
／

Internal Use Only (非公開）

002

TR-IT-0274

Auto Labeling

Wei Zhang

August 1998

ABSTRACT

This technical report describes a summer project to improve the qual-
ity of labeling of a speech database for use with the CHATR speech

synthesiser. It shows that by use of appropriate post processing, the
default labeling using HMM recognition techniques can be brought
significantly closer to that produced by a human labeler.

◎ ATR Interpreting Telecommunications

Research Laboratoriess.

◎ ATR音声翻訳通信研究所

Auto Labeling

Advanced Telecommunications Research Institute
Intematio叫

Interpreting Telephony Laboratories
Department 2
Wei Zhang
May 23, 1998

ITL Internal Use On/J;_ Auto Labelling

INTRODUCTION ……・・・・・・・・・・・・・・・・・・・・・・・ ………………………………・:・・・・・・・・・・・・・・・・・・・ ……………・ ……・・・・・・・・・・・・1

BACKGROUND …………………………………………………………………・・・・・・・・・・・・・・・・・・・・・・・・・・ ……………………………2
OBJECTIVE ... ……………………........................... ………………………............................. ………………... …............. 3

SUMMARY ………………………………・ …………………………………............................... ……........................... 4

ALIGNER. ………………………….............. …………………・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ ………………………•• ………………. 5
OBJECTIVE ... 5
METHODOLOGY ... 5
introduction .. 5
Methodology Used .. 5
Considered lvlethodology .. 8

Hご。°喜言;;;ごRご:::::::::::::::::::::::::::::::·.:::::::::::::::::::·.·.:::::::::::::::::::::::::::::::::::::::·.:::::·.:::·.::::::::::::::::·i~
What's Required ... JO
Configuration File
Executing the Prog五盃：：：：：：：：：：：：：：：：：：：：：．：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：．．：：．．：：：：：：：：：：：：：：：：：：：：：．．：：：：：：：：：：．．：：：：：：：：：：：：：：．．：：：：：：：：：

12
15

Ev~: 言::::::::::::::::::::::::::::::::・.::::・.::::::::・.:::::::::::::::::::::::::::::::::・.::::::::::::::::::::::::::::::::::・.:・.:::::::::::::::::・.:::::i~
Methodology 16
Methodology五芦嘉蓋悶：．：．：：：：．．：：：：：：：：：．：：：．：：：：：：：：：：：：：：．．：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：．．：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：．．．：：：：：：：：：：：：：：： 17
Results

PROGRA紅M五::・.::::::・.::::::::::::::::::::::::::::・.::::::::::::::::::・.::::::・.::::::::::::::・.::・.::::::::::::::25
17

Introduction .. 25

Su~ 二霊i;.:::::::::::::::::::::::·.:::::::·.:::::·.·.::::::·.::::::::::·.::::::::::·.::::::::::::::::·.:·.::::::::::::::::::·.::::::::·.:·.:::::·.::::::::::::::·.·_~:
FUTURE WORK .. 35

HMMS ………………••………………... ……………••• ………............ 36

冒竺~~~'.~-~:: ~~
DRAWBACKS ... 37
EVALUATION 37
FUTURE WOR~·:: 44

CONCLUSION …………．．．…….. ……........ 45

GLOSSARY .. ….. ….......... 46

REFERENCES .. ….................................... 47

FURTHER READINGS .. …………........ 48

APPENDIX A -HMM TRAINING PROCEDURE .. 49

ENDNOTES…・・ …．．疇•…...............................53

Table of Contents -ii

!TL Internal Use Qrzl.l:::' Auto Labellin£

Introduction

CHATR is a multi-language synthesis system. It has a world renowned unit

selection routine, and can produce excellent natural sounding speech. To do this, it

requires the use of prosodically annotated speech databases consisting of many phoneme1

units. Without a doubt, the quality of CHA TR depends on the quality of these phoneme

units. If these phoneme units contain noise or errors, then the output of CHA TR suffers

as a result.

1 At time of writing, CHA TR uses phoneme unit databases.

Introduction -I

ITL Internal Use On1. ど Auto Labelline

Background

CHATR contains over one hundred speech databases, some have been recorded at

ATR, others have been recorded elsewhere, but all of them are created at ATR. The

process for database creation is as follows:

1. Prepare text transcription.

2. Record spoken text.

3. Segment recorded speech with transcription into utterances.

4. Utterances are semi-automatically or hand labelled.

5. Phoneme labels are manually checked by labeller.

6. Create database.

If the database was not recorded at ATR, then the received data at the very least must

contain a text transcription along with the recorded speech. The data is then processed

according to the above steps.

Some of the problems associated with phoneme labeling include: audible portions

of neighboring phonemes are included in another labeled phoneme, truncation of a

phoneme such that it no longer sounds natural, silences not labeled, and phonemes are

incorrectly labeled as another phoneme.

Background -2

!TL Internal Use Onl,1'. Auto Labellim;

Objective

Understanding that consistent proper phoneme labels are very important to

creating CHATR databases, a tool/method to check the phoneme labels is required. Such

a tool/method has to be able to consistently check the phoneme labels as independently as

possible from any human interaction, of course, some human interaction is necessary to

ensure proper operation. This tool/method must also be flexible enough to be language

independent as CHAIR is a multi-lingual system.

Objective→ 3

ITL Internal Use On在 Auto Labelling

Summary

The aligner2 is a single C program using power and delta cepstrum as a basis for

phoneme checks. This program was created to恥 phonemelabel problems such as

misalignments, lack of silence labels, or incorrect phoneme labellings. Comparing the

output of the aligner with hand checked phoneme labels, the average offset is between 5-

1 Oms, except for vowels, which have an average offset of 10-15ms. The large offset for

vowels is due to the fact that vowel transitions are normally smooth without a high delta

cepstrum which is what the program uses to determine phoneme boundaries. An

alternate method is to use the HTK package which uses Hidden Markov Models

(HMMs). These HMMs must be first trained, then a Viterbi alignment is performed.

The aligner performs better than HTK for more than half of the phonemes in the

phoneme set, with the rest of the phonemes having better or equal performance with ,

HTK. HTK tends to create phoneme boundaries that have large offsets from the original

input label files, while because the aligner uses temporal proximity delta cepstrurn/power

information, it does not tend to move phoneme boundaries very far. Due to this property,

running HTK, then the aligner does not seem to indicate any better performance than

running the aligner alone. However, due to time constraints, an evaluation of running the

aligner first, then HTK was not performed, but given opportunity, sh叫 dbe examined.

Both the aligner and HTK suffer from the drawback of not being able to recognize

incorrectly labelled phonemes, due to the difficulty of such a problem.

2 The automatic phoneme label checker created at ATR, not to be confused with HTK's aligner.

Summary-4

!TL Internal Use Onlv Auto Labellin"

Aligner

Objective

To create a program which will use the various speech characteristics of a speech

file as a basis for phoneme segmentation.

Methodology

Introduction

Up to now, all phoneme verifications by hand were through the assistance of the Xwaves

and Labeller's Workbench software. Upon examining the verification procedures, the

frequency spectrum display in these programs was used heavily as an aid to determining

inter-phoneme boundaries. A quick look at the Labeller's Workbench GUI indicates that

not only is the frequency spectrum important but the power of the speech also plays a

determining factor in aiding phoneme verification. This is the basis for much of the

current verification tool, henceforth called the aligner, which is a single program written

completely in C.

Methodology Used

The cepstrum is calculated from the utterance wave form 3. The magnitude of the

delta cepstrum is then calculated as follows:

DC"'"'~ 〔昌c, 〗

3 Cepstrum data is calculated using HTK vi.S's HCode program.

Aligner -5

!TL Internal Use On!}' Auto Labellinz

Where Ck are the cepstral coefficients. The-magnitude delta cepstmi:n gives a measure of

how fast the cepstrurn is changing, and thus serves as evidence to how fast the frequency

spectrum is changing. The magnitude delta cepstrum can also be regarded as a

probability, the higher the magnitude, the higher the likelihood of a inter-phoneme

boundary. (Note that the opposite is not true, if a inter-phoneme boundary exists, then

the delta cepstrum does not necessarily have to be high, as in the case of vowel to vowel

boundaries) The magnitude delta cepstrum data is used exactly in this regard. To

determine these boundaries, a relative threshold is determined. This threshold is

automatically optimized for each utterance. The algorithm for this optimization is as

follows: based on the number of phonemes that exist in an utterance label file, the aligner

iteratively computes the optimum threshold such that the ratio of calculated inter-

phoneme boundaries to the actual number of phonemes is fixed. This ratio is not one to

one however, instead, it is around 1.3. This value has been determined by manual

training on various speech databases. Once the threshold has been calculated, any

magnitude delta cepstrum region which exceeds the threshold is evaluated and the local

maxima is selected as a likely inter-phoneme boundary. Whether or not this boundary is

used depends on whether there is a phoneme close by (a search window is used with the

likely inter-phoneme boundary index as center). This process is repeated for each

utterance.

