types, the editor automatically expands the composition area. The Japanese

text is displayed in highlight to indicate that it is unconverted text and still

has additional input steps to go through.

After entering the pronunciation of the word he wants to add into the doc-

ument (koNniti, the .Japanese word for'today'), the user selects the appro-

priate Iくanjiconversion for the syllabics. Since a single syllable has multiple

possible conversions, the input method will bring up a list of possible cancli-

elates. r「heuser selects the appropriate conversion, which is then displayed

in the document window. Once the user selects the appropriate conversion,

the highlight style of the text changes.

1'Today is not a weekday, so it is more expensive.'

3

只
J

Finally, the user performs some action (usually pressing the return key)

which commits the final text. The Japanese text is merged into the document

and is indistinguishable from the surrounding text. The rest of the sentence

can be edited in the same way.

5.5.2 Output

Of course Boardedit is able to display .Japanese thanks to GTK+. The

previous example show how .Japanese is display under text an tree canvases.

5 4

,55

面厖扉
溢
；澁溢溢

~
j

C:
Figure 5A: The series [k101N1n1らt1i] is translated in .Japanese hiragana.

6

i
3

対
翌
ば
遠
．
ぷ
喜
這
謬
，
ば
●
臼
交
麟
．
〗
．
〗
遠
喜
匁
で
疇
、

‘
.
.
.
i
:

一．．

罪罪

一

＜

l
l
-

苧

i

と/E□
/

。I し
]
~
[

Figure 5.5: After selecting the kanji corresponding to koNnili.

57

::::::::::::::::::::::::::::::: ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
1nnnnnn1

＼

~

・・・・・・・・・・・・:::::::.
吝．．：ぺ：・,:・:ぷ

翌翌・'.・'.・'.・'.・'.・'.・'.・'.・'.・'.・'.・'.・'.・'.: ; ； ; ； ; ；；； ; ；；；； ; ； ; ; ; ;
.iii,iii,iii,iF,iii,iiiir; itlii:,

・・・・・・・・.・・.・・.・・.・・.・・.・.-・.
i号：・産笈笞妥討釜谷祗も... ,.,:::: i忍覧歳．應．；総澤：：

Figure 5.6: After typing the entire sentence.

,58

Chapter 6

Conclusion

A treebank is a corpus in which each sentence carries a linguistic description

(in fact, a tree) input by hand by an indexer. The interest of such banks is

undeniable as linguistic resources, and some statistical approaches in anal-

ysis already use treebanks, but the consistency of the data in treebanks is

often problematic: similar portions of texts are sometimes assigned different

structures. This is a particularly sensitive point if these data are to be used

by statistic models.

The construction of a treebank and the verification of its consistency are

also very cumbersome and time-consuming processes. To speed them up, we

have proposed a tool, an editor with extra functionality. In order to speed up

the creation of new data in the treebank, our tool proposed simple and fast

editing facilities, on texts, as well as on trees. Also, in order to increase the

consistency of the new data that is created, our tool contains some searching

methods and parsing aids.

The tool we proposed is Boardedi t, a multiling叫 boardeditor. A board

is the pair constituted by a text and its linguistic structure, generally a tree.

vVe have made a complete implementation of Boardedi t from specifications.

We have implemented all the edit facilities and proposed a plug-in system to

easily integrate new parsing aids in the future. Boardedi t is an intei・nation-

a.lisecl software: it handles many language character code sets by using locale

specifications.

We have implemented an independent complete MVC model for the tree

editing facilities before porting into Boardedi t as well into other applications

like ATRForestedit or TreeCanvas.

59

• ATRForestedit is designed to work under MS-Windows. It enables a

user to display and manipulate a forest from inside an application. It

is composed of two different modules: an ActiveX control for <level-

oppers and an ActiveX document for end-users. These two modules

are runnable and insertable under any MS-vVindows application. The

base of ATRForestedit was implemented and demonstrated to the ATR

Intellectual Property Support section. It could become a commercial

software with a patent. However, everything is yet to be decided.

• TreeCanvas is designed for UNIX and is already available for internal

use in ATR-ITL. It is a filter between the standard input and the stan-

dard output. It recognizes several input formats and outputs different

formats. Particularly, it offers a nice filter to output trees in LaTeX

format which may be of interest for the research community which uses

mainly LaTeX.

As for the future, a complete implementation of ATRForestedit is still

to be done. Also, during our final talk, we received some feedback suggest-

ing that TreeCanvas (our MVC model for the tree editing facilities) could be

ported to some other UNIX environments (Sun Os, Linux, ...) In this respect,
we could envision finding another graphical user interface development envi-

ronment to make the port of Boardedi t easier for other UNIX workstations.

