
TR-IT-0286

Internal Use Only (非公開）

002

Scalar Quantization of Cepstral
Parameters for Low Bandwidth
Client-Server Speech Recognition

Systems

グルーンライナー

Rainer Gruhn

1998.12

シンガーハラルド

Harald Singer

We describe a simple but highly efficient approach to solve the bandwidth problem for a client-

server architecture speech recognition system. Data transmission from client to server follows an

approach proposed by SRI, i.e. scalar quantization of cepstral parameters is used for compression.

Recognition results on ATR's Travel Arrangement task show that recognition error only increases

by about 0.5 % at a bandwidth of less than 6 Kb/s. This report is accessible for ITL members

via /home/singer/tex/TR-IT-Compress/.

◎ ATR音声翻訳通信研究所

◎ ATR Interpreting Telecommunications Research Laboratories

目次

1

2

1

Introduction ー

3

Theory of Scalar Quantization

2.1 Codebook .. .

(2.1.1) Building a Codebook

(2.1.2) Codebook Size , ... , . , , , , ,

Data Transm1ss1on 2.2

Experiments

3.1 Database

3.2 Data Deterioration by Lossy Compression

3.3 Parameter Selection Verification

3.4 Bit Distribution

3.5 Data Size

3.6 Computat10n Time
3.7 Recognition Rate Deterioration by Compression

ヮ
1

2

3

3

3

5

5

5

6

6

6

7

7

4

Future Directions

4.1 Future Improvements

4.2 Future Applications ．．．．．．，．．．．，．．．．．．．．．．

参考文献

付録 AProgram make_codebook

付録 B Library libATRcompress

B.1 ATRcompress_structurelib. c ...

B.2 ATRcompress_calc□ptBitDュstrib.c
B.3 ATRcompress_encodelib. c

B.4 ATRcompress_decodelib. c

B.5 ATRcompress_compdecomplib. c

付録 C Additional Experiment Results

C.1 Percental Mean Derivation

C.2 Testing the Scale Factor A

付録 D Details of Recognition Experiments

D. l Configuration File for Recognition

D.2 Some Script Fragments Used for Recognition

10

10

10

13

15

16

16

18

19

20

21

22

22

22

24

24

25

1 Introduction 1

1 Introduction

ATR's speech recognition and translation system A.TR-MATRIX [6] is a research prototype researchers all

over the world would like to see. However, to demonstrate it, the complete equipment, including voluminous

computers, has to be shipped, thus making presentations expensive and inconvenient. Use of laptops is no

suitable solution because of their relative high prices and low computational power.

Our proposal is to use a client-server system, where the speech is recorded using a small computer system

at the place of the demonstration and is then transfered to a powerful server, e.g. at ATR. Unfortunately,

the communication channel between remote client and server is usually very narrow. High quality speech

data is by far too big to transfer it by a modem over a standard telephone line. One second of speech

(assuming 16 Bit and 16 kHz) sums up to 256 kBit, which is by far more than a normal 28.8 kBaud modem

could transmit. The Internet is usually too busy and too unpredictable to use it to transfer large amount of

data, especially for the purpose of real time computing.

At ICASSP 1998, SRI [1] and IBM [5] proposed approaches to divide a speech recognition system into

preprocessing performed on the client computer and decoding, which is performed at the server. The

preprocessed data is compressed before transmission and decompressed on arrival.

Of these two papers, the SRI proposal seems to be faster and easier to implement. The client does the

feature extraction, which does not require powerful computers. The resulting cepstral vectors are compressed

using scalar quantization. In total, the data that has to be transmitted is reduced to about 4-6 Kbps,

depending on the codebook size.

In section 2 scalar compression, codebook training and compression and decompression steps are de-

scribed. Section 3 explains experiments measuring data deterioration, parameter selection verification and

recognition accuracy. In section 4 we give directions for future research, both for improving the algorithm

and possible applications. The appendix contains additional information such as a manual for the imple-

mented software, additional detailed experimental results and description of configuration files for the speech

recognition experiments.

2 2 Theory of Scalar Quantization

2 Theory of Scalar Quantization

Scalar quantization is a simple way to reduce bandwidth of a data stream by assigning discrete labels to

continuous data points or vectors. The comprehensive and general theory can be studied in [2], this section

will only describe the necessary basics for the present application.

Scalar quantization basically means to reduce continuous data values to integer codeword numbers.

Compared to vector quantization, scalar quantization is easier and faster to compute. For example, given a

vector with 13 floating point values, each of the 13 data items in the vector is quantized independently, not

the vector as a whole. The principle of scalar quantization is simple: the data values are distributed with

meanμand varianceび.Using mean and variance, the actual value is projected into a discrete space. The

data points in this discrete value space are called bins.

To calculate the index value, which is the bin corresponding to a data value x, we use the equation

x-μB l
index= lA-—+—+­ぅ

び-
」2 2' 〇'.Sindex< B (1)

with A being a scale factor and B the total number of bins.

If x is the mean value, the index will be exactly息.The scale factor is necessary to prevent all data
values to be projected to the same bin (at息） and helps gaining additional accuracy. As an example, the
scale factor could be set to 1000 and the number of bins to 32000. For rounding reasons, ½is added.

Many bin values will rarely or not occur. To store the index more efficiently, the bins are combined

to groups, the Ci in Figure l. The grouping is done by assigning an equal data amount to every group.

The indices i of the groups are the codeword numbers that will be transmitted. Figure 1 shows a possible

distribution of index values and an adequate merging to codewords dependent on N, the amount of data per

bin.

N

Bins

I II IL」UUUL..JI II II II I

q

C, C, c, c,c, C, c,, C, ら 出 Codewords

図 1:Binning of data and quantization

2.1 Codebook

To encode and decode the data, codebooks are needed. The information they contain is dependent on

their purpose: _

o For encoding the following information is needed:

-scale factor A

-number of bins B

-mean

-vanance

-end bin for each codeword

• For decoding, a table listing the original values corresponding to the bins, one per codeword, is sufficient.

Furthermore, the codebook size has to be given in both cases, and the list of bins and the list of values

must be sorted similarly.

2.2 D ata Transm1ss10n 3

(2.1.1) Building a Codebook

To build a codebook, the training data has to be read twice. The first time, mean, variance and the total

amount of data are calculated. The second time a bin table similar to Figure 1 is set up using equation 1

for each parameter in the data vector. The last step is to divide the amount of data by the codebook size

to get divisions of equal size and find out the "border bins" where this data amount is reached. These bins

(and the corresponding values) are saved to disk together with the other.needed data as a codebook header.

See付録 A for instructions how to use the codebook training software.

