
TR-IT-0287

Internal Use Only (非公開）

002

Analysis by Ana~ogy:
A Set of Experiments and Some Preliminary Results

Jean-Fran~ois Morreeuw Yves Lepage

February 1999

Abstract

Analogy, analysis by analogy, experiments.

◎ 1999 ATR音声翻訳通信研究所
◎ 1999 ATR Interpreting Telecommunications Research Laboratories

Table of contents

1 Introduction

A -What: experiments with analogy

4

4

B -Why: using a syntax without rules . 4

C -How: data, experiments, and results ご
J

2 Preparing the data 6

A -Listing the data that we have . 6

Al - Different types of data . 6

A2 - Problems coming from the different formats . 7

B - Tools to prepare the data . 8

B 1 - Checking and formatting the data . 8

B2- Tool to cut the data

，

C C - omputmg some properties . 10

Cl P - rogram to compute the properties ．． 10

C2 - Properties of the data . 10

3 Experimentation methods 15

A P h - resentation of t e expenments . 15

Al Tl - 1e maps: a way to see numencal results 15

A2 - Open-set and closure: how to get some literal results 17

A3 - Table of th e expenments 18

B -Defining・f a common engme or all the expenments 18

Bl - R f 、easonsor such an engine 18

2

TABLE OF CONTENTS TABLE OF CONTENTS

B2 - A . f new view・o our experiments . 19

B3 - Output of the common engine: scheduling file . 19

C - Detailed description of all experiments . 20

Cl - Computing and exploiting the numerical maps 20

C2- Op en-set: computmg a base . 22

C3 - Closure of a corpus ．．．．．．．．．．．．．．．．．．．． 23

4 Experiments'engine: the scheduler 24

A -A didactic overlook of the algorithm . 24

Al - A naive algorithm ... 24

A2 - Verify = solve + search . 25

A3 - Getting an incremental algorithm . 25

A4 - Using the properties of analogy 25

B -Example of results . . ．． ．． 28

5 An experiment: analysis by analogy 29

9

9

0

1

1

2

2

2

2

3

3

3

3

3

••••••• •••••••
．

．

．

．

．

．

．

•••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

••••••• •.•••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

••••••• ••••••• •••••••
．

．

．

．

．

．

．

．

．

．

．

．

．

．

•••••••
．

．

．

．

．

．

．

••••••• ••••••• •••••.•
．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

．

••••••• •••••••
．

．

．

．

．

．

．

••••••• ••••••• ••••••• •

t

••

s

••

.

1

n

s

.

e

d

.

y

.•

al

••

e

.

m

s

•

•
n

u

.

n

••

n

t

e

a

.

a

s

.

p

t

i

e

a

.

d

s

.

e

y

x

m

e

d

.

t

l

.

i

a

a

.

l

.

r

e

e

e

h

h

u

a

n

.

p

t

t

.

C

e

.

一

.

a

x

f

f

e

o

o

l

.

c

l

.

t

f

e

n

n

f

h

o

o

.

o

.

t

i

i

o

y

f

t

t

.

r

.

t

.

p

p

.

e

i

i

b

i

゜

.

m

ー

r

r

a

n

c

c

o

s

s

.

n

i

e

e

u

u

o

N

Q

t

a

D

D

••

sl

n

t

t

s

l

u

c

ー

u

e

s

-

―

―

-

1

S

I

1

2

e

1

2

0

e

r

P

A

A

R

B

B

C

―

―

―

A

B

C

Appendix A 34

Appendix B 36

3

Chapter 1

Introduction

A -What: experiments with analogy

Analogy is a relation between four terms. If we consider the first three terms, we can say that the
fourth term can be obtained by analogy when the relation of analogy is verified. Here is an example of
analogy:

" Thegreenlampsturnsoff" : "Thelampturnson" = " Thegreensignalisoff" : " Thesignalison"

As we can see, analogy can creates new sentences, using a correct syntax. Our goal is to experiment
the properties of analogy with real corpora to see how this relation can be used to create some new tools,
or to improve some methods like sentence analysis.

B -Why: using a syntax without rules

The main point with analogy is the possibility to create new sentences with a correct syntax, without
describing this syntax. This can be seen in the following example. The rule is involved by the two first
term, and the three terms are used as a complete description of this rule.

Thet'imeislong : Thereisalongtime = Thecatisblue : Thereisabluecat

As we can imagine with syntactic categories, we can describe any LRI grammar with such analogies,
without writing directly the rules. This is a very useful property, as a software using analogy should be
able to work with any language if you give to it the proper analogies that could involve automatically
the needed rules.

To do so, we need a corpus of examples. As we can use very large corpora, coming for example from
internet, or directly from the ones used in ATR, we hope that a big corpus could act as an example
corpus, containing enough involved rules for our use.

4

INTRODUCTION C -How: data, 欲 periments,and results

C -How: data, experiments, and results

As we need some corpora, the first thing we have to do is to filter and transform some various files,
coming from different origins, to be able to experiment with analogy. This will be the first step of our
study.

Then, we need to characterise the different corpora with analogy, to choose the ones that could be use
with analogy. As we want to be able to do so with any new corpus, we have to realise a complete set of
tools, and this will be the second part of our job.

Our goal during this internship is not to experiment with analogy, but to realise the tools used to
experiment. But as we find interesting to give a proof of the possibilities that can be afford with analogy,
we will give some preliminary results with a first real use of analogy: sentence analysis by analogy.

ua

Chapter 2

Preparing the data

As we have told before, we want some results dealing with analogy. To do so, we have to realise some
experiments with data coming from different horizons, from different types and formats. The preliminary
works to do are first to collect and select the useful data that we could find, then to uniform them to be
able to realise generic programs to experiment. After showing the data we want to use, we will present
some tools we have done to format them, and then we will list a few properties of those data.

A -Listing the data that we have

Al -Different types of data

恥omabout 14 000 files, making an amount of approximately 38 megabytes of information, we can find
data in various languages, using different ways of encoding, or simply different types of data. We have
files containing some text, some syntactic analysis, and some sentences of syntactic categories. Also, we
have text in French, English, Japanese with kanji and kana or with roman alphabet.

The following tables are summing-up t~e different information about the files, after a first selection.
The sizes are given in a number of lines, a board is a couple of (sentence, tree).

