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ABSTRACT 

This technical report describes new models of segmental du-

ration and fundamental frequency, and different improvements 

and additions needed for German text-to-speech with CHATR. 

The duration and frequency models were realized with "mul-

tivariate adaptive regression splines", a nonparametric regres-

sion method very well suited for problems having mixed ordinal 

and categorical input factors. Models for German and English 

have been developed. The text~to-speech additions and irn-
provements include modules for generating ToBI for German 

text input and the handling of words not contained in the lex-

icon. "Decision trees" were used for these tasks. 

◎ ATR Interpreting Telecommunications 

Research Laboratories. 

◎ ATR音声翻訳通信研究所

002 



Contents 

1 Introduction 3 

1.1 Outset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.2 Improving the System . . . . . . . . . . . . . . . . . . . . . . 4 

1.3 Statistical Modeling . . . . . . . . . . . . . . . . . . . . . . . . 5 

2 Data 6 
2.1 Siemens Germany . . . . . . . . . . . . . . . . . . . . . . . . . 6 
2.2 University Stuttgart . . . . . . . . . . . . . . . . . . . . . . . 6 
2.3 CHATR Speech Databases . . . . . . . . . . . . . . . . . . . . 7 

3 Modeling of Prosodic Parameters・9  

3.1 Introduct10n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
3.2 Data ....... . ...... ．． . . . . . . . . 10 

3.3 Duration . . . ．． ... .... ...... 10 

3.3.1 Input Factors . . . . . . . . . . . . . . . . . . . . . . . 10 

3.3.2 Output Coding . . . ．． ．． . . . . . . . 13 

3.3.3 MARS C onstruct10n and Results . . . . . . . . 13 

3.4 Fundamental Frequency . . . . . . . . . . . . . . . . . . . . . 14 

3.4.1 Input Factors .... . . . . . . . 14 

3.4.2 Output Coding .... ．． . . . . . . . . . . 18 

3.4.3 MARS C onstruct1on and Results . . . . . . . . . . 19 

3.5 Conclusions ... ．． .... .. . . . . . . . 20 

． 
4 Generat10n of ToBI for Text Input 21 

4.1 Introduction ....... . ．． . . . . . . . . 21 

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

4.3 Tree Construction . . . . . ．． ..... 24 
4.4 Results . . . ．．．． ...... 24 

4.4.1 Ph A rase ccents and Tone Boundanes . . . . . .... 24 

4.4.2 Pitch Accents ... . . . . . . 25 
4.5 Conclusions .... ．． .. . . . . . . 26 

ー



5
 

5.3 

Unknown Words 

5.1 Introduction ... ．． ．． ... ．． 

5.2 Letter to Sound Tree 
5.2.l Data .... ... ....... .. 

5.2.2 Tree Construct10n . . . .. 

5.2.3 Results . . . . . . . . . . . ．． .. 

Part of Speech Tree ... .. .. .... 

5.3.1 Data ....... . .. ．． ．． 

5 3 J . ・.:., Tree Construct10n . . . . . . . ．． .. 
5.3.3 Results . . . . . . . . . . .. ．． 

Conclusions 5.4 

A

B

C

 

CHATR Modifications 

CHATR Setup 
＼
 

Phoneme Set "sampaGd" 

Bibliography 

27 

27 
30 

30 
32 

33 
34 

34 

35 

35 
36 

38 

41 

43 

45 

2
 

/
j
 



Chapter 1 

Introduction 

After finishing my PhD thesis on the subject of "controlling segmental du-
ration in speech synthesis systems" at the ETH Zurich, Switzerland, I spent 
four months (July -October 1998) at department 2 of ATR ITL. 

My main concerns during this time were the prediction of duration and 

fundamental frequency for German and English, and the German-specific 

parts of the CHATR system. A description of the CHATR system can be 

found in [ATR97]. The work done on the German-specific parts of the system 

before my stay at ATR are described in [Bri97] and [Str97]. 

The part of this work concerned with the prediction of duration and 
fundamental frequency is strongly related to my previous work done at the 

ETH. Besides continuing my previous work I was also interested in extending 

CHATR to a "complete" text-to-speech system for German. This required 

works on many parts of the system. Many problems could be viewed as 

symbol mapping problems. They were handled with decision trees. This 

"simple" approach was selected because of its flexibility (and also because 

of the limited time available). In this report the work carried out in this 
context will be described, which includes: 

• German speech databases and lexicon 

魯 Predictionof segmental duration and fundamental frequency contours 

for German and English 

• Generation of boundary tones, phrase accents, and pitch accents (the 
tone tier of ToBI) for text input 

• Strategy for handling words not contained in the lexicon 

• Text normalization (partially) 
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1.1 Outset 

For testing purposes, the code implemented in this work was included in 
CHATR version 0.94 (July 1, 1998). The work done on the German-specific 

parts of the system until then are described in [Bri97] and [Str97]. Only the 

work described in [Bri97] was included in CHATR 0.94, the other parts were 

missing. In particular, the ToBI generation code (see [Str97]) was missing. 

After including the missing parts, several German texts were synthesized. 

The realization of duration and fundamental frequency for German clearly 

was of insufficient quality. This was not surprising since no duration model 

for German had been included in the system. Instead, the fall-back strat-
egy (using average phoneme durations observed in the speech database) was 

used. Fundamental frequency was predicted with a modified version of the 
Anderson, Pierrehumbert, and Liebermann technique. For English, on the 

other hand, duration and fundamental frequency models were realized with 

linear regression models. 

The manually setup rule system used to generate the tones and breaks 

indices (ToBI) worked reasonably well, but as discussed above, were not 
correctly realized by the prosody realization models. 

The pronunciation (and part of speech) of the words contained in the 
input text were looked up in a wordform lexicon. If a word could not be 
found in the lexicon, synthesis of the whole text would fail. Furthermore, 

the system did not do any preprocessing on German input text. 

1.2 Improving the System 

To improve the speech signal quality of the system, a new CHATR speech 

database for German was created. This database contained a larger amount 
of text than the previously existing ones. 

In a next step, multivariate adaptive regression splines models of seg-

mental duration and fundamental frequency were developed for German and 

English. The input information required by these models includes ToBI. 

Based on the same data that has been used to train the German prosody 

models, a decision tree was constructed which generates ToBI for German 

text input. By using the same data problems related to the interfacing of 
ToBI generation and prediction of duration and fundamental frequency could 
be avoided. 

To allow the handling of any text input a few text preprocessing func-
tions (text normalization) for German have been added to the system. Only 

some of the required steps of text normalization have been implemented. 
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In particular, abbreviations and acronyms currently still are not correctly 

handled. 

1.3 Statistical Modeling 

The statistical methods applied in this work are multivariate adaptive re-

gression splines" (MARS) and "decision trees". An overview of statistical 
modeling and MARS in the context of duration modeling is given in [Rie97] 

and [Rie98]. See [Fri91] for a detailed description of MARS. Decision trees 
are described, e.g., in [IND92] and [Qui93]. 
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Chapter 2 

Data 

There was not enough time to create new databases, specifically adapted to 

the problems at hand. Two databases created at other laboratories, Siemens 

Germany and University of Stuttgart, were therefore used in this work. They 

will be described in the following sections. 