(2.1.2) Codebook Size

In this project, our main goal is to reduce the necessary bandwidth. In other words, the codebook size and

thus the number of bits needed to transfer a codebook number should be chosen efficiently. Some parameters

in the data vector will have a higher variance than others. For optimal representation of the original data it

is reasonable to use larger codebooks for high variance parameters and accept smaller codebooks for more

constant ones.

Given a total number of bits available for transmitting the codewords for all parameters in a data vector,

the optimal bit distribution can be calculated using the "greedy search" algorithm proposed in [2, page

225]. This algorithm assigns bits to the i quantizers by stepwise giving one bit to the quantizer with highest

demand w;. The demand wi is a measure for the neediness of another bit for quantizer i. A simplified

equation for the demand is

叫＝叶2-2b, (2)

withびibeing the variance and b; the number of bits already assigned to quantizer i.

The algorithm to distribute B bits among i quantizers used in this project is slightly different from the

algorithm in [2, page 234]. It consists of four steps:

Step O Initialize the bit allocations b; = 0 and the demands w; = 0 for each quantizer i.

Step 1 Find the index i with the maximum demand wか

Step 2 Set b; = b; ・十 1and recal叫 ateWk using equation 2.

Step 3 While I; bi :S B -l go to Step 1. Otherwise stop.

The library function implementing this algorithm is described in Appendix B.2.

As an example, we target a transmission rate of 4.8 kbps, i.e. 6 byte or 48 bit for a 10 msec frame of

speech. After subtracting 4 bits for the data header, we can distribute 44 bits to the 13 feature parameters.

The algorithm calculates the bit distribution 6 5 4 4 4 3 3 3 3 3 2 2 2, allocating many bits to the

energy and the first cepstral parameters. Section 3.2 shows the distortion resulting in this choice.

2.2 Data Transmission

Transmitting an integer value for every codeword w叫 dbe an enormous waste of bandwidth. The

transmission of the compressed data is thus done by storing the code,vords in a bit vector. Figure 2 shows

an example how a bit vector may look like. The first bits are used for the data header, which is needed

to distinguish data from control information, like start-of-sentence (we are using ATRSPREC's FrameSync

format). Following are the codewords as binary numbers, shifted to positions that optimally use the available

bits. A codeword may be spread over two bytes.

4 2 Theory of Scalar Quantization

[[[[]] [[[[]] [[[[]] [[[[]] [[[[]]
Byte

Header C, C' C, C, C, C, C, C, C,C,。 Content

図2: An example for the bitvector written by CBーロriteEncode_data: the first 4 bits contain the FrameSync

header, the codewords are stored in the following bits. Usually the first parameters have the highest variance

and thus the largest codeword size.

ふ・

＇

ー

3.2 Data Deterioration by Lossy Compression
ご

a

ー
．

3

3

Experiments

Database

As training data for the codebook, we use 407 conversation sides with a total of about 8 hours of speech

taken from ATR's travel arrangement task described in[4]. The speech test set consists of 42 conversations

sides comprising 551 utterances by 17 male and 25 female speakers, totalling 40 minutes speech from the

same database.

3.2 Data Deterioration by Lossy Compression

Signal compression by scalar quantization is an efficient way of data reduction, for the price of losing

precision. The distortion becomes clearly visible in a cepstrogram, i.e. a spectrogram calculated as FFT of

the Mel-Fourier Cepstrum Coefficients (MFCC). Figure 3 shows cepstral parameters for an example signal,

Figure 4 shows the same cepstral parameters after compression and decompression. The example signal is

a female speaker saying "tsuing de onegai shimasu". The graphics show that compression does not change

the overall formant structure.

0.0 1.0

time in sec

図 3:Cepstrogram (spectrogram of cepstral parameters) without compression

・・・・・・ ・・・・・・・・.... ハ.... ・・・・・・・・・
fne.•Y.iew 紐tions·l.PI町;'RecoI =-" .', ... ·.·•······

ツインでお願いします

［［
0.0

｀；

竺袖~~如~j瓢q

0.0 1.0

time in sec

図4:Cepstrogram after compression and decompression

The following tables show a numeric example of how much the data is deteriorated by compression. The

examples are calculated using 8 hours of speech data for codebook training (407 conversation sides) and 40

minutes for error estimation (42 conversation sides). Table 1 lists mean squared error values, Table 8 shows

the percental mean deviation. The bold written numbers in the tables indicate the bit distribution used in

all experiments (see section (2.1.2) for details).

The mean squared error values are cal叫 atedusing

1 ”
c=-~ にー x~2
n ')
i=l

(3)

6 3 Experiments

The equation for the percental mean deviation is

1
n . Xi -X・

△ =;; I: II Xi'II
i=l

(4)

with xi being the ith data value and x'[the according compressed and decompressed value.

Several unexpected jumps in the percental mean deviation (Table 8) let this distortion measure appear

unreliable.

表1:Example tables for mean squared error: Upper table lists errors with the upper border bin as codevalue,

bottom table lists errors if the mean between upper and lower border bin is used.

bits energy cep 1 cep 2 cep 3 cep 4 cep 5 cep 6 cep 7 cep 8 cep 9 cep 10 cep 11 cep 12
1 2.8930 1.3964 1.3620 1.4574 0 6552 0.4833 0.2897 0.3556 0 3095 0.4509 0.2484 0.1920 0.0980
2 0.9691 0 4477 0.3790 0.4482 0.2667 0.2355 0.1375 0.1367 0.1024 0.1277 0.0865 0.0733 0.0413
3 0 3166 0.1641 0.1241 0.1662 0.0813 0.0903 0.0458 0.0464 0.0331 0.0378 0.0322 0.0244 0 0169
4 0 1280 0.0555 0.0456 0.0624 0.0243 0.0243 0.0143 0.0131 0.0100 0.0114 0.0115 0.0076 0.0068
5 0 0670 0.0196 0.0169 0.0245 0 0087 0.0084 0.0051 0.0043 0.0037 0.0043 0.0050 0.0029 0 0027
6 0.0397 0 0061 0.0049 0 0076 0.0028 0.0021 0.0015 0.0009 0.0011 0.0010 0.0016 0 0008 0.0011
7 0 0311 0.0021 0.0018 0.0029 0.0011 0.0008 0.0006 0.0003 0.0004 0.0004 0.0007 0 0003 0.0004
8 0 0264 0 0007 0 0006 0 0010 0.0004 0.0003 0.0002 0 0001 0.0001 0.0001 0.0003 0.0001 0.0002 ， 0.0240 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
bits energy cep 1 cep 2 cep 3 cep 4 cep 5 cep 6 cep 7 cep 8 cep 9 cep 10 cep 11 cep 12
1 1.3120 0.3942 0 3315 0 3119 0.1771 0.1087 0.0668 0.0835 0 0705 0.1025 0.0572 0.0445 0.0224
2 0.2649 0.1405 0.0986 0 0966 0.0795 0 0534 0.0325 0 0341 0.0250 0 0307 0.0211 0.0177 0.0097
3 0.1096 0.0675 0 0315 0 0350 0.0269 0.0207 0.0112 0.0121 0.0085 0.0095 0.0080 0.0060 0.0040
4 0.0596 0.0231 0.0112 0.0131 0.0090 0.0055 0 0035 0 0037 0.0027 0.0030 0.0028 0.0019 0.0016
5 0.0408 0.0061 0.0041 0 0052 0 0034 0.0019 o 0012 0.0013 0.0010 0.0011 0.0012 0.0007 0.0006
6 0.0323 0.0018 0.0012 0 0017 0.0012 0 0004 0 0004 0.0003 0 0003 0.0003 Q_QQ03 0 0002 0.0002
7 0 0285 0 0006 0.0004 0 0006 0.0005 0 0001 0.0001 0 0001 0.0001 0.0001 0.0001 0.0000 0.0001
8 0.0254 0.0002 0.0001 0 0002 0.0002 0.0000 0.0000 0 0000 0.0000 0 0000 0 0000 0.0000 0.0000 ， 0.0239 0.0000 0 0000 0 0000 0 0000 0.0000 0 0000 0 0000 0 0000 0.0000 0.0000 0 0000 0.0000

