
TR-IT-0272

Memory-efficient LVCSR search

using a one-pass stack decoder

Mike Schuster

1998年 9月 3日

Internal Use Only

002

This report describes the details of a fast, memory-efficient one-pass stack decoder for efficient evalu-

ation of the search space for large vocabulary continuous speech recognition. A modern, efficient search

engine is not based on a single idea, but is a rather complex collection of separate algorithms and prac-

tical implementation details, which only in combination make the search efficient in time and memory

requirements. Being the core of a speech recognition system, the software design phase for a new decoder

is often crucial for its later performance and flexibility. This paper tries to emphasize this point -after

defining the requirements for a modern decoder, it describes the details of an implementation that is

based on a stack decoder framework. It is shown how it is possible to handle arbitrary order N-grams,

how to generate N-best lists or lattices next to the first-best hypothesis at little computational overhead,

how to handle efficiently cross-word acoustic models .of any context order, how to efficiently constrain

the search with word-graphs or word-pair grammars, and how to use a fast-match with delay to speed

up the search, all in a single left-to-right search pass. The details of a disk-based representation of an

N-gram language model are given, which make it possible to use LMs of arbitrary (file) size in only a few

hundred kB of memory. On-demand N-gram smearing, an efficient improvement over the regular unigram

smearing used as an approximation to the LM scores in a tree lexicon, is introduced. It is also shown how

lattice rescoring, the generation of forced alignments and detailed phone-/state-alignments can efficiently

be integrated into a single stack decoder.

The decoder named "Nozomi" awas tested on a Japanese newspaper dictation task using a 5000 word

vocabulary. Using computationally cheap models it is possible to achieve realtime performance with 89%

word recognition accuracy at about 1 % search error using only 4 MB of total memory on a 300 MHz

Pentium II. vVith computationally more expensive acoustic models, which also cover the for the Japanese

language essential cross-word effects, more than 95% recognition accuracy bis reached.

a"N ozorru rs the name of the fastest, most comfortable and most expensive bullet train in Japan, and also

means "hope" in Japanese

bwhich are currently the best reported results on this task

◎ ATR音声翻訳通信研究所

◎ ATR Interpreting Telecommunications Research Laboratories

Contents

ー INTRODUCTION

1.1 Organization of the paper ．． .. ．．． ．．

1.2 General Introduction
1.3 Technical Introduction

1.3.1 Definitions

Decoder types ．．
1.4.1 Transition network decoders ．．
1.4.2 Stack decoders

1.4

1

1

1

3

5

7

7

8

2

A MEMORY-EFFICIENT ONE-PASS STACK DECODER

2.1 Basic algorithm ...

2.1.1 Word-level search

2.1.2 State-level (word-within) search

Stack module ...

2.2.1 Lattice generation

2.2.2 N-best list generation

Hypotheses module

N-gram module

2.4.1 A disk-based N-gram

LM lookahead

2.5.1 Unigram smearing

2.5.2 On-demand N-gram smearing

2.6 Cross油 ordmodels .. .

2.7 Fast-match with delay

2.8 Using word-graphs as language model constraints

2.9 Lattice rescoring ...

2.10 Generating phone-/state-alignments

2.2

2.3

2.4

2.5

3

EXPERIMENTS

3.1 Recognition of Japanese ．．

3.2 Recognition results for high accuracy
3.3 Recognition results for high speed and low memory

3.4 Time and memory requirements for modules

3.5 Usage of cross-word models

3.6 Usage of fast-match models

:3.7 Effect of on-demand N-grarn smearing

3.8 Lattice/N-best list generation and lattice rescoring

4

5

CONCLUSIONS

ACKNOWLEDGMENTS

，
10

10
10

13

13

14

14

15

16

16

17

17

18
20

20

20

21

21

22

22

24

25

25

25

26

27

27

28

し
，

9

11 CONTENTS

ー

1 INTRODUCTION

Large vocabulary continuous speech recognition (LVCSR), here defined as the recognition

of arbitrary, continuously spoken sentences using a vocabulary of 5000 words or more, is

currently limited to workstations and fast high-end laptops with a lot of memory. To make

LVCSR work on PDAs, cellular phones, user-interfaces, wrist watches etc., it is necessary

find to time-and memory-efficient algorithms. The efficiency of the search engine of a

speech recognition system, that takes as input an utterance and generates in its simplest

form the most probable word string, is unfortunately not based on a single algorithm, but

on a complex collection of ideas and implementation details which only in combination

make the search efficient. While the basic ideas can often be stated in a few words, their

details and the implementation, which is crucial for good performance, is often not obvious

and should be explained to the necessary detail in those cases.

