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ABSTRACT 

Producing new speech databases for CHATR, a multi-speaker, multi-

lingual speech synthesis system, is an important task which in the 

past had been accomplished by having a speaker read an arbitrary 

text. This paper discusses ways to facilitate the recording process, in 

particular, the selection of the input text based on a set of phonetic 

units and a phonotactic model of the target language, and outlines 

the design of an interactive recording and labeling tool. 
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Introduction 
CHA TR is a multi-speaker speech synthesizer which works by concatenating segments selected from a 
pre-recorded speech database to form a new utterance. Thus, to introduce a new speaker, or language, to 
the synthesizer, a new speech database must be created. 

Currently, in order to record a new database, speakers either read a short novel of their choice, or read a 
special set of sentences that guarantee maximum coverage of the sounds occurring in the language. Such 
sets for English are the 200 sentences and TIMIT sentences. However, these sentences are usually not 
connected at all and are difficult to read for the speaker. The result is that the speaker's voice sounds 
bored and has an unnatural intonation. Also, because the text aims at the maximum entropy of phonetic 
information, its contents are too 11dense11 to provide sufficient variety in prosody of the more frequent 
sound sequences. Both these factors are detrimental to the synthesis. 

If we do not use a special collection of sentences, we must rely on quantity of recorded data to provide a 
good coverage of the sounds of the language and of their various contexts. Of course, quantity does not 
necessarily mean quality. Ideally, we would like to be able to construct a text that is easy to read with 
sentences that are somewhat related in meaning, while at the same time ensures a balanced coverage of 
acoustic information. Furthermore, besides automatically constructing a text, it would be desirable to 
automate the entire process of recording speech, labeling the waveforms, and adjsting the remaining text 
to reflect the actual phonemes and prosody in the database. 

In this paper we will attempt to first define what it means for a phonetic corpus to be balanced, using 
probabilistic language modelling, then study the balance in several existing databases, focusing on 
acoustic balance and comparing several ways to construct models based on different unit sets. Then we 
will suggest several methods for automatic text selection and describe step-by-step the general design of 
a recording and labeling tool. 
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Definition of Database Balance 

The Maximum Entropy Approach 

Database balance can be defined in several ways. In the past, there were attempts to acheive a balance of 
the phonetic content of the database. The goal was to maximize the number of various biphones 
recorded from reading of the minimum required text. The result was a text, consisting of several hundred 
isolated sentences, that was supposed to provide a balanced basis for recording. Some examples from 

the TIMIT set are 

● Ambidextrous pickpockets accomplish more. 
● The willowy woman wore a muskrat coat. 
● Cyclical programs will never compile. 

There are several problems with this approach to balancing a CHA TR database. First of all, as evident 
from the examples, the sentences are not at all related in meaning and often resemble tongue-twisters in 
their difficulty of pronounciation. Experiments using the recorded sentences for CHA TR databases 
showed that this lack oflogic in the text translates to the speaker's voice sounding bored and 

monotonous. 

Secondly, a more important flaw is that, in spite of being selected to maximize phonetic entropy, the 
resulting database is not better balanced than a regular CHA TR database in terms of biphone content. 
For example, compare the two databases "sally" and 11sally211, the first one of which is based on the 200 
sentences and the second is based on spontaneous speech. 

The plots above show biphone distributions in the two databases. Both are approximately the same in 
recording time. However, if we compare the ratio of unique bi phone types per total number of biphones 
in the database, the non-balanced, spontaneous speech database "sally2" performs better than the 
balanced-set database "sally. 11 The data are summarized in the table. 

2
 



Type of Database 
Size of Database (total num. Number of Biphone Biphone Types Per Total 

of biphones) Types Biphones 

balanced sentences 8789 1172 0.1333 

spontaneous speech 4995 757 0.1516 

Another problem is that the balanced sentences are not geared toward any type of discourse, or, rather, 
they constitute their own kind of discourse, with tight, concise statements and oversimplified 
grammatical structure. If used for syn~esis of speech in another context, such as spontaneous speech or 
newspaper articles, they may not have madequate coverage of necessary units. For example, the most 
common biphone in the "200 sentence" database is dh _@, while in the "spontaneous" database it is not 
as frequent as, for example, the second most frequent bi phone ih _ ng. On the other hand, in "sally", 
biphone ih_ng is only one-fifth as common as dh_@. This shows that, depending on the type of 
discourse (spontaneous speech may have more gerunds like "goin~", "doing") the definition of phonetic 
balance changes. Thus, it would be useful instead of having a static text to be able to automatically 
construct a balanced text to suit a particular context, or many different contexts at once. 