[File

ATRLancaster Enghsh
baa.board 23 055 English boards
baa.text 23 055 English sentences
baa. tree 23 055 English trees contains some attributes
baa. tag. board 23 055 English boards same trees in baa. board and

h;,;, -t-rAA

baa. tag. text 23 055 English codes
words 17 727 English words words from baa. text in alpha-

hPt.ir. nrrlPr

Il Size I Language I Type Remark

Il Size I Language I Type Remark

nee.tree-bank
NEC japona'is

6 553 I Jap狙1eseI boards

nee. text

nee. tree
6 5531 Jap印1eseI sentences I not segmented sentences
6 553 Japar1ese trees trees from nee. tree-bank

6

PREPARING THE DATA A -Listing the data that we have

[File

win.eng
win.mel

II Size I Language I Type I Remark

English-Malays English/Malays

24 7 I English I sentences I translation of win. mel
24 7 Malays sentences・

[File

E-sentence

J-sentence

II Size I Language I Type I Remark

: ：：竺「左烹笠::T已巳已：王王□"~:;;>nctuati~n, segmented sen-

[File 『Size LJ,anguage I Type Remark

TDMT Japanese

good.tree-bank 1 448 Japanese sentences each sentence is associated with
and trees two trees containing the segmen-

+<>+inn
tclmt. text 724 Japanese sentences sentences segmented, no punctu-

,itinn
tdmt. tree 724 Japanese trees contain some attributes and

words with Hepburn transcrip-
tir,n

tdrnt. pattern 724 Japanese codes trees and syntactic categories,
words with Hepburn transcrip-
t.inn

(File

UPENN English
all.org 787 English trees contain words
text 787 English codes codes can be associated to words

from all. org with the pos2char
filP

『Size ¥ Language ¥ Type Remark

[Directory

atr:tb

LMD
dialogue

II Size I Language I Type I Remark

atr :tb/LMD/dialogue Japanese/French/English

□ I j応□I~ り三 I~三三三□誓bo叫 s
圧omthese fu-st selection, we have chosen data from which we were able to have a couple of information,
like both trees and sentences, or sentences and syntactic categories, or categories and trees. We call such
a couple a corpus. In the following, the data we are using are coming from ATRLancaster, TDMT, UPENN
and dialogue.

A2 -Problems coming from the different formats

The first thing we have to do is to choose a unique format to convert all the data, for sentences, trees
and syntactic categories. Our choice is to have only one information for each line of a file. Texts are
double quoted, words and punctuation are separated with empty characters, and if possible written using
roman alphabet. Trees are in the format used by existing tools dealing with tree operations.

7

PREPARING THE DATA B -Tools to prepare the data

Extracts from tdrnt. j ap. txt:

”そちらにフィットネス宿泊パックというのが有ると聞いたんですけれども”
,, 1泊は確か 200ドル程度でしたよね”
”来週の土曜日に予約をしたいんですけれども“

Extracts from tdmt. j ap. tree:

SE(SM(SP(NP(sochira,NP(ND(N¥+N(N¥+N(fittonesu,shukuhaku),pakku)) ,aru)),PM(kii))))
SM (SM(NP (ihaku, ND(N¥+N (tashika, 200doru)))))
SE(SM(NP(N¥+N(raishuu,doyoubi) ,PM(yoyakusuru))))

We can separate the tools we have done into two parts. The first part is a toolkit used to verify
and transform the data, written in C shell. The second part is a tool, realised to correct a problem
encountered because of a limitation of the unix tools, written in C language. Then, we will describe a
third tool, used to compute some properties to characterise our different files.

B -Tools to prepare the data

Bl -Checking and formatting the data

Mainly two tools have been realised to format the data. Those two tools are written in C shell and are
self documented.

The first one, checktree, is a program to verify the syntax of trees, able to find and correct the errors
that could be in a corpus. The program takes each line of the file, and uses 2Forest to verify the syntax
of this line. If the syntax is okay, the program output the lines verified in stdout, and the errors in stderr.
We can use this to redirect the errors in a file to have a list of the errors we have to correct.

Usage: checktree [-h] [-v] FILENAME

Check if a file is at the 2Forest format and print errors

* Errors are printed to /dev/stderr
• Working informations to /dev/stdout
/home/as49/lepage/bin/2Forest & /home/xmorreeu/bin/-1 is needed

-h --help display this help

-v --version output version information

The second tool, cleantxt, allow us to filter the texts. For example, we want the sentences to begin
and end with double quotes, and each word and punctuation to be separated with empty characters.
Result of cleantxt is on stdout. The use of cleantxt is the following:

Usage: cleantxt [-h] [一v]FILENAME

Clean a text file

-h --help display this help
-v --version output version information

8

PREPARING THE DATA B -Tools to prepare the data

Another tool made is listtr, which allow us to use tr with a list of multiple operations to do, all
transformation written in a file. The file we want to change is inputted in stdin, the result is on stdout,
the name of the operation file is given as an argument.

Usage: list tr [-h] [-v] REPLACEFILE

-h --help display this help
-v --version output version information

Example of file replacefile:

France <-- Japan
ENST <-- ATR

B2 -Tool to cut the data

While we were verifying the trees, we found a few problems with head and tail that were not able
to deal with very long lines. So, we had to realise another tool, to do the same thing, but without this
limitation. We have made this program in C language:

Usage: -1 [-h] [-v] [-BEGIN/ -1 BEGIN] [+DEPTH/ -d DEPTH]

EXECNAME [OPTIONS ... [--counter] ...]

Send DEPTH lines at line BEGIN from stdin to EXECNAME
EXECNAME is launched百ithoptional OPTIONS for each line
In OPTIONS --counter is replaced by the current line number

-1 --line -.. .
-d --depth + .. .
-h --help

ーv--versュon

start at line BEGIN (default is 1)
send DEPTH lines from BEGIN (default is -1 = all)

display this help
output version information

The program, named -1, reads the data from stdin, select a number of lines depending of the arguments
given, and execute a full command for each line. To do so, stdin is duplicated and read. Then, each line
is written in a new stdin, which is given to our command. This command is executed the number of lines
we have to deal with. Output of the executed command is the standard output of the command. The
following extract shows the way used to redirect stdin and create some new temporary stdin for each
executed command.

void

fonction_principale (void)

｛

char•buffer= (char•) malloc((BUFFER_SIZE+l)•sizeof(•buffer));
int neY_stdin = dup(STDIN_FILENO);

read(neY_stdin, buffer, BUFFER_SIZE);

fill_stdin(buffer);

｝

void
fill_stdin(char•buffer)
｛
int fd(2];

pipe (fd);

dup2 (fd[O], STDIN_FILENO);
close(fd(O]);

Yrite(fd(l], buffer, strlen(buffer));

write(fd[1], "¥n", 1);
close(fd(l]);

return;

｝

，

PREPARING THE DATA C -Computing some properties

We can note that, moreover, it is possible to send the number of the line in the file, which allow a
script to print some information during the computations.

C -Computing some properties

Cl -Program to compute the properties

The formatted files are named, using a unique syntax. First we have the name of the corpus, then the
language, and at least the type of the data. Reading this last information allow us to know which kind
of properties have to be computed for each file.