Power spectral density (psd) function is used. The psd calculations produce

power for 500Hz (note that this can be changed, see CalculatePSD on page 29)

bandwidth units (e.g. 8kHz bandwidth data, psd calculations return an array of size 16,

each element of the array representing spectrum magnitude for a 500Hz bandwidth

section). Due to the limited sampling frequency input data (12kHz-16kHz) a much finer

frequency scale could not be used. Once the power for each band are calculated, the

power is normalized with a 12db/octave factor starting at lkHz. This normalization is

required because speech amplitude falls off with a 12db/octaveii_ Any band that need to

be filtered out can be filtered out (bandlimited noise), then the resulting power values are

averaged. A threshold is calculated by a ratio of the difference between the maximum

and minimum power for each utterance wave file (Threshold=[Max-Min]*Ratio+Min,

Aligner -6

ITL Internal Use Onlr Auto Labellin臼

where ratio is between O and 1). This ratio can be adjusted via the configuration file. To

overcome the "microphone off silence" problem4 mentioned in Methodology Drawbacks,

two thresholds are used. One threshold is set at one third lower than the standard

threshold. At any time, if the power drops lower than the low threshold value, the new

threshold will be set equal to the low threshold value. If the power rises past the normal

threshold value, the threshold is once again restored to the normal threshold value. This

allows the program to adapt to the difficulty of having different silence levels within the

utterance wave file (usually, there are two distinct silence levels). The minimum psd

value used in determining the threshold is currently not the minimum psd value in the

utterance, but rather an average of the start and ending silence periods. This was

determined to be more robust than taking the absolute minimum value due to inconsistent

recording level problems. A limitation is that the beginning and ending of an utterance

must contain silence. See methodology drawbacks for more information. Once the

power has been calculated, the following set of rules is used to determine how a phoneme

is moved:

1. Silences/speech shorter than 20rns are ignored.

2. If phoneme boundary exists within search window at a high to low power

crossing, move the phoneme boundary to this high to low crossing.

3. If phoneme boundary doesn't exist within search window at a high to low

power crossing, store this time index and set shift flag.

4. At low to high power crossing, if shift flag is set, shift the time index of the

first phoneme boundary in the silence period to the stored time index (step 2).

Delete all phonemes left in the silence period. If phoneme previous to

insertion point is silence, extend the silence, otherwise insert silence.

5. If the shift in step 4 exceeds the average phoneme duration, do not shift the

phoneme.

6. If the phoneme following the silence is a plosive, do not insert or extend any

silences.

4 Some recordings contained two types of silences, one silence was recorded while the microphone was
turned off, the other type of silence was recorded while the microphone was on but nothing was being said.

Aligner -7

!TL Internal Use On位 Auto Labellin,z

Duration statistics are used to determine whether a particular phoneme contains

statistically likely durations. Initially, the minimum, mean, maximum, and standard

deviation statistics were calculated for bi-phones (succeeding phoneme dependent) from

the original unchecked labeled files, then as phonemes in each label file were evaluated

and adjusted, the new duration was compared against the database of old durations.

Because the new duration trends are different from the old duration trends, comparing the

new phoneme durations against a database of new phoneme durations makes more sense.

To compare phoneme durations against a database of new durations requires us to first

create the database of new durations once all the phonemes have been adjusted, then go

back and evaluate each phoneme duration against this new database. By these

comparisons we can identify phonemes with durations shorter than a certain number of

standard deviations away from the mean and take appropriate action.

Considered Methodology

Formants: formants are highly efficient, compact representation of the time-

varying characteristics of speech i, formants can also be used to identify certain types of

vowels, however reliably detecting formants from low-level voiced speech is a very

difficult process.

Triphone Duration statistics: There were not enough triphone units in databases to

obtain meaningful duration statistics.

Delta delta cepstrum: Delta delta cepstrum can be used to determine the peak rate

of change of the cepstrum (maximum delta cepstrum). However, using the simple rule,

"if the central delta cepstrurn value out of three sequential delta cepstrum values is the

highest, then this is a local delta cepstrum maxima" is less computationally intensive yet

also produces the peak rate of change of cepstrum.

Aligner -8

ITL Internal Use On位 Auto Labellin>?

Time domain magnitude power calculations were initially used to aid in the

adjustment of inter-phoneme boundaries as well as determine silence segments within an

utterance. However, a simple magnitude squared of the waveform data has proven to be

inadequate for many reasons. First, on examination, low frequency amplitudes seem to

be more intense than high frequency. Flanaganii suggests that amplitudes fall off with a -

12db/octave, thus before the power can be examined, a 12db/octave normalization factor

must be applied. Furthermore, according to Oliveiii and Fryiv speech starts somewhere

around 70Hz ~ 80Hz, therefore a high pass filter is desired. The time domain magnitude

calculations were also observed to be very susceptible to recording noise, such as the low

frequency noise in nabi_A_040 in the FNA database. Not only was the power spectral

density function necessary to perform the normalizations and filters, but it is also more

robust against recording noise (low frequency noise, inconsistent recording levels, ... etc.).

Methodology Drawbacks

The PSD uses a FFT algorithm. By nature of the mathematical computations

required, the smaller the frame width (better time resolution, also known as wideband

spectrum), frequency smearing will be at its worst, thus distinct bands of frequency

calculated will contain values from nearby bands. We can eliminate this frequency

smearing by increasing the frame width (narrowband spectrum), but at the cost of a

coarser time resolution. For alignment purposes, a wideband spectrum is more desirable

than a narrowband. It produces a finer time resolution alignment, and frequency

smearing does not affect the results too greatly (the power for each frequency band is

summed), however, for training purposes (as mentioned in the Suggestion section) a

narrow band is preferable. Currently, a wide band spectrum is calculated.

Duration checking is used to identify phonemes with unus叫 lyshort durations.

However, duration has a very large standard deviation and as such, cannot be used to

reliably identify bad phonemes. It was hoped that perhaps it can be used to identify mis-

labelled phonemes as well, since different phonemes might have different durations;

however, once again, due to the large deviation, duration is unsuitable for such uses. The

Aligner -9

!TL Internal Use On!}' Auto Labellin,z

only reason duration is still used in the aligner (note that it can be turned off) is due to

lack of a more feasible algorithm within the allotted time limits. Please see section on

suggestions for more information.

The algorithm for determining the psd threshold is currently sensitive to power

fluctuations that might occur in the utterance waveform due to poor recording

environment, noise, and inconsistent recording levels. In some cases, the recording

contained two silence power levels: the absolute silence when recording has started, but

the microphone was not turned on ("microphone off silence"), and the other silence level

in which the microphone is on but nothing is being said ("microphone on silence"). This

is difficult to detect without listening to the waveform since by computer observation it is

difficult to distinguish between the "microphone on silence" from real speech as

compared to the "microphone off silence". ・In other cases, the recording level was

changed during recording such that a small portion of silences had a much lower absolute

power level than the majority of the silences. This was noted to be a problem in most

utterances to certain extents. Although, the algorithm is sensitive to such power

fluctuations, it is made more robust with the use of power spectral density calculations, as

compared to the time domain magnitude squared power function.

How to use the program

What's Required

The aligner requires the configuration file called .walignrc be in the home

directory of the user running the program. The program finds out the home directory

with the environment variable HOME. If this variable is not set, the program will

attempt to search the current directory for the .walignrc file. A description of the

configuration file follows in the next section. The aligner also requires pre-calculated

cepstrum files. These can be calculated with HTK's HCode as follows:

Aligner -I 0

ITL Internal Use On位 Auto Labellinz

HCode -m -n 16 -p 32 -e -f 1 -w 5.0 -h -s 0.1 -F ESPS -0 HTK [input

filename] [output filename]

Parameter Explanaヒions:

-m Output mel-fごequencycepstral coefficients (cepstrum data)

-n Sets number of output coefficients

-p Sets the number of analysis order

-e Append the normalised log energy to the frame

-f Sets frame peごiod (frame sh.ift) to 1 ms

-w Sets window duration (frame width) to 5 ms

-h Apply a hamming window

-s Set normalised log energy scaling factor to 0.1

-F Set input source file format to ESPS

-0 Set output file format to HTK

The cepstral order can be changed to the default of 12, but 16 produces a finer cepstrum

resolution. The number of analysis order is recommended to be set at twice of the

cepstral coefficient. Make sure that if these parameters are changed, that they be changed

appropriately in the aligner configuration file as well. Note that the frame shift and frame

width values here do not correlate with the frame shift and frame width values in the

aligner configuration file. The frame shift and frame width values in the configuration

file is used for delta cepstrum and power calculations only. Note that these cepstrum files

are created in the same way as the creation of cepstrum files during a CHA TR database

build. However, these cepstrum files have a much finer time resolution (lms frame shift,

5ms frame width) as compared to those cepstrum files created for CHATR. This fine

resolution is required for precise phoneme boundary checks.