2.1 Siemens Germany 

The Siemens data was spoken by a professional male speaker. It consists of 

read news. A total of 954 sentences, which corresponds to approximately 

3 hours of speech, are in the database. The speech was automatically seg-

mented (phones) with an HMM-based segmentation tool. For each sentence 

the following information is available: 

• Recorded speech in PhonDat format 

• Output produced by the segmentation tool (HTK format) 

• Orthographic text 

Because of the large amount of data and the suitable speaker characteristics, 

this data was used to make a new CHATR speech database. 

2.2 University Stuttgart 

The data recorded at the University of Stuttgart was also spoken by a pro-

fessional male speaker. It consists of read news broadcasted on "Deutsch-

landfunk". A total of ;359 sentences (approximately 48 minutes of speech, 

grouped in 72 texts) are in the database. The speech was automatically 
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segmented with an HMM-based tool. Tones and breaks indices (ToBI) were 

manually labeled. A detailed description of the data and further references 

can be found in [Moe98]. For each of the 72 texts the following information 

is available: 

• Recorded speech in ESPS format 

• Segment (phone) boundaries in ESPS/xlabel format 

• Syllable boundaries and lexical stress in ESPS/xlabel format 

• Word boundaries in ESPS/xlabel format 

• Tones tier of ToBI in ESPS/xlabel format 

• Breaks tier of ToBI in ESPS/xlabel format 

• Part of speech tags in ESPS/xlabel format 

• Orthographic text 

This was the only German database containing ToBI labeling available. It 

was mainly used to train the prosody models and the decision trees used to 

generate ToBI for text input. 

2.3 CHATR Speech Databases 

Previously two CHATR speech databases existed for German, both made 

with data from PhonDat 1 and 2 ("kko": make speaker, about 45 min and 

"rtd": female speaker, about 42 min). 

One way to improve the quality of the synthesized speech is to increase 

the size of the speech database. Especially the Siemens data described above 

contains a larger amount of speech. Both, the Siemens and the University of 
Stuttgart data, were used to make CHATR speech databases. The Siemens 

data was spoken by a speaker named "Aichinger". This is way this speech 

database was named "aich". The University Stuttgart data was recorded 
from news spoken on "Deutschlandfunk" (name of the speech database is 

"dlf"). 
The instructions for making such a database given in [ATR97] were fol-

lowed. Because of the size of the Siemens data the weight training functions 

had to be slightly modified. Instead of using all data available, only the first 

thousand of each phoneme class were used to calculate the weights. Using 
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all data did not work because the memory requirements were too high to run 

it on any of the available machines. 

The automatic segmentation and labeling carried out for both sets of 
data used very similar sets of phonemes, which did not fit any of the Ger-
man phoneme sets already available in CHATR ("sampaG" and "german"). 

Therefore a new phoneme set, "sampaGd", was defined (see Appendix C). 

This new phoneme set was used for the "aich" and the "dlf" databases. This 

also required a new lexicon, "sampaGd.dic", which was derived from the 

"sampaG" lexicon. The differences between "sampaG" and "sampaGd" are 

listed in the following: 

• "sampaGd" contains no special symbol ('+'in "sampaG") for vowels 
in lexically stressed syllables. 

• There are no glottal closures in "sampaGd" (because they are not la-
beled in the Siemens and Stuttgart data). They are included in the 
following vowel. 

• All nasalized vowels were replaced by two-letter combinations in "sam-
paGd" (no nasalized vowels in "aich" and "dlf"). 

• All occurrences of the phoneme'6'were replaced by the two phonemes 
’◎ r'in "sampaGd". 

• All occurrences of'6'in diphthongs were replaced by a separate pho-
neme'r'in "sampaGd". 
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Chapter 3 

Modeling of Prosodic 

Parameters 

3 .1 Introduction 

The aim of modeling duration and fundamental frequency in this work is to 

produce models that have a high prediction accuracy, i.e. they should pre-

diet durations and frequency values similar to the ones observed in natural 

speech. The information available as input to the models is some phono-

logical representation of the text to be uttered. It contains the sequence of 

phonemes, syllable and word boundaries, information about the grouping of 

words into phrases and the distribution of accents (cf. Chapter 4), and other 
information that can derived from the input text. 

Speech pause durations are not predicted with the duration model de-

scribed in this chapter. They are assigned some constant duration depending 

on the type of pause (cf. Chapter 4). 

The model of (segmental) duration described in the following predicts 

the duration of phones. The fundamental frequency model predicts one, 

two, or three frequency values per syllable, depending on the consonants in 

the onset and coda. The input to the models (so-called input factors or 

features1) are all independent of the specific phoneme set being used. To 

achieve this, the information related to the place and type of articulation, 

frontness, height, etc. is used. This allows the implemented code to be used 

for other languages (after possibly implementing some new factors required 

by a language). Models for German and English have been trained in this 

work. 

1The terms factor and feature will be used interchangeably. 
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3.2 Data 

The tools available in CHATR were used to prepare the train and test data. 

After implementing the selected feature functions and doing some modifica-

tions to the raw Stuttgart data (mapping GToBI to ToBI, modifying lexical 

stress information, etc.), PhonoForm utterances were created for the "dlf" 

data as described in [ATR97]. With these PhonoForm utterances (72 texts 

with 359 sentences) the train and test data could easily be generated. 
For the English data the PhonoForm utterances were already available丸

3.3 Duration 

The model of segmental duration implemented in this work is very similar to 

the one described in [Rie98]. The only differences are the data used to train 

and test the model and the selected set of input factors. The data has been 
described above and the selected set of input factors and the results will be 

described in the following. 

3.3.1 Input Factors 

The following factors have been selected (shown together with their abbre-

viation used in the remainder of this report, and in the implemented code): 

a Vowels: combination of length and frontness, consonants: type of articu-

lation 

b Vowels: height, consonants: place of articulation 

app ap an ann As'a', for the two preceding and following segments 

bpp bp bn bnn As'b', for the two preceding and following segments 

rv Vowels: roundness, consonants: voiced or unvoiced 

sp Position of segment in syllable (counting segments) 

sn Number of segments in syllable (in number of segments) 

ac Accentuation of syllable 

ls Lexical stress of syllable 

2These PhonoForms were used after correcting an error in one of the utterances which 
had a syllable containing only a consonant. 
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wp Position of syllable in word 

fo Position in foot (and type of foot) 

po Position of foot in sentence 

pp Position of syllable in sentence 

In the following tables for each factor all of its possible values and the 
coding used in the MARS model3 are shown. Most of the factors have also 

been used in the work described in [Rie98]. 

Factor a 

length 

frontness 
I I 

I MARS code I 

/ type I stop I fric. 
) MARS code I 10 I 11 

short/schwa 

1 I 2 I 3 

vowels 
I 

long/ geminate 

1 I 2 I 3 

ー 2
 

3 「丁7 5 
consonants 

/ affric. I nasal / liquid / closure 

I 12 I 13 I 14 I 15 

6
 

diphthong 

~ し？
I 7 I s I 9 

For the two previous and the two following segments additionally a value 

for speech pauses (MARS code 16) occurring in the context is added. A 

description of vowel frontness and length, and consonant articulation type 

can be found in the phoneme set definition description in [ATR97]. 

Factor b 

, height (vowels) 

place (cons.) 