3.3 Parameter Selection Verification

Several parameters are used in codebook training that were set based on preliminary experiments. Finding

out optimal settings is a possible yet very time consuming task. Because of this, we only do a few checks to

see if considerable improvements are possible.

In equation 1, a scale factor A appears. A was always assumed to be 1024. If A is too small, all values

will be around the mean, so that the codebook is inefficient. If A is too big, many values will be projected

to the upper or bottom border bin, so that information is lost.

The experiments were done using scale factors of 512, 2048, 4096 and 8192. The resulting mean square

error tables can be found in appendix C.2. Comparison with Table 1 shows that increasing the scale factor

to 2048 or 4096 significantly improves the error rates for the high cepstral coefficients while keeping the

error rates for energy and the first coefficients at the same level. This suggests to set A to 4096 for further

experiments. Even higher scale factors A would lead to information loss.

3.4 Bit Distribution

The algorithm described in section (2.1.1) calculates how to distribute a given number of bits among a

set of quantizers. Using the 407 conversation speech data base results in the listed distributions in Table 2

The first 4 bits are always used for the FrameSync data header. 13-dimensional FrameSync format data

vectors are used. Cepstral mean subtraction did not have any impact on the bit distribution.

3.5 Data Size

An important matter is the actual amount of data. Table 3 shows the achieved data reduction if quan-

tization is done using 56 bit codebooks. All sizes include data headers if existing.

IL

3. 7 Recognition Rate Deterioration by Compression 7

表 2:Bit distribution for 13-dimensional parameter vectors, depending on bandwidth.

bits header pow cepl cep2 cep3 cep4 cepo cep6 cep7 cep8 cep9 ceplO cepll cepl2

40 4 5 5 3 3 3 3 3 2 2 2 2 2 1
48 4 6 5 4 4 4 3 3 3 3 3 2 2 2
56 4 6 6 5 4 4 4 4 4 3 3 3 3 3
64 4 7 6 5 5 5 5 4 4 4 4 4 4 3

表 3:Data size comparison: 100 sec. speech

length in kB

percental length

wave file

3200

100

parameter vectors

560

17.5

100

compressed bitvectors

70

2.19

12.5

3.6 Computation Time

Computation of the codebook is very fast, i.e. about 70 seconds CPU time on a Pentium II 300 Mhz using

8 hours of preprocessed speech. This is seems to be independent on codebook size as the major calculation

effort consists in reading the preprocessed data.

To find out the additional overhead for compression, 100 seconds of wave data were preprocessed. Table 4

shows the computing times for pcx200 (Pentium II 300 Mhz, 256 MB memory, Linux 2.0.32) and atra52

(DEC Alpha500/500, 500 MB memory, Digital UNIX 4.0) in exclusive use. Computation times on atra52

were slightly lower for compressed than for uncompressed speech because fewer disk accesses are needed.

This is unlikely to play a role on low-end computers (which were not available for experiments).

表 4:Preprocessing computation time comparison for 100 sec. speech

computer

pcx200

atra52

compressed

N

Y

N

Y

user time

9.100

11.240

6.555

6.780

kernel

0.600

〇.380

1.450

0.742

realtime

0:11.56

〇:11.80

0:08.07

0:07.61

3. 7 Recogmt10n Rate Deter10rat10n by Compression

As a quick test, 75 seconds of speech data (one conversation side, 18 utterances, ID-number TAC70102)

were used to estimate the recognition rate depending on various factors. Those factors include allowed

bandwidth for transmission and optimal beam setting while aiming at a real time factor not too much over

100 %. Experiments showed that coding the data with bigger codewords does not necessarily improve the

recognition rate, but accelerate the recognition process so that higher beam settings can be chosen. Based

on the results in Table 5, 56 bit data transfer rate was chosen for ATR's OPENHOUSE 1998 demonstration.

A more meaningful experiment is to test speech recognition performance for a big corpus of compressed

and uncompressed cepstral data. We used ATRSPREC (release tag r06r02b) on a DEC AlphaStation 500/500

with 1GB memory, running Digital UNIX 4.0.

We also experimented using cepstral mean subtraction (CMS) [3]. If we want to allow the client to be

any computer, we are confronted with some hardware-specific differences in the recorded data. For example

microphones or AD converters have different transfer characteristics. CMS provides equalization of these

characteristics of the client-side microphone and hardware.

8

3

Experiments

表 5:Recognition rate comparison for TAC70102 using MFCC

bit rate

32

40

48

56

64

72

448 (uncompr.)

beamfactor

75

75

75

80

85

90

80

realtime factor

122

105

110

103

103

114

74

word best accuracy

7.41

34.81

71.11

79.26

73.33

72.59

76.30

7 utterances were excluded that exceeded the available memory for some conditions, leaving 544 utter-

ances of the original 551 utterances. Table 6 shows the word recognition rates and realtime factor.

表 6:Comparison of word accuracy in % (realtime factor) for standard Mel-Fourier Cepstrurn Coefficients

(MFCC) and MFCC followed by Cepstral Mean Subtraction (CMS) depending on available bandwidth for

544 utterances

s
,
¥

bit rate

56

448 (uncompr.)

MFCC

84.20 (4.79)

84.97 (3.66)

MFCC+CMS

86.27 (3.84)

86.83 (3.33)

For normal MFCC, the mismatch between compressed features and models results in less than a 1 %

drop in recognition accuracy but a 30 % increase in the realtime factor. For MFCC+CMS, the drop in

recognition accuracy due to compression is slightly less, but more importantly, the realtime factor only

increases by about 10 %.

