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This technical report describes the author’s one-year study on discourse processing which
covered two research subjects: devising a new speech act type tagging system and investigating
the use of the tags in machine translation. We describe a new efficient speech act type tagging
system in the first part of this technical report. This system covers the tasks of (1) segmenting
a turn into the optimal number of speech act units (SA units), and (2) assigning a speech act
type tag (SA tag) to each SA unit. Our method is based on a theoretically clear statistical model
that integrates linguistic, acoustic and situational information. We report tagging experiments
on Japanese and English dialogue corpora manually labeled with SA tags and then discuss the
performance difference between the two languages. We then describe the problem of translation
of positive response expressions using SA tags. We describe the use of speech act type tags for
translating Japanese and English positive response expressions in the second half of this report.
Positive responses quite often appear in task~oriented dialogues like those in our tasks. They are
often highly ambiguous and problematic in speeeh translation. We will show that these expressions

can be effectively translated with the help of dialogue information, SA tags.
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2.2 The Problems 1

1 General Introduction

This technical report describes the author’s one-year study on discourse processing which covers two
research subjects: devising a new speech act type tagging system1 and investigating the use of the tags in
machine translation. We describe a new efficient speech act type tagging system in the first part of this
report. The system covers the tasks of (1) segmenting a turn into the optimal number of speech act units
(SA units), and (2) assigning a speech act type tag (SA tag) to each SA unit. Our method is based on
a theoretically clear statistical model that integrates linguistic, acoustic and situational information. We
report tagging experiments on Japanese and English dialogue corpora manually labeled with SA tags and
then discuss the performance difference between the two languages.

We describe the use of speech act type tags for translating Japanese and English positive response
expressions in the second half of this technical report. Positive responses such as “Hai” and “Soudesu-ka”
quite often appear in task—oriented dialogues like those in our tasks. They are highly ambiguous, and the
mis-translation seriously damages the communication. Imagine a situation that the system interprets a
speakers intention underlying “Hai” as acceptance while dactual intention is a mere acknowledgment. We will
show that these expressions can be better translated with the help of dialogue information, SA tags.

2 Speech Act Type Tagging System

2.1 Introduction

This part describes a statistical speech act type tagging system that utilizes linguistic, acoustic and
situational features. This work can be viewed as a study on automatic “Discourse Tagging” whose objective
is to assign tags to discourse units in texts or dialogues. Discourse tagging is studied mainly from two different
viewpoints, i.e., linguistic and engineering viewpoints. The work described here belongs to the latter group.
More specifically, we are interested in automatically recognizing the speech act types of utterances and in
applying them to speech translation systems. ’

Several studies on discourse tagging to date have been motivated by engineering applications. The early
studies by [1] and [2] showed the possibility of predicting dialogue act tags for next utterances with statistical
methods. These studies, however, presupposed properly segmented utterances, which is not a realistic
assumption. In contrast to this assumption, automatic utterance segmentation (or discourse segmentation)
is desired here.

Discourse segmentation in linguistics, whether manual or automatic, has also received keen attention
because such segmentation provides the foundation of higher discourse structures [3]. Discourse segmentation
has also received keen attention from the engineering side because the natural language processing systems
that follow the speech recognition system are designed to accept linguistically meaningful units [4]. There
has been a lot of research following this line such as [4] [5], to only mention a [ew.

We can take advantage ol these studies as a pre-process for tagging. In this report, however, we propose
a statistical tagging system that optimally petforms segmentation and tagging at the same time. Previous
studies like [6] have pointed out that the use of a multiple information source can contribute to better
scgmentation and tagging, and so our statistical model integrates linguistic, acoustic and situational infor-
mation. »

The problem can be formalized as a search problem on a word graph, which can be efficiently handled by
an extended dynamic programming algorithm. Actually, we can efficiently find the optimal solution without

limiting the search space at all.

2.2 The Problems

In this sub-section, we briefly explain our speech act type tags and the tagged data and then formally

define the tagging problem.
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(2.2.1) Data and Tags

The data used in this study is a collection of transcribed dialogues on a travel arrangement task between
Japanese and English speakers mediated by interpreters [7]. The transcriptions were separated by language,
i.e., English and Japanese, and the resultant two corpora share the same content. Both transcriptions went
through morphological analysis, which was manually checked. The transcriptions have clear turn boundaries
(TB’).