Because the search engine combines all parts (pronunciation dictionary, feature vectors,

acoustic models, language models) of a speech recognition system, it often defines the

formats for module communication and is to a great extent responsible for the overall

comple泣tyof the whole system. The author's observation is, that the problem of too

marginal improvements of state-of-the-art LVCSR systems has its origin not necessarily in

a lack of innovative ideas, but often is due to a lack of possibilities for a scientific procedure

to test them. The reason is in general an overwhelming complexity of the complete system,

and research has to be aimed at reducing it.

Therefore, the goal for implementation of any search engine must be to minimize

time and memory requirements as well as the overall complexity of the system while

ma泣mizingits flexibility using all av叫lableknowledge sources to search for the desired

output.

1.1 Organization of the paper

In the first (general) part of the introduction (section 1.2) the term "search" for speech

recognition is used in a loose way and necessary requirements for a modern search engine

are defined. In the second (technical) part (section 1.3) definitions for the used terms are

given and explained using the necessary mathematical equations. In the third part (section

1.4) known decoder types are classified and briefly explained. Section 2 explains the details

of a memory-efficient one-pass stack decoder. Section 3 shows experiments and results for

a 5000 word Japanese newspaper dictation task using this decoder. Specific problems

regarding decoding for the Japanese language are discussed. The paper concludes with

section 4.

1.2 General Introduction

The essential content of any search algorithm for the best hypothesis in a LVCSR system

can be summarized in simple words as:

1. Consider all possible hypotheses (different word sequences, pronunciations, align-

men ts) using the dictionary

2. Assign a score to each hypothesis using the language model and the acoustic model

3. Put out the hypothesis with the highest score.

2

1 INTRODUCTION

If this method would be applied in this form in practice, it would be impossible to find

the best hypothesis because of the very large number of possible combinations of words,

pronunciations and alignments for any reasonable sried -dictionary in combination with-

the commonly used trigram language model.

As discussed above, the primary goal of any search algorithm must be to minimize the

time and memory requirements for finding the best hypothesis while maintaining a mini-

mal search error. Any practical search implementation (Alleva, 1997), (Gopalakrishnan,

1995), (Ney & Aubert, 1996), (Odell, 1995), (Paul, 1992), (Ravishankar, 1996), (Renals &
Hochberg, 1996), (Schwartz, Nguyen & Makhoul, 1996), (Soong & Huang, 1991), (Robin-
son & Christie, 1998) based on 1st order Hidden Markov Models (HMMs) uses various
methods to achieve that. Some of them are: the Viterbi search to linearize the search

with respect to time, the beam search to heuristically reduce the number of hypothesis at

any time point, the use of a tree lexicon for the pronunciation dictionary to share com-

putations for beginnings of words, the language model lookahead (Steinbiss, Tran & Ney,
1994), to approximate LM scores within words, the fast-match (Bahl, de Souza, Gopalakr-

ishnan, N ahamoo & Picheny, 1992) (Gopalakrishnan & Bahl, 1996) to generate quickly
acoustically likely word hypotheses.

A second goal for a search engine that is used in a research environment, or in cases

where the output of the search engine is used as input to post-processing modules like

translation engines, is its flexibility. It is often not enough to allow as input only a

sequence of feature vectors to produce a word sequence with the highest score. In many

cases more detailed outputs like lattices, N-best lists or detailed word, phone, or state-

alignments are required. As language model search constraints one might want to use

arbitrary order N-gram language models, word-pair grammars, word-graphs to simulate

finite state automatons, or transcriptions to produce forced alignments. These and other

requirements for a modern search engine, from an expert user's point of view, can be listed

as:

• possible inputs:

-utterance feature vectors (for on-demand likelihood calculation) or precalcu-

lated likelihoods (as often produced by neural network based systems)

-lattice in standard lattice format (SLF)