100

U
O
!
S
S
8
J
d
 E

0
8
 18
:
i
j
B

[%] i
¥
8
B
J
n
8
8
B

80

60

40

20

゜
゜~

令

8
§
◇

念

0-＿_＿-：-：
O

◇
◇
 ~•

◇
;
-
＿
一
…
…
ー
一
•
-
0
-――

◇

◇

i

◇

8
t

ダ

。

？

。

•
5

s~ ◇

◇

令

◇

◇

◇

◇

孜

◇

◇

◇・

◇

0

0

:

 •~

0
 ．．．．．．
も・

.<).

◇

• ◇

゜
◇

゜◇

◇

◇

゜
•

~o

◇

゜゚
20 40 60 80
accuracy [%] without compression

100

図5:Word recognition accuracy comparison for uncompressed MFCC+CMS and compressed (56bit) MFCC+CMS

features. Each point stands for one utterance.

Figure 5 shows a comparison of word accuracy of compressed and decompressed speech signals with

uncompressed signals. Each point stands for one utterance. The utterances, where recognition rate was

3. 7 Recognition Rate Deterioration by Compression

，

87

86

束
U
I

kmm:i:m P
J
O
M

85

84

83

82

KOK3B-eEn-ea」

6

5.5

5

4.5

4

3.5

3
 40 48 56

bit/10ms
64 448 40 48 56

bit/10ms
64 448

図 6:Word recognition accuracy and realtime factor depending on available bandwidth (MFCC+CMS) for

543 utterances

not changed by compression and decompression, lay on the diagonal. Points above the diagonal signify

improvement by compression and decompression, points below the diagonal stand for deteriorated results.

In this example, 428 utterances were unchanged, 70 deteriorated, 46 improved. The total word accuracy was

86.83 %, dropping to 86.27 % due to compression losses.

表 7:Word recognition accuracy depending on available bandwidth (MFCC+CMS) for 543 utterances

bit rate

(in bit/lOms)

40

48

56

64

448 (uncompr.)

word acc.

(%)

83.22

85.10

85.84

86.07

86.45

word corr.

(%)

86.45

88.40

88.91

89.20

88.95

real time factor

(%)

5.70

4.40

3.8:3

3.5:3

3.:3:3

Table 7 lists recognition rates for a larger span of bit rates when using CMS. Please note, that 8 utterances

could not be recognized and were therefore deleted from all comparisons leaving 543 utterances. Figure 6

shows the results of Table 7 graphically. For most realistic tasks, the drop in performance for .56 bit seems

completely acceptable.

10 4 Future Directions

4 Future Directions

In this research, we sho,ved that compression of cepstral data is a valuable feature for a useful speech

recognition system. Down to 5.6 kbps, we only get a drop in performance of 0.5 %. Where do we go from

here?

4.1 Future Improvements

Apart from applications of the compression algorithm for small bandwidth connections, it is quite in-

triguing that we can compress the data by 90 % without major degradation for speech recognition.

If we compressed the speech database, we would

• reduce the disk space to about about 10 %.

e if the speech recognition system is trained on compressed data, an increase in recognition rate can be

expected. Currently we train on uncompressed and test on compressed data. The slight accuracy loss

is probably due to this mismatch.

• correlation between succeeding frames of speech is currently not exploited. By using frame-to-frame

correlation, we can expect further reduction of bandwidth without information loss.

If we train on compressed data, a possible problem might be the extreme quantization: some parameters

are projected to e.g. only 2 bits, i.e. four possible values. Such quantized parameters are unlikely to comply

with Gaussian modelling assumptions.

4.2 Future Applications

The feasibility of speech recognition over a narrow bandwidth channel encourages using the ATR-

MATRIX speech-to-speech translation system in client-server mode.

Possible applications include:

• WWW-based implementation of ATR-MATRIX

• high-speed multi-client application

Server

Wave2cep

Preprocessing

Client

HTML

recognized text

translated text

synth. text

図 7:A WWW-based demonstration system for ATR-MATRIX.

An ATR-:.¥IATRIX demonstration WWW page would allow presenting the system virtually everywhere,

requiring only a laptop, modem and telephone line. Preparation time and costs for a demonstration would

4.2 Future Applications 11

decrease tremendously, as no damageable computer system has to be shipped. Software preparation can

be reduced to starting a browser on the laptop and starting the server script on a powerful server at ATR.

Figure 7 shows the possible structure of such a WvVW-based ATR-MATRIX system. This architecture

would also fully fit the scenario of a Japanese traveller coming to a hotel in the USA, who wants to talk to

the receptionist: both sides would communicate using the same computer.

speech recognition

ニニ冒

client 2¥

English

speech recognition
front end

text display

audio player

~binary data transmit

• text data transmit

＿＿＿ヤ connectionrequest / etablish!nent

図8:A multi-client application using narrow bandwidth connections. For clarity, connections are only shown

for Japanese-to-English translation.

A more general application is a two-or multiclient scenario as shown in Figure 8. It allows two or

more remote clients to communicate using narrow bandwidth connections via a communication server. This

communication server would transfer text data and establish direct client-server connections for cepstral

data (client —server) and speech data (server - client).

12 Acknowledgements

Acknowledgements

We would like to thank Dr. Seiichi Yamamoto, President of ATR-ITL, and Dr. Yoshinori Sagisaka,

Department Head, for giving us a chance to do this research at ITL. We also would like to thank all

members of department 1, especially Michael Schuster and Hirofumi Yamamoto, for valuable discussions.

参考文献 13

参考文献

[l] V. Digalakis, L. Neumeyer, and M. Perakakis. Quantization of cepstral parameters for speech recognition

over the world wide web. In Proc. ICASSP, pages II-989-992, Seattle, 1998.

[2] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer Academic Publishers,

1991.

[3] M. Morishima, T. Isobe, and N. Koizumi. :¥ormalization of the feature vector in telephone speech

recognition. In IEICE TRANSACTIONS, pages 49-54, Kawazaki, 1997.

[4] A. Nakamura, S. Matsunaga, T. Shimizu, M. Tonomura, and Y. Sagisaka. Japanese speech database for

robust speech recognition. In Proc. ICSLP, pages 137-140, Philadelphia, 1996.

[5] G. Ramaswamy and P. Gopalakrishnan. Compression of acoustic features for speech recognition in

network environments. In Proc. ICASSP, pages II-977-980, Seattle, 1998.

[6] B. Reaves, A. Nishino, and T. Takezawa. ATR-::VIATRIX: Implementation of a speech translation system.

In Proc. Acoust. Soc. lap., Spring 1998.

14 参考文献

付録 A Program make_codebook 15

付録 A Program make_codebook

The program make_codebook reads the input data file, calculates the codebooks for en-and decoding

and writes them to files.

option

-help

-config

-inputFd

default

(n.a.)