Some of the Japanese and English dialogue files were manually segmented into speech act units (SA units)
and assigned with speech act type tags (SA tags) according to the tagging manuals[9, 10]. The SA tags
represent a speaker’s intention in an utterance, and is more or less similar to the traditional illocutionary
force type [8].

The SA tags for the Japanese language were based on the set proposed by [9] and had 29 types. The
English SA tags were based on the Japanese tags, but we redesigned and reduced the size to 19 types [10].
1 We believed that an excessively detailed tag classification would decrease the inter-coder reliability and so
pruned some detailed tags.?

The following lines show an example of the English tagged dialogues. T'wo turns uttered by a hotel clerk
and a customer were segmented into SA units and assigned with SA tags.

<clerk’s turn>

Hello, (ezpressive)

New York City Hotel, (inform)

may I help you 7 (offer)

<customer(interpreter)’s turn>

Hello, (ezpressive)

my name is Hiroko Tanaka (inform)

and I would like to make a reservation for a room at your hotel. (desire)

The tagging work to the dialogue was coﬁducted by experts who studied the tagging manual beforehand.

The manual described the tag definitions and turn segmentation strategies and gave examples. The work
involved three experts for the Japanese corpus and two experts for the English corpus.?

The result was checked and corrected by one expert for each language. Therefore, since the work was
done by one expert, the inter—coder tagging instability was suppressed to a minimum. As the result of the
tagging, we obtained 95 common dialogue files with SA tags for Japanese and English and used them in our
experiments. The complete tag list and the frequency distribution in the 95 dialogue files will be presented

in sub-section (2.5.1).

(2.2.2) Problem Formulation

Our tagging system assumes an input of a word sequence for a dialogue produced by a specch recognition
system. The word sequence is accompanied with clear turn boundaries. llere, the words do not contain any
punctuation marks. The word sequence can be viewed as a sequence of quadruples:

o (wisy, o, a1, 8i-0), (wi L aq, i) -

where w; represents a surface wordform, and each vector represents the following additional information for

wj.

!English tags contain 17 main tags and two supplementary tags that are specially assigned to the beginning and ending

utterances of a dialogue.
5 . . . .
“Japanese tags, for example, had four tags mainly used for dialogue endings: thank, offer—follow—up, good-wishes, and
farewell, most of which were reduced to expressive in English.

3They did not listen to the recorded sounds in either case.
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I;: canonical form and part of speech of w; (linguistic feature)
a;: pause duration measured milliseconds after w; (acoustic feature)
s;: speaker’s identification for w; such as clerk or customer (situational feature)

Therefore, an utterance like Hello I am John Phillips and ... uttered by a customer is viewed as a sequence
like
(Hello, (hello, INTER), 100, customer), (I,(i, PRON),0, customer)), (am, (be, BE), 0, customer)

From here, we will denote a word sequence as W = wy, ws, ... w;, ..., w, for simplicity. However, note that
W is a sequence of quadruples as described above.

The task of speech act type tagging in this paper covers two tasks: (1) segmentation of a word sequence
into the optimal number of SA units, and (2) assignment of an SA tag to each SA unit. Here, the input is
a word sequence with clear TB’s, and our tagger takes each turn as a process unit. *

In this paper, an SA unit is denoted as u and the sequence is denoted as U. An SA tag is denoted as ¢
and the sequence is denoted as T'. &{ represents a sequence of r starting from s to e. Therefore, t{ represents
a tag sequence from 1 to j. A

The task is now formally addressed as follows: find the best SA unit sequence U and tag sequence T for
each turn when a word sequence W with clear TB’s is given. We will treat this problem with the statistical

model described in the next section.

2.3 Statistical Model

The problem addressed in sub—section 2.2 can be formalized as a search problem in a word graph that
holds all possible combinations of SA units in a turn. We take a probabilistic approach to this problem,
which formalizes it as finding a path (Tj, T) in the word graph that maximizes the probability P(U, T | W).
This is formally represented in equation (1). This probability is naturally decomposed into the product of
two terms as in equation (3). The first probability in equation (3) represents an arbitrary word sequence
constituting one SA unit u;, given h; (the history of SA units and tags from the beginning of a dialogue,
h; = ujll_jL , t{_l) and input W. The second probability represents the current SA unit u; bearing a particular

SA tag t;, given u;, hj, and W.