I MARS code 

1 I 2 I 3 

labial I alv. I palat. j labio-d. I dental I velar 

1112131 4 I 5 I 6 I 7 I 8 I 9 I 

For the two previous and the two following segments additionally a value 

for speech pauses (MARS code 10) occurring in the context is added. See 

[Rie98] for more information on this factor. See the phoneme set definition 

description in [ATR97] for more information about vowel height and conso-

nant articulation place. 

3The MARS software requires the values of categorical factors to be represented as 
integers (only represented, order does not matter!). 
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Factor rv 

rounded (vowel) no yes 

voiced (consonant) no yes 

I MARS code 1 2 3 4 

Factor sp 

position 1 2 3 4 5 6 or later 

MARS code 1 2 3 4 5 6 

Factor sn 

number 1 2 3 4 5 6 or more 

MARS code 1 2 3 4 5 6 

Factor ac 

IH7L pitch accent I yes I no 
MARS code 1 2 

Factor ls 

lexical stress yes no 

MARS code 1 ぅム—i

Factor wp 

position initial medial 恥 alI single 
I MARS code 1 2 3 I 4 

Factor fo 

MARS code 

stressed singleton 1 
stressed, one following 2 

stressed, two following 3 
stressed, three or more following 4 
unstressed singleton 5 

unstressed pair 6 
unstressed three or more 7 
unstressed (anacrusis) 8 

See [Cam93] for more information. 
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Factor po 

MARS code 

IP initial foot 1 

IP final foot 2 

ip initial foot 3 

ip且nalfoot 4 

medial foot 5 

sentence with one foot 6 

'IP'denotes an :'intonation phrase" and'ip'an "intermediate phrase". 

Factor pp 

MARS code 

IP initial syllable 1 

IP且nalsyllable 2 

ip initial syllable 3 

ip丑nalsyllable 4 

medial syllable J I" 

3.3.2 Output Coding 

Because the mean squared error is being minimized in the MARS training 
algorithm the duration to the power of 0.25 has been modeled. Another 

advantage is that for shorter durations the same prediction error will have a 

smaller impact on the decoded duration than for longer durations. A more 

detailed discussion comparing the different types of output coding can be 

found in [Rie98]. 

3.3.3 MARS C onstruct1on and Results 

The MARS training algorithm has been used with its default values (MARS 

v3.6). In particular, the "speed" parameter has been set to 4. The maximum 
number of basis (JV!max) functions added to the model was varied and the 
maximum number of factors interacting with each other (}くmax)was set to 3 

About 75% of the total of 35156 samples available in the prepared data 

(one sample consists of a vector of factor values with the resulting duration 

observed in the "dlf" data) were used to train (Jvlmax = 600,}くmax= 3) the 
duration model. The resulting correlation coefficient calculated on the test 

set was 0.75. 
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method I MARS 
r 0.80 6

 

r
7
 ゜
ー― average 

0.43 

Table 3.1: Comparison of the correlation coefficients r of the MARS duration 

model for English, the linear regression model, and the average model. All 

data available in "f2b" (English) was used to calculate r. 

The prediction accuracy of the MARS model in terms of the correlation 

coefficient was compared to the simple model which uses the average phoneme 

duration observed in the "dlf" data as prediction. Using all data in "dlf" 

this simple average model achieved a correlation coefficient of 0.37, whereas 

the MARS model achieved a correlation of 0.76. 

Using 75% of the English "f2b" data (total of 38:360 samples) a MARS 

model was constructed (Mmax = 600,}くmaぉ=3) with a test set correlation 
coe缶cientof 0.77. A comparison of the correlation coefficient r of this model 

and of the previously available linear regression model and the simple average 

model is shown in Table 3.1. The MARS model performed somewhat better 
than the linear regression model and these two models had a clearly higher 

prediction accuracy than the average model. 

3.4 Fundamental Frequency 

Fundamental frequency (F0) has also been modeled with MARS. For each 
syllable at least one, and at most three frequency values are predicted. For 

the nucleus the model always predicts a value, for the onset and the coda 

only if the first, respectively last, consonant is voiced. 

The data used to train the model has been described above. The selected 

set of input factors and the results will be described in the following. 

3.4.1 Input Factors 

In [Tra95] a neural network was used to model fundamental frequency. This 
network used feedbacks of the outputs of some of its hidden neurons. This 

allowed the declination behavior to be modeled. Because of stability prob-

lems, the output of a MARS model cannot be directly used as feedback. To 

avoid the feedback requirement and still be able to model declination, fac-

tors related to the position within intermediate and intonation phrases have 

been included in the model. A large set of factors, related to different levels 

of speech have been selected (based on the factors described in [Tra95] and 
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[Moe98]): 

vl Length of nucleus 

vh Height of nucleus 

cl Type of last consonant of onset 

er Type of first consonant of coda 

vlp, vhp, clp, crp, vln, vhn, cln, crn As above for the previous and the 

following syllable 

lip Length of intermediate phrase in number of syllables (ordinal) 

lasip Last syllable of intermediate phrase 

poip Normalized position in intermediate phrase (position/ length, ordinal) 

ls Lexical stress 

at Type of pitch accent 

ds Downstep 

bt Type of "phrase accent" /"boundary tone" 

lspp, atpp, dspp, btpp, lsp, ... , dsnn, btnn As above for the two pre-

ceding and following syllables 

lIP Length of intonation phrase in number of syllables (ordinal) 

lasIP Last syllable of intonation phrase 

polP Normalized position in intonation phrase (position / length, ordinal) 

lat Pitch accent type of previous accentuated syllable 

latd Distance in number of syllables to previous accentuated syllable (ordi-

nal) 

rat Pitch accent type of following accentuated syllable 

ratd Distance in number of syllables to following accentuated syllable (or-

dinal) 

lbt "Phrase accent" /"boundary tone" type of previous accentuated syllable 
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lbtd Distance in number of syllables to previous "phrase accent" /"boundary 

tone" (ordinal) 

rbt "Phrase accent"/" boundary tone" type of following accentuated syllable 

rbtd Distance in number of syllables to following "phrase accent" /"boun-

dary tone" (ordinal) 

sp Position in syllable 

For each factor all of its possible values and the coding used in the MARS 

F。model4are shown in the following. 

Factors vl, vh, cl, er 

For the factors "vl", "vh", "cl", and "er" the information available in the 

phoneme set definition is used (see [ATR97] and Appendix C). 

vl 

nucleus is long vowel I true I false 
or diphthong 

MARS code I 1 2 

vh 

high or'mid and I true I false 
front'nucleus 

MARS code I 1 2 

cl 

'unvoiced or plosive' true false 

MARS code 1 2 

er 

'unvoiced or plosive' true false 

MARS code 1 2 

For the preceding and following syllable ("vlp", "vhp", etc.) an additional 

coded value ('3') is used for contexts before the first and after the last syllable 
of a phrase. 

4 As mentioned before, the MARS software requires the values of categorical factors to 
be represented as integers (order does not matter). 
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Factors lip, lasip, poip 

"lip" is an ordinal factor. Its values are the number of syllables in the inter-

mediate phrase ([1, 2, 3, ... ]). 

Factor "lasip" has two values, it is true (coded as'1') for the last syllable 

of an intermediate phrase and false ('2') otherwise. 
Factor "poip" is the normalized position of the syllable in the intermediate 

phrase. It is calculated by dividing the position of the syllable (counting 

syllables) in the intermediate phrase by the length of the intermediate phrase. 