Finally, the balanced sentences are concerned only with phonetic balance, aiming at complete coverage 
of 2-phone sequences. But CHATR is a concatenative synthesizer that relies on the proper phoneme plus 
the required prosody to reside in the database, rather than on signal processing to modify pitch and 
duration. Thus it appears that balancing only acoustics is not the complete solution, and that prosodic 
balance should also be sought after. 

Maximum Likelihood Approach 

The new way of measuring balance in a database does not involve maximizing the variability of 
phonetic information, or phonetic entropy. Instead, the definition of balance is based on a statistical 
model of the phonetic stream. Such a model is trained on the corpus of text translated to phonemes with 
predicted prosody. Since the model reflects the particular context of speech and type of discourse, it is 
possible to adjust the definition of balance for synthesis in different contexts, from the entire language to 
just the credit card and phone number digits. 

In order to compute the balance of a database, we need a reference model, or the "universe" model. Such 
a model is built from Maximum Likelihood estimates of model parameters and predicts the probability 
of each event (phonetic unit) in the given universe. 

The graph below shows a historgam view of the biphone model, M, plotting the probabilities of each 
unit in the biphone unit set. Also shown are histograms of biphone units in two databases, A and B. If 
we define the balance in a database as the cosine of the two vectors corresponding to the "universal" 
distribution and the database distribution, then in our example 

BALANCE(A,M) = 0.3594 

BALANCE(B,M) = 0.1209 
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Using similarity to the universal model as a measure of balance, the distribution of units in databse A 
turns out better-balanced than database B. Scores computed using this measure range between O and 1. 
A higher score means that the database is made up of similar units to ones making up the universe. 

ー→＞
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Acoustic Balancing of Input Text 
The work involved i..11 designing a synthesis database can be broken down into three stages. The first is 
deciding what units to use, the second is fmding a statistical model that best describes the distribution of 

these units in the language, and the third is producing a database based on the model. 

The main objective of this work is designing an inventory of speech segments that will provide a 
sufficient basis for future speech synthesis, while remaining within the storage requirements. In order to 
get a grasp on what needs to be in the inventory, we must do some form of phonotactic modelling on the 
target language to be able to predict what speech is likely to be synthesised from the database. Since the 
synthesis is done by concatenating segments from the inventory, we are specifically interested in 
predicting which segments will be used in future synthesis and with what probability. 

Thus, the first stage, selection of the unit set, is a necessary step in describing the database. In the case 
of CHATR, whether or not these units will actually be the ones concatenated to form an utterance is 
difficult to assert. The units are chosen dynamically and there is no way at present to force the selection 
algorithm to use a fixed set of units. The range of units used is fixed only by virtue of that sequence of 
phonemes existing or not existing in the database. However, it is essential to define fixed units in order 
to be able to describe the composition and balance of the inventory. It is also a pre-requisite to training a 
probabilistic phonotactic model of the target language. Therefore, we will base our database design on a 
well-defined phonetic unit set and assume that this approach will benefit the UDB selection algorithm. 

The average length of a segment (defmed to be a continuous waveform taken directly from the database 
with no concatenations) used by CHATR's UDB is between 2 and 3 phonemic units. We will study and 

compare three different ways to construct a unit set: 

1. using biphone sequences 
2. using triphone sequences 
3. using multiphones sequences (variable length up to N phonemes) 

It would also be interesting to evaluate the performance of syllabic units, which are a type of variable 
length units. However, the bi-, tri-and multiphones in our study will be derived automatically, while it 
takes a linguist to manually segment training data at syllabic boundaries. 

To compare the above three unit sets theoretically and experimentally, we determine what units occur 
naturally in the language. Since a massive training corpus necessary to approximate the target language 
is only available for English, that will be the language of choice in this study. The total number of 
naturally occuring units, as well as the relative frequency distribution of units and the number of units 
most commonly occuring in speech for each unit set will be analysed to determine the trade-offs 
between the sets. Furthermore, we try to predict how the use of a particular set of units might affect the 
quality of synthesis. In order to do this, we will need an objective measure of synthesis quality, based on 
which to compare the unit sets'performance. 
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Figure. Statistical Modelling of the Phoneme Stream 

Once the unit set has been determined, the next step is to develop a stochastic model of speech 
segmented into those phonetic units. This can be done for English using phonotactic modelling tools on 
the available large training corpus. The speech selected for the CHATR database must reflect the 
statistical behaviour of units in the target language. Thus, in selecting the input text for recording, or in 
reducing a recorded corpus of speech to a smaller database, we aim to match the given model. Several 
algorithms for this balancing process will be examined. 