• possible outputs:

-first-best hypothesis (text or SLF)

-N-best (text or SLF))

-lattice in SLF

-phone-/ state-alignments

• tree lexicon (possibly > 65536 words) with multiple pronunciations and optio叫
pronunciation scores

• possible LM search constraints:

-arbitrary order N-gram language models

-word-pair grammar (with scores)

-word-graph in SLF

1.3 Technical Introduction 3

-word transcription (for forced alignment)

• support for word-within/ cross-word context-dependent acoustic models of
any context order without needing to change the monophone dictionary

• optional disk-based LM to save memory

• efficient L M lookahead (unigram-smearing or on-demand N-gram smearing) to
incorporate LM scores in tree lex.icon as early as possible

• optional use of fast-match models to speed up search

A third goal is the realization of the search in a single left-to-right pass, using all

available search constraints as early as possible. This reduces overall complex.ity of the
search process, is conceptually attractive and is essential for on-line systems. Being able

to run the search in one pass of course doesn't imply that it has to be run in one pass.

In many cases, especially in a research environment, it often turns out that multi-pass
strategies are more time-efficient for finding optimal solutions.

1.3 Techmcal Introduct10n

Speech recognition relies on the framework of statistical pattern recognition (Bishop,
1995), (Duda & Hart, 1973), (Huang, Ariki & Jack, 1990), which has been shown to
work well in practice. The goal for the search engine is to且ndthe word sequence

W=叫，w2,... , WM with the highest probability among all possible word sequences W,

which is conditioned on a feature vector sequence X = xぃx2,... ,Xt-1,xr. Every word
of the dictionary (see 1.3.1 for definition of terms), is usually mapped to a sequence of
Hidden Markov Models (HMMs) (Huang et al, 1990), which themselves consist of states q,

such that every word is equivalent to a Markov state sequence Q = qい卯，• • • l qt-1, qr・

Using Bayes'rule P(BIA.) = P(A.IB)P(B)/ P(A.) and the product rule of probability
P(A, B) = P(A)P(BIA) the conditional sequence probability P(WIX) can be broken
down to three terms and simplified as:

W = argmaxP(WIX) (1)
w

= argmax P(XIW)・P(W) (2)
w

= argm邸 ~P(XIW,Q)·P(W,Q) (3)
w Q

~argmax L P(XJQ)・P(W, Q) (4)
w Q

~argmax MAX P(XIQ)・P(W, Q) (5)
w Q

= argmaxMAXP(XJQ)・P(W)・P(QJW) (6)
w Q

= argrn邸 MAXP(XIQ)・P(W)・P(Q) (7)
W QEQW

Several assumptions have been made in this derivation: a) The likelihood of the feature

vector sequence given the state and the word sequence is equal to the likelihood of the

feature vector sequence given only the state sequence, P(X!W, Q) = P(XIQ). This implies
that all acoustic information is captured by the state sequence and is independent of the

4

1 INTRODUCTION

actually uttered words. b) The sum over all possible state sequences for a particular word

sequence is approximated by the single best state sequence, which is termed the Viterbi

approximation~This assumption in-general doesn't effect the result out greatly simplifies
the actual search and makes it possible to speak of state alignments and actual word

boundaries (which would be fuzzy, if this assumption wouldn't be used).

The remaining three expressions stand for:

a) The observation likelihood 1

T T

P(XIQ) = IT P(xtlx1ぷ 2,... ,Xt-1,q『)~ITP(x晶）， (8)
t==l t=l

which is generally modeled by a continuous density Gaussian mixture model or by a

neural network. The evaluation of P(xt加） during the search usually takes a great

percentage (typically 40-80 %) (Beyerlein & Ullrich, 1995) of the actual search time,

so effort has to be made to reduce the number of likelihood calculations as much as
possible.

b) The transition probability of the state sequence within words

T T

P(Q)=IlP(q叶q1,q2, ・ ・ ・, qt-1)~II P(qtlqt-1), (9)
t=l t=l

which is usually approximated by a first order Markov model.

c) The unconditional probability of the word sequence (language model probability)

P(W) 廿P(Wmlw1, W2, ... , WM-1)
m=l
M

~IT P(wmlwm-1,Wm-2, ... ,wm-(