Hcode unfortunately does not take wildcards, so to process multiple files, the

following script can be used:

for i in"$@"

Aligner -11

ITL Internal Use Q叫 Auto Labellinz

do

NAME='basename $i .d'

HCode -m -n 16 -p 32 -e -f 1 -w 5.0 -h -s 0.1 -F ESPS -0 HTK

"[path]/$NAME.d" "$NAME.mcep3"

done

If the input file is not in ESPS format, then it must be converted to ESPS fom祖 t.In the

case of raw wave files, the following script will call btosps to convert all the files given

on the command line to ESPS format.

for i in"$@"

do

NAME='basename $i .wav

btosps -c "" -f [sampling frequency] "$i" "$NAME.d"

rm $i

done

The aligner also requires headerless utterance wave files for the power calculations and

ESPS format label files. Ensure that the proper directory and extension values have been

entered into the configuration file.

Configuration File

This will explain the entries in the .walignrc configuration file and what should

go into to them.

Lab:

LabExt:

MFCC:

This is the directory which contains the original ESPS label files.

This is the extension of the original label files (without the period), if

nothing is entered, a default of .lab will be assumed.

This is the directory which contains the cepstrum files.

Aligner -12

ITL Internal Use Onlv Auto Labelling

MFCCExt: This is the extension of the cepstrurn files (without the period), if nothing

is entered, a default of .mcep3 will be assumed.

Align : This is the directory which contains the label files that you want to check.

Note that this can be the same entry as the Lab entry. This is provided so

that if one wishes to check only a subset of the label files, then they can

copy that subset to another directory.

AlignExt: This is the extension of those files that need to be checked (without the

period). A default of .lab will be assumed if this entry is left blank in the

configuration field.

OutPhoneme: This is the directory to place the output label files.

OutPhonemeExt: This is the extension of the output label files. Make sure that if you

are storing the output label files in the same place as the input label

files, that you do not use the same extension or the old files will be

overwritten. If this entry is left blank, the default is .new.

Wave: This is the directory where the original wave files (header less) are kept.

The wave files are used to calculate the power spectral density.

WaveExt: Extension of the wave files, ifleft empty, the default is .wav.

DB file : The duration statistics will be saved to this file in the current directory.

WaveType: This is either set to WAVEFORM (headerless binary) or FEA_SD (ESPS

format). Currently not used. All input wave files are assumed to be

headerless wave files.

Aligner -13

!TL Internal Use Onlv Auto Labellin

SarnplingFreq: This is the sampling frequency of the wave files in Hz. Usually it

is 16000 or 12000.

CepOrder: This is the cepstrurn order of the cepstrurn data. This should be the same as

the parameter used in the creation of the cepstrurn files. Please ensure that

these values are the same, and that the cepstrurn data includes the energy.

FrameWidth:

FrameShift:

This is the frame width that will be used in the delta cepstrum

calculations and power spectral density calculations. This is

usually set to 1 Oms.

This is the frame shift that will be used in the delta cepstrurn

calculations and power spectral density calculations. This is

usually set to 2rns.

PowerThreshold: This value is used to determine a power threshold which is

used to detect silences. The threshold is the product of the

inverse of this value and the difference between the

maximum and minimum power above the minimum (i.e.

(max-min)/PowerThreshold+min). This value is usually set

at 4, but if you find that you have silences which are not

totally silent, you can increase this value to set a more

stringent threshold. Contrarily, if you find that too many

phoneme's decay region is too long, and contain silences,

then you can decrease this value to set a more lax threshold.

PowerWindow: This determines the size of the search window. Within the window,

a search is conducted to find the closest phoneme and modify this

phoneme's index to the computed interphoneme boundary. The

window size extends from average duration* 1/POWERWINDOW

before the start of the phoneme to averaae と9

Aligner -14

JTL Internal Use_Qnl,l:'. Auto Labellinz

duration*l/POWERWINDOW after the phoneme in the case of

delta cepstrum check. In the case of the power check, the window

center is based around the calculated inter-phoneme boundary, and

not on the phoneme (e.g. If this value is set at 2, then the window

size would be½*average phoneme duration [for this database]*2,

the window extends from力 avg.duration before the computed

inter-phoneme boundary toク avg.duration after the alignment

point). If this value is increased, the aggressiveness of the

algorithm to search for a nearby phoneme is lowered, while if this

value is decreased, the algorithm becomes more aggressive. For

ideal results, this value needs to be adjusted, but 4 seems to set a

reasonable limit.

Note that for all numerical values above, decimal values are allowed, except in the case

of CepOrder.

Executing the Program

Once the required files are been created and the configuration file has been

changed, all that is required now to run the program is just run it!

Drawbacks

No recordings are perfect, they all contain some form of noise or static.

Depending on the severity of the noise, it limits the ability of the aligner to perform

consistent boundary checks. Past experience has shown that particularly, low frequency

noise is a problem. The implementation of the spectral density function has increased the

robustness of the aligner, but tolerance to noise can be further improved.

The aligner, curre叫 y,does not have a reliable method to determine whether a

phoneme has been mis-labeled. The difficulty here lies in the fact that in order to be able

Aligner -15

!TL Internal Use On!}'. Auto Labellinz

to "recognize" a phoneme, it needs to-perform speech recognition to a certain degree.

This can only be achieved by training models on given databases to obtain a basis for

comparison. Having said this, even though most of the problems encountered deal with

boundary mis-placements, the relatively few mis-labeled phonemes contribute to most of

the quality degradations, hence the elimination of such mis-labeled phonemes is critical.

There are several factors which can be adjusted in the .walignrc configuration file

which adjusts the aggressiveness of the aligner. Since each database is different, an

optimum setting for one database might not be an optimum setting for another (however

they will likely be fairly close). The only current way to determine optimum settings for

such values is by iterative approach. First, run the aligner with the default settings, then

modify them appropriately. Although there might be ways of automating this process as

the delta cepstrum threshold previous used to be a user settable setting.

The cepstrum files are computationally intensive and can take considerably time.

For an 80 megabyte database, it takes approximately 1.5 hours on a Sparc 10 equivalent

machine. However, Spare 10s are fairly slow machines, compared to the UltraSparc.

Creating the cepstrum files on the UltraSparc should take considerably less time.

Evaluation

Methodology

A database with both the original utterance label files as well as labellers hand

checked utterance label files was selected. The output utterance label files are then

compared with the labellers hand checked utterance label files. For an entire database,

we record for each type of phoneme, the absolute time difference between the auto

aligned phoneme boundary and the labellers hand checked utterance label file, averaged

for occurrences of that phoneme.

Aligner -16

!TL Internal Use Onl,l'. Auto Labelling

Methodology Drawbacks

The judgement of phoneme boundaries is a very difficult task. One person's

"perfect" phoneme boundary might be different from another. Furthermore, the

perceptibility of two vowels that differ by 1 Oms is absolutely minimal. The question that

must be ultimately asked when evaluating phoneme boundaries is whether during

synthesis, when the phonemes are being used, any difference in quality can be detected.

Perhaps a better evaluation would be to take a database that has been automatically

checked with the aligner, another without, and compare listening tests with CHATR.

Such evaluation would be more beneficial; however, due to time constraints, this is

currently not feasible. One thing is guaranteed with the use of an automatic tool,

consistency.

I would just like to add that in consideration for an evaluation method, a different

approach than the one above was initially considered. It consisted of calculating the

average percentage moved of the difference between the original labeling and the

manually checked labels. (i.e. If the original phoneme index is 1.100 sec, the manually

checked phoneme label at 1.090 sec, and the auto checked phoneme at 1.095 sec, the

percent moved would be (1.095-l.090)/(1.100-1.090) or 50%) By this method, the

magnitude of the move is considered, so that even if the auto checked phoneme was 50ms

away from the hand checked phoneme, if the time index change from the original label to

the hand checked label is 500 ms, the percent change is 90% as compared to another auto

checked phoneme, where it too has a 50ms offset from the hand checked label but the

difference between the original and the hand checked is only 1 OOms, then this percentage

change would be 50%. Clearly, the phoneme with the 90% change benefited more with

the aligner than the one with the 50% change. Although this takes the magnitude into

account, the end result is in a ratio, and thus, do not know what the average time offset

lS.