(none)

(none)

-inputParamType

-inputFormat

-inputParamSize

-number□fUsedParam

-inputByteorder

-scaleFactor

-number□fBins

float

FrameSync

3

3

1

1

BigEndian

1024

32768

-sumBits□fCode.iords 48

-outputEncoder

-outputDecoder

codebook.enc

codebook.dec

description

Display help message.

read parameters from file, not command line.

Name of the training data file. Obligatory. As the data

must be read twice, stdin as input source is impossible.

Which data type the trairiing data is. Only float is supported.

Which data format the training data is. Only FrameSync

is supported.

How many parameters the data body consists of. Must be

2: numberOfUsedParam.
How many of the existing parameters in the data vector

shall actually be used. E.g. if the training data con-

sists of 13 cepstral coefficients and their 13 derivatives, but

only the first parameters, the coefficients, shall be used,

set inputParamSize to 26 and numberOfUsedPara皿 to13.

Always the first n Parameters are used.

The training data byte order.

See equation 1 for details.

See equation 1 for details. It is a short variable, so values

must not exceed 65535.

Total size of coded vector. The higher the number the more

accurate the coding will be. 4 bitsvヽillbe used for header

coding, the rest for the data.

:fi le to write the codebook for encoding.

:fi le to write the codebook for decoding.

Usage examples:

make_codebook -inputFd=/home/rgruhn/data/TAC70015.A.FSYNC -inputParamSize=26

Reads file TAC70015. A. FSYNC, which contains 26 dimensional FrameSync format data. The first

13 parameters are used for codebook training (1:3 is the default setting of number□fUsedParam),
the second 13 parameters are ignored.

make_codebook -config=myconfig

Trains codebook using configuration options in file myconfig.

m吐：e_codebook -help

Displays help message.

The input data for training can not be read from stdin, as it has to be read twice: first to calculate the

mean and variance vector and the second time to calculate the index values, using equation l. This makes

the use of this program in a pipeline impossible, the data must be read from file.

16 付録 B Library libATRcompress

付録 B Library libATRcompress

The library libATRcompress. a or libATRcompress. so resp. provides various functions for data com-

pression and decompression as well as for codebook handling.

The functions were written to replace the write and read calls in the library ATRevent.

Compressed data is no own data type. It is FrameSync format. The compression algorithms are used

when writing or reading to or from file or stdin. To make compression available without need to use

the I/0-routines, a compression/decompression option was added to the T;Tave2cep module, modifying the

cepstra as last step of cepstral calculation.

Additional command line options are provided for I/Ocontrol configuration:

option

-outputCompress

-i:nputDecompress

-outputE:ncodeBookFile

-i:nnutDecodeBookFile .

default

OFF

OFF

codebook.enc

codebook.dec

description

set to ON to activate compression of output data.

set to ON to activate decompression of input data.

codebook for compression of data.

codebook for decompression of data,

must match with previously used encoder.

Command line options were also added for ATRwave2cep:

option

-SirnCornpression

default description

OFF set to ON to activate compression and decompression of

cepstral parameters. E.g. useful to train a recognizer on

compressed data without using the I/0-routines and piping.

-outputEncodeBookFile none codebook for compression of data.

-inputDecodeBookFile none

Usage example:

codebook for decompression of data, must match with pre-

viously used encoder.

ATRwave2cep -outputCompress=ON I ATRcep2para -inputDecompress=ON

Calculates cepstral parameters, compresses the output, pipes it to ATRcep2para where the data

is used for parameter calculation.

ATRwave2cep -outputCompress=ON -outputEncodeBookFile=bettercodebook.enc I

ATRcep2para -inputDecompress==ON -inputDecodeBookFile=bettercodebook.dec

Does the same as above, but using the codebooks bettercodebook. enc and bettercodebook. dee

for compression and decompression.

ATRall -SimCompression=DN -outputEncodeBookFile=codebook.enc -inputDecodeBookFile=codebook.dec

Does the same as above, without need to split the recognizer into preprocessing and recognition

programs.

B.1 ATRcompress_structurelib. c

The library ATRcompress_structurelib. c contains some necessary functions to handle codebooks, such

as memory functions and a routine to read a codebook from disk.

#include "codebook.h"

_MCB *CB_malloc_MCB(int usedParam, int *bitDistribution, int flag);

void CB_free_MCB (_MCB *codebooks);

MCB *CB_read_codebook (char *CB_filename, int enc_dec_flag);

B.1 ATRcompress_structurelib.c 17

Detailled description follows:

直 CB *CB_malloc_MCB(

int usedParam, I* number of parameters used from data vector *I

int *bitDistribution, I* size of codebooks in bits *I

int flag I* encode/decode -flag *I

）

This function allocates memory for the master codebook itself and for the single codebooks

and their data bodies. The size of the data bodies is allocated according to the settings in

bitDistribution. Depending on flag, memory for encoding or decoding is prepared. Returns

NULL on failure.

void CB_free_MCB(_MCB *codebooks)

Frees the memory of a master codebook.

_MCB *CB_read_codebook(

char *CB_filename, I* filename *I

int enc_dec_flag I* flag if this is an encoder oder decoder *I

Allocates memory for a master codebook and reads it from file CB_filename. If enc_dec_flag and

type of master codebook in CB_filename do not match or any other errors occur, this function

returns NULL.

18 付録 B Library libATRcompress

B.2 ATRcompress_calc□ptBi tDistrib. c
This file contains a function to calculate the optimal bit distribution for codebook training.

#include "codebook.h"

int ATR_calc_optBitDistribution(

int vectorDirnension,

I* how many parameters are in the vectors *I

double *varVector,

I* variance of each parameter *I

int givenBits,

I* how many bits are available for distribution *I

int *bitDistribution

I* pointer to put the bit distribution vector *I

This function calculates the optimal bit distribution for quantization of parameter vectors, given

variance and the number of available bits. Returns O on success or 1 on error.

B.3 ATRcornpress_encodelib.c 19

B.3 ATRcompress_encodelib. c

This file contains an init and an write and encode function.

#include "codebook.h"

#include "InterFaceSSS.h"

int CB_init_Encoder(char* CB_filenarne, char* dataType);

size_t CB_writeEncode_data (int fd, void *datap, size_t count);

int CB_compressWithout関rite(void*rnydatavector, unsigned char *mybitvector);

void CB_terrn_Encoder();

Detailled description follows:

int CB_ini t_Encoder (char* CB_filename, char* data Type)

This function initializes the encoding process by allocating necessary memory, reading the code-

book from file CB_filename and calculating all constants. dataType must be float or int, as other

data types are not supported. Returns O on success or 1 on error.

size_t CB_writeEncode_data (int fd, void *datap, size_t count)

This function takes one FrameSync data event, compresses it, stores it into a bitvector and writes

this to fd. This function was programmed to optimally fit in into ATRevent_r;rri te_frame_sync

and replace all write calls there. In ATRevent_r;rrite_frarne_sync, r;rrite is called twice, once

for the header and a second time for the data body. To enhance efficiency, the header value is

stored internally and later transmitted together with the data body.