(U, T) = argmaxP(U,T | W), (1)
urT
k
= argmax || P(uj,t; | by, W), (2)
T j=1
k
= argmax || P(u; | hj, W)
) ji=1
X P('lj I Uj, ]Lj,W). (3)

We call the first term “unit existence probability” Pp and the second term “tagging probability” Pp. Figure |
shows a simplified image of the probability calculation in a word graph, where we have finished processing
the word sequence of w]™".

Now, we estimate the probability for the word sequence wi*?~! constituting an SA unit u; and having a
particular SA tag ¢;. Because of the problem of sparse data, these probabilities are hard to directly estimate

from the training corpus. We will use the following approximation techniques.

(2.3.1) Unit Existence Probability

The probability of unit existence Pg is actually equivalent to the probability that the word sequence

Wy, ..., Wspp—1 €Xists as one SA unit given h; and W (Fig. 1).

4 Although we do not explicitly represent TB’s in a word sequence in the following discussions, one might assume virtual TB

markers like @ in the word sequence.
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Figure 1: Probability calculation.

‘We then approximate Pg by

PE ~ P(Bws..1,ws =1 I h]',W)

XP(Bws-l-y—lyws-l-y =1 |hj7W)
s+p—2

X H P(me:wm+l =0 l hj7W)? (4)
m=s

where the random variable B, v,,, takes the binafy values 1 and 0. A value of 1 corresponds to the
existence of an SA unit boundary between w, and wy;4;, and a value of 0 to the non-existence of an SA
unit boundary. Pg is approximated by the product of two types of probabilities: for a word sequence break
at both ends of an SA unit and for a non—break inside the unit. Notice that the probabilities of the former
type adjust an unfairly high probability estimation for an SA unit that is made fronr a short word sequence.

The estimation of Pg is now reduced to that of P(By, w,,, | ij, W). This probability is estimated by

~a probabilistic decision tree and we have
P(Bw:,wz+1 | hj, W) ~ P(wa,wz.;.l | @ (h;, W)),

where ®g is a decision tree that categorizes h;, W into equivalent classes [11]. We modified C4.5 [12] style
algorithm to produce probability and used it for this purpose. The decision tree is known to be effective
for the data sparseness problem and can take different types of parameters such as discrete and continuous
values, which is useful since our word sequence contains both types of features.

Through preliminary experiments, we found that /; (the past history of tagging results) was not useful
and discarded it. We also found that the probability was well estimated by the information available in a
short range of r around w,, which is stored in W. Actually, the attributes used to develop the tree were in
W' = witl . surface wordforms for witl_ ;, parts of speech for wi’ |, and the pause duration between
w, and wg4). The word range » was set from 1 to 3 as we will report in sub—section (2.5.3).

As a result, we obtained the final form of Pg as

PE e P(Bw,_l,w, =1 I (DD(W/))

x P(Bll’s+p—-1,ws+p =1 ] (DE(WI))

) s+p—2

x [I PBumwns =0]Pa(W)). (5)
m=s

(2.3.2) Tagging Probability

The tagging probability Pr was estimated by the following formula utilizing a decision tree 7. Two

functions named f and g were also utilized to extract information from the word sequence in ;.

PT ~ P(ij I (I)T(j’(ltj),g(‘Llj),ij_l, e )tj-—m.)) (6)
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Table 1: Profile of both corpora.

Counts . Japanese English
Turn 2,020 2,020
SA unit 5,416 4,675
Morplieme 38,418 27,639
POS types 30 33
SA tag type 29 17

As this formula indicates, we only used information available with the u; and m histories of SA tags in h;.
The function f(u;) outputs the speaker’s identification of u;. The fuuction g(u;) extracts cue words for the
SA tags from u; using a cue word list. The cue word list was extracted from a training corpus that was
manually labeled with the SA tags. For each SA tag, the 10 most dependent words were extracted with a
x?-test. After converting these into canonical forms, they were conjoined.