Our final hope is that Boardedi t will integrate more parsing aids in the

future, and that it will be of use for expanding the ATR-NEC treebank.

60

Bibliography

[Black et al. 96] Ezra Black, Stephen Eubank, Kashioka Hideki, David

Magerman, Roger Garside and Geoffrey Leech

Beyond Skeleton Parsing: Producing a Comprehensive Large-Scale

General-English Treebank with Full Grammatical Analysis

Proceedings of COLING-96, Copenhagen, August 1996, pp. 107-112.

[Boitet and Zaharin 88] Christian Boitet and Zaharin Yusoff

Representation trees and string-tree correspondences

Proceedings of COLING-88, Budapest, 1988, pp 59-64.

[Goh 96] Goh Chooi Ling

Penyunting Papan (Board Edit01)

Projek tahun akhir, Pusat Pengajian Sains Komputer, Universiti

Sains Malaysia, 1996.

[Itkonen 94] Esa Itkonen
Iconicity, analogy, and universal grammar

Journal of Pragmatics, 199L!, vol. 22, pp. 37-53.

[Kawata et al. 98]河田康裕、金城由美子、柏岡秀紀

日本語会話文の構文木付コーパス作成

言語処理学会第 4回年次大会，九州大学， 1998年 3月， pp.622-625.

[Lepage 89] Yves Lepage

Un sリ.stもmede grammaires correspondancielles d'-identification

Thらse,Universite de Grenoble, juin 1989.

[Lepage 94] Yves Lepage

Te亀xtsand Structures -Palte-rn-malching and Distances

ATR report TR-IT-0049, Kyoto, March 1994.

Gl

[Lepage 97) Yves Lepage
String Approximate Pattern-Matching

55th Meeting of the Information Processing Society of Japan,

Fukuoka, August 1997, vol. 3, pp. 139-140.

[Lepage 92a] Yves Lepage

Easier C programming

Input/output facilities

ATR report TR-I-0293, Kyoto, November 1992.

[Lepage 926] Yves Lepage

Easier C programming

Some 1tseful object.s

ATR report TR-I-0294, Kyoto, November 1992.

[Lepage 96] Yves Lepage
Tesniもre structural syntax: notations for tree-banking using

BoarclEdit

ATR report TR-IT-0176, Kyoto, July 1996.

[Lepage & Ando 96] Yves Lepage & Ando Shin-Ichi
Un editeur pour la construction de banques d'arbres

Actes de TALN-96, Marseille, mai 1996, pp. 104-111.

[Lepage 91] Yves Lepage
Parsing and Generating Context-Sensitive Languages with Corre-

spondence Identification Grammars

Proceedings of the Pacific Rim Symposi1mi on Natural Lang1wge

Processing, Singapore, November 1991, pp. 256-263.

[Saussure 16] Ferdinand de Saussure

Cours de lがnguistiq1teg紐erale

publie par Charles Bally et Albert Sechehaye, Payot, Lausanne et

Paris, 1916.

[Smart 92] Julian Smart

wxWindowsJ a multi platform GUIDE

Artificial Intelligence Applications Institute, University of Edin-

bmgh, 1992.

62

[Tang 96] Tang Eny Kong
Interactive Disambiguation in Multilevel Parallel Texts Alignment

-towards the Construction of a Bilingual Knowledge Bank

Proceedings of IVIIDDIIVI-96) post-COLING seminar on interactive

desambiguation, Christian Boitet ed., August 1996, pp. 101-106.

[Winograd 83] Terry Winograd

Language as a cognitive process

vol.1 Syntax

Addison Wesley, 1983.

[Wu & Manber 92] Sun Wu & Ucli Manber
Fast Text Searching Allowing Errors

Communications of the ACIVI, Vol. 35, No. 10, October 1992, pp. 83-

91.

[Zaharin 90] Zaharin Yusoff

Generation of synthesis programs in ROBRA (ARIANE) from
String-Tree Correspondence Grammars (or a strategy for syn the-

sis in machine translation)

Proceedings of COLING-90, Helsinki, 1990, vol 2, pp 425-430.

[Zaharin and Lepage 92] Zaharin Yusoff and Yves Lepage

On the specification of abstract linguistic structures in formalisms

for Machine Translation

Proceedings of the International Symposium on Nahtral Lang1wge

Understanding and AI, pp 14.5-153, Iizuka, .July 1992.