The data is compressed using scalar quantization. To use only minimum bandwidth, header and

codewords are transmitted in one bit vector. The FrameSync data header currently is an integer

number between O and 12, thus can be stored using 4 bit; if these definitions are expanded, the

setting

#define CB_TRANSMITTED_HEADER_BITS 4

in codebook. h must be changed adequately.

For reading these vectors, CB...read.Decode_data (see section B.4) should be used.

vVrite is told in the input variable count, how many bytes of (uncompressed) data are to be

written. As the really written bytes never match count anyway, this function returns -1 on error

and count else. Partial write is considered a error.

int CB_compressWithoutWrite(void *mydatavector, unsigned char *mybitvector);

This function generates a FrameSync data event header, compresses the float vector mydatavector

and stores both compressed header and compressed data body in the bitvector mybitvector.

void CB_term_Encoder();

This function frees allocated memory.

20 付録 B Library libATRcompress

B.4 ATRcompress_decodelib.c

This file contains an init and a read and decode function for bitvectors sent by CB_wri teEncode_data

(see section B.3). The result is an event in FrameSync format.

#include "codebook.h"

int CB_init_Decoder(char* CB_filename, char* dataType);

size_t CB_readDecode_data (int fd, void *datap, size_t count);

int CB_decompressWithoutRead(u.nsigned char *mybitvector, float *mydatavector);

void CB_term_Decoder();

Detailled description follows:

int CB_init_Decoder(char* CB_filename, char* dataType);

This function initializes the decoding process by allocating necessary memory, reading the code-

book from file CB_filename and calculating all constants. dataType must be float or int, as other

data types are not supported. Returns O on success or 1 on error.

size_t CB_readDecode_data (int fd, void *datap, size_t count);

This function reads one bit vector written by CB_writeEncode_data (see section B.3) from詞

retrieves header and codewords, decodes using the codebook and stores the decoded data, a

vector of floats, to datap. If the header is not a data mark, the data body is undefined.

This function is concepted to replace the. read calls in the function SSSReadFrameSync in the

library ATRevent_read_frame_sync. c.

Additional information on coding and bit vectors can be found in section B.:3.

It returns :::;o on error or count on success. There is no direct connection between the number of
bytes to be read given in count and the actual number of read bytes. This function reads into a

buffer until as many bytes are read as a bitvector has. The bitvectorsize is calculated from the

data in the codebook during init. This function will read until a bitvector is complete or return

-1 if EDF is received.

int CB_decompressWi thoutRead (unsigned char *mybi tvector, float *mydatavector) ;

Prepares the bit vector mybitvector for decoding by CB_decompress. The result is stored in

mydatavector.

void CB_terrn_Decoder();

This function frees allocated memory.

B.5 ATRcornpress_cornpdecornplib. c 21

B.5 ATRcompress_compdecomplib. c

This file provides a function to compress and decompress cepstral data without using the I/0 routines,

i.e. without writing it. An init function is also provided.

#include "codebook.h"

int CB_init_compDecomp(int id, char *mydatatype);

int CB_compDecomp(double *doubledata, int vectorsize);

Detailled description follows:

int CB_init_compDecomp(int id, char *mydatatype);

This function initializes both compression and decompression. Returns O on success or 1 on error.

int CB_compDecomp(double *doubledata, int vectorsize);

This function expects a vector of doubles and the vector size, e.g. the cepstral order plus one for

the power parameter. The function converts the doubles to floats, compresses these, decompresses

the bit vector, turns the floats to doubles again and stores them in *doubledata. vectorsize

must match the number of parameters used in the codebooks.

22 付録 C Additional Experiment Results

付録 C Additional Experiment Results

This section contains all experiment result tables that were not included in section 3 (experiments) to

keep the main part clear and readable.

C.1 Percental Mean Derivation

Please read section 3.2 for explanations.

表 8:Example tables for percental mean derivation: Upper table lists errors with the upper border bin as

codevalue, bottom table lists errors if the mean between upper and lower border is used.

bits energy cep 1 cep 2 cep 3 cep 4 cep 5 cep 6 I cep 7 cep 8 cep 9 cep 10 cep 11 cep 12
1 53 10 114.69 69 25 597.55 352 06 339.46 462.33 728 50 466.53 1539 44 528.56 959.23 481.89
2 22 56 104 82 20 16 62.11 46.70 36 81 56 72 59.23 54.07 104.30 55.67 81.20 52.59
3 14 98 14 37 12.27 22.94 18.88 20.03 15.23 43.76 22.21 32.21 22 65 23 38 16 52
4 10.42 10 92 9.30 7.04 7.47 5.08 11.27 19.82 9.04 27.04 9 03 18.94 12.21
5 6 81 3.53 1.98 5 14 2.38 2.99 3.07 9.00 3 06 12 60 2.90 7.31 5.13

S I 4.W 2 72 1.02 1 60 1 63 2.00 2.23 3 90 2 16 5 57 1 92 1.77 1 76
7 1.85 1 04 0 56 1 07 0 47 0 66 0.59 1.43 0.83 2.10 0 59 1.29 1.25
8 1 71 0.28 0 32 0.31 0.26 0 42 0.29 0 26 0 54 0 43 0 32 1.02 0 49
9 0 59 0.18 0 20 0 12 0.15 0.12 0 14 0.16 0 22 0.30 0.15 a 35 a 15
bits energy cep 1 cep 2 cep 3 cep 4 cep 5 cep 6 cep 7 cep 8 cep 9 cep 10 cep 11 cep 12
1 51 48 19.25 38 39 293 06 174 12 152.79 319.54 342 50 230 95 754 42 261 86 465.92 232 98
2 21 08 43 98 36 47 26.60 22.68 20.11 18 31 10.80 26 05 38 03 26.56 28.08 19.46
3 14 32 5 67 10 36 7.36 8 27 6.11 8.53 21.82 9.72 5.28 9.68 7 69 5.32
4 10 12 3 73 1.67 3.71 2.52 4.67 3.18 9 53 3 13 13 08 2 91 7 56 5 34
5 6.65 1.28 3 70 1.66 1 49 1 60 2 40 4 02 1 41 5 71 1 88 1 80 1 82
6 4.11 1 10 1.68 1.05 0 51 0 68 0.48 1 47 0 83 3.17 0 55 1.85 0 78
7 1 80 0 29 0 80 0 33 0 49 0.43 0 93 0.26 D 30 0.45 0 62 0 52 0 50
8 0 22 0 33 0.34 0.35 0.20 0.14 0 47 0 57 0 28 0.63 0 29 0.40 0 16 ， 0.56 0 14 0.13 0 19 0.08 0 17 0 26 0 31 0.10 a 22 0.12 0 09 0 18

C.2 Testing the Scale Factor A

Please read 3.3 for explanations.