Factors ls, at, ds, bt 

ls 

lexical stress! true 
MARS code 1 

false 

2 

at 

pitch accent type 

MARS code ~ 
none 

1 2 

ds 

downstep l true 
MARS code 1 

bt 

false 

2 

3 

boundary type I H-1 1-1 H-H% r-H% I H-1% I 1-1% I %H I none 
MARS code 1 2 3 4 5 6 7 8 

For the two preceding and following syllable ("lspp", "atpp", etc.) addi-

tional coded values ('3','4','3', and'9') are used for contexts before the first 
and after the last syllable of a phrase. 

Factors UP, lasIP, poIP 

"lIP" is an ordinal factor and its values are the number of syllables in the 
intonation phrase ([1, 2, 3, ... ]). 

Factor "lasIP" is true (coded as'l') for the last syllable of an intonation 
phrase and false ('2') otherwise. 

Factor "poIP" is the normalized position of the syllable in the intonation 
phrase (division of the position of the syllable in the intonation phrase by its 

length). 
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Factors lat, latd, rat, ratd, lbt, lbtd, rbt, rbtd 

lat 

previous pitch acce訂typeI H I L I none 
MARS code 1 2 3 

"latd" is the distance to the previous accentuated syllable in number of 

syllables (ordinal factor). 

rat 

following pitch acce可typeI H I L I none 
MARS code 1 2 3 

"ratd" is the distance to the following accentuated syllable in number of 

syllables (ordinal factor). 

previous boundary type 

MARS code 

lbt 

戸 IL-1 %H I IP boundary 
1 2 3 4 

"lbtd" is the distance to the previous "phrase accent" /"boundary tone': 

in number of syllables (ordinal factor). 

rbt 

following boundary type I H-1 LI H-H% I L-H% I H-1% I L-1% 
MARS code 1 2 3 4 5 6 

"rbtd" is the distance to the following "phrase accent" /"boundary tone') 
in number of syllables (ordinal factor). 

Factor sp 

sp 

position in syllable I瓦 setI nucleus I coda 
MARS code 1 2 3 

3.4.2 Output Coding 

In the F;。modelsdescribed in [Tra95] and [BH96], the fundamental frequency 

values have been directly modeled. In this work, the z-score of fundamental 

frequency has been modeled. In [BH96] 3 frequency values were predicted 

for each syllable, one for the start, one for the center of the nucleus, and 

one for the end of the syllable. Three different models were used for these 3 

18 



r I MARS I lr 
all data 0.68 0.60 

Table 3.2: Comparison of the correlation coefficients r of the MARS model 
and the linear regression model. All data available in "f2b" (English) was 

used to calculate r. 

values, independent of the type of phone at the start and end of the syllable 
(no phonetic properties were used in the input factors of these models). 

A different method was used in this work. Fi。isonly predicted for the start 
and end of the syllable if the first consonant of the onset, respectively the 
last consonant of the coda, is voiced and not a plosive5. Phonetic properties 

are included in the set of input factors ("vl", "vh", "cl", etc.) and a single 
model is used to predict all frequency values. The input factor "sp" indicates 

whether the predicted value is related to the onset, nucleus, or coda of the 

syllable. This way, instead of treating the modeling of the different Fi。values
independently from each other, all the data available is used to train a single 

model, thereby taking advantage of the dependencies. 

3.4.3 MARS Construction and Results 

The MARS training algorithm has been used with its default values (MARS 

v3.6). The "speed" parameter was set to 4. Different maximum numbers of 
basis functions have been tried. 

About 75% of the total of 24 725 samples available in the prepared data 

(one sample consists of a vector of factor values with the resulting F;。observed
in the "dlf" data) were used to train (111max = 350, Kmax = 3) the funda-
mental frequency model . The resulting correlation coefficient calculated on 
the test set was 0.58. 

Using 75% of the English "f2b" data (total of 26932 samples) a・MARS 

model was constructed (A1m~x = 350, Kmax = 3) with a test set correlation 
coefficient of 0.61. A companson of the correlation coefficient r of this model 
and of the previously available linear regression model is shown in Table 3.2. 

The MARS model performed somewhat better than the linear regression 
model. 

5 A setup with three different models has also been tried with MARS, but the prediction 
accuracy was inferior to the single-model approach. 
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3.5 Conclusions 

In the studies described in [Rie98] manually segmented data was used to 
train and test MARS-based duration models. In this work automatically 

segmented data was used. 

MARS was also used to model fundamental frequency in a successful way. 

Instead of using feedbacks to account for the dependency of a frequency value 
on the previously predicted values, the input factors have been extended. 

・whereas the dependencies of the MARS algorithm on the different learn-

ing algorithm parameters were investigated for the problem of modeling du-

ration (cf. [Rie98]), such studies were not yet done for Fi。modeling.Varying 

parameters might lead to improvements. 
A direct modeling of Fi。hasbeen applied here. Coding the output in a 

way that the prediction error has a normal-like distribution might further 
improve the prediction accuracy. 

Only a relatively small amount of data has been used in this work. In 

particular, the data did not cover questions and spontaneous speech. It will 
be interesting to see how well this type of modeling will work with such larger 
amounts of data containing more prosodic variations. 
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Chapter 4 

Generation of ToBI for Text 
Input 

4.1 Introduction 

The naturalness of synthetic speech depends on the correct grouping of words 

into phrases and the distribution of accents. This information is contained 

in the tone tier of ToBI (cf. [BH94]). The prosody models described in 

Chapter 3 use ToBI to calculate some of the input factors. 

In many TTS systems currently only syntactical information is used to 

determine phrasing and accentuation (semantics would also be required). 

The aim is then to generate phrases and accents for a text uttered in a 

neutral information transmission context. E.g., emphatic and contrastive 

stresses cannot be treated correctly this way. 

The approach used in this work directly tries to generate ToBI given only 

the part of speech sequence and the punctuation of the text. Sentences are 

not syntactically analyzed, instead, decision trees are trained to map the part 

of speech sequence and punctuation to ToBI. 

One decision tree, which will be henceforth called the tone tree, is used 

to predict phrase accents and boundary tones (see Figure 4.1). And another 

tree, here called the accent tree, predicts pitch accents (see Figure 4.2). Both 

trees use the same set of input factors, consisting of the part of speech of the 

preceding and following words, the part of speech of the current word and 

the punctuation following the current word. 

These trees generate accents and boundaries for all words in the text. 

Phrase accents and tone boundaries are always positioned at the end of a 

word. But pitch accents are related to syllables. The algorithm used to assign 

the pitch accents to syllables (using lexical stress) is described in [Str97]. 
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left context 
/ I 、
き.... 
a:a: 
O.<(<(Z 

right context 
CO / I 、
E a.Z n. 
E WO  w 
0 a:a: a: 

Z o a.a.Zn. 
．．．ぐ＝コ

input sequence 
part of speech 

punctuation 

L-L¾ 
output sequence 

← phrase accent / boundary tone 

Figure 4.1: Generating "phrase accents" and "boundary tones" with the tone 

tree (context size 4). 

left context 
/ I 、
きt-
a: a: 
O.<(<(Z 

right context 
C'0 / I 、
E o.Z o.. 
E WO  w 
0 a:a: a: 

Z o 0.0.ZQ. 