To develop a statistical decision tree, we used an input table whose attributes consisted of a cue word
list, a speaker’s identification, and m previous tags. The value for each cue word was a binary value, where
1 was set when the utterance u; contained the word, or otherwise 0. The effect of f(u;), g(u;), and length

m for the tagging performance will be reported in sub—section (2.5.3).

2.4 Search Method

A search in a word graph was conducted using the extended dynamic programming technique proposed
by Nagata[13]. This algorithm was originally developed for a statistical Japanese morphological analyzer
whose tasks are to determine boundaries in an input character sequence having no separators and to give
an appropriate part of speech tag to each word, i.e., a character sequence unit. This algorithm can handle
arbitrary lengths of histories of pos tags and words and efficiently produce n—-best results.

We can see a high similarity between our task and Japanese morphological analysis. Qur task requires
the segmentation of a word sequence instead of a character sequence and the assigniment of an SA tag instead
of a pos tag.

The main difference is that a word dictionary is available with a morphological analyzer. Thanks to
its dictionary, a morphological analyzer can assume possible morpheme boundaries. ® Qur tagger, on the
other hand, has to assume that any word sequence in a turn can constitute an SA unit in the search. This

difference, however, does not require any essential change in the search algorithm.

2.5 Tagging Experiments
(2.5.1) Data Profile

We have conducted several tagging expertments on both the Japanese and Engl'ish corpora described
in sub-section (2.2.1). Table 1 shows a summary of the 95 files used in the experiments. In the experi-
ments described below, we used morpheme sequences for input instead of word sequences and showed the
corresponding counts. )

The average number of SA units per turn was 2.68 for Japanese and 2.31 for English. The average
number of boundary candidates per turn was 18 for Japanese and 12.7 for English. The number of lag
types, the average number of SA units, and the average number of SA houndary candidates indicaled that
the Japanese data were more difficult to process.

Table 2 shows the SA tag distribution in the Japanese corpus. Table 3 shows the SA tag distribution in
the English corpus. Table 4 shows the Japanese part of speech tag distribution in the corpus, and Table 5

shows the English counterpart.

% Also, the probability for the existence of a word can be directly estimated from the corpus.
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Table 2: Frequency distribution of SA tags in Japanese corpus.

Tag type Frequency
INFORM 1496
TEMPORIZER 671
ACKNOWLEDGE 538
CONFIRMATION-QUESTION 350
ACCEPT 280
ACTION-REQUEST 256
WH-QUESTION 246
YES - 181
THANK 178
INFORMATION-REQUEST 171
YN-QUESTION 147
DESIRE 129
APOLOGY 113
GREET 103
FAREWELL 100
PERMISSION-REQUEST 79
VOCATIVE 66
BELIEVE 62
EXPRESSIVE 57
PROMISE 33
OFFER 31
ALERT 27
SUGGLEST 21
NO 19
OFFER-FOLLOW-UP 17
INSTRUCT 13
GOOD-WISHES 13
THANKS-RESPONSE 13

REJECT 6




2.5 Tagging Experiments 7

Table 3: Frequency distribution of SA tags in English corpus.

Tag type Frequency
INFORM 1385
EXPR 562
ACKNOWLEDGE 560
INFO-REQ 404 .
CONFIRM 383
AFFIRM 263
TFQ 261
ACCEPT 204
ACT-REQ 163
DESIRE 161
OFFER 129
ALERT 95
NEGATE 31
PROMISE 30
SUGGEST 29
INSTRUCT 14
REJECT 1

(2.5.2) Evaluation Methods

We used “labeled bracket matching” for evaluation [13]. The result of tagging can be viewed as a set of
labeled brackets, where brackets correspond to turn segmentation and their labels correspond to SA tags.
With this in mind, the evaluation was done in the following way. We counted the number of brackets in the
correct answer, denoted as R (reference). We also counted the number of brackets in the tagger’s output,
denoted as S (system). Then the number of matching brackets was counted and denoted as M (match).
Thus, we could define the precision rate with M/S and the recall rate with A//R.

The matching was judged in two ways. One was “segmentation match”: the positions of both starting
and ending brackets (boundaries) were equal. The other was “segmentation+tagging match”: the tags of
both brackets were equal in addition to the segmentation match.