Results

Aligner -17

!TL Internal Use Onlv Auto Labellin£

The following data was gathered from the new FNA database. The speaker is

Japanese female voice. The ongmal label files are m

/dept2/work26/pi/data/chatr dbs/T TEST/T503/LBL.old, the hand checked labels

are m /home/as75/nnagaoka/T_TEST/T503/LBL and the wave files m

/dept2/work2 6/pi/ data/ cha tr_ dbs/T _ TEST /T503/WAV. The program used to create

these results can be found in the Appendix.

The configuration settings used is as follows: CepOrder=l 6, FごameWidth=lO,

FrameShift=2, PowerThreshold=4, PowerWindow=4 with no duration checking. Note

that these are the normal default settings. (These settings were experimentally determined

to have produced the best results for other databases)

The table lists the phonemes, the minimum time difference between hand checked

and auto aligned, the average time difference, maximum time difference, phoneme

occurrence in this database, and the standard deviation.

The aggressiveness of the algorithm differs in the Power Window setting, as well

as whether the setting for a phoneme to move more than the average phoneme duration

for a particular database was set or not. For less aggressive settings the PowerWindow

value was set at 6, with the duration limited phoneme move parameter set to half the

average phoneme duration.

removed the average

The aggressive setting used a PowerWindow of 2, and

phoneme duration move parameter setting.

Aligner -18

ITL Internal Use Onlv Auto Labelling

Aligner -19

ITL Internal Use Onlv Auto LabellinP-

The following table is the result of the aligner using slightly aggressive parameter

settings compared with the default settings.

Aligner -20

!TL Internal Use Onlv Auto Labellin臼

The following table lists the result of the aligner using slightly less aggressive parameter

settings compared with the default.

Aligner -21

ITL Internal Use Only Auto Labellinz

Aligner -Algorithm Agressiveness

Mean Offset Comparison

25 -

゜
2

(SE) s
1
a
q
1
q
 pa)f::>a4:)
p
u
e
H
 E
O」↑
1asJ!o u
e
a
w

10 -

5

゜ゃ ＼ 4
、

◇

も ℃ ℃ c,c, ぶ ら ふ
3

゜
k

、
も‘ 6

℃
．、

＼

＊媒 ~ <:'-

゜
0
、 ぶ‘

く、 ら ぶ らら袋‘ ヽ '-0 ~~ ~ ふ ヽ 4

Phonemes

1口Avg.Offset (Less agressive)圃Avg.Offset (default)□ Avg. Offset (Agressive) I

Aligner -22

!TL Internal Use Onlv Auto Labelling

Aligner -Algorithm Agressiveness

STD. DEV. Comparison

35

0

5

0

3

2

2

P
E
)
 s
1
a
q
e
7
 pa>1:>a4::i
p
u
e
H
 E
0」」
U
O
!
l
E
!
>
 a
a
 p
J
e
p
u
e
i
s

15

5

゜

10 -

z コ CO .n 兵
X)

兵〕
て3 P

P

Cll U― 辻ご Ol 4ニ ~ そ
〉 E

C

゜
a. d

d

I.... (fJ L
I
S

s
s

4
s
s

si
＃

s
#

コ Z

＞、 N

Phonemes

I□ Std. Dev. (Less agressive)圃Std.Dev. (default)□ Std. De~~(Agressive) f

Aligner -23

!TL Internal Use On/ェ Auto Labellin£

The graph shows that phonemes such as a, e, i, o, pp, and ssh have better
performance when the algorithm was made more aggressive, whereas phonemes such as
cch, ch, s, tt, u, w, y did not perform as well with an aggressive algorithm. One reason
for this behaviour is the lack of phoneme specific checks of the algorithms. The
algorithm is mostly phoneme independent with some exception of plosives which are
currently used to aid alignment checks.

From the graph above, it is also clear that vowels have a much larger offset from
hand checked labels, on average between lOms to 15ms away from hand checked labels.
This is due to the fact that vowel phoneme boundaries have fairly smooth cepstral
transitions with little delta cepstrum near this area. This also means that vowel
transitions are not easily detectable audibly compared with plosives or other phonemes,
so a difference of~ 1 Oms is not as crucial.

Aligner -24

!TL Internal Use Onむ Auto Labelling

Programmer

Introduction

This section describes each function of the aligner in more detail. It assumes the

reader has a general programming knowledge (pointers, structures, ... etc). It might be

helpful for programmers wishing to understand the program to have a copy of the source

code while reading this, but it is not necessary for those who are simply interested in the

basics of the aligner.

Description

When the aligner is run, and if DEBUG is defined, it opens a file called

walign.log. This file will contain a trace of what the aligner is doing while running.

Every time a function is called or every time a function exits, it will be logged to this file.

The first function call in the aligner is readConfigurationQ. readConfiguration

takes no parameters and returns no parameters. It reads in the .walignrc configuration

file in the user's home directory. A while loop reads in every single line of the

configuration file. After reading in each line, it compares it with any known fields, if it

makes a match, it records the entry for that field, if the entry is invalid, the default is

used, in the case where there are no defaults (i.e. the directory entries) it complains and

terminates with an error code. Note that if some mandatory fields have been removed

from the configuration file, the readConfiguration function will not terminate with an

error; however, unpredictable results can occur.

Return from read Configuration we check to see if WA VE TYPE has been

declared other than WA VE FORM, if so, then terminate with a message to convert ESPS

files to headerless wave first.

Aligner -25

!TL Internal Use Onlv_ Auto Labellinz

getopt is a ESPS function call which aids in the parsing of~ommand lines;

however, it has some serious flaws such as the inability to pass more than one parameter

per command line switch. This was the main reason a configuration file was created.

getopt is only used to trap any command line switches and call ReportUsage which

displays a simple message indicating that all settings are to be set in the configuration

file.

readDatabase takes as input, a filename string and returns a pointer to pNode,

which is a data structure which contains a phoneme entry, its time index, next phoneme,

and statistical characteristics among some programming information (next, previous

pointers…etc). readDatabase also reads in the average phoneme duration which is

calculated and stored as a float in the beginning of the duration statistic database file.

This average duration is used to determine the size of the search windows in the delta

cepstrum and power routines. If duration statistics are not going to be used and routines

removed from the program, then the search window size needs to be determined another

way, either hard coded or the average duration stored somewhere else. The input

filename string is used to point to the duration database file. The function tries to open

this file, and read in first, the average duration value. If it could not open the database

file, it calls the function MakeDatabase, passing to it, the directory which contains all the

label files, the label file extensions, and the database filename. MakeDatabase will create

the database, and upon return, readDatabase will read in all the phonemes and its

corresponding duration. The function balanceTree is called to balance the resulting

binary tree. The database file is sorted according to phoneme pairs, and so balanceTree

will ensure we have a O(log(n))5 search time. Otherwise, without balanceTree, we would

have, not a binary tree, but basically a tree with a linked list configuration with a search

time of O(n). After the phoneme information is read, readDatabase returns the head of

the database tree.

5 Big "O" notation. Defined as the order of the running time, i.e. O(log(n)) implies the algorithm has a
running time order of log(n), where n is the number of elements.

Aligner -26

JTL Internal Use Onlv Auto Label/in"'

MakeDatabase creates a text file database of phoneme pairs (phoneme and its

following phoneme) along with the duration statistics. It reads each label file in order,

until no more label files exist, and calculates the duration statistics. It creates a binary

tree, and calls the function tree to perform insertions into this tree. Tree insertions are

ordered based upon the phoneme pair, so the phoneme pair c-d would be inserted in the

left child node of a node containing d-a, or inserted in the right child node of a node

containing c-z. Once all label files have been read, then the binary tree containing

phoneme pairs and its corresponding duration statistics are written out to a file through

the function call printDatabase. The function then exits with no return value.

tree traverses a binary tree searching for any given phoneme pair, if the pair

cannot be found, then it inserts the phoneme pair into an empty child node such that

phoneme pair order is maintained. Note that tree is a recursive function, it calls itself

while searching. The resulting binary tree that is created is dependent on the input data,

the worse case is a linked list, the best case is a prefect binary tree, with log[base2](n)

levels given n nodes.

printDatabase takes as input, the pointer to the head of the duration database

node, and the file pointer to write the database to. printDatabase is a recursive function

which traverses the database binary tree in alphabetically phonetic order, calling

printNode to print out each node.

printNode takes as input the pointer to a phoneme node, and a file pointer. It

prints out of the phoneme information to the file pointed to by the file pointer.

nextFile takes as input, a directory and a file extension. It returns the first file

with the given extension in the directory, or in the case of subsequent calls, it returns the

next file with the given extension. Upon exhausting the file list, it returns NULL.

nextFile remembers the last file returned for any given directory, so if nextFile is called

with extension ABC, then with extension DEF, any files with extension DEF that were

passed during the search for the file with extension ABC will no longer be in the search

Aligner -27

!TL Internal Use冥 Auto Labellinz

space, similarly, the subsequent call to nextFile for files with extension ABC will no

longer be able to find any files with such extension that were already looked at during the

search for files with DEF extension. This is a limitation of the memory algorithm used

within nextFile but should suit our purposes in this case, since the aligner does not search

any one directory for files of different extensions before exhausting a directory's file list.