We define the balance of a phonetic database by the similarity measure between the distribution of units 
in the database and that of the entire language. The language know ledge is approximated by the 
phonotactic model trained on the maximum sized training data for that language. 
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Modelling of Speech 

N-gram Models 

Human speech can be viewed as a stream of sounds emitted over a period of time, with meaning 
attached to particular combinations of basic sound particles, such as combinations of phonemes. This 
stream of phonemes is created by a probabilistic process which is not completelly random, as 
regularities in speech arise due to lexical, syntactical and other constrains. 

Concatenative speech synthesis works by breaking down the phonetic stream S into smaller segments 
and rearranging them to produce a new stream, S', which has different syntactical and semantical 
properties than S, but the same voice quality unique to that particular speaker. This method of speech 
creation takes advantage of the regularities of the phonetic stream, where the same patterns occur in 
various contexts, carrying different meaning. For example, English phoneme sequences 11f aa st f uu d11 
and 111 aa s t w ii k11 share a common subsequence 11aa s t11 that performs different lexical and 
grammatical functions in each sequence, yet may sound identical to a human ear. 

Of course, speech is a far more complex phenomenon than can be described by a probabilistic process 
producing combinations of phonetic elements taken from a fixed set. Humans use several different 
sources of information to decode the message embedded in the acoustic signal. [SG] Variations in the 
spectrum, fundamental frequency and segmental duration all contribute to the complex structure of a 
signal. This is precisely why synthesis by concatenation cannot be accomplished by merely recording 
the basic phonemes of the target language: such a scant vocabulary will not be sufficient to reproduce 
the prosodic variety of all streams possible in the language. In fact, no fixed set of phonetic units will 
ever suffice, as human speech is infinitely variable. However, as experiments have shown, larger unit 
sets perform well enough if not for any imaginable utterance, then at least for the majority of use cases. 
Thus, our goal is to determine a set of units with maximal variability, while keeping database size in 
consideration. 

There are several ways to model the stochastic process underlying the creation of a phonetic stream. 
Statistical language modelling by N-grams has long been used in speech recognition, and can be applied 
to a variety of problems, including phoneme sequence modelling. The approach taken by the N-gram 
model is to hypothesise that the probability of an event (in our case, phoneme) depends on the N 
preceeding events, with a constant N over the entire history of events. In applying the the N-gram model 
to unit set generation, we consider a set generated from 2-grams (or biphones) and 3-grams (or 
triphones). 
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Biphone Frequency Analysis 

First, we analyse the biphone units contained in actual recorded speech signals, such as CHA TR speech 
databases. In the database, the speech waveform has been recorded and broken up into phonetic 
elements and labeled according to the phonetic transcription of the read text. As a frrst approach, we 
count the number of occurrences of each 2gram of phonemes. This analysis shows that the database for 
speaker 11nes211 contains 35065 instances of biphones, of which 1391 are distinct. In the graph below, the 
1391 biphones are plotted on the x-axis, and their relative frequency on the y-axis. 

0.025 

0.02 

5
 

一

。。
k:iuanbaJ LL 
a
A
n
u
1
a
8
 

0,01 

0,005 

Biphone Frequen窃 Distribution,CHATR Database "nes2" 

／
 

i
9
9
9
9
,
i
,．99.,
！-

F
 

一

9-t' 

。。
200 400 6,00 800 

B1phone Type 
1000 1200 1400 

The frequency distribution plot shows that, by far, not all units are equally likely in read speech. The 
f 1ve most frequently occumng biphones,'n t','s t','n d','t ax'and'ax n'have a much greater 
likelihood than the majority of occc1rring biphones. 

Repeating the same analysis for a larger set of recorded data, we get the following results 
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As the graph shows, there are approximately 2200 unique biphones occurring in the available data. The 
question arises: how many biphones occur in speech in general? We know that, given a phoneme set of 
56 unique phonemes (the beep set, not counting coughs, laughs, etc. and repeating symbols for breath 
and silence,) 3136 combinations are possible, which is not to say that all occur naturally. If we count all 
phonemes in the beep phoneset, then up to 4356 biphones are possible. 