L* 

こ

ぐニコ

input sequence 
part of speech 

punctuation 

output sequence 
pitch accent 

Figure 4.2: Generating "pitch accents" with the accent tree (context size 4). 
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4.2 Data 

The data from the University of Stuttgart was used to train the tone and 
accent trees. The phrase and accent information therein was labeled with 
the Stuttgart labeling system (see [May95]). These labels were mapped to 

GToBI, which is an extension of ToBI (see [Rey96]). With these mapped 

labels the required train data could easily be generated. 

The possible part of speech categories of the inputs are those looked up 

either in the "sampaGd" lexicon or those predicted by the part of speech tree 

described in Chapter 5: 

A adjectives NUM numerals 

ADV adverbs PREP prepositions 

ART articles PRON pronouns 

C conjunctions V verbs 

N nouns 

An additional value, "nopos", is used for the context factors at the start 
and end of sentences. The punctuation input factor either has the value 
"comma", "dot", or "nopunct". These are the only punctuation marks oc-

curring in the Siemens data. When using the tone and accent trees for ToBI 

generation, question marks, colons, etc., are mapped to appropriate values. 

The possible outputs of the tone tree currently included in CHATR are 

H-
1-

H-H% 

H-1% 
L-H% 

1-1% 

%H 
notone 

Trees have been constructed with data containing the downstepped variants 

of phrase accents and boundary tones ('!H-','!H-H%','!H-1%'). But be-

cause of their low number of occurrences in the data, these downstepped 
variants were not selected during tree construction. Some trees were trained 

with data containing the downstep information and for other trees this in-
formation was removed from the data. 

The possible outputs of the accent tree currently included in CHATR are: 

H* L* noaccent 

Again, downstepped variants ('!H*','L*+!H','H +!H不')and also'L*+H' 
were not selected during tree construction. 

With the Stuttgart data a total of 5727 input/output pairs as needed to 
construct the tone and accent trees could be produced. 
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context prediction accuracy size 

゜
83.9 4 

1 84.4 10 

， ▲一‘ 84.3 22 

3 85.4 62 

4 85.4 34 

5 85.2 32 

7 85.0 60 

Table 4.1: Prediction accuracy for the test data and the size (in number of 
nodes and leafs) of the pruned tone trees for different context sizes. The data 

containing the downstepped variants has been used to construct these trees. 

4.3 Tree Construction 

75% of the data was used to construct the tone and the accent tree. This 
resulted in 4295 input/output pairs available for tree construction and 1432 

pairs for testing. 

The software package IND was used to construct the tone and accent 

decision trees. The following options (see [IND92] for further details) were 
used: 

mktree -e -s cart -v -v phrase 

mktree -e -s cart -v -v accent 

4.4 Results 

4.4.1 Phrase A ccents and Tone Boundaries 

Trees with different context sizes (number of words to the left and right of 
the current word used in the input) have been constructed. The resulting 

prediction accuracies (calculated with the test set) and the resulting tree 

sizes are shown in Table 4.1. The data including the downstep information 
has been used to construct these trees. 

Within the 1432 input/output pairs of the test data, 1101 had the out-

put'not one'. By simply predicting'notone'for all input data a prediction 
accuracy of 76.9% could be achieved. 

Including the distances of the current word to the previous intermediate 

and intonation phrase boundaries did not improve the prediction accuracy 
of the resulting tree. 
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context prediction accuracy size 

゜
64.2 4 

1 68.8 44 

2 70.0 18 

3 70.3 22 

4 70.7 16 

5 70.7 18 

7 70.1 42 

Table 4.2: Prediction accuracy for the test data and the size (in number of 
nodes and leafs) of the pruned accent trees for different context sizes. The 

data containing the downstepped variants has been used to construct these 

trees. 

A prediction accuracy of 84.7% resulted when trained with the data not 

containing the downstep information and a context size of 4. In the train 
data there are some cases with sentence ends not labeled by a boundary tone. 
The result was that the tone tree not always generated a boundary tone for 

sentence ends. This lead to unnatural sounding predictions of the prosody 
modules, and, combined with the pause prediction method used in CHATR, 

also to speech pauses with unnatural durations. The tone tree was therefore 
manually modified to make sure that at a sentence end a boundary tone 

would always be generated. This modified tree was included in CHATR. 

4.4.2 Pitch Accents 

Trees with different context sizes (number of words to the left and right of 

the current word used in the input) have been constructed. The resulting 

prediction accuracies and the resulting _tree sizes are shown in Table 4.2. The 

data including the downstep informatron has been used to construct these 
trees. 

847 of a total of 1432 input/output pairs of the test data, had the output 

'noaccent'. By simply predicting'noaccent'for all input data a prediction 
accuracy of 59.l % could be achieved. 

As for the tone tree, including the distances of the current word to the 

previous intermediate and intonation phrase boundaries did not improve the 
prediction accuracy of the resulting tree. 

When using the data not containing the downstep information, the pre-

diction accuracy was 72.4% for a context size of 4. This tree was included in 
CHATR. 
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4.5 
． 

Conclusions 

One problem observed for the tone tree are longer sequences of words not 

containing any punctuation. In such cases'notone'can be predicted for a 

long sequence of words. This will result in poorly predicted fundamental 

frequency values (since such cases did not occur often enough in the Fi。train
data). 

Either the data available for training needs to be increased or some strat-

egy taking the distances to the previous intermediate and intonation phrase 

boundaries into account must be used. 

Problems with the accent tree are less obvious. Further experimentation 

is required. 
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Chapter 5 

Unknown Words 

5.1 Introduction 

Often in TTS systems the following word features are looked up in some kind 

of lexicon: 

• pronunciation 

• syllable boundaries 

• distribution of lexical stress 

• part of speech (respectively word category) 

In CHATR (at least for English and German) currently a lexicon containing 

orthographic wordforms1 together with this information is used. 

In a TTS system intended for use with unrestricted text input there 

must be some kind of strategy to handle unknown words, i.e., wordforms not 

contained in the lexicon. Such words will always exist, since the set of words 

used in a language changes. The methods used to handle this problem are 

strongly language dependent. 

For English, the manually setup letter to sound rules developed at the 

US Naval Research Laboratory, Washington DC, are used in CHATR to de-

termine the pronunciation of unknown words. Syllable boundaries are set in 

a way that each syllable has one vowel and the syllables are cut at minimum 

sonority (see "lex_syllabify" in "lexicon. c"). The strategy adopted for 

the assignment of lexical stress to unknown words is to always mark the first 

1 Another strategy is to use a morpheme lexicon, which allows the same amount of 
words to be covered with a much smaller lexicon. 

27 



left context right context 

* * t 

＾ 
o n h

 ＾ 
o e 

t o: n h ... 

he ＊＊  ぐ＝コ
input sequence 

letters 

ぐ==i output sequence 
phonemes 

Figure 5.1: Letter to sound tree (context size 2). 

syllable as lexically stressed叉Additionally,if the word has more than three 

syllables, the syllable before the last one in a word is marked as being lexi-

cally stressed. For English seven word classes are differentiated (determiner, 

preposition, pronoun, part of the verb "to be", conjunction, some other func-

tion word, and content word). All unknown words are assigned the word class 

"content word". 