[Zaharin 87] Zaharin Yusoff

String-Tree Correspondence Grammar: a declarative formalism for

defining the correspondence between strings of terms and tree struc-

tures

Proceedings of the 3rd Conference of the European Chapter of A CL,

Copenhagen, 1987, pp 160-166.

6:3

64

Appendix A

Sensitive areas in tree editing

VP/NP□
 v

e

 s

e

r

Those sensistive areas allow the user to insert nodes by pointing with

the mouse. They are attached to a node and separated into four categories,

designated by their respective number:

1. mother node area,

2. right node area,

3. left node area,

L!. daughter node area, and

vVhen clicking on any of these areas, a new node is created with an empty

label (edit transaction see Section :3.2.l). r「heuser knows that the pointer

6.5

enters one of these sensitive areas because the cursor changes its form from

an arrow to a'+'sign.

Of course, nodes are also sensitive areas for the label editing mode (see

section 3.2).

66

Appendix B

Boardedi t as a command line

This appendix presents the command line options of Boardedi t. vVith the

command line, the user can set all the parameters of the Find dialog box and

open a file of boards. The command line options were very useful during our

experimentation of Boardedi t.

use: Boardedi t [-<n>] [-use= [exact I closest I match I analogy]]

[-base=<filename> [, B<n>]] [<filename>]

design: Yves Lepage

implementation: Nicolas Auclerc (1999)

default: Boardedit means Boardedit -use=exact

(granularity is Latin characters)

job: apply the find method for the board given on standard input

using the file of boards <filename> (one board on each line)

as a base file.

options:

-base=<filename>: set <filename> as the base file

, B<n>: <filename> contains <n>-byte texts

(granularity)

-use=exact: select exact pattern matching

-use=closest: select closest pattern matching

-use=match: select approximate pattern matching

67

-use=analogy: select analysis by analogy

-<n>: threshold for approximate matching

Examples Here are some examples of the use of Boardedi t with command

line options.

Boardedit

This example is the default. Launch Boardedi t without setting the Find

dialog box and does not open any file of boards.

Boardedit nee.board

This opens the file of boards called nee. board.

Boardedit -base=nec.base,B2

This sets the treebank as being nee. base and sets the granularity to

Japanese characters.

Boardedit -3 -use=match -base=nec.base,B2 nee.board

This sets the treebank as being nee. base and sets the granularity to

Japanese characters. Boardedi t will open the file of boards nee. board. The

search method selected will be approximate matching and the threshold is

set to 3.

GS

Appendix C

ATRForestedit: a screen shot

Our wxForestedit component could be useful to other researchers. To make it

available, we have proposed to port it to the PC MS-'Windows environment,

under the form of an ActiveX component. ActiveX is a set of technologies

introduced by :Microsoft for MS-・windows.

Because we distinguish between two different types of potential users, we

proposed, and started to implement, two modules:

• An ActiveX control (OCX) for developers. ActiveX controls are inter-

active objects which can be inserted in any programming development

kit like MS Studio or Borland Delphi. An ActiveX control proposes to

developers a list of methods, properties and events to manage a compo-

nent. It is an interface to an object, hence it is not directly a runnable

software application.

• An ActiveX document for end-users. An ActiveX document is a stand-

alone application and a document insertable under any MS-Windows

application which supports ActiveX, making it possible to work on a

forest directly.

Figure C.l shows a screen shot of ATRForestedit under a MS-Windows

Application: MS Word 97.

69

s

NP ~ copula NP

II~ 了 IS d『 NP noun

This the nolun Office

Conference

from Cl, 4 follows thぷ thefundamental cr,or of reg江 dingfunctional notion, " catcgorial i, not
四bjectto• st,pul吐tonto place the coos四 chon,mto thm四 nou,categories. Presumably, th,s
selectionally inooduced contextual [ealu,e i, not to be conS<dcred in determming problem, of

--宕示 ., 心...否―''""''""'""~

Figure C.1: ATRForesteclit screen shot

70

Appendix D

TreeCanvas: a simplified user's

manual

TreeCanvas is a by-product of the Boardedi t tree editing facilities (see sec-

tion 2.2.1). It was implemented to develop and test all the tree editing

facilities. It is already available for internal use in ATR-ITL. There was also

a previous version of TreeCanvas (see section 2.3). It is designed to help

create or modify trees. It can handle, input, and output, many different for-

mats. TreeCanvas is a filter between the standard input and the standard

output. vVhen the TreeCanvas application is closed, it will output the edited

trees in the standard output.