Perhaps if we look at the relationship between the number of phonemes analysed and the number of 
unique biphones extracted, we can estimate how complete our collection of unique biphones is. For 
example, if we find that we're discovering fewer and fewer new biphones with each new sentence we 
look at, then at some point we'll have the bulk of the most frequent ones. 

0
J
 



J
.
 

j
 

，
 

／
 

｛
 

9
t
,
9
.
 

，＇ 

—— 

0
 

D
 

D
 

D
 

D
 

D
 

O
 

D
 

0
 

0

0

 

CJ 

O
 

O
 

D
 

D
 

D
 

0
 

5

0

5

0

5

0

5

0

5

 

4

4

3

3

2

2

1

1

 

s
a
u
o
q
d
1
s
 a
n
b
1
u
n
 J
O
 J
a
q
w
n
N
 

Number of New Biphones vs Amount of Data Analysed 

。。
0.5 1 1、5

[¥lumber of Biphones Analysed 
2
 

2.5 
s 

x10 

As the graph above shows, we would have to analyse a gigantic amount of data before we find all of the 
4000+ biphones. The sudden rises in the otherwise smooth plot indicate points when we went from one 
database to the next. If the segment files were chosen at random, the graph would probably be much 
smoother. (Note: the phonesets used for these databases contain non-overlapping phoneme names) 

Comparing "Balanced Sentences" With Spontaneous Speech 

The following plot shows biphone frequencies for a very large text corpus. The axes are labelled with 
mrpa phonemes sorted from .1 to 45 in order of increasing frequency of occurrence in this text. 
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The figure below shows the count of each bi phone in the mrpa phoneset for speaker 11sally11. The axes 
are labelled with mrpa phonemes sorted in the same order as above (1-45). 
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The following plot shows the difference of the two distributions. 

, ...... 

········••:······ 

········:·•· 

Comparing the distributions of biphone units in the language and in the database, the database 
distribution is unbalanced in the sense that some units, such邸 dh_@, are over-represented in the 
database, whereas other units, such as # _t (pause followed by phoneme "t") are under-represented. We 
want to balance the database by filling in these gaps, bringing the distribution closer to that of the 
language. 
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Triphone Frequency Analysis 

Analysing the frequency of 3-gram, or triphone, combinations in English databases produced the 
following results. 

• The CHATR database for speaker "nes2" contains 35880 triphones, which can be divided into 
8813 groups of triphones that differ acoustically from one another. Triphones within each group 
vary in prosodic quality, but we first analyse the frequency with which 3-phoneme combinations 
occur in the English language. The triphones are labelled from 1 to 35880 in order of increasing 
number of occurrences. The relative frequency of each triphone is computed by dividing the 
number of occurrences by the total number of triphones in the database. 

Plot of the frequen窃 distributionfor triphones in CHATR database "nes2" 
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Note that approximately 45% of all triphones in this database occur only once, or 0.000028 
percent of the time. 

● To illustrate what happens when the recorded speech data is very large, I analysed twelve English 
speakers'databases at once. The result was 31669 acoustically distinct groups out of a total of 
270867 triphones. The following is the frequency distribution plot. 
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Since the number of different triphones is now four times larger than that in database "nes2", the 
highest relative frequency, 0.0034%, is lower than the highest frequency in the "nes2" database, 
0.0092%. 

• The above analysis shows that a large number of distinct three-phoneme combinations occur in the 
English language, but only a small number of triphones has a relatively high frequency 
distribution. 

However, even data covering all possible triphones would not be sufficient for a balanced speech 
database. We need to look not only at the two surrounding phonemes, but at the prosodic 
characteristics of the central phoneme as well. 

We choose to treat two instances of a triphone as identical if 
-they have the same acoustic features (i.e. consist of the same sequence of phonemes) and 
-their central phonemes have pitch and duration values that are within 0.1 units of each 
other. 

Below is a graph illustrating the frequency distribution of such prosodically distinct triphones in 
the''nes2''database. 
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x 10-4 Distribution of prosodically distinct triphones in "nes2'' 
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It's obvious that most prosodically distinct triphones occur very infrequently, in fact, among the 
35880 triphones in the "nes2" speaker database, 34576 are unique! It is interesting to note that the 
combination of phonemes "ax", "n" and "d" is among the most frequent ones. 
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• The smell of freshly ground coffee never fails to entice me into the shop 
8 pau_dh_@_s m_e_l o_v_f_r e_sh l_ii 

g_r_au_n_d k_o_f_ii pau_n_e_v_@ f_ei l_z 
t_@ e_n_t ai_s m ii_pau_i_n t_@_dh_@ sh_o_p 