The proposed evaluation simultaneously confirmed both the starting and ending positions of an SA unit
and was more severe than methods that only evaluate one side of the boundary of an SA unit. Notice that

the precision and recall for the segmentation+tagging match is bounded by those of the segmentation match.

(2.5.3) Tagging Results

The total tagging performance is aflected by the two probability terms Pg and P, both of which contain
the parameters in Table 6. To find the best parameter set and see the ellect of each parameter, we conducted

the following two types of experiments.

I Change the parameters for Pg with fixed parameters for Pr

The effect of the parameters in Pg was measured by the segmentation match.

IT Change the parameters for Pp with fixed parameters for Pg
The effect of the parameters in Pp was measured by the segmentation+tagging match.

Now, we report the details with the Japanese set.
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Table 4: Frequency distribution of part of speech tags in Japanese corpus.

Part of speech  Frequency

R
BhEhE
SRR
i
HEhEA
&N
BE®
B
ERBhF
RLIED)
HEN BN
#BhEA
HEGE
I
G

H
BEsEd
FARBhE
% 4 57
e
(WZED)
AN
HEAR B
Iz
iz
i 37 B 5
il B &l
5| FABhE
AR5
0l

6264
4965
3287
2823
2532
2158
2065
1505
1379
1180
1151
1083
1036
818
761
732
731
716
970
553
451
427
412
257
192
192
168
157
122
19
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Table 5: Frequency distribution of part of speech tags in English corpus.

Part of speech  Frequency
CN 4047
NUM 3382
PRON 2938
A% 2651
DET 2503
PREP 2463
BEV 1709
ADJ 1359
AUXV 1333
CONJ 1111
INTERJ 1052
PROPN 1004
ADV 786
DETADJ 231
WHPRON 177
CONJADV 165
LETTER 153
PRENOM 138
PREADV 133
EX 130
WHADV 38
LOCADYV 65
WHADJ 49
HAVEAUXYV 40
PNOM 35
NOT 28
PRONADV 11
WHYV 11
VPREP 9
3S 8
WIICONJ 8
HOWADV 4
ADJTO 3

Table 6: Parameters in probability terms.

Pg Pr

Lt

we iy Sf(uj): speaker of u;

r: word range | g(u;): cue words In u;
tj_1...1j_m: previous SA tags
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Table 7: Average accuracy for segmentation match (J).

Parameter Recall rate %  Precision rate %

A 89.50 91.99
B - - 91.89 92.92
C 92.00 92.57
D 92.20 92.58

Table 8: T-scores for segmentation accuracies (J).

Recall Precision
A B C A B C
B | 284 - - | B|1.25 - -
C| 271 0.12 -1 C 1083 044 -
D257 028 017D {074 039 0.01

(2.5.4) Effects of Pr with Japanese Data

We fixed the parameters for Pr as f(u;), g(u;), tj_1, Le., a speaker’s identification, cue words in the
current SA unit, and the SA tag of the previous SA unit. The unit existence probability was estimated using

the following parameters.

(A): Surface wordforms and pos’s of w%+!, ie., word range r = 1
(B): Surface wordforms and pos’s of wZ*?, i.e., word range » = 2
(C): (A) with a pause duration between w;, wz41

(D): (B) with a pause duration between wy, wz41

Under the above conditions, we conducted 10-fold cross-validation tests and measured the average recall
and precision rates in the segmentation match, which are listed in Table 7.

We then conducted t-tests among these average scores. Table 8 shows the t-scores between different
parameter conditions. In the following discussions, we will use the following t-scores: {4=0.025(18) = 2.10
and t4-0.05(18) = 1.73.

We can note the following features from Tables 7 and 8.

o recall rate
(B), (C), and (D) showed statistically significant (two-sided significance level of 5%, i.e., { > 2.10)

improvement from (A). (D) did not show significant improvement from either (B) nor (C).

e precision rate
Although (B) and (C) did not improve from (A) with a high statistical significance, we can observe

the tendency of improvement. (1)) did not show a significant difference from (B) or (C).

We can, therefore, say that (B) and (C) showed equally significant improvement from (A): expansion of the
word range r from 1 to 2 and using pause information with word range 1. The combination of word range

2 and pause (D), however, did not show any significant differences from (B) or (C). We believe that the

combination resulted in data sparseness.
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Table 9: Average accuracy for seg.+tag. match (J).