For German no such strategy to handle unknown words existed in CHATR. 

Synth:sis would fail if a wordform could not be found in the lexicon. The 

followmg describes the realized strategy to handle unknown German words. 

The pronunciation of an unknown word is determined with a decision 

tree. With this tree for each letter zero, one, or two phones are predicted 

(in the following this tree will be denoted as the letter to sound tree). As 

shown in Figure 5.1汽theinput information used by the decision tree is the 

current letter and preceding and following letters. No information regarding 

morphology, syntax, or semantics is used. This information is sometimes nec-

essary to determine the correct pronunciation of a word (e.g. homographs). 

In some of these cases the letter to sound tree will fail, i.e., it will predict 

inaccurate pronunciations. Another area where the tree might fail is the in-

clusion of words from non-German languages in German sentences. Often 

the pronunciations of these words follow completely different rules. Because 

of this, it does not make much sense to use the same decision tree to predict 

2In CHATR two levels of lexical stress are used: stressed and unstressed. 
3In this report phonetic transcriptions are shown in SAMPA notation. 
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highest N 2. highest N 

#s pattern N pattern N 

2 SU 20677 us 2511 

3 suu 39215 usu 10346 

4 suuu 41376 usuu 12338 

5 suuuu 21576 uusuu 6727 

6 suuuuu 5901 usuuuu 2243 

7 suuuuuu 1241 usuuuuu 655 

8 suuuuuuu 264 uuuusuuu 165 

Table 5.1: Number of occurrences'N'of lexical stress patterns in the "sam-

paGd" lexicon for words with'#s'syllables. The two most often occurring 

patterns are shown for each'#s'. The pattern'suu', e.g., stands for a word 
with 3 syllables where the first syllable is stressed and the other syllables are 

unstressed. 

the pronunciation of this kind of words. There are similar problems regard-

ing the pronunciation of names. These problematic cases should be handled 

with lexicon entries. The letter to sound tree is only meant as fall-back solu-
tion for the words missing in the lexicon and will work reasonably well with 
words having a regular German pronunciation. The letter to sound tree will 
be described in more detail in Section 5.2. 

To determine the syllable boundaries and the distribution of lexical stress 

of unknown words the same methods as for English are used. These heuristic 

solutions do not take morphology into account. Th~y work in many cases, 
but might fail in those cases where syllable boundaries, respectively lexical 

stresses depend on morphology. 

The results of an analysis of the distribution of lexical patterns in the 

"sampaGd" CHATR lexicon (which is derived from the Celex database) is 
shown in Table 5.1. These results indicate that a better heuristic for the 

lexical stress distribution of German words would be to have the first syllable 
stressed and the others unstressed. 

To determine the word category of an unknown word another decision 

tree has been constructed. This tree, which in the following will be denoted 

as the part of speech tree, uses as input the word categories of the preceding 

and following words (see Figure 5.2). 

So-called closed word categories contain a fixed, relatively small number of 

words (articles, pronouns, _Prepositions, and conjunctions). These categories 
should be fully contained m the lexicon. This simplifies to a certain degree 

the problem of determining the part of speech of unknown words since only 
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left context 
/ I 、

a. 
>wt-

＊ 
C a: a: 
<(a.、<(

• 

Tree 

right context 
/ I 、
> I-
C 0:: 
<t>Z<t ぐ

part of speech 
context 

z
 

¢::::i part of speech 

Figure 5.2: Part of speech tree (context size 4). 

open word categories need to be considered. The categories considered are 

verbs, nouns, adjectives, and adverbs4. The part of speech tree is described 

in more detail in Section 5.3. 

5.2 Letter to Sound Tree 

5.2.1 Data 

The data needed to construct a letter to sound tree are many pairs of "input 

letters" with an "output phoneme". These input/output pairs can be gener-

ated using the "sampaGd" lexicon, which contains words and their phonemic 

transcriptions. Unfortunately the letters do not directly map to phonemes. 

Depending on the context a letter can be mapped to zero, one, or several 

phonemes. Even if the number of letters in a word is equal to its number of 

phonemes, there is not necessarily a one-to-one relation between the letters 

and the phonemes. One letter could be related to two phonemes and in the 

same word two letters could be transcribed by a single phoneme, as for exam-

ple in the word "Zimmer" with the phonemic transcription "ts Imcr". The 

4Another word category used in the "sampaGd" lexicon are numerals (NUM). Numbers 
not contained in the lexicon are treated in a similar way as unknown words. The differences 
are the method for determining the pronunciation and the word category (they are always 
classified as numerals). 
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h/h 

el* 

Figure 5.3: Part of the finite state transducer used to align the letters of a 

word to the phonemes of its phonemic transcription. For example,'o/O[o:' 

means that by making this transition, the letter'o'and either the phoneme 

'O'or'o:'will be consumed. 

realization of the'Z'are the two5 phonemes "ts" and the letter sequence 

'mm'is realized by a single phoneme'm'. 

The main problem when preparing the lexicon entries for constructing 

a letter to sound tree is a consistent alignment between the letters and the 

phones. If this alignment is not carefully done, there will be a lot of incon-

sistencies and contradictions in the train data, which will result in a lower 

q叫 ityletter to sound tree. 

The method used to align the letters and the phones was to man叫 lyset 

up a simple finite state transducer (FST). This FST simultaneously consumes 

letters and phonemes when going through the states of a finite state machine. 

Part of such an FST is shown in Figure 5.3. Only from the "sync" state the 

end state can be reached. The ambiguities arising when stepping through 

the FST are resolved by selecting the FST path with the highest numbers 

of non-sync states. If the FST reaches its end state, an alignment could be 

made. 

In a first attempt a very simple FST was used. By analyzing the un-

alignable cases, the FST could be manually improved (mostly by adding 

more states to the FST). The improved FST was then used for alignment 

and again the unalignable cases were analyzed and the FST improved. This 

5The combination of the two phonemes't'and's'could also be viewed as a single 
affricate. Here they will be treated as two separate phonemes. 
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was repeated until the set of unalignable words only consisted of non-German 

words and erroneously transcribed entries in the lexicon. This set consisted 

of _8176 entries out of a total of 319080 entries in the "sampaGd" lexicon. 

For 310904 of the lexicon entries the orthographic word and its transcrip-

tion could be aligned. For each letter in each word an input/output pair as 

needed to train the letter to sound tree can be determined. This will result 

in a very large train set, more than could be handled in a reasonable way. 

An easy solution to reduce the amount of data would be to just randomly 

pick as many input/output pairs as needed. This way the distribution of the 

frequencies of the letters in the train data will be similar to the distribution 

in the lexicon. This distribution is very unbalanced since some letters occur 

much more often than others (e.g.,'n'occurs more often than'q'). The 

letters that only occur a few times in the lexicon will occur even less often in 

the train data. The tree construction algorithm will work better with a more 

balanced train set. Additionally, especially those letter sequences involving 

non-sync states in the FST used for the alignment should be in the train 

data (that's where the interesting things happen). 

The algorithm described in the following has therefore been used to ex-

tract the train data from the full set of data available応Inrandom order each 

of the aligned words was considered to be included in the train set. A word 

was included whenever it contained a letter sequence that has not already 

been included in the train data a certain number (this number has been set 

to 400) of times. Possible letter sequences are the sequences that begin and 

end in the sync-state of the FST that has been used for alignment. When 

separating a word into letter sequences, in ambiguous cases, longer sequences 

are preferred to shorter ones. A total of 18266 words have been selected. 