The program compute is able to compute some properties about the data. It uses the extension of the
files to choose the different operations to do. The results we want are for example the number of lines,
of different lines, the number of words or of nodes for each line. The syntax of compute is the following:

ー

＿

ー

1
‘
|
l
[し
9

Usage: compute [-h] [-v] [-q] FILENAME ...

-q --quiet print only data
-h --help display this help
ーV →-version output version information

C2 -Properties of the data

a -Table of the properties

All the properties, obtained with the program compute, are in the following table:

10

PREPARING THE DATA C -Computing some properties

name of file lines words words/I lines
name.lang.type total I ii ％ total I f. I ％ total =I=
baa.eng.txt 23 055 18 796 81,5 281 772 26 671 9,4 12,2 1,42

土12,2

baa. eng. cat 23 055 15 632 67,8 281 772 1 356 0,4 12,2 0,09
土12,2

baa.eng.tree 23 055 15 755 68,3 801 535 2 094 0,2 34,8 0,13
土33,6

dialogue.eng.txt 187 126 67,3 1 606 326 20,2 8,6 2,59
土5,4

dialogue.eng.cat 187 119 63,6 1 213 15 1,2 6,5 0,13
士4,4

dialogue.eng.tree 187 121 64,7 2 280 22 0,9 12,2 0,18
士7,9

nee. jap. txt 6 553 6 296 96,0 41 838 7 976 19,0 6,4 1,27
士3,0

nee. jap. tree 6 553 4 571 69,7 71 878 224 0,3 11,0 0,05
土5,9

td.Jnt. j ap. txt 724 723 99,8 4 234 1 563 36,9 5,8 2,16
士3,6

t血t.jap. tree 724 712 98,3 5 233 1 018 19,4 7,2 1,43
士4,3

tdmtpat. jap. txt 724 723 99,8 4 234 1 563 36,9 5,8 2,16

士3,6
tdmtpat. j ap. tree 724 722 99,7 5 233 1 346 25,7 7,2 1,86

土4,3

upenn.eng.txt 787 776 98,6 9 466 778 8,2 12,0 1,00
土5,3

upenn. eng. cat 787 576 73,1 9 457 18 0,1 12,0 0,03

士5,3
upenn.eng.tree 787 647 82,2 17 291 38 0,2 22,0 0,06

士9,6

b -Calculation and analysis of the properties

Results about the lines

Pirst colon

• The first colon contains the number of lines of the file. Each line of the file contains one and only
one entry, so this number is the number of elements in our file.

• The values are calculated by using we -1.

Second colon

• The second colon is obtained by sorting the lines, and removing all duplicated lines.

• Those operations can easily be done with the unix programs like sort, uniq and we.

11

PREPARING THE DATA C -Computing some properties

Third colon

The last colon is the division of the first two values. This is the rate of non-duplication, or hapax rate.
This value is useful to characterise the different files.

Results about the words

F竹stcolon

• The first colon is the number of words, of syntactic categories, or of nodes, respectively for a text,
a syntax description, or a tree bank of analysis. These values are used to know the length of the
elements in a file.

• The values are obtained with the we -1 program. Values for trees are obtained by first replacing
all parenthesis and commas with empty spaces, allowing us to use then the wc command.

Second colon

• The second colon contains the number of distinct words, syntactic categories or nodes. Those values
tell us about the vocabulary used in each file. For a tree bank or a syntactic categories text, the
values give us some information about the precision used to classify the original words in the text.

• The values are computed in the same way than the fast colon, but then they are sorted and the
duplicated words, syntactic categories or nodes are removed.

La.st colon

The last colon is the division of the two first values.

Division between lines values and words values

Fi'rst colon

• The first colon is the mean and the square mean of the number of words, syntactic categories or
nodes in our file. The mean tells us about the length of each element, giving us some information
of the complexity of the syntax used in the file.

• The values are computed with the values obtained about the lines and the words in the two first
colons.

12

PREPARING THE DATA C -Computing some properties

Second colon

The second colon is the division of the number of different words, syntactic categories or nodes, by the
number of different lines. A value tells us about the information really contained in one line of a file. It
is very useful to compare the diversity of the vocabulary used: a big value means that each element adds
an important amount of new vocabulary.

c -Analyse of the results

Duplication of elements, of words

For the text files, we can separate our files into two parts, first baa. eng and dialogue. eng, second
nee. j ap, tdmt. j ap and tdmt. j ap. In the first group, we have some dialogues, or some extracts from
reports, containing a lot of duplicated elements, like the name of the towns, or salutations. The sec-
ond group contains some extracts of very used elements, still cleaned, which explains the low value of
repetitions.

About the syntactic categories and the trees, nee. j ap and upeen. eng contain a very high rate of
repetition compared to the values for the text files. The reason comes from the poor vocabulary used to
analyse the sentences. For example, upeen. eng uses only 18 categories, and baa. eng 1356 !

Moreover, we can notice that such corpora like tdmt. j ap, tdmtpat. j ap and nee. j ap seem to have a
very rich vocabulary compared to the other files. In fact, Japanese writing doesn't separate words, so
we have to use a tool to do it. Alas, the program used gives very poor results, so the values can't be
compared to other languages.

Vocabulary and length of the elements

The rate of words gives us a very useful information about the quality of a corpus. Except for baa. eng,
we can see that all the files contain some elements having some very close length. The difference for
baa. eng is coming from the quantity of dates, flight numbers in all the file. All those are considered
as new words, even if it doesn't make sense. Such a property modifies the results about the number of
different words used.

We can also show two points about dialogue. eng and uppen. eng. First, dialogue. eng seems to use
a very rich vocabulary. In fact, the reason comes from the very small size of the corpus. Second, on
the opposite, upeen. eng seems to use a very poor vocabulary if we comp紅 eit to baa. eng for example.
The reason comes from the way used to realised the corpus: some people have been asked to talk to a
machine, and in a way to be easily understood they used a limited vocabulary !

13

PREPARING THE DATA C -Computing some properties

d -Conclusion about the choice of a corpus

Reading the previews results, we decide to use upenn. eng. More preciously, our reasons are the
followings:

• As we will see later, the complexity of our experiments to be done on a corpus is very high. We do
want some first and fast preliminary results, so we want a short corpus.

• With a too short corpus, we could not be able to have enough results.

• Our preliminary experiments deal with characters, computing directly with string of characters.
In a way to reduce the number of different words, categories or nodes, we want to use a poor
vocabulary.

We can also add that upeen. eng has been used before to get some experiments about analysis before,
so this choice will allow us to compare the results obtained with analogy.

14

Chapter 3

Experimentation methods

First, we have realized some tools to format and unify the data coming from different origins. With
all these treated data, we want to make some experiments with analogy. These experiments will answer
to questions that we can have about analogy, in a way to know the possibilities that are allowed.