CheckAlign takes as input, the pointer to the duration database, and the utterance

label file to check. When multiple files are to be checked, a while loop in the main

function calls CheckAlign for each label file. In CheckAlign, the label file to check is

read via readPhonemeFile, which remms a linked list, each node representing the

phoneme and its time index. rawfilename is called to strip off any paths or extensions

from a character string (the utterance label filename). Cepstrum filenames and wave

filenames have the same root filename as the utterance label files, the only difference lie

in the extensions. CalculatePSD is called to calculate the power spectral density.

CheckPower then uses the psd data to realign phonemes or insert silences.

destroyPowerList cleans up the memory used by the psd data. After the psd data is used,

CalculateDcep calculates the delta cepstrurn, followed by CheckDcep which uses the

calculated delta cepstrum to further realign the phonemes. Similar to destroyPowerList,

destroyDcepList is used to free up the memory taken by the delta cepstrum data. At this

point, OutputPhonemeFile is called to write the newly realigned phoneme file.

destroyList then frees the memory occupied by the utterance linked list. CheckAlign then

exits with no ren1m values.

readPhonemeFile takes as input, the label filename. It reads the phoneme and

creates a linked list, returning the head of the linked list.

rawfilename takes the input string and searches for slashes which might indicate

paths preceding filenames, if any is found, it performs some pointer manipulation to strip

off the preceding path. Similarly, it strips off extensions by searching for periods.

Aligner -28

!TL Internal Usu麟 Auto Labelling

CalculatePSD takes as input the raw filename. CalculatePSD then searches the

appropriate directory and loads the wave file with the ALReadWholeWaveFile function

call. The required number of data per psd sample point is first copied to a buffer, then

this buffer is passed to spctrm the psd algorithm. Note that the parameters to the psd

algorithm, m and k are related, and depending on the values of m and k, one can change

the output (see description for spctrm for more information). However a strict restriction

on m is that it must be a integer power of 2, this is required by the fast Fourier transform

algorithm that is used in spctrm. Output of spctrm is contained in the array p. Each

element of the array contains the power for a specific frequency band. The bandwidth of

the frequency band is determined by the global define PSDSTEP. The power of these

bands are then normalized by the functionfreqNormalize and summed. Note that since

the array p contains band limited power, one can perform any combination of

low/mid/high pass filters by simply not including a specific element of the array. In some

cases, there are low frequency noise in the recorded waveform files, in such cases, it is

filtered out. There is also evidence v that voice does not start at OHz, but rather

somewhere around 1 OOHz, but further investigation is required. The resulting sum is

converted to dBs and stored. Power calculations are calculated on a frame width of

FRAMEWIDTH milliseconds and a frame shift of FRAMESHIFT milliseconds. These

two parameters are user defined in the configuration file. While power calculations are

being taking place, the minimum and maximum power values are recorded, these values

are later used to determine the power threshold. Due to the various levels of silences that

exist in the waveform, the minimum power value is calculated as the average of the

beginning and ending silence periods. This of course assumes that in the beginning and

end of an utterance, it is silent. Note that a normal distribution could be used to help

determine the maximum and minimum power levels, but there are serious drawbacks.

Please see the comments in the aligner in function CheckPower for more details.

CalculatePSD returns the data in the PowerDataFile data structure.

ALReadWhole WaveFile takes as input a filename. This function reads this wave

file and returns a pointer to the file. It also returns the number of samples that were read.

Aligner -29

!TL Internal Use Onlv Auto Labellin"

In successive calls to this function, if the input filename is the same as the previously

requested file, then the same pointer to the file is returned.

spctrm takes as input: a pointer to the wave data, parameters m, k and ovrlap.

ovrlap is either 1 or 0, and controls the type of result that is desired. For our purposes,

ovrlap will always be set at 1. The parameter m determines how many frequency bands

will be calculated (i.e. if m is 16 with a 16kHz sampled data [Nyquist frequency of

8kHz], 16 frequency bands will be calculated each with a bandwidth of 50GHz). The

parameters m and k are related mathematically (see program for more details), with the

restriction that m be a integer power of 2. The global define PSDSTEP specifies the

frequency bandwidth of each band, however, this is not guaranteed as m is always

rounded up to the nearest integer power of 2. k is calculated to satisfy the

mathematically relationship. For input waveforms that are sampled at 12kHz or 16kHz,

there is limited flexibility in choosing PSDSTEP, and care is advised so that k is not

invalidated. There is no check in CalculatePSD for valid values of k (future work?).

freqNormalize takes as input the frequency of the power, and the power in

magnitude (not dBs). It normalizes the power using a 12dB/octave scale according to

Flanagan and returns the result.

CheckP ower takes as mput: th e utterance linked list PowerDataFile data

structlire, and database linked list. This function calculates two thresholds, a nom叫

threshold and a low level threshold, and while examining the calculated power data (from

either CalculatePSD or CalculatePower), examines the inter-phoneme boundaries and

makes any adjustments if necessary. The outside loop examines the power data watching

for any threshold crosses, and also changes the threshold to either the low threshold or the

normal threshold if the power drops below the low threshold or rises past the normal

threshold respectively. Once a threshold crossing occurs, another loop examines the

next SHTWINSIZE milliseconds (step size of SHTWINSTEP) for possible threshold

crossings. This loop prevents any short silences less than SHTWINSIZE from being

labelled. Note that only short silences are watched for and that short phonemes are not

Aligner -30

!TL Internal Use Onlv Auto Labellin臼

affected. Once we have determined that we do not have a short silence, the program

searches through the utterance linked list for the closest phoneme, it adjusts the phoneme

to the threshold crossing time index and the process repeats. There is a window size

bounded by windowBegin and windowEnd which limit how far from the threshold

crossing we will search for a phoneme. If a phoneme cannot be found within the

window, then this threshold crossing time index is either recorded or a pause is inserted

depending on whether it is a speech to silence crossing or a silence to speech crossing

respectively. In many cases, for speech to silence crossings, phonemes have been

labeled such that it includes part of the trailing silence. In this case, although a phoneme

was not found in the search for the speech to silence crossing (phoneme was labeled with

a much longer duration) the closest following phoneme will be shifted to this new time

index. In the case where the time index of a phoneme needs to be shifted to a new

location, the shift is limited so that it only takes places if the shift does not exceed the

average phoneme duration (approx. lOOms for FNA database). Once all adjustments

have been made, if a phoneme is found to be labeled within a silence (according to the

power calculations) then it will be deleted. Once all adjustments have been made,

CheckPower returns the head of the utterance linked list.

destroyPowerList takes as input the PowerDataFile data structure. It frees the

memory used by the data structure.

CalculatePower is the function which calculates the time-domain magnitude

power of a wave form. The code is similar to that of CalculatePSD except for the call to

spctrm. Please refer to the code for more information. This function is no longer used

but included for the sake of completion.

CalculateDcep takes as input the raw filename. It reads the required cepstrum file

from the MFCC directory, and calculates the derivative of the cepstrum. The derivatives

are calculated through a weighted window on each cepstrum coefficient, the coefficients

are then summed and squared to produce the final delta cepstrum value. The weight

Aligner -31

!TL Internal Use Onか Auto LabellinR

window is achieved through the ALLSRweight function call. The function returns the

delta cepstrum data in the dCepDataFile data structure.