5.2.2 Tree Construction 

The order of the words included in the train data was then again randomized. 

75% of this data (13700 words) was used to construct the letter to sound tree 

and the rest has been reserved to test the prediction accuracy of the tree. 

This resulted in 158427 input/output pairs available for tree construction 

and 52888 pairs for testing. 

The software packages IND and C4.5 were used to construct letter to 

sound decision trees. The trees were constructed with IND using the following 

options (see [IND92] for further details): 

6This algorithm selects words. Another approach (probably resulting in more balanced 
train data) would be to first generate all input/output pairs (needs lots of disk space) and 
then use a selection algorithm sin註larto the one described here. 
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SW and option prediction accuracy size 

IND cart 95.9 382 

IND c4 96.1 914 

C4.5 97.9 17495 

C4.5 -s 98.5 3276 

Table 5.2: Prediction accuracy for the test data and the size (in number 
of nodes and leafs) of the pruned trees for different software packages and 

options used. A context of size 4 has been used. 

mktree -e -s cart -v -v glts 

and 

mktree -e -s c4 -v -v glts 

The following options were used with the C4.5 package (see [Qui93] for further 
details): 

c4.,5 -u -f glts 

and 

c4.5 -u -f glts -s 

5.2.3 Results 

Trees with different sizes of context (number of letters to the left and right of 
the current letter used as tree input) have been constructed. For the different 

software packages and sets of options used the resulting prediction accuracy 
(calculated with the test set) are shown in Table 5.2. 

The decision tree software currently included in CHATR can only handle 

trees with binary splits. The C4.5 package produces trees with splits having 

more than two branches. To use these trees (which had higher prediction 

accuracies) they would either have to be transformed to binary trees or the 

CHATR decision tree software would need to・be modified, which, because of 
time constraints, was not done in the context of this work. 

In Table 5.3 the prediction accuracy for different context sizes are shown. 
These trees have been constructed with IND using the strategies "cart" and 
"c4". The tree constructed with the "cart" strategy and a context size of 2 

resulted in a prediction accuracy of 96.4%. This tree is currently included in 
CHATR. 
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strategy context prediction accuracy size 

cart 1 93.2 482 

cart 2 96.4 600 

cart 3 96.2 432 

cart 4 95.9 382 

cart 6 95.9 360 

c4 1 93.2 586 

c4 ') - 96.6 1270 

c4 3 96.4 872 

c4 4 96.1 914 

c4 6 96.0 902 

Table 5.3: Prediction accuracy for the test data and the size (in number of 

nodes and leafs) of the pruned trees for different context sizes (only for IND). 

5.3 Part of Speech Tree 

5.3.1 Data 

The part of speech (POS) tree predicts the POS of a word given the POS 

of a certain number (which is the context size) of preceding and following 
words. To train a decision tree for this purpose, syntactically correct part of 
speech sequences are needed. The categories used in the CHATR "sampaGd11 

lexicon are: 

A 砥ect1ves N nouns 
ADV adverbs NUM numerals 

ART articles PREP prepositions 

C conjunctions PRON pronouns 

I interjections V verbs 

All these categories are possible input values to the part of speech tree. 
Additionally a dummy input value ("nopos11) is needed for the context at the 

beginning and end of a sentence. 

The sentences of the "aich1'and "dlf1'databases have been used to gener-

ate the train data. The "dlf1'database includes complete POS sequences for 

all its sentences, but uses a different set of POS categories than the "sam-
paGd11 lexicon. To generate the POS sequences used to train the POS tree, 

the POS categories of the "dlf" data were mapped to the POS categories of 
the "sampaGd" lexicon. 

For the "aich11 sentences (only text available) the POS sequences were 

generated by simply looking up the POS of each word in the "sampaGd" 
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lexicon. For some (orthographic) words there are several entries with different 

POS and for other words there is no entry. This reflects the situation that 
will be encountered when using the part of speech tree in a TTS system. 
An additional input value (in this work denoted by "X"7) has therefore been 
added, which is used for the ambiguous and the unknown words occurring in 

the context. 
With the POS sequences of the "aich" and "dlf" data, the input/output 

pairs used to train the part of speech tree could easily be generated. The 

possible POS categories predicted by the tree are verbs, adverbs, nouns, and 
adjectives. A total of 15665 input/output pairs (verbs: 25%, nouns: 38%, 
adjectives: 16%, and adverbs: 21 %) were generated. 

5.3.2 
． 

Tree Construction 

75% of the input/output pairs (11749 pairs) was used to construct the part 

of speech tree and the rest was reserved for testing purposes. 

The software package IND was used to construct part of speech deci-

sion trees. The strategies "cart" and "c4" have been used. The trees were 
constructed using the following options (see [IND92] for further details): 

mktree -e -s cart -v -v posmark 

and 

mktree -e -s c4 -v -v posmark 

5.3.3 Results 

Part of speech trees using different context sizes were trained with the strate-
gies "cart" and "c4". The resulting prediction accuracies and tree sizes (in 

number of nodes and leafs) are shown in Table 5.4. The highest accuracy 

(65.1%) could be observed when using the "cart" tree construction strat-
egy for a context size of 4 (always predicting a noun would result in a 38% 
prediction accuracy). 

Furthermore, the prediction accuracy could be slightly improved by in-
eluding an input factor for punctuation. This factor indicates whether a 

comma or period directly follows the word for which the POS is being pre-

dicted. With this additional factor, using the "cart" strategy and a context 

size of 4, the prediction accuracy⑳ uld be increased to 66.6% for the test 
data. This is the tree currently included in CHATR. 

7Interjections, which did not occur in the train data, were mapped to the value "X". 
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strategy context prediction accuracy size 

cart 1 60.8 46 

cart 2 64.2 232 

cart 3 64.8 238 

cart 4 65.1 100 

cart 6 64.9 132 

c4 1 61.0 84 

c4 2 64.6 978 

c4 3 64.0 3750 

c4 4 63.7 4514 

c4 6 62.4 5532 

Table 5.4: Prediction accuracy for the test data and the size (in number of 

nodes and leafs) of the pruned trees for different context sizes. 

5.4 
． 

Conclusions 

With the letter to sound tree a pronunciation can be determined for any 

sequence of letters input to the system. The q叫 itystrongly depends on the 

type of word. The tree has been trained with German words and will work 

well for words following "standard" German pronunciation rules. The letter 
to sound tree will quite often fail for foreign (non-German) words and proper 

names. 

To determine the syllable boundaries and lexical stress the same algo-

rithms as for English are currently used. Syllabification could be improved 

by using a German-specific set of rules (see, e.g., [Tra95]). As shown above, 
a better heuristic for assigning lexical stress to unknown words would be to 

put a stress only on the first syllable. This heuristic strategy could be further 
improved by checking for words starting with a prefix known to be lexically 

unstressed. 

In German the first letter of a noun is written with an uppercase letter. 
This has not been taken advantage of in the current part of speech tree. Some 

simple rule preceding the POS prediction could be added to the system which 
detects nouns. Other words and nouns at the beginning of a sentence would 
still need to be predicted by the part of speech tree. Another possibility 

would be to directly include the case of the first letter as an input to the 

tree. 