Parameter Recall rate %  Precision rate %
E 72.25 72.70
F 74.91 75.35
G 74.83 75.29
H 74.50 74.96

Table 10: T-scores for seg.+tag. accuracies (J).

Recall Precision
E F G E F G
1.87 - - 1.97 - -
1.78 0.05 - 1.90 0.04 -

1.50 0.26 0.21

1.60 0.28 0.24

(2.5.5) Effects of Pr with Japanese Data

For the Type II experiments, we set the parameters for Pg as condition (C): surface wordforms and

pos’s of wE*! and a pause duration between w; and wgy4i. Then, Pr was estimated using the following

parameters.

(E): Cue words in utterance uj, i.e., g(u;)

(F): (E) with t;_;

(G): (E) with t;_; and t;_»

(H): (E) with ¢;_; and a speaker’s identification f(u;)

The recall and precision rates for the segmentation+tagging match were evaluated in the same way as in the

previous experiments. The results are shown in Table 9. The t-scores among these parameter setting are

shown in Table 10. We can observe the following features.

e recall rate

(F) and (G) showed an improvement from (E) with a two-sided significance level of 10% (¢ > 1.73).
However, (G) and (H) did not show significant improvements from (F).

e precision rate

Same as recall rate.

Here, we can say that ¢;., together with the cue words (F) played the dominant role in the SA tag

assignment, and the further addition of history ;_» (G) or the speaker’s identification f(u;) (1) did not

result in significant improvements.

{2.5.6) Summary of Japanese Tagging Experiments

As a concise summary, the best recall and precision rates for the segmentation match were obtained with
conditions (B) and (C): approximately 92% and 93%, respectively. The best recall and precision rates for
the segmentation+tagging match were 74.91% and 75.35 %, respectively (Table 9 (F')). We consider these

figures quite satisfactory considering the severeness of our evaluation scheme.
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Table 11: Average accuracy for segmentation match (E).

Parameter Recall rate % Precision rate %
A’ 71.92 78.10
B’ 71.29 76.76

Table 12: T-scores for segmentation accuracies (E).

Recall Precision
A7 A’
B’ | 030 | B |0.74

(2.5.7) Effects of Pg with English Data

We will discuss the experiments with English data. The English corpus experiments were similar to the
Japanese ones. For the SA unit segmentation, we changed the word range r from 2 to 3 while fixing the
parameters for Pr to (H). Experiments with pause information were not conducted as necessary data was
not available. We therefore had the following two conditions.

(A%): Surface wordforms and pos’s of w?*?  i.e., word range » = 2

(B’): Surface wordforms and pos’s of wgfg, i.e., word range r = 3

The average segmentation match is listed in Table 11. i-scores between the two conditions are listed
in 12.

We obtained the best results with word range » = 2, i.e., (B’). The recall rate was 71.92% and the
precision rate was 78.10%. We cannot observe any significant effect in changing the word range from 2 to 3.

(2.5.8) Effects of Pr with English Data

We conducted the exact same tagging experiments as the Japanese ones by fixing the parameter for Pg
to (A’). The average segmentation+tagging accuracy was shown in Table 13 and the (- scores were shown
in Table 14. These figures show that all conditions did not show any significant difference. We should
say adding any information including the previous tag to the cue words did not improve the accuracy. We
consider this was due to the poor segmentation performance. Poor segmentation affects the tag prediction.
Since the previous tag was also obtained through prediction, addition of the tag did not work.

We obtained lower performance than that for Japanese. This was somewhat surprising since we thought

Euglish would be easier to process. We will further discuss the difference in sub—section 2.6.

Table 13: Average accuracy for seg.+tag. match (E).

Parameter Recall rate %  Precision rate %
(E) 52.75 57.44

(F) 51.99 56.58

(G) 50.59 54.98

(H) 53.17 57.75
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Table 14: T-scores for seg.+tag. accuracies(E).

Recall Precision
(E) (F) (G) (E) (F) (G
(F) | 0.23 - - | (F) | 0.32 - -
(G) | 0.83 0.55 -1(G) {099 061 -
(H) | 0.24 044 1.00 | (H) |0.11 0.40 1.03

2.6 Related Works and Discussions

In sub-section (2.5.3), we showed that Japanese segmentation into SA units was quite successful only
with lexical information, but English segmentation was not that successful.