表 9:Mean squared errors if scale factor of 512 is used instead of 1024.

1
つ
1
3
4
5
0
6
7
8
9

1.3095
0.2639
0.1088
0.0597
0.0408
0.0325
0.0287
0.0255
0.0240

0.3939
0.1406
0.0677
0.0230
0.0062
0.0019
0.0007
0.0002
0.0001

0.3311
0.0983
0.0315
0.0112
0 0041
0.0013
0.0005
0.0002
0.0000

0.3115
0.0963
0.0350
0.0132
0.0052
0.0017
0.0007
0.0003
0.0001

0.1 772
0.0795
0.0269
0.0091
0.0035
0.0013
0.0005
0.0002
0.0001

0.1087
0.0534
0.0206
0.0056
0.0019
0.0005
0.0002
0.0001
0.0000

0.0668
0.0336
0.0112
0.0036
0.0013
0.0004
0.0002
0.0001
0.0000

0.0835
0.0341
0.0121
0.0037
0.0013
0.0004
0.0001
0.0001
0.0000

0.0705
0.0251
0.0086
0.0028
0.0011
0.0003
0.0001
0.0001
0.0000

0,1092
0.0307
0.0096
0,0030
0.0012
0.0003
0.0001
0,0000
0,0000

0.0572
0.0211
0.0080
0.0028
0.0012
0.0004
0.0002
0.0001
0.0000

0.0445
0.0177
0.0060
0.0019
0.0007
0.0002
0.0001
0.0000
0.0000

0.0353
0.0141
0.0055
0.0021
0.0009
0.0003
0.0001
0 0001
0.0000

表 10:Mean squared errors if scale factor of 2048 is used instead of 1024.

bits energy cep 1 cep 2 cep 3 cep 4 cep 5 cep 6 cep 7 Cep 8 cep 9 cep 10 cep 11 Cep 12
1 1 3083 0 3948 0 3320 0 3122 0 1772 0 1087 0 0668 0 0772 0 0401 0 0269 0 0201 0 0154 0 0078
う 0 2656 0 1409 0 0987 0 0967 0 0796 0 0535 0 03~6 a□342 0 0178 0 0118 0.0086 0.0061 0.0030
3 0 1096 0 0677 0 0316 0 0351 a□269 0.0207 0.0112 0.0121 0.0067 0.0046 0 0033 0 0022 0 0011
4 0 0598 0 0~30 0.0113 0.0132 0.0091 0 0056 0 0036 0 0037 0,0034 0 0017 0 0012 0 0008 0 0005
5 0 0409 0.0062 0 0042 0 0053 0 0035 0 0019 o 0013 0 0013 0 0009 0 0006 0 0005 o 0003 0 0002
6 0.0323 0 0019 0 0013 0 0017 0.0013 0 0005 0 0004 0 0004 0 0003 0 0002 0 0002 0 0001 0 0001
7 0 0285 0 0006 0 0005 0 0007 0 0005 0 0002 0 0002 0 0001 0 0001 0 0001 0 0001 0.0000 0 0001
8 0.0254 0 0003 0 0002 0 0003 0 0002 0.0001 0 0001 0 0001 0 0001 0 0000 0,0000 0 0000 0 0000 ， 0 0239 0 0001 0 0000 0 0001 0 0001 0 0000 0 0000 o 0000 0 0000 0 0000 0 0000 o 0000 0 0000

C.2 Testing the Scale Factor A 23

表 11:Mean squared errors if scale factor of 4096 is used instead of 1024.

bits energy cep 1 cep 2 cep 3 cep 4 cep 5 cep 6 cep 7 cep 8 cep 9 cep 10 cep 11 cep 12

1 1 3089 a 3948 0.3322 0 1547 0 1173 0 0641 0 0329 0.0295 0 0172 0.0145 0.0123 0 0097 0.0064
2 0.2661 0 1408 0 0988 0.0523 0 0581 0 0289 0 0135 0.0122 0 0070 0.0060 0.0054 0.0038 0.0026
3 0.1099 0.0677 a□316 0.0193 0 0224 0.0112 0.0048 0.0045 0.0028 0.0025 0 0023 0.0015 0 0012
4 0.0599 0.0230 0.0113 0.0074 0.0081 0.0037 0,0016 0 0017 0 0011 o 0010 0 0010 0.0007 0 0009
5 0 0409 0.0062 0 0042 0 0028 0 0031 0 0012 0.0006 0 0006 0.0005 0 0006 0 0008 0 0006 0.0009
6 0.0323 0.0019 0 0013 0 0011 0.0013 0.0004 0.0002 0 0003 0.0004 0 0006 0.0008 0.0006 0.0009
7 0 0285 0.0006 0.0005 0 0004 。.0005 0 0002 0 0001 0 0002 0.0004 0.0006 0.0008 0 0006 0.0008
8 0 0254 0.0002 0.0002 0 0002 0 0002 0 0001 o 0001 0 0002 0.0004 0.0006 0.0008 0 0006 0.0008 ， 0 0239 0 0001 0.0000 0 0001 0.0001 0 0000 o 0001 0.0002 0.0004 0.0006 0.0008 0 0006 0.0008

表 12:Mean squared errors if scale factor of 8192 is used instead of 1024.

bits energy cep l cep 2 cep 3 cep 4 cep 5 cep 6 cep 7 cep 8 cep 9 cep 10 cep 11 cep 12
l 1 3079 0.3948 0 1258 0 0634 0 0741 0 0368 0 0264 0 0258 0 0160 0 0146 0 0128 o 0101 0 0072
2 0 3663 0 1409 0 0453 0 0249 0 0340 0 0114 0 0098 0 010~ 0.0069 0 0064 0.0060 0.0043 0.0032
3 0 1101 0 0677 0 0147 0 0109 0 0135 0.0035 0.0038 0.0040 0.0039 0.0041 0.0043 0 0032 0 0029
4 0 0600 0 0230 0.0052 0.0053 0.0055 a 0012 0 0028 0 0036 0 0035 0 0038 0 0040 0 0032 0 0029
5 0 0409 0.0062 0 0019 o 0029 0 0047 0 0009 0 0026 0 0034 0 0033 0 0038 0 0039 0 0030 0 0029
6 0.0324 0 0019 0 0008 0 0025 0 0046 0 0009 0 0025 0 0034 0 0032 0.0037 0 0039 0 0030 0 0029
7 0 0285 0 0006 0 0004 0 0024 0 0045 0 0008 0 0024 0 0034 0 0032 0 0037 0 0039 0 0030 0.00~9
s I a 0254 a ooo:J 0 0004 0 0024 0 0045 0 0008 0 0024 0 0034 0 0032 0 0036 0 0039 0 0030 0 0029
9 0 0~39 0 0001 0 0004 o 0033 0 0045 0 0008 0 0024 o 0034 0 0D32 0 0036 0 0039 0 0030 0 0029

翡 付録 D Details of Recognition Experiments

付録 D Details of Recognition Experiments

All recognition experiments were run with ATRSPREC release tag r06r02b. Specifically, we used the script

$ATRSPREC/script/atrLatt.py

which allows online calculation of CMS based on pause-units, i.e. speech segments in the .TRS transcription

files. Configuration files are calculated on-the-fly.