The part of speech tree could also be used to resolve ambiguities in the 
lexicon. A Word can have several entries in the lexicon with different part of 

speech. Currently always the first entry is picked. A better strategy would 
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be to predict the POS with the part of speech tree and then, based on the 

outcome of the prediction, select one of the lexicon entries. 
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Appendix A 

CHATR Modifications 

In the following the new and modified files are listed. These files work with 

CHATR 0.94 (July 1998). 

Prosody 

New files 

dur _mars.c MARS duration prediction 

dur _mars.h Header file for dur_rnars.c 

dur」r.hHeader file for dur」r.c

tobi_fO皿 ars.cMARS fundamental frequency prediction 

tobi_fO_mars.h Header file for tobi_fO工 ars.c

mars.c MARS model functions 

mars.h Header file for mars.c 

dlLdur _mars.model MARS duration model for German 

dlLfO_mars.model MARS fundamental frequency model for 

German 

f2b_dur_mars.model MARS duration model for English 

f2b_fO_mars.model MARS fundamental frequency model for 

English 

Modified files 

duration.c Added'Duration_Method'option'MARS' 
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duration.h Cleaned up 

ToBI.c Bug fixes, added MARS F:。method(is selected if 
'tobi_fO_mars_method'is'true') 

pitch_range.c Cleaned up 

ToBI Generation and Part of Speech Tree 

The part of speech prediction is called inside the ToBI generation code. 

New files 

text_gtobi.c ToBI and part of speech prediction code 

text_gtobi.h Header file for text_gtobi.c 

gtone.ch Tone tree 

gaccent.ch Accent tree 

gposmark.ch Part of speech tree 

Modified files 

hlp.c Disable hlp_realise_accents if "texLprosodyぷtrategy"is 
"DiscTree" 

hlp_input.c Generate ToBI for text input if 
"texLprosodyふtrategy"is "DiscTree" 

feats.c Interfaces tree feature functions to decision tree code 

Letter to Sound Tree 

New files 

glts.c Letter to sound and text normalization code 

glts.ch Letter to sound tree 

Modified files 

lexicon.c Added handling of unknown German words 

lexicon.h Function prototype added 

feats.c Interfaces letter to sound tree feature functions to deci-
sion tree code 
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Others 

New files 

sampaGd_def.ch Phoneme set definition 

sampaGd」exicon.chSetup of sampaGd lexicon 

Modified files 

New files 

chatr .c Debug output to terminal added 

chatr皿 ain.cUse tts instead of jtts for German 

commands.c Added MARS to Parameter help 

pLinput.c Added code to test lower level prosody 

syllable.c Initialization of new files added in Syl struct 

syllable.h Added several fields to the Syl struct 

word.c Modify addition of boundaries for German text input 

itlspeakers.ch Added entries for dlf and aich speech databases 

reduce.ch Added entry for sampaGd in "schwas" 
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Appendix B 

CHATR Setup 

In the following the setup required to use the new modules is described. This 

assumes that you have a version of CHATR with the new and modified files 

described in Appendix A. 

Prosody 

• (Parameter Duration_Method MARS) 

• (set tobi_fO工 arsェethod'true)

• For aich database: 

(set dur _mars_params 

) ((model_file 11/<somewhere>/dlf_dur_mars.model11) 

(target_dur_mean 2.7569) ; mean of dur~o.25 

(target_dur_sd 0.3831))) ; sd of dur~0.25 

(set tobi_fO_mars_params 

J((model_file "/<somewhere>/dlf_fO_mars.model") 

(target_fO_mean 101. 0) ; mean of fO (nucleus) 

(target_fO_sd 22. 0))) ; sd of fO (nucleus) 

• For dlf database: 

(set dur _rnars_pararns 

) ((rnodel_file 11/<sornewhere>/dlf_dur-:-rnars.rnodel11) 

(target_dur_rnean 2.8107) ; mean of dur~o.25 

(target_dur_sd 0.3609))) ; sd of dur~0.25 
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(set tobi_fO_mars_params 

'((model_file 11/<somewhere>/dlf_fO_mars.model") 

(target_fO_mean 97. 4374) ; mean of fO (nucleus) 

(target_fO_sd 17. 6273))) ; sd of fO (nucleus) 

ToBI Generation and Part of Speech Tree 

• Load tone tree "gtone_tree" with (load」ibrary"gtone.ch") 

• Load accent tree "gaccenLtree" with (load」ibrary"gaccent.ch") 

• Load part of speech tree "gposmarLtree" with (load」ibrary
"gposmark.ch") 

• Do (set texLprosody ....strategy'DiscTree) to activate ToBI generation 

for German text input 

Letter to Sound Tree 

• Load letter to sound tree "glts_tree" with (load」ibrary"glts.ch") 

• Set (Lexicon Fail GLTS) to activate letter to sound tree for German 

Others 

• Load speech database with (speaker_dlf) or (speaker_aich) 
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Appendix C 

Phoneme Set "sampaGd" 

(Phoneme Def sampaGd 

;na vc lng h fr rnd typ plc vox 

（ 

（＃ 

゜ ゜゚
ー）

(aI ＋ d 3 1 

゜゚
＋） 

(au ＋ d 3 3 

゜゚
＋） 

(DY ＋ d 3 2 ＋ 

゜゚
＋） 

(i: ＋ 1 1 1 

゜゚
＋） 

(I ＋ s 2 1 

゜゚
＋） 

(y: ＋ 1 1 1 ＋ 

゜゚
＋） 

(y ＋ s 2 1 ＋ 

゜゚
＋） 

(u: ＋ 1゚ 1 3 ＋ 

゜゚
＋） 

(u ＋ s 2 3 ＋ 

゜゚
＋） 

(e: ＋ 1 2 1 

゜゚
＋） 

(E ＋ s 3 1 

゜゚
＋） 

(E: ＋ 1 3 1 

゜゚
＋） 

(2: ＋ 1 2 1 ＋ 

゜゚
＋） 

(9 ＋ s 3 1 ＋ 

゜゚
＋） 

(d: ＋ 1 2 3 ＋ 

゜゚
＋） 

(0 ＋ s 3 3 ＋ 

゜゚
＋） 

(a ＋ s 3 2 

゜゚
＋） 
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(a: ＋ 1 3 2 

゜゚
＋） 

(c ＋ s 2 2 

゜゚
＋） 

(p 

゜
＋ s 1 ー）

(b 

゜
＋ s 1 ＋） 

(t 

゜
＋ s a ー）

(d 

゜
＋ s a ＋） 

(k 

゜
＋ s V ー）

(g 

゜
＋ s V ＋） 

(f 

゜
＋ f b ー）

(V  

゜
＋ f b ＋） 

(s 

゜
＋ f a ー）

(z 

゜
＋ f a ＋） 

(s 

゜
＋ f p -) 

(z 

゜
＋ f p ＋） 

(X 

゜
＋ f V ー）

(C 

゜
＋ f p ー）

(h 

゜
＋ f V ー）

(j 

゜
＋ f p ＋） 

(m 

゜
＋ n 1 ＋） 

(n 

゜
＋ n a ＋） 

(N 

゜
＋ n V ＋） 

(1 

゜
＋ 1 a ＋） 

(r 

゜
＋ 1 a ＋） 

）） 
む
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