We will begin with a description of the experiments we want to realize, which is the fast step of our
study. Then, we will see how we can unify all the experiments into a unique engine, that will be optimized.
To finish, we will describe all the experiments as some simple operations with the result of the common
engine.

A -Presentation of the experiments

Al -The maps: a way to see numerical results

a -Definition of two maps in a 3D model

Let's consider a three dimensions model:

• The first dimension pis the position in the corpus.

• The second dimension is the number n of lines, from the current position p to the beginning of the
corpus.

• The third dimension is the number of analogies.

We have two possibilities, defining two different maps:

• map of verified analogies,

• map of created a叫 ogies.

15

EXPERIMENTATION METHODS A -Presentation of the experiments

upenn.eng.cat (s10)

b -Frontier of the map of verified analogies: number of past analogies

The first question we can have is about the evolution of the number of verified analogies with the
number of data read. This information is shown by the bisecting plan n = p. In our忠:aph,this is the
limit of the map: we can not have a number of lines that is greater than the position in the corpus.

c -View of the verified analogies: immediate memory

Horizontal section

When we cut the map, we can have some information about the number of elements needed to verify a
given number of analogies: this allows us to know the minimal number of elements, for each position in
the corpus, that is used for this number of analogies. These values are the immediate memory, and are
shown by a section of the map for a constant number of analogies.

Vertical section

A second section of the same map, but for a constant position in the corpus, shows us the evolution of
the number of analogies as a function of the number of elements used.

16

EXPERIMENTATION METHODS A -Presentation of the experiments

d -Meaning of the map by all possible 4-tuples: density

We can modify our graph, in a way to show a rate between the number of analogies and the number
of all possible 4-tuples. This new graph is a representation of the density, and we can use the previously
detailed sections. vVe can notice that this modification can be seen as a meaning of the dimension n, and
allows us to measure the local homogeneity of a text.

e -Map of the created analogies: pregnancy

We can now consider the map of the created analogies. The frontier p = n described previously shows
the pregnancy, which is a representation of the possibility of a corpus to generate some new elements.

f -Some common points from all experiments

As we have seen, we can realize a unique program which could compute the two maps, using two
parameters to let us decide:

• if we want to normalize the values with all the possible 4-tuples,

• if we want to normalize with the number of elements,

and let us decide to consider either:

• the verified analogies,

• the created analogies.

Moreover, this method can allow us to imagine some new possible computations.

A2 -Open-set and closure: how to get some literal results

During the description of the numerical experiments, we have seen that we can work with verified
analogies and created analogies. The two different types are linked to a set notion of open-set computation
for verified analogies, and closure computation for the created analogies.

a -Generating the open-set of a corpus

The first experiment is the generation of the open-set of our corpora. We want a generating free
base of a corpus, and the comparison with the original corpus will give us some information about the
representation of each element of this corpus. This experiment is done by using the numerical result from
the verified analogies.

17

EXPERI);IENTATION METHODS B-De丘ninga common en製nefor all the experiments

b -Generating the closure of a corpus

The second experiment is the reversed computation which consists in isolating the new analogies
created. This generation allows us to get the closure of our corpus, and informs us about the property of
generation for a given corpus. This computation gives us some literal results where the pregnancy was
just giving us some numerical results about the same point.

A3 -Table of the experiments

Verified analogies Created analogies

normalized not normalized
immediate memory
for a give number of
analogies

Numerical results density immediate memory pregnancy
for a given number
nf AlP.mP.nt~
number of past
analogies

Literal results closure open-set

B -Defining a common engine for all the experiments

Bl -Reasons for such an engine

a -Some very high consuming experiments

Computing analogy is a very time consuming operation with three terms for verification, and four
terms when solving. vVe can imagine that the complexity will be very important, which will be shown in
the next chapter.

Our goal is to use a method by examples to analyze sentences. This means that we will certainly have
to cope with very big corpora, containing a very large number of elements.

Because of the very large number of data we have to deal with, and the important complexity, we
can conclude that programming each experiment as an independent one would cost too much time of
computation.

b -Some very closed experiments

Moreover, we can see that all experiments needs to verify or to solve analogies. As we will see later,
we can describe verification as a computation of a solution and the search of this solution. According to
this, we can say that all experiments contain a solving computation part.

18

EXPERIMENTATION METHODS B -Defining a common engine for all the experiments

B2 -A new view of our experiments

a -A centralized method

Showing the solving part of all experiments allows us to separate our experiments into two steps:

• first step is the computation of the solutions of analogy;

• second step is a computation using the results of the first one.

Separating these two steps gives us a very important property: we can unify the first common step

into a unique common program that will be used by all experiments, and named the scheduler.

b -Moving the complexity

The first step is the most time consuming part of the experiments. Any experiment can now be shown

as a few computations to use the result of the common engine. The next idea is to continue to move all
the possible complexity of any experiment into this unique engine.

This method has the follo,ving advantages:

• the engine done, all experiments can be done very quickly;

• it becomes very easy and fast to realize a new experiment;

• we can optimize the common engme without changing our experiments.

B3 -Output of the common engine: scheduling file

The scheduling file contains all the computed information done by the scheduler. In a matter of using

the results quickly with the existing shell tools, the scheduling file format is the following:

• all information are in ASCII, with lines and colons, allowing us to use tools like cut, tail and
head;

• in each line, any information about the elements begins with a special symbol: #;

• in each line, any result begins with the same symbol, and when it is possible a mark must have its
opposite mark, allowing us to filter for a property or the opposite property with grep.

Finally, the output of the scheduler is given in the following picture:

19

EXPERIMENTATION METHODS C-Det紺leddescription of all experiments

I紅：叫l玉：i翠I立i吋和Mtl釦血l
no solut-ion is calculated

, int is the difference between max and min from a, b, c et d

int index in the corpus of the C element of the analogy

int index in the corpus of the B element of the analogy

int index in the corpus of the A element of the analogy

int position in the corpus of the scheduler, woヱkingline by line

I #1 int I #a int I #b int I #c int I #w int If舷迂t鰐：； MMU 唸::H ¢h~:t> I
litteral solution

solution is not in the corpus

#4 solution not due to repeated elements

#0 solution not still in the corpus

#d a solution has been calculated

#1 int I #a int I #b int I #c int I #w int I #d : #0 : -1 I char *
#5 solution due to repeated elements

I #1 int I #a int I #b int I #c int I #w int I #d~ 唸変泊,t2>;#4 : 江@jchar * I
int position of the solution

#2 solution already met in the corpus

#1 the solution still exist in the corpus

#1 int I #a int I #b int I #c int I #w int I #d : #1 #4 : int I char *
#3 solution will be read in the corpus later

:~ ~::I:: ~:: I:: ~::I:: ~:: I:: ~:: I :: I :~i :~l :: ! ~:: I :::: :

C -Detailed description of all experiments

Cl -Computing and exploiting the numerical maps

a -Arguments used and returned by the map computation

Viewing all the results as a numerical map allows us to see the evolution of the verified and the
computed analogies in a corpus.