D.1 Configuration File for Recognition

Here is an example of a configuration file when using 56bit compression and CMS, generated by atrLatt.py:

I/Ocontrol:inputByteorder=BigEndian

I/Ocontrol:inputFd=stdin

I/Ocontrol:inputFormat=JlloHeader

I/Dcontrol:inputParamSize=160

I/Ocontrol:inputParamType=short

I/Ocontrol:outputByteorder=BigEndian

I/Ocontrol:outputFd=stdout

I/Ocontrol:outputFormat=lloHeader

I/Ocontrol:outputParamSize=26

I/Ocontrol:outputParamType=float

ATR;;avecut:PausePeriod=N゚T

ATR;;avecut:SamplingFrequency=16000.0

ATR;;avecut:pause — symbol=ー

ATRt.ave2cep:AnalysisType=££t

ATRt.ave2cep:Cepstrum□rder=12
ATRllave2cep:Cuto££HighFrequency=8000

ATR.,ave2cep:Cuto££Lot.Frequency=O

ATR百ave2cep:DebuggingLevel=O

ATRllave2cep:FilterBank□rder=16
ATRt.ave2cep:FrameLength=20

ATRt.ave2cep:FrameShi£t=10

ATRllave2cep:FrequencyWarping=mel

ATR百ave2cep:LagWindot.Factor=0.01

ATRt.ave2cep:Lpc□rder=16
ATRぶrnve2cep:Preemphasis=O. 98

ATRllave2cep:SamplingFrequency=16000

ATRt.ave2cep:SimCompression=ON

ATRt.ave2cep:TimeWindot.=hamming

ATR百ave2cep:inputDecodeBookFile=/home/singer/SPREC/sample/ATRcompress/codebook.cms56dec

ATRt.ave2cep:outputEncodeBookFile=/home/singer/SPREC/sample/ATRcompress/codebook.cms56enc

ATRcep2para:Cepstrum0rder=12

ATRcep2para:DeltaCepstrumWindo11=9

ATRcep2para:LDA=

ATRcep2para:OutputParameter=po11+cep(12)+dpo11十dcep(12)

ATRcep2para:deltaCepstrumPadding=zero

ATRcep2para:rho=1.0

ATRlattice:UTT_E.IID=6

ATRlattice:UTT_END_delay=70

ATRlattice:UTT_START=S

ATRlattice:active_model=all

ATRlattice:amname=/dept1/,1ork1/ResearchJ/VS/amodel/AM.M.CMS.bin,/dept1/,1ork1/ResearchJ/VS/amodel/AM.F.CMS.bin

ATRlattice:amscale=i.000000

ATRlattice:back,1ard_frame=-1

ATRlattice: beam=110, 110

ATRlattice:dimension=26

ATRlattice:-frame_shift=10

D.2 Some Script Fragments Used for Recognition

ATRlattice:lexicon=/dept1/百orki/ResearchJ/lmodel/19981118/LEX.W.comp.h

ATRlattice:lmscale=S,13

ATRlattice:ngram=Hulti-Class-2,/dept1/.-ork1/ResearchJ/lmodel/19981118/multicomp.700.bin

ATRlattice:pause_symbol=-

ATRlattice:phone_boundary=ON

ATRlattice:state_skip=ON,75000

ATRlattice:lldpenalty=0,0

ATRlattice:.-ord_boundary_skip=2

ATRlattice: llord_merge=all

ATRlattice: llork_area=3600, 150

D.2 Some Script Fragments Used for Recognition

25

The following (bash) script fragment trains encoding and decoding codebooks given a feature parameter

file in FrameSync format:

for bit in 40 48 56 64 ; do

$ATRSPREC/src/ATRCOMPRESS/make_codebook ¥¥

-inputFd=/horne/pcx200/singer/407.crns.fsync -inputParamSize=13 ¥¥

-sumBitsOfCode,1ords=$bit ¥¥

-outputEncoder=codebook.cms"$bit"enc -outputDecoder=codebook.crns"$bit"dec

done

Recognition experiments for these bit rates using CMS were run with the following bash script. latDir

stands for a directory of result lattices and resul tFile contains detailed results on a per-utterance basis as

a Python list of dictionaries.

-for bit in 40 48 56 64 ; do

atrLatt .py ¥ ¥

-ATR'1ave2cep:SimCompression=DN ¥¥

-ATR'1ave2cep:outputEncodeBookFile=$ATRSPREC/sample/ATRcompress/codebook.cms"$bit"enc ¥¥

-ATR'1ave2cep:inputDecodeBookFile=$ATRSPREC/sample/ATRcompress/codebook.cms"$bit"dec ¥¥

-calcCMS=CalcHeanPU ¥¥

-ATRlattice:amname=/dept1/'1ork1/ResearchJ/V5/amodel/Al1.11.Cl1S.bin,/dept1/百ork1/ResearchJ/V5/amodel/Al1.F.Cl1S.bin¥¥

-resul tFile=resul t. Lattices"$bi t" -latDir=Latt ices"$bi t" >& atrLatt. log"$bi t"

done

Finally, a result file can be analyzed by a (python) script fragment. This can be interactively executed by

using mule/emacs, marking the code as a region and using M-x py-execute-region if your mule is properly

configured.

import os, pickle

os.sys.path.append(os.environ['ATRSPREC']+'/script/python/lib')

import atrscore

read in the python object from子ile

f=open ('/home/ singer /SPREC/ script/result. Lattices56') ; res=pickle. load (f) ; f. close()

get rid 0£None entries, i.e. 百here""did not get a valid recognition result

bad =£il ter(lambda x: res [x] ==None, res. keys())

£or i in bad: del res[i]

print summary

summary= reduce(lambda x,y,res=res: x+res[y], res.keys() ,atrscore.RESULT())

os.sys.stderr.11rite("acc:'l,.2f, corr: 1/..2f, realtime factor:'l,.2f, ids: 1/,d¥n"'l,

(summary.acc(), summary.corO, summary.realtimeO, len(res.keys())))

Obviously, you can do much more, like plotting the results using atrgnuplot.py etc.

26 付録 D Details of Recognition Experiments