In this appendix, we will show the prompt options of TreeCanvas, the

supported trees formats, and particularly an example of a LaTeX output.

D.1 Prompt option

use: TreeCanvas [-] [-T I -D I -F I -bra I -TeX I -¥¥ J
design: Yves Lepage

implementation: Nicolas Auclerc (1999)

job: open a tree canvas with an empty forest (unless option -is given),

and write the edited forest in the standard output

on exiting the canvas

71

options:

read a forest from standard input

(feature structure,

parenthesised form (with or without intervals),

drawn form,

bracketed form)

-T:

-D:

-F:

-bra:

-¥¥, -TeX:

output is parenthesised form on one line (default)

output is drawn form

output is feature structure

output is constituent bracketing convention

output is LaTeX (antree.sty package of LaTeX2e)

D.2 Supported tree formats

For example, we are going to ask TreeCanvas to input a tree in parenthesised

format and to output it in another format. Here is an example of a tree in

paranthesisecl form: VP(V(reserve) ,NP(det (a) ,N(room))) . Figure D.l

shows its drawn form.

D.2.1 -F: feature structure

[[VP [[V reserve] [NP [[det a] [N room]]] J]]

D.2.2 -D: drawn forn1

VP
_____ I __ _

V NP
I ___ I_

reserve det N

I
a room

D.2.3 -bra: consituent bracketing convention

[VP [V reserve VJ [NP [det a det] [N room NJ NP] VP]

ぅl[
I

ゞ
.,,...,..,../ ",

＼
'・ダ

／

V~Jp
/¥
I ¥

I¥ res e tve d et f・・.J

a room

Figure D.l: Graphical display of a tree in TreeCanvas

This format is used in the ATR-Lancaster treebank [Black et al. 96] (see

section 2.1).

D.2.4 -TeX: LaTeX

% Use with: ¥usepackage{antree}

¥begin{antree}{VP}

¥link{¥begin{node}{V}

¥link{¥leaf{reserve}}

¥end{node}}

¥link{¥begin{node}{NP}

¥link{¥begin{node}{det}

¥link{¥leaf{a}}

¥end{node}}

¥link{¥begin{node}{N}

¥link{¥leaf{room}}

¥end{node}}

3

I

、i

¥end{node}}

¥end{antree}

Figure D.2 shows the result of the compilation by LaTeX of the previous

text. This is uses the special aniree style.

Figure D.2: Result obtained by the LaTeX antree style

74

Index

A
analogy

analysis by ~, 13, 35, 42

analysis, 4, 6

analysis by analogy, 13, 35, 42

approximate matching, 12

arrow key, 27

ATR-Lancaster treebank, 10, 71

ATRForestedit OCX, 33

B
bclForestedit, 32

bi-directionality, 6

board, 5

C
click

double~, 11

triple ~, 11
clipboard

edition with ~, 28

closest match, 35, 42

constituency structure, :3

controller, 29-33

copy, 28, 37

correspondence, 7

cut, 28

D
dependency structure, 2

directionality, 6

double click, 11

drag and drop, 29, 37

E
edit transaction, 25
edition

tree ~, 23-29

edition with clipboard, 28

edition with keyboard, 28

edition with mouse, 28

exact match, 35, 42

F
Find dialog box, 35-37

G
generation, 4, 6
granularity, ;35

GTK+, 19, 21

I
internationalisation, 44, 52-53

2

5
 ，

 ，

ー;L

，

7

ーL

＇
ーL

ーー

，

6

3
 ，

e

s

e

ーーa

J
a
p

J

K
key

arrow~, 27

75

return ~, 27
shift arrow ~, 27

keyboard
edition with ~, 28

7

4

4

4
 ，

e

Leal ゚
・＿

M
match

closest ~, 35, 42
exact ~, 35, 42

matching
approximate~, 12

mouse
edition with ~, 28

MVC model, 29-31

T
transfer, 4
tree edition, 23-29

treebank, 10, 36
ATR-Lancaster ~, 10, 71

Upenn ~, 10
treecanvas ， 16
TreeCanvas, 33

treecanvas ， 14
triple click, 11

u
Upenn treebank, 10

V
viewport, 29-32

N
non-directionality, 6

w
wxForestedit, 31-33
wxvVindows, 19, 20

7

3
 ，

8

2] ，

e

past p

y
YLlib, 19, 22

R
return key, 27

s

selection, 11
shift arrow key, 27

signifiant, 2

signifie, 2
space bar, 26

strucしuralism,2

structure

constituency ~, :3

dependency ~, 2

76