• This computation is based on the output of the scheduler and exploits its numerical results. Lines
of the scheduling file kept for the first map are the ones where an element in the used part of the
file is generated by three other elements of the file. Lines kept for the second map are the ones
where an element is generated.

• Result of the computation of the map is a file that can be used with a program like GNU plot.

20

EXPERIMENTATION METHODS C-Det組leddescription of all experiments

b -Algorithm to compute a map

The computation falls into two parts:

• The first step transforms the file into a binary file counting the data for the two following parameters:

-the position in the corpus;

-the number of elements used from this position.

This step allows us to used a cumulated sum also, to be able to have global results instead of local
results.

• The second step extracts the computed values. This step allows the user to choose to compute a
local mean of the data to remove the local variations. This mean can be computed for the position
in the corpus, and for the number of elements used. The user can realize a down sampling of the
results, and gives the step for this down sampling. In this case, the value computed is the mean of
the neighborhood. We can remark that the two means have a different meaning: to give an image,

we could imagine the first one as a low frequencies filter, and the second one as a Nyquist filter

followed by a down sampling algorithm.

c -Normalizing the maps

The map can be normalized to allow the user to see the results as a function of the memory used. The
map can be a direct view of the scheduling computation, or a cumulated view. We have two normalization

methods for the two possibilities. In fact, the real difference is for the not cumulated mode, where one of

the four terms is fixed.

We can note that the algorithm uses the value 3 in the normalization part, multiplied with the number
of possible parts in the given section of the corpus. We have to give some details about this value.

Map of the created analogies

Verified analogies are done using three terms to generate a fourth term. We have 6 possible triples, but

the program only uses 3 triples, because of the equivalent analogies as we will see in the next chapter.
According to this, the value 3 represents the maximal number of analogies that can be computed.

Map of the verified analogies

Verified analogies are done using four terms, and one of the four terms is fixed according to the mode
used: cumulated or not. In a set of four elements, we have 24 possible 4-tuples. Because of the property of

exchange of the means, only 12 4-typles are computed. The 12 4-tuples fall into 3 groups of 4 equivalent
analogies, and in each group one analo~y contains a term D that is greater than the three others. This
analogy doesn't have to be considered m our case. According to this, we have 3 groups of 3 equivalent

analogies, and we should consider 9 possibilities instead of 3. But because the 3 groups can not be
observed at a same time, we can only find 3 analogies. This justifies in this second case the value 3.

21

EXPERI).;fENTATION METHODS C -Detailed description of all experiments

C2 -Open-set: computing a base

a -Arguments used and returned by the computation

The computation of the open-set gives us some information about the representation of each element

in the corpus.

• This computation, again, is based on the result of the scheduler. The studied corpus must not have
repeated elements, and lines from the scheduling file where an element is generated by three other

elements are kept.

• The result of the open-set computation is a text file containing the number of the lines we must
keep for the base.

b -Two equivalent approaches

A direct method would be a constructive method. Our method uses some computed results from the
scheduler, so this is a destructive method. This method constructs the complement of the open-set of
the corpus.

c -Algorithm of the open-set computation

Used tags for this experiment are #a, #b, #c and #d. The #d tag is filtered with the #1 tag, to
consider only verified analogies, and #5 to be sure that the element is unique in the corpus. Repeating
some elements does not seem to modify the results, but the user should avoid such a situation.

while (some more lines in the file)
｛
for (beg'in of file; more z,ines to read; next l切e)
｛

｝

d =generated element;
切creasethe n'Umber of time d応generated;
if(generated for the first time)
memorize the generat-ing triple;

d =pos'ition of the latest generated element;
a =posd'ion of the term A of the memorized ir'iple generai'ing d;

｝

b = ... ;
C = ... ;
mark d as not being in the open-set;
remove the lines generat切gd;
remove the l-ines where d appears as a term of an analogy;
remove the l'ines generating a, b or c;

This algorithm marks the elements that are not in the open-set. To show this open-set, we just have
to output the elements that are not marked. By the way, in our case, it is more interesting to now the

triples丘omthe open-set generated by the elements and that are not in this open-set:

for(d = 1; d:Sn; d + +)
if(d not in the open-set)
print the 4-t-uple;

22

EXPERIMENTATION METHODS C -Detailed description of all experiments

We can notice that we can destroy and compute the number of generating triples at the same time at
the step k + 1 for the computation and k for the destruction. To make the computation going faster, the
scheduling file is first converted into an appropriated binary format, allowing us to read it into a constant
size buffer.

C3 -Closure of a corpus

a -Arguments used and returned by the closure computation

Generating the closure gives us some information about the global property of a corpus to create new
elements.

• This computation is directly based on the scheduling file. Lines that are kept are the ones where a
new element is created with three elements from the corpus.

• Result of this computation is a file containing the new elements created and the elements of the
corpus.

b -Algorithm of the closure computation

The tag needed is only the seventh one. The very simple computation falls into three parts:

• we only keep the seventh colon of the lines containing an analogy,

• we add this to the original corpus,

• ,ve filter the obtained file to remove all repeated elements.

23

Chapter 4

Experiments'
．
engine: the scheduler

A-A didactic over look of the algorithm

In the following, we will call element an object used as one of the fom terms of analogy. We will
suppose that the element are the lines of a file, and the number of an element is the number of the line in
the file of this element. A term is one of the four elements used in an analogy. Terms will be represented

by upper letters, and their position by a lower letter corresponding.

Al -A naive algorithm

vVe write A : B = C : D a generic analogy. In the naive algorithm, we take all 4-tuples possible and
we verify the analogy. The complexity of such an algorithm is州 verifications:

for(a = 1; a~n; a++)
for(b = 1; b~n; b + +)
for(c = 1; c~n; c + +)
for(d = 1; d~n; d + +)
if(analogy'Ver'ified for the 4-tuple)
show the 4-tuple;

We have three properties of analogy, and each property allows, with one analogy, to get another
equivalent analogy. For one verified analogy A : B = C : D the three properties allow us to get seven
other properties. According to tllis, an ideal algorithm of verification must have a complexity of州/8
verifications.