• The chill wind caused them to shiver violently. 
● pau_dh_@ ch_i_l w_i_n_d k_oo_z_d dh_e_rn 

t_@_sh i_v_@ v_ai l_@_n_t l_ii 

The table below compares 2-gram, 3-gram and 5-multigram unit sets. 
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Average length of multiphones (based on 13744) is N = 3.6978 
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No. of units that No. of units that 
Storage requirements 

Type UonifNt gram IIT。oftaunl ints o. II account~d for 50% of accounted for 90% of 
(total no. of phonemes) 

all mstances all instances 

I Biphone (N=2) I 106 528 1,056 

I Triphone (N=3) I 871 6,451 19,353 

I Multi phone 11 13,744 1,443 8,460 II 29,924 
(l<=N<=5) 

Experiments have shown that a sentence can be synthesized from multiphones with twice less 
concatenations than from biphones [2]. As can be seen from the previous table, the storage requirements 
for a multiphone set are approximately 1.5 of the size of the triphone set. Overall, multiphones scale 
well compared to triphones, and they provide the longer but necessary sequences that tend to be re-used 
in speech often and therefore distorted in pronounciation. 
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Automatic Input Text Selection 
Given any text and a set of units, we can compute its balance relative to the universal model. The 
computed value can be used to compare several texts in order to select the best one. 

However, in many cases it is hard to find a suitable text, such as a novel, that can be used to record the 
database (for example, if the database is for synthesising phone numbers), or we would like to generate a 
smaller subset of a larger text. In order to ensure that the selected subset is comfortable to read for the 
speaker, we use their text of choice as a source text to reduce. For example, it may be easier to read 
several hundred of paragraphs from "War and Peace" selected to match the unit make-up of phone 
numbers than to read rows and rows of digits. 

There are two ways to select optimal input text: 

● start with an empty set and accumulate text items 
● start with a full set of text items and reduce it 

The next section describes a greedy algorithm to handle the first case. 

Text Generation By Accumulation 

Problem Statement. 

Given N = {l, .. ,n}, a set of phonetic text transcription items, consider a finite collection of subsets {Sl, 
S2, ... , Sm}. The feasible subsets are represented by inclusion or exclusion of items such that they satisfy 
certain conditions, in this case, that the total number of phonetic units contained in the set is limited by 
U _ max. A variation of the problem limits the total number of items in the set Si. 

Each subset has an objective function value f(Si). The objective function is defined so as minimising it 
would produce the desired property of the set. For example, we can define the function as the balance 
score of the set relative to a model M: 

f(Si) = BALANCE(Si, M) 

Alternatively, let 

f(Si) = II M -D(Si) II, 

or the L2 norm of the difference vector between the given unit distribution M, and the unit distribution 
in the setSi. The problem is to minimize f(Si). 

Approaches. 

This is a combinatorial optimization problem. Some examples of this class of problems are the 
knapsack, the travelling salesman and shortest path problems. Various algorithms can be applied to 
solve CO problems, such as greedy algorithms, dynamic programming, genetic algorithms, etc. 
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Greedy Algorithm Approach 

In mathematical programming, any (purposeful) search procedure to seek a solution to a combinatorial 
optimization, is called a heuristic search. Greedy algorithms are a specific class of heuristic search 
algorithms. A greedy algorithm begins with no elements and sequentially selects an element from the 
feasible set of remaining elements by myopic optimization. However, it is not guaranteed that this 
method will reach the optimum solution for a given problem. 

The following is the output of a program that selects a subset S of text items (in this case, paragraphs) 
from a given file using a greedy strategy. The distance values are the f(Si) values at each iteration and 
the total number of units is also reported. The 11-u11 option specifies the length of the phonetic unit (in 
this case, a diphone.) The frrst paragraph selected is the one with the most units. 

The graph shows distance values after each iteration; a total of 20 paragraphs from "Alice In 
Wonderland" are selected. 

冷 条 ＊ 

* * ＊ ＊ ＊ ＊ *• 

Pl 18, Pl 19, Pl 19, P156, P165, P188, P202, P206, P209, P218, P240, P262, P262, P325, P346, P346, 
P346,P346,P408,P433 

Total units: 3478 

Drawbacks: 

● does not reach the optimal solution 
● improvement is slow for small domain (700 items) 

To prove that the above algorithm does not reach an optimum solution, it is enough to consider a 
counterexample: if the optimum solution is the set S* and if there exists an item P _knot in S* such that 
f(P _k) < f(P _j) for all P _j in S*, then the algorithm will select P _k and therefore will not produce the 
optimum solution. 
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Backtracking 

We can try to improve this heuristic method by backtracking at each step and considering the values of 
f(S_j -P _i), i != j. If the value decreases, we reject the item P _i from the set. The reasoning behind this 
is that we will have considered more combinations, at an increased computational cost, of course. 