Although we do not know of any experiments directly comparable to ours, a recent work reported by [5]
seems to be similar. In that paper, they worked on finding semantic boundaries in Ttalian dialogues with the
“appointment scheduling task.” Their semantic boundary nearly corresponds to our SA unit boundary. (5]
reported recall and precision rates of 62.8% and 71.8%, respectively, which were obtained with insertion and
deletion of boundary markers. These scores are clearly lower than our results with a Japanese segmentation
match.

Although we should not jump to a generalization, we are tempted to say the Japanese dialogues are
easier to segment than western languages. With this in mind, we would like to discuss our study.

First of all, was the manual segmentation quality the same for both corpora? As we explained in sub-
section (2.2.1), both corpora were tagged by experts, and the entire result was checked by one of them for
each language. Therefore, we believe that there was not such a significant gap in quality that could explain
the segmentation performance.

Secondly, which lexical information yielded such a performance gap? We investigated the effects of
part-of-speech and morphemmes in the segmentation of both languages. We conducted the same 10-fold
cross—validation tests as in sub-section (2.5.3) and obtained 82.29% (recall) and 86.16% (precision) for
Japanese using only pos’s in w®¥? for the Pg calculation. English, in contrast, marked rates of 65.63% (re-
call) and 73.35% (precision) under the same condition. These results indicated the outstanding effectiveness
of Japanese pos’s in segmentation. Actually, we could see some pos’s such as “ending particle (shu-jyoshi)”
which clearly indicate sentence endings and we considered that they played important roles in the segmen-
tation. English, on the other liand, did not seem to have such strong segment indicating pos’s. Although
lexical information is important in English segmentation [4], what other information can help improve such
segmentation?

Hirschberg and Nakatani [14] shiowed that prosodic information helps human discourse segmentation.
Litman and Passonneau [6] addressed the usefulness of a “multiple knowledge source” in human and au-
tomatic discourse segmentation. Venditti and Swerts[15] stated that the intonational features for many
Indo-Luropean languages help cue the structure of spoken discourse. Cettolo and Falavigna [5] reported
improvements in Italian semantic boundary detection with acoustic information. All of these works indicate
that the use of acoustic or prosodic information is useful, so this is surely one of our future directions.

The use of higher syntactical information is also one of our directions. The SA unit should be a meaning(ul
syntactic unit, although its degree ol meaningfulness may be less than that in written texts. The goodness

of this aspect can be easily incorporated in our probability term Pg.

3 Application of SA tags to speech translation

In this section, we will discuss an application of SA tags to a machine translation task. This is one of
the motivations of the automatic tagging research described in the previous sections. We actually dealt with
the translation problem of positive responses appearing in both Japanese and English dialogues.

Japanese positive responses like Hai and Soudesuka, and the English ones like Yes and I see appear quite
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Table 15: Representation forms and the counts.

Japanese freq. | English freq.
Kekkou 69 | I understand 6
Soudesu ka 192 | Great 5
Hai 930 | Okay 240
Soudesu 120 | I see 136
Mochiron 7 | All right 136
Soudesu ne 16 | Very well 13
Shouchi 30 | Certainly 27
Wakari— Yes 359
mashita 304 | Fine 52
Kashikomari- Right 10
mashita 300 | Sure 44
Very good 9

Total 1,968 | Total 1,037

often in our corpus. Since our dialogues were collected from the travel arrangement domain, which can
basically be viewed as a sequence of a pair of questions and answers, they naturally contain many of these
expressions. ‘

These expressions are highly ambiguous in wordsense. For example, Hai can mean Yes (accep?), Uh
huh (acknowledgment), hello (greeting) and so on. Incorrect translation of the expression could confuse the
dialogue participants. These expressions, however, are short and do not contain enough clues for proper
translation in themselves, so some other contextual information is inevitably required.

We assume that SA tags can provide such necessary information since we can distinguish the translations
by the SA tags in the parentheses in the above exanples.

We conducted a series of experiments to verify if positive responses can be properly translated using SA
tags with other situational information. We assumed that SA tags are properly given to these expressions
and used the manually tagged corpus described in Table 1 for the experiments.