A:C=B:D
D:B=C:A
D:C=B:A
C:D=A:B
C:A=D:B
B:D=A:C
B:A=D:C

exchange of the means
exchange of the extremes
exchange of the means and extremes
symmetry of the equality
symmetry of the equality and exchange of the means
symmetry of the equality and exchange of the extremes
symmetry of the equality and excahnge of the means and the extremes

24

EXPERIMENTS'ENGINE: THE SCHEDULER A -A didactic overlook of the algorithm

A2 -Verify = solve + search

When three terms are chosen, instead of verifying analogy for all elements from 1 to n, we can solve the
analogy for the three terms, and then search the solution in the file. As analogy gives only one solution,
and as the complexity for a search in a file of n elements can be realised with a complexity of log2(n),
this new algorithm allows us to change our忙 algorithmfor a訊log2(n) algorithm in the worst case,
when a solution does exist, or n3 when the analogy doesn't have a solution.

for(a = 1; as;n; a++)
for(b = 1; bs;n; b + +)
for (c = 1; cs;n; c + +)
｛
D =result of the analogy from three terms;
if(D exists and is in the file)
show the 4-tuple;
｝

In an ideal case, if we consider all equivalent analogies, we can wait for a州log2(n)/8.In the following,
we will use this property only at the last step, in a way to be able to use as best as possible some other
properties that could increase the speed of our algorithm.

A3 -Getting an incremental algorithm

vVe want to be able to follow the whole evolution of the computations element by element. To do so, we
have to change our global algorithm for an incremental algorithm. The modification consists in treating
a loop of k, with the following two properties for all 4-tuples:

• numbers of the four terms must be lesser or equal to k;

• one of the four terms'positions at least must be k.

According to this, we have the complexity of the new algorithm:

¥

J

 k

k

=

―-
a

c

1

 ▽
]
i

ー

区
[

k

▽
]
勺

k

▽]』
K

K
区
[
Kこ
〗
＋

k

＋

k

=

=

b

d

1

 ▽]巳

ー

区
[

k

▽
]
『

k

▽
]
門

k
こ
〗
K

と
〗
＋

（

＼

n

区
[

n

=~4. 炉＝い+o(州）
k=l

A4 -Using the properties of analogy

a -A partial use of the properties

We want the two conditions d :S c :S band a= k. Expect for some situations, we still have a complexity
of州 andall 4-tuples if we consider the 24 possible combinations:

25

EXPERIMENTS'ENGINE: THE SCHEDULER A -A didactic overlook of the algorithm

1:=;a:=;n

l:Sd:Sc:Sb:Sa
A:B=C:D B:A=C:D C:A=B:D
A:C=B:D B:C=A:D C:B=A:D
D:B=C:A D:A=C:B D:A=B:C
D:C=B:A D:C=A:B D:B=A:C
C:D=A:B C:D=B:A B:D=C:A
C:A=D:B C:B=D:A B:C=D:A
B:D=A:C A:D=B:C A:D=G:B
B:A=D:C A:B=D:C A:C=D:B

In the table of the 24 possibilities, the fifth line can be obtained with the property of symmetry of
analogy. The third and seventh lines can be obtained from the first and the fifth lines with the property
of exchange of the extremes. Lines 2, 4, 6 and 8 are obtained from 1, 3, 5 and 7, with the property of
exchange of the means. According to this, we can remove 21 analogies that are equivalent to 3 analogies.
Complexity of the new algorithm is砂

I l~~~~~~~a I
I A:B=C:D I B:A=C:D I C:A=B:D I

Now, we can use the solve and search m叫10d.
algorithm, the proof is done as an appendix:

We can overestimate the complexity of the new

、
＼
ー
ノ

1
-
2

＋

ーヽ、c

（

2

g
 ゚

ー

(
’
ー
ー
＼
、

E

巳
〗

>•
l>

n•]>
=:; (n~l)3 (1og2 (n + 1) + 1 -~) + v

O(n2)

1::;a::;n

lscsbsa
x E [l;c]

I A:B= C:X I B:A= C:X C:A=B:X)

We have three trivial analogies:

• A : A = C : C from A = B⇔ C=D;

• A : B = A : B from A = C⇔ B=D.

In our case, the trivial analogies are not interesting and are forgotten. This is done by changing the
beginning of the A loop from 1 to 2. Moreover, we have the following equations that allow us to simplify
our algorithm:

• { c :::; b :::; a, a -/-b}⇒ c:s;b<a⇒ a -::j:. C

• { c :::; b :::; a, c -::j:. b}⇒ c<b:s;a⇒ C -::j:. a

26

EXPERIMENTS'ENGINE: THE SCHEDULER

a =j b

2::;;a::;;n
l<c<b<a
幻 E[1; c]

bfa

二
C-/-b

A:B= C:X B:A=C:X C:A=B:X

Finally, the new algorithm is:

for(a = 2; a::;n; a++)
for(b = l; b::;a; b + +)
for (c = 1; c::;b; c + +)
｛
if(a=Jb &&研c)
｛
D =res・ult of analogy between B, A. and C;
if(D ex・ists and・is切 thec first elements of the file)
p廿ntthe 4-tuple;
｝
if(a-:j,b)
｛
D =res・ult of analogy between A, B and C;
if(D exists and・is in the c first elements of the file)
print the 4-tuple;
｝
if(b-=/c)
｛
D =result of analogy between C, A and B;
if(D exists and is in the c first elements of the file)
print the 4-tuple;

｝ ｝

b -Full use of the properties: sparse matrices

A -A didactic overlook of the叫gorithm

We have seen that we could wait for a州log2(n)/8algorithm, and for the moment we only have a
州log凸）/6 algorithm. The reason is coming from the fact that we are not searching in the whole file,
but in the n first elements. When a solution does exist, but in a position greeter than n, we can not use

it, and this value will be computed again later.

• C: D =A: B done again for (D, A, C)

• B: D =A: C done again for (D,A,B)

• D: B = C: A done again for (D,B,C)

When such a case appears, we have three analogies that we should not compute again. The use of this
property for a position d needs two steps, first we must save the 3-tuple to use it later at the position
d, then we must recover the three analogies in a matrix. Position in the matrix is (b, c) and the value
stored a. As a real matrix would have been two big, we had to realise a sparse matrices algorithm to
implement this improvement.

For more information about the sparse matrices algorithm, the reader could check in the appendix at
the end of this report.

27

EXPERIMENTS'ENGINE: THE SCHEDULER B -Example of results

B -Example of results

We have the file containing the three following lines:

• Element 1 : c

• Element 2 : ab

• Element 3 : a

Result of the algorithm is given in the table:

J current II positionA I positionB I positionC I Analogy I

2

2
-
1

1
-
2

1-2

3 1 1
2 3 1
3 2 1 cb

3 1 3 2
3 2 2 abb
1 3 3
2 3 3

28

Chapter 5

An experiment: analysis

A-Presentation of the experiment

Al -Description of the experiment

The experiment we want to process is shown in the following picture:

i >虚 t/!..や試露rb'P

I ./ .,/ 1
叙莉.: / adv

：：
; . . TRE£8Arゞl-ゞ，

:"

, ..