However, there is a very small improvement in using this backtracking technique: after selecting 18 
items, the distance is 0.063629, compared to 0.063634 previously. 

Another approach (which is guaranteed to produce the optimum solution) is to consider all possible 
subsets {S1, S2, …， Sm} that satisfy the given constraints. This is not, however, feasible in most cases 
because of the computational effort involved. 

Unit Subset Coverage 

So far we have tried to match the entire unit distribution, which is inherently difficult to do when one is 
restricted to using'もlocks"of a phonetic stream. If the number of blocks available is small, it may be 
impossible to find a combination that produces a similar distribution for all units. Instead, we may want 
to only guarantee coverage of the more important units. 

An algorithm for selecting a subset of S that contains the units u in U is implemented as follows: 

Compute a sparse matrix A of size nXm, where m is the number of units and A(i,j) is the count of the 
j-th unit in the i-th item os set S. Then, until all units have been included in the subset, 

● Chose row k of A that has the largest intersection with set U 
● If there is more than one k, choose one with血nimumunit count 
• update U by removing units appearing in the k-th row 

When selecting a set of units U, we may want to select units making up the upper x percent of the 
cumulative distribution. 

Text Generation By Reduction 

If we have a text that is supposed to have many similar sentences, an effective technique for input text 
generation can be reducing the sentences based on their similarity scores. 

First, compute a weight vector for each sentence, or document. Each document then can be represented 

as a vector l½= (do, 凸，..・) • d where the m ividual elements are the frequency of each umt m the 
document with the model likelihood of this unit removed from it. Then the similarity score is 

SI 1"t!cは，む）＝ 冗%=1(加：• 佑，砂
げふ ・

The graph below compares weight vectors for two sets of documents. 
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The cross-similarity matrix, containing SIM(d(i),d(j)) for each unique pair of documents in the corpus, is 
shown below for a set of 150 documents. 

'•,,:. 

Similarity matrix of the corpus pruned with a threshold value 0.5 is shown below. 
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Automatic Database Recording and Balancing 
Tool 

Although the input text can be pre-compiled off-line, the balancing process does not stop here. Before a 
CHA TR database is produced, the text must be read, recorded, labeled with phonetic and prosodic tags, 
indexed and compiled into database format. 

Up to the recording, the phonetic and prosodic properties of the database are predicted and the balance is 
pre-determined. However, the human interaction introduces new information and variability into the unit 
distribution. The sources of variability are, for example: 

•• ● pronounciation of words (there are 80 pronounciation variants of the word "and" in the 
Switchboard corpus) 
insertion and omission of pauses 
prosodic contour of the utterance (stress or no stress, etc.) 

Therefore, it is desirable to analyse the unit balance of the resulting waveform and compare it to the 
originally intended model. If there are significant deviations from the model, we might want to re-insert 
some of the missed units by having the speaker read more text. We would also like to automate the 
entire process according to the system architectural diagrams below. 
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The Off-Line System 

．．．． 
a phonetic corpus is taken to be the "universe" 
the phon. model is trained on the corpus w/respect to the unit set 
phonetics and prosody (pre/post boundary,+/-stress) are predicted for a source text using CHATR 
the text is reduced using a balancing algorightm 
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The On-Line System 

• the user is promted with sentences from selected text 
● user has control over the timing and editing of wave file 
● possible pronounciation variants and prosidic contours are predicted 
● choosing the best match, align labels with the wave file 
● after the text is recorded, analyse and reduce the units based on similarity 
● compare database distribution with the original model 
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Conclusion 
As a result of the research conducted, we suggest that recording a balanced database means 

1. automatically extracting a multi-phone unit set from target language based on Maximum 
Likelihood 

2. using phonotactic modelling of the language to predict what speech units are likely to be 
synthesised. 

3. generatmg mput text using similarity to the model as a measure of balance 
1. accumulate text items by greedy strategy 
2. cover limited subset of units 

4. automatically learning statistics about the recorded database to assess actual balance of units. 

The next step is implementing a system that combines these methods into an interactive recording tool. 
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