We collected Japanese positive responses from the SA units in the corpus. After assigning an English
translation to each expression, we categorized these expressions into several representative forms. For ex-
ample, the surface Japanese expression Fe, Kekkou desu was categorized under the representative form
Kekkou. )

We also made such data for English positive responses. The size of the Japanese and English data in
representative forms (equivalent to SA unit) is shown in Table 15. Notice that 1,968 out of 5,416 Japanese SA
units are positive responses and 1,037 out of 4,675 English SA units are positive responses. The Japanese
data contained 16 types of English translations (Table 16) and the English data contained 12 types of
Japanese translations (Table 17).

We examined the effects of all possible combinations of the following four leatures on translation accuracy.
We trained decision trees with the C4.5 [12] type algorithm while using these features (in all possible

combinations) as attribntes.

(I): Representative form of the positive response

(J): SA tag for the positive response

(K): SA tag for the SA unit previous to the positive response
(L): Speaker (Hotel/Clerk)

Ve will show some of the results. Table 18 shows the accuracy when using one feature as the attribute.

VWe can naturally assume that the use of feature (I) gives the baseline accuracy.
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Table 16: English translation distribution for Japanese positive responses.

That’s correct 2
That’s all right 4
Yes, I am 2
Thank you 8
That won’t be necessary 4
No, that’ll be all 4
Really? 6
Sure 6
Certainly 3
null 183
That’ll be fine 46
Yes, that’s right 111
Yes 373
Okay 673
I see 408
Hello 135
total 1,968

Table 17: Japanese translation distribution for English positive responses.

Vi, EyniLFIFLT 4
KLERTT 3
BLHITITSVETH 6
v, TEVET 2
T 289
Fv, BEWLET 7
G FELL 243
T, #HTY 58
null 56
sLZERFELAL . 238
) TEh 53
v, 95T 78
total 1,037

Table 18: Accuracies with one feature.

Feature JtoE (%) E tol (%)

I 54.83 46.96
J 51.73 34.33
K 73.02 55.35

L 40.09 37.80
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Table 19: Best performance for each number of features.

Features | J to E (%) t'| Etod (%) t
K 73.02 - 55.35 -

K,I 88.51 15.42 60.66 3.10
KIL| 88.92 051 | 6558  2.49
KILJ | 8821 075 | 6674 055

The result gives us a strange impression in that the SA tags for the previous SA units (K) were far more
effective than the SA tags for the positive responses themselves (7). This phenomenon can be explained by
the variety of tag types given to the utterances. A positive response expressions of the same representative
form have at most a few SA tag types, say two, whereas the previous SA units can have many SA tag types.
If a positive response expression possesses five translations, they cannot be translated with two SA tags.

Table 19 shows the best feature combinations at each number of features from 1 to 4. The best feature
combinations were exactly the same for both translation directions, Japanese to English and vice versa. The
percentages are the average accuracy obtained by the 10—fold cross—validation, and the ¢—score in each row
indicates the effect of adding one feature from the upper row. We again admit a t—score that is greater than
2.01 as significant (two-sided significance level of 5 %).

The accuracy for Japanese translation was saturated with the two features (K) and (I). Further addition
of any feature did not show any significant improvement. The SA tag for the positive responses did not
work.

The accuracy for English translation was saturated with the three features (K), (I), and (L). The speaker’s
identification proved to be effective, unlike Japanese. This is due to the necessity of controlling politeness in
Japanese translations according to the speaker. The SA tag for the positive responses did not work either.

These results suggest that the SA tag information for the previous SA unit and the speaker’s information
should be kept in addition to representative forms when we implement the positive response translation

system together with the SA tagging system.

4 Conclusions

We have described a new eflicient statistical speech act type tagging system based on a statistical model
used in Japanese morphological analyzers. This system integrates linguistic, acoustic, and situational features
and efliciently performs optimal segmentation of a turn and tagging. From several tagging experiments, we
showed that the system segmented turns and assigned speech act type tags at high acéuracy rates when
using Japanese data. Comparatively lower performance was obtained using English data, and we discussed
the performance difference. We also examined the effect of parameters in the statistical models on tagging
performance. We finally showed that the SA tags in this paper are useful in translating positive responses

that often appear in task—oriented dialogues such as those in ours.
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