／
令葦·ヽ•j',r··-.~
パ閃I'/// ¥
虚t• 討 ．． 逸 巾坪

/ a』V
f::0、
)':. VP'

，，八、八
叫『＇怜畑粁

詞．．」V

紺屯辻OGY

忠やl桑LOC評

ー
•••

、i
.

0

f

"

，

心••

＄
ぃ
r
i
{

＄

．．

ヽ`
｀

i

・

・

．．

f・

1
"

•'

｀

U.・

u

令

<

・

・

・

.
t
"
・

〇
鶴
．．

••

p

r̀
 .
n
.
;
:
c
[

r.＂

・
・
・
・
・
'

g・9.....9....
：
't

..

t

・

9

..•
’
'
'
，

;
a
.

9

,

・

’

,

．
．
 ＇

99
9
,

;
.
 ．．

．．

.rt"

．

e

ー`

仁

~,
．．

,

t

g

f
 g

もh

t

by analogy

---->、:::r···•·w••·················ぃ·ふ·············•·••••·•••••w·•::·.:.;,•/}~
., t・ 沿< v,~

八／＼
曲我終訟、1唸¢炉

おし．． v

....

~.

お競桑ビfSIS

.... 蕊..,, •.•...•.•.•..••.•.•...••..•.

甘

。s
'ヽ’’a

n

｀

ふ
薫
＄

:
r

'

．

eふ

．．

茂．g

ov~
h

t‘

狛Bsigr叫格呻：

29

AN EXPERIMENT: ANALYSIS BY ANALOGY A -Presentation of the experiment

With some given analysis, we want to try to analyse automatically some new sentences: our entries,
using the properties of analogy. The steps for this experiment are:

• a triple is searched in our corpus, the three terms and our entry verifying the analo四；

• when such a triple is available, we extract the t虹eeanalysis;

• if this three analysis can produce a fourth term by analogy, we associate this new analyse to the
entry.

This method is an ideal one. Our goal is to verify if this idea can really be used, and we want to elude
the following points:

• for one entry, we can have several triples and several analysis, so we want to have some information
about the quantity of results;

• analogy is very time-consuming, and we want to know the minimal useful size of a corpus to have
a good analyse;

• of course we want to compare the results with the real analysis.

What we have to do is to compare the distance between the results and the real analysis for a set of
sentences. The distance between the trees we use is a generalised distance of edition for the strings, that
can be applied to trees.

In the following experiment, we simulate a real situation: the analyse of sentences to create a corpus.
For memory, a tree bank is a set of sentences associated to the trees. To create such a bank, the sentences
are analysed one by one, and added to the tree bank.

According to this, when the tree ba地 hasn data, the entry must be analysed by a叫 0臣 usingthen
available elements, elements that have been verified and corrected before being added.

A2 -Description of the data used

Our goal is to justify the use of this method, with a short corpus, in a way to have some fast preliminary
results. Because of the short time we have, the requested properties for the corpus are:

• because of the n図log2(n)complexity, the corpus has to be short;

• to have non trivial results, the structure of the sentences must be long enough;

• to increase the number of analogies, we use the syntactic categories sentences, with a small vocab-
ulary.

According to these remarks, the corpus we will use is upenn. eng. Because of the rich vocabulary used
by baa. eng, results would have been better, but this experiment will take to much computing time, and
can not be done for a preliminary study. Our experiment is done here with some English sentences, where
words are replaced by the syntactic categories.

30

AN EXPERIMENT: ANALYSIS BY ANALOGY B -Results

B-Results

As we want to show a real use of analysis by analogy, we simulate a man analysing the sentences one
by one, and making a preliminary analyse by analogy with the previous realised analysis. At the line n,
the entry, of our corpus:

• we search all the triples in the n -1 first elements that can create our entry by analogy;

• we compute analysis by analogy, and we store the obtained results;

• then we can compare the results with the real analyse.

Bl -Number of calculated analysis

For memory, our corpus has 787 sentences. The number of analysis realised as described before is 296,
a little bit more than one for t虹ee.

Analysis are done with the exact analysis of the previous sentences. We can imagine that the number
of analysis must grow with the number of element used. This can be verified in the graph:

6000

5000

4000
s
a
s
/
;
p
m
1
?
 ̀
P

ぃ
q
u

3000

2000

1000

。゚ 100 200 300 400 500
rang des phrases dans le corpus

600 700

Figure 5.1: Number of analysis as a function of the position in the corpus (smoothed).

The number of analysis that we can get for one sentence can be very important, the mean is 374
analysis, with an atypical maximum of 6 231. The density of this number is shown in the graph 5.2.

31

AN EXPERIMENT: ANALYSIS BY ANALOGY C -Conclusion

25

20

sasB.:rljd
a
p
 a.:rqumu

15

10

2000 3000 4000
distances rninirnales

SOOD 6000

Figure 5.2: Density of analysis.

B2 -Quality of the analysis

We can now compare the quality of the analysis with the real analysis. To do so, we consider the
closest analyse and we measure the distance between this analyse and the exact one. The results of this
measurement is shown in the graphs 5.3 and 5.4.

For all our corpus, we have one exact analyse. 170 analysis from the 296 have a distance lower than 9,
and 81 analysis, so more than one for four, have a distance lower than 4 to the exact result. We should
remember that the number of node of a sentence is 22士9,6 nodes.

C-Conclusion

As we have seen, the number of analysis increases with the size of the corpus, so we can expect to get
some better results. We could find that the quality of the results is not so good, but we must remember
that our example is a very short corpus, lesser than 800 entries. On the opposite, these results can be
considered as very promising, and we should make some further experiments, with a real corpus.

32

AN EXPERLvIENT: ANALYSIS BY ANALOGY C -Conclusion

50

40

u,m :
i
s
,
p

30

20

10

゜゚

30

25

S
8
 S1
?
.
I
l
[
d

e
p
 a.:rqUIOU

20

15

10

100 200 300 400 500
rang des phrases dans le corpus

600 700

Figure 5.3: Minimal distance.

。。
10 2 0 30

distances minimales
40 50

Figure 5.4: Number of sentences for each distance.