CheckDcep takes as input: the utterance linked list, pointer to dCepDataFile data

structure which contains the delta cepstrum data, and the database linked list. The

function first determines how many phonemes exist in the utterance, it then iteratively

starts with a high delta cepstrum threshold, and counts the resulting likely inter-phoneme

boundaries. If the number of inter-phoneme boundaries is lower than the number of

phonemes multiplied by the manually trained ratio, it lowers the delta cepstrum threshold

and repeats the process. This process continues until the number of inter-p~oneme

boundaries equal or exceed the product of the actual number of phonemes with the

manually trained ratio. Note that during the inter-phoneme boundary counting process, it

records the time indices and stores the result into an array called dcepindex. The size of

dcepindex is initially calculated by the number of phonemes multiplied by a scaling

factor that is larger than the manually trained ratio. However, this does not guarantee that

dcepindex is sufficiently large enough to hold all resulting indices. The size of

dcepindex is stored in indsize, and if the number of indices exceeds indsize, then the

size of dcepindex is doubled (realloc). Once all the inter-phoneme boundaries have been

stored in deep index, a loop goes through the utterance linked list (similar to

CheckPower), at each phoneme, checking to see if any delta cepstrum calculated inter-

phoneme boundaries exist within a window. The size of this window is the same as that

used in CheckPower, the average phoneme duration scaled by POWERWINDOW,

which is a user settable parameter in the configuration file. If it does find any inter-

phoneme boundaries within this window, it adjusts the phoneme to the boundary time

index. Note that if the global define DEBUG is defined, then at the end of this function,

all the delta cepstrum inter-phoneme boundaries will be added to the utterance list. This

is useful when debugging and exact delta cepstrum inter-phoneme boundaries need to be

examined. In debug mode when viewing the newly aligned utterance with X waves, all

phonemes labeled "DC" are inter-phoneme boundaries calculated from delta cepstrum.

Note that in debug mode, the duration check must be turned off, since duration cannot be

Aligner -32

!TL Internal Use Onli: Auto Labellin,z

checked for phonemes labeled "DC". CheckDcep returns the head of the utterance linked

list.

destroyDcepList takes as input the dCepDataFile data structure and frees the

memory used by it.

OutputPhonemeFile takes as input the utterance linked list as well as the raw

filename. It creates the new utterance label file by traversing the utterance linked list

writing each phoneme and its corresponding time index into an ESPS format label file.

destroyList takes as input the utterance linked list and frees the memory

associated with it.

ExamDuration takes as input the utterance linked list, and a pointer to the

duration database. If STD LIM was not set as "-1" in the configuration file (i.e. -1 tu.ms

off duration checking), this function will traverse the utterance linked list checking each

phoneme's duration with the function call to CheckDuration. CheckDuration returns a

value indicating the number of standard deviations away from the mean for a phoneme's

duration. Using the value set in STDLIM as a deviation cutoff, all phonemes with

durations outside this range will have it's phoneme changed to BADPHONEMEPWR.

BADPHONEMEPWR is currently defined as "X". (Note that instead of replacing the

phoneme with X, the aligner currently appends X to the phoneme. This is to assist

debugging.) ExamDuration then calls OutputPhonemeFile to write the new utterance

linked list.

CheckDuration takes as input a pointer to a phoneme node, as well as a pointer to

the duration database. It uses the value stored in cPho in the phoneme node to search

through the database, and compare the duration statistics. It then calculates how many

deviations the current phoneme's duration is away from the mean. CheckDuration

returns this deviation value.

Aligner -33

!TL lnterngl Use On位 Auto Labellin£

Suggestions

One way to detect incorrectly labeled phonemes, without having to resort to

speech recognition, is to train phoneme models based on previously labeled data. There

are many different possibilities to train these models, one method, is to use the spectral

characteristics of phonemes. Different phonemes have different spectrograms, thus with

the use of the power spectral density function, (which gives us frequency bandlimited

power) we can use the statistical mean of the power spectral density information as a

basis for comparison.

However there are several drawbacks, the first is that since the psd data is a very

rough spectral representation (each frequency band is around 50GHz), it most likely

cannot distinguish between spectrally closely related phonemes, e.g. different vowels, or

different plosives, however, it probably can distinguish between vowels and fricatives, or

plosives and fricatives. The psd data will also require a fair portion of space, currently

each psd data frame (one psd data value) occupies FRAME WIDTH milliseconds (10

milliseconds by default). Assuming an average of 100 milliseconds for each phoneme,

each phoneme will require 10 frames, each frame an array of size equal to p mentioned

above. Another drawback is that since the original data is unchecked, severe

misalignments can cause the creation of models that are too generalized, reducing

robustness.

Having mentioned the drawbacks, the psd algorithm is already in use, so to

implement the psd model training does not require a significant amount of effort.

The power threshold is currently set as a ratio in the configuration file by the user.

The default was chosen from past experience. The actual power threshold varies

depending on the input file's maximum and minimum powers; however, there might exist

an absolute power threshold which corresponds to the human threshold for audibility or

Aligner -34

!TL Internal Use Onlv Auto Label/in,,.

inaudibility, this needs to be further investigated. If such a threshold exists, then the

power threshold used in the aligner program can be set independently of input files.

Future Work

Handle ESPS format files. ESPS files have a fixed size header, that needs to be

removed. From the header, user parameters such as sampling frequency can be

determined.

The configuration file input routines does not check for the absence of

parameters. (If the parameter FrameWidth was left out altogether from the

configuration file) In such cases, the aligner may fail at a later point with error messages.

A check at the end of the configuration file input routines can eloquently avoid such error

messages, perhaps with a count of the number of read parameters, compared with how

many there should be. Such errors would only arise only if parameters were intentionally

removed, or if a older configuration file was used with a newer aligner.

Implement a cepstrum calculation function which will calculate the cepstrum

from a given wave file. This relieves the aligner from using HTK to calculate cepstrum

data.

In ca/Stats, if there is only one sample phoneme in which standard deviation is

trying to be calculated for, this will result in a square root error: sqrt: DOMAIN error,

this is common since the standard deviation for a single value is not defined. A check

could be put in place to prevent such cryptic and scary error messages.

Aligner -35

ITL Internal Use Onlv Auto Labellinz

HMMs

Introduction

The use of HMMs allows the use of forced Viterbi alignment which performs

phoneme alignment based on trained HMMs. HTK v2.0 is used to train HMMs for

phoneme alignments. HMMs have been touted as being very flexible, ability to perform

very well since very robust HMMs can be trained, HTK also has the facility during

alignment to select alternative spellings from a dictionary while also producing log

probabilities during HMM training.

Use

This is a simple overview of the procedure involved in using HMMs to create

forced Viterbi alignment. For a complete procedure list, see Appendix A.

1. Use HCopy to parameterise the speech waveforms into sequence of feature

vectors. (MFCC)

2. Create flat start monophone HMMs.

3. Use HCompV to calculate global mean, variances, and variance floor.

4. Replicate dummy monophone HMM for each phoneme in phoneme set.

5. Embedded Re-estimation with HERest (executed three or four times).

6. Add short silence model 6 to HMMs.

7. Embedded Re-estimation with HERest (executed three or four times).

8. Create context dependent triphones.

9. Embedded Re-estimation with HERest (executed three or four times).

10. Cluster triphones (decision tree state tying)

11. Embedded Re-estimation with HERest (executed three or four times).

12. Forced Viterbi Alignment.

6 Short silence model is trained on inter-word silences. Long (Normal) silence model is trained on

beginning and ending utterance silences.

HMMs -36

ITL Internal Use Onlv Auto Labellin旦

Drawbacks

While the HTK manual provides a basic outline of the HMM training process,

HMM training is overly flexible with many parameters and threshold values which

require user adjustment that the default trained HMMs is susceptible to bad recordings,

and produce mediocre results. HMMs also does not have the ability to detect incorrectly

labelled phonemes 7. Because the HMM training through HTK is a complicated process,

debugging errors can be difficult and time consuming.

Evaluation

Following the above steps mentioned in Uses, after many iterations, the training

of HMMs was finally made possible. The following table lists for each phoneme, the

minimum time difference between the hand checked labels and the auto aligned using

HMM labels, average time difference, maximum time difference, the frequency of the

phoneme in the database, and the standard deviation of time difference.

7 Not known at time ofwritino ::,•

HMMs -37

JTL Jrz_ternal Use Onll' Auto Labellin臼

HMMs O 38

!TL Internal Use Onfl' Auto Labellinl!

Aligner vs. HMMs

40

゜
3

(
s
u』)

s
1
a
q
e
7

pa)l~aLJ8

p
u
e
H
 E
Oと
」

1
a
s
u
o
aw!.L

35

15

之 二） cu ..0 兵
む

L
P

て p
p

Q) り— 出：： 。..c ~ 工
工 E

C

゜
0.. d

d

en L
j
S

s
s

L
j
S
S

si
＃ s

#

コ Z

>. N

Phonemes

I□ Avg. Offset (al~ 五r)圃Avg.Offset (HMM-s)■Std. Dev. (aligner)口Std.Dev. (HMMs) I

HMMs -39

!TL Internal Use Onll'. Auto Labelling

In comparing this data with earlier data produced from the aligner, we can see that for

most phonemes, the aligner has a lower average time offset from the hand checked

phoneme (with the exception of plosives, and few vowels). However, note that the

standard deviation is much lower with HMM training than with the aligner.

The following phonemes have been moved closer to hand checked labels with aligner

than HMMs: I, N, U, a, b, cch, ch, e, f, j, s, sh, ss, z. While the following phonemes

remained relatively unchanged: d, dd, kk. These phonemes had boundaries placed closer

to the hand labelled boundaries with HMMS than aligner: g, h, i, k, n, o, p, pp, r, ssh, t, ts,

tt, u, w, y.

The following table lists the results of the phoneme boundaries after first training

with HMMs, then running aligner.

HMMs-40

ITL Internal Use Onlv Auto Lab_叫切呈

HMMs -41

JTL lnterngj Use On/]) Auto Labelling

HMM, Aligner vs HMM vs Aligner

25 -

゜
2

P
E
)
 s
1
a
q
e
7
 pa)loa4:) p
u
e
H
 E
O」」
ias:JJo
uea1111

15

゜ z

u

a

b

cch ch d

dd e

f

ff g

h

k

kk m n
 ゜

p

pp r

s

sh ss ssh ts tt
tts u

w y

z
 Phonemes

［口HMMAvg. 璽AlignerAvg. □ HMM, Alig~ 匂入亙］

HMMs-42

/TL Internal Use Only Auto Labellinr;

HMM, Aligner vs HMM vs Aligner

40

呼．
＇ 5

5

0

3

2

2

(SE) s
1
a
q
e
7
 pa)!:>a4:::,
p
u
e
H
 E
O」
↑
芯
s
y
o
・
＞
a
a
 "
P
l
S

30

15

10

5

0 -

z

u

a

b

cch ch d

dd e

f

ff g

h

k

kk m n
 ゜p

pp s

sh ss ssh ts tt
tts u

w y

z
 Phonemes

I口HMMStd. Dev. ■Aligner Std ___ Dev. 口HMM,Align~r Std. Dev. I

HMMs -43

!TL Internal Use Onf,,,_ Auto Labelling

Running the -aligner on -HMM output produces boundaries close to the HMM original
boundaries. HMMs have a tendency to create phonemes with large offsets as compared
with the input versus the aligner. The aligner, since it uses information close to the
phoneme labels (power, dcep) will tend not to move phonemes very far.

Future Work

Instead of trying to force a Viterbi alignment using tri-phone clusters, start first

with a forced Viterbi alignment using monophone trained HMMs.

HMMs -44

!TL In担rnalUse On!}'. Auto Labellin.e

Conclusion

The aligner performs better than HMMs for half of the phonemes. This can be
due to the general phoneme independent approach of the algorithm. Because the aligner
uses speech information as a basis for phoneme checks, examining the phoneme being
checked can improve performance.

HMMs are overly flexible, with many options, and the ability to train very robust
HMMs. Performance can most likely be improved with additional tuning of pruning
thresholds, triphone clustering thresholds, and other user settable parameters.

Both HTK and the aligner do not yet have abilities to recognize mislabelled
phonemes due to the difficulty of the task.

Conclusions -45

!TL Internal Use Onか Auto Labellinz

Glossary

Cepstrumvi - Mathematically defined as the Fourier transform of the log of the signal

spectrum. Closely related to the frequency spectrum.

FFT- Fast Founer Transform. A version of the Founer transform opt1m1zed for
computation speed. Fourier transform converts a time domain signal to a
frequency domain signal.

8 Formats - Transfer function of energy from the excitation source to the output can be

described in terms of the natural frequencies or resonance of the tube.
Such resonances are called formants for speech, and they represent the
frequencies that pass the most acoustic energy from the source to the
output.

GUI - Graphical User Interface.

Inter Phoneme

Boundary - The point at which one phoneme ends and another phoneme begins.

Labeling - The process of dividing speech into smaller sections, each section
corresponding to a unit (phoneme or otherwise).

Local Maxima - A value within a locally defined region having the largest
magnitude.

Magnitude - Mathematically defined as the square of the amplitude.

Power spectral density - Power of a signal at a specific time in the frequency
domain.

Utterance - A fragment of the original recorded speech which contains words or
sentences.

8 Rabiner Lawrence and Juang Biing-Hwang, Fundamentals of Speech Recognnition, Prentice-Hall
International Inc., 1993

Glossary -46

ITLJnternal Us_§Onlv Auto Labelling

References

Lawrence Rabiner and Juang Biing-Hwang, Fundamentals of Speech Recognition,
Prentice Hall International Editions, 1993

Olive Joseph P., Greenwood Alice, and Coleman John, Acoustics of American English
Speech, Springer-Verlag, 1993

Press William H., Flannery Brian P., Teukolsky Saul A., Vetterling William T.,
Numerical Recipes in C, Cambridge University Press, 1988

Cambridge University Engineering Department Speech Group and Entropic Research
Laboratories Inc., HTK Hidden Markov Model Toolkit Manual, 1993

Fry D. B., Acoustic Phonetics, Cambridge University Press, 1976

Ford R. D., Introduction to Acoustics, Elsevier Publishing, 1970

Knuth Donald E., The Art of Computing programming: Searching and Sorting, Addison
Wesley, 1973

Odell Julian James, The Use of Context in Large Vocabulary Speech Recognition,
Dissertation submitted to the University of Cambridge for the degree of Doctor of
Philosophy, 1995

References -4 7

ITL Interngl Use Onfェ Auto Labelling

Further Readings

Donovan R. E., Trainable Speech Synthesis, Chapter 6, Modelling Improvements

Conference Proceedings of The Second ESCA/IEEE Workshop on Speech Synthesis,
September 12-15, 1994.cfq

Acoustic Theory of Speech Production, orange and yellow binders. Ask Nick Campbell
for details.

Further Readings -48

ITL Internal Use Onlv Auto Labellin臼

Appendix A -HMM Training Procedure

The following is a procedure list that was used for the purpose of training HMMs for
forced Viterbi alignment. The training files are located under ~xwzhang/hp/fna:

export HBIN=/usr/local/HTK/HTK_V2.0/bin.hp700
export PATH=$PATH:$HBIN

use configl.cf as config.cf

1) HCopy -T 1 -C conf/config.cf -S scripts/tmp

use config2.cf as config.cf now

create master label file (nabi.mlf)

(Note that using the t.awk file, there were too many files to process all the
label files at once, thus "t.awk nabi? O*.lab" then "t.awk nabi? l*.lab"
... etc was used up to nabi? 8*.lab. Then the individual mlf files were
concatenated together to form nabi.mlf)

(Noこeonthe above paragraph, apparently, this only was a problem when on
the hp, running the script on a Sun worked without any problems.)

copy the phonetable file from /dept2/work25/pi/ ... /FNA/phonetable to lists/
directory as monoO.lst, which contains a list of phonemes used.
Remove extraneous info, leave only phoneme set. Don't forget to include "sil"

Create train.scp in scripts/ directory, which contains a list of MFC files
that were created up in step 1.

l. 5) Initialize MMF models:

HCompV -C conf/config.cf -f 0.01 -m -S scripts/train.scp -M HMM/hmmO
HMM/hmmO/proto

This will create one HMM model with global speech means and variances. Also
creates a variance floor.

Copy the above HMM model into HMM/Preinit for each phoneme in the phoneset.
Adjust the transition probabilities for plosives (stops). Instead of the
standard O O 0.6 0.4 0 for hte third state, it should be O O 0.3 0.4 0.3.

Run script init.sh to initialize each HMM model.

combine all phoneme models in hmm0.5 to a single MMF and copy it into hmml.
pre-pend the vFloors to the beginning of MMF to add variance floor. vFloors
was created with the HCompV command above.

2) HERest -C conf/config.cf -I labs/nabi.mlf -t 250.0 150.0 1000.0 -S
scripts/train.scp -T 1 -H HMM/hn江no.5/macros -H HMM/hrnmO. 5/MMF -M HMM/ri.mml
lists/monoO.lst

HERest -C conf/config.cf -I labs/nabi.mlf -t 250.0 150.0 1000.0 -S
scripts/train.scp -T 1 -H HMM/hmml/macros -H HMM/hmml/MMF -M HMM/hmm2
lists/monoO.lst

Appendix A -HMM Training Procedure -49

!TL Internal U:1_e Onlv

HERest -C conf/config.cf -I labs/nabi.mlf -t 250.0 150.0 1000.0 -S
scripts/train.Sep -T 1 -H HMM/hmm2/macros -H HMM/hmm2/MMF -M HMM/hmm3
lists/monoO.lst

HERest -C conf/config.cf -I labs/nabi.mlf -t 250.0 150.0 1000.0 -S
scripts/train.Sep -T 1 -H HMM/hmm3/macros -H HMM/hmm3/MMF -M HMM/hmm4
lists/monoO.lst

Auto Labelling

copied MMF from hmm4/ directory to hmm5/ directory, then added short
silence model. Took state 3 of the sil (long sil model), created short
sp model, with same middle state. (SP model only has 3 states). Note
transition Ps.