33

Appendix A

This appendix details a overestimated approximation of the complexity of the scheduler. This approx-
imation is done by the calculation of three integrals:

ご〗〗E (1og2(c) + i)~hn+l 1"'hy (logz (z) + 1) dz.dy.dx

A.I -First integral

jn+l jx JY (log2 (z) + 1) dz.dy.dx =
1 1 1

1 n+l・x y
ln(2) 1 j J (ln(z) + ln(2)) dy.dx

1 1

~ ~!, □ [i (1n(z)-D +zJn(2{ dy.dx
=~1 1 [z.ln(z) + z (ln(2) -l)]『dy.dx
l n+l x
＝言11 (y.ln(y) + y (ln(2) -1) -(ln(2) -1)) dy.dx

A.2 -Second integral

Jn+l Jx JY (log2 (z) + 1) dz.dy.dx・＝
1 1 1

＝亨］□[j (1n(y)~,½) +誓 (1;<2)-1) -y (ln(2) -1) r dx
ln(2)'[了~:(y) +了〗ln(2) -2)3 -y (ln(2) -1{ dx'
~~r'(了In(x)+了 (In(2)-2)-x(ln(2) -1)
ln(2) , + (亨—D) dx

34

APPENDIX A Approximation of the complexity

A.3 -Third integral

ln+l lx ly (log2 (z) + 1) dz.dy.dx =

、
＼
ー
ー
／

1

、
\
~

1
-
4

1
1
-
6
-

＋

n

1

―

―

り
）

r

②
〗
一2

り

l

n

(

-

）
（
）
）
ニ

＿
1
-
4

-

1

-

4

ー

ヽ
ー
、2

皿

幻

円

―

m

+

1

1

-

6
皿
2

(血
_
2

幻

＋

6

仇

―

(

3

8

-

3

(

5

号

仇

臼

②

）

1

-

2

X

(

／
ー
＼
十

l

l

n

1

+

＋

l

n

x

)

＿
（
＿

)

／

ー

ー

＼

ー

、

\
~
1
+

）

1
-
6
)

2

2

,
1
,

n

1
-
3
-
3
x
-
6

い

、

十

(

-

~l

n

~l

n

（

（

＿

）

（

l

n

2

1

-

2

2

十

一

,
1

、

ヽ
ー
，x

)

、l

n

2

3

)

＋

(

1

(

l

x

ln

（

叫

n

n

+

2

（三
2

1

0

‘

+

6

砂一
3

一
丑
一
6
,
l
2
n
5、

こ

(

1

-

2

-

―

―

―

―

ー
一
〗
ー
一
〗
ー
一
〗

＝

＝

A.4 -Simplifying the expression

ln+l lx ly (log2 (z) + 1) dz.dy.dx =~2)

(n + 1)3 (11
6
ln(n + 1) + ln(2) --

6
(n + 1)2

）
- 2 (ln(2)-l)+(n;/l(字— D
I -~(1n(2) -了）
+2 (ln(2) -1) -(芋— 1)

A.5 -Main term of the expression

ln十1lx ly (log2 (z) + 1) dz.dy.dx =塁；ご (1n(n+ 1) + ln(2)―信）＋

A.6 -Asymptotic limit of the expression

Jn+l Jx JY (log2 (z) + 1) dz.dy.dx
1 1 1

州log2(n)

6
+ o (n3log凸））

+=

35

Appendix B

B.1 -Reasons for using sparse matrices

While we were studying the scheduler, we first realised a non optimum algorithm. Then we remarked
that, when verifying an analogy for a fourth element whose position in the file is greater than the current
position, this analogy will be calculated again later three other times for three equivalent analogies. Our
goal is to store the first analogy to avoid the computation of the three equivalent analogies.

Alas, we have four terms to remember, so we must store one term as a value depending to three
parameters, the three other terms. While we are working at a fixed position in the corpus, one of the
three parameters can be fixed to this value. According to this, if N is the length of the corpus, we have
to push three terms in an array of N lists. Then, when we are at the linen, we pop the values from the
list n, and we have to consider one of the three terms as a value depending on the two others.

Again, we have one problem left: this means that we have to use a matrix. As our corpus can be very
long, with N greater than 10 000, such a matrix can not be used. By chance, we have very few elements
to store, and it makes possible to us to use a sparse matrices method.

B.2 -Description of the algorithm

Our algorithm extends the method used for trees, and instead of having p nodes we now have p * p
nodes:

• each node is a p matrix of pointers to P* p nodes, and if one node is not used, the pointer is NULL;

• this structure is used as we could to with trees, except that we must consider two directions at the
same time.

The advantage of this method is that, when a part of the matrix does not contain any element, this part
does not have to be allocated. All sub-matrices have the same structure, and we can put the non-used
sub-matrices in a reservoir. This allow us to allocate a wide number of sub-matrices at a san1e time to
increase the size of the reservoir, and it avoids us loosing time with allocations and deletions.

Two parameters characterise our sparse matrice:

• the size 2m of each sub-matrix;

• the number l of level of sub-matrices.

36

APPENDIX B Sparse matrices

Concerning the dimension 2叫 wecan remark that the sparse matrix is fully used if we have more than
one analogy for 2'm2 computations. The quality of the sparse matrix depends directly on this value, so it
must be chosen carefully.

As we have seen, from m depends the size of the structure. On the opposite, if mis too little, we have
to increase the number of levels l of our spai・se matrix to have a N * N global matrix. The exact size of
the matrix is the following:

= 2m(l+l)

The choice of m and l is done according to:

• the memory that we have;

• the global size that we want.

The following table gives the global size of the sparse matrix, depending on the values m and l:

m

S
2
-
3
-
4

t

・1b

2

levels of sub-matrices l

ふ） 140~62 I 16:842
32768~

7

655362

4096:0

嘉一．麟旱

For a given corpus, we must choose the best solution. Using a too big solution does cost any memory,
as the non-used nodes are not allocated, but this will mean that the use of the levels is not optimal.
When we have more than one dimension, the choice must be done according to the memory we have and
the speed we want: a greater value of l will slow down the sparse matrix, but a greater value of m will
decrease the quality of the sparse matrix.

B.3 -Some more rem紅 ks

If the memory is fully used, and we can not allocate any new sub-matrix, analogies are not stored and
will be computed again later. It means that this is not a problem as it will just slow down our algorithm,
and the algorithm will be able again to store the values later when some no more used sub-matrix will
be in the reservoir.

The method used avoid us repeating analogies. As we were able to verify that all pushed values have
been successfully popped during our experiments, we can be sure that the new algorithm using sparse
matrices is optimal.

The cost of this method depends on the searches done in our sparse matrix. In fact, we have a low
number of elements stored, and a search is often stopped very quickly. Our experiments showed us that
this cost was insignificant compared to the gain, because of the high cost of a successful computation of
analogy.

37

APPE?¥DIX B Sparse matrices

Our algorithm does not estimate the needed dimension of our sparse matrix. It would be a better idea
to choose the values l and m according to the size of the corpus. This remark is important, as a too small
dimension will cause an error for a big corpus, so the user should verify this dimension before using the
scheduler. By the way, the choose of the good parameters should not be a big problem to program.

38