Need new master label files with short silence phonemes. labs/lab/t2.awk.

Note that once the MLF file was created, the path in the file had to be of
the form of */nabi_A_OOl.lab ... etc, otherwise it complained it couldn't find
the lab files.

use sil.hed as is, monol.lst=monoO.lst+sp

3) HHEd -H HMM/hrn.rn5/macros -H HMM/hmm5/MMF -M HMM/hmm6 scripts/sil.hed
lists/monol.lst

4) HERest -C conf/config.cf -I labs/nabi sp.mlf -t 250.0 150.0 1000.0 -S
scripts/train.Sep -T 1 -m O -H HMM/hmm6/五acros -H HMM/hmm6/MMF -M HMM/hmm7
lists/monol.lst

HERest -C conf/config.cf -I labs/nabi sp.mlf -t 250.0 150.0 1000.0 -S
scripts/train.Sep -T 1 -m。-HHMM/hmm7/macros -H HMM/hmm7/MMF -M HMM/hmmS
lists/monol.lst

HERest -C conf/config.cf -I labs/nabi sp.mlf -t 250.0 150.0 1000.0 -S
scripts/train.scp -T 1 -m O -H HMM/江五8/macros -H HMM/hmm8/MMF -M HMM/hmm9
lists/monol.lst

HERest -C conf/config.cf -I labs/nabi sp.mlf -t 250.0 150.0 1000.0 -S
scripts/train.scp -T 1 -m O -H HMM/国五9/macros -H HMM/hmrn9/MMF -M HMM/hmrnlO
lists/monol.lst

use "make_triph_lab.led" (to make triphones)
5) HLEd -n lists/triphonesO -1'*'-i labs/nabitri.mlf
scripts/make_triph_lab.led labs/nabi_sp.mlf

use "make triph hmm.led"

6) HHEd -B -H HMM/hrr皿 10/macros -H HMM/hmmlO/MMF -M HMM/hmmll
scripts/make_triph_hmm.led lists/monol.lst

7) HERest -B -C conf/config.cf -I labs/nabitri.mlf -t 250.0 150.0 1000.0 -m O -
S scripts/train.scp -T 1 -H HMM/hmmll/macros -H HMM/hmmll/MMF -M HMM/hmml2
lists/triphonesO

HERest -B -C conf/config.cf -I labs/nabitri.mlf -t 250.0 150.0 1000.0 -m O -S
scripts/train.scp -T 1 -H HMM/hmml2/macros -H HMM/hmml2/MMF -M HMM/hmml3
lists/triphonesO

HERest -B -C conf/config.cf -I labs/nabitri.mlf -t 250.0 150.0 1000.0 -m O -S
scripts/train.scp -T 1 -H HMM/hmm13/macros -H HMM/hmml3/MMF -M H幽 /hmml4
lists/triphonesO

Produce statistic files, we won't use the output HMM, only use the statistic
file.

Appendix A -HMM Training Procedure -50

ITL Internal Use Only_ Auto Labellinr,-

HERest -B -C conf/config.cf -I labs/nabitri.rnlf -t 250.0 150.0 1000.0 -rn O -S
scripts/train.scp -T 1 -s stat. 虹 皿14 -H HMM/hmm14/rnacros -H HMM/江皿14/MMF-M
HMM/hmml5 lists/triphonesO

We need to generate a question file used to cluster the triphones. For the
nuuph phoneset (FNA, look in db_description of FNA root database dir to find
out which phoneset it uses), look at cha tr's nuuph_def. ch file in $CHATR_ROOT/
chatr/lib/data/

Once "ques" file has been modified (for the specific phoneme set), run:

ques monol.lst which will out the question file used by HTK.

However some values need to be added, to the top of the output question file,
let's use cluster_state_pros.scp as the name of that output,

RO 25.0 stat.hmml4

This will add the statistic file created with the last embedded reestimation.
25.0 means the minimum feature vectors that must be aligned to HMM states.

Change all occurences of THRESH to 50,

50 is the minimum increase in log likegood for using this question to split up
a node.

25 and 50 are very lax thresholds (low), however, produce better alignment,
gives higher degree of freedom to train embedded reestimation. Higher
values produce more robust HMMs however less freedom to train embedded
reestimation.

Also at the end of the cluster_state_pros.scp file, add:

CO "lists/tiedlist state"

CO-> These triphones'HMM are completely mapped to other HMMs (instead of
only state mappings). This will also include unseen triphones as well, as they
need to be completely mapped to other HMMs (of course). The file pointed to
by the CO command will be created by the HHED command below.

8) HHEd -B -T 12002 -H HMM/hmml4/macros -H HMM/hmml4/MMF -M HMM/hmml5
scripts/cluster_state_pros.scp lists/triphonesO > clustering.log

(Triphone clustering)

Mean Occupation Count= amount of feature vectors that are aligned to HMM
states.

9) HERest -C conf/config.cf -I labs/nabitri.mlf -t 250.0 150.0 1000.0 -m O -s
scripts/train.scp -T 1 -H HMM/hmml5/macros -H HMM/hmml5/MMF -M HMM/hmm16
lists/tiedlist state

HERest -C conf/config.cf -I labs/nabitri.mlf -t 250.0 150.0 1000.0 -m O -S
scripts/train.scp -T 1 -H HMM/hmml6/macros -H HMM/hmml6/MMF -M HMM/hmml7
lists/tiedlist state

HERest -C conf/config.cf -I labs/nabitri.mlf -t 250.0 150.0 1000.0 -m O -S
scripts/train.scp -T 1 -H HMM/ri.rnm17/macros -H HMM/hmm17/MMF -M HMM/hmm18
lists/tiedlist state

Appendix A -HMM Training Procedure -51

JTL Internal Use OnlJ::: Auto Labellinz

HERest -C conf/config.cf -I labs/nabitri.mlf -t 250.0 150.0 1000.0 -m O -S
scripts/train.scp -T 1 -H HMM/hmml8/macros -H HMM/hmml8/MMF -M HMM/hmml9
lists/tiedlist state

At this point, we need a word transcription file, and a dictionary. See
page 194 under "Generating Forced Aligr.ments".

However, we can also create a dummy word tごanscriptionfile, with each file,
and it's phonemes (as words), see labs/nabi_dum.mlf for details, compared with
hp/training/labs/word2.mlf.

Also create a dummy dictionary, with each phoneme, as itself. Instead of the
phoneme sequence for the word.

To create the dummy word transcription file (nabi_dum.mlf) we basically copy
nabi.mlf, but we need to remove all the "sil", so use the nabi_wrd.awk script
file.

created dummy phoneme dictionary dic/phondic.dic

HVite -o NC -b sil -C conf/config.cf -a -H HMM/hmm19/macros -H HMM/hmm19/MMF -f
-1 results/al.hmm19 -m -t 250.0 -I labs/nabi_dum.mlf -S scripts/train.scp -T 1
dic/phondic.dic lists/tiedlist_state

to create ESPS format label files, use the parameter -P ESPS in the above line.

r.

Appendix A -HMM Training Procedure -52

!TL Internal Use Onlv Auto Labelline

Endnotes

j

i Rabiner Lawrence and Juang Biing-Hwang, Fundamentals of Speech Recognnition, Prentice-Hall
International Inc., 1993
ii Flanagan James L., Some Properties of the glotttal sound source, Journal of Speech and Hearing
Research, vo I. 1 (I 9 5 8), pp 99-111.
iii
Olive Joseph P., Greenwood Alice and Coleman John (AT&T Bell Laboratories), Acoustics of American

English Speech-A Dynamic Approach, Springer-Verlag, 1993.
iv Fry D. B., Acoustic Phonetics, Cambridge University Press, 1976.
v Olive Joseph P., Greenwood Alice and Coleman John, Acoustics of American English Speech, Springer-

Verlag, 1993.
Rabiner Lawrence and Juang Biing-Hwang, Fundamentals of Speech Recognition, Prentice Hall

International Editions, 1993.

¥
,
J

ヽ

rf

）

Endnotes -53

	001
	002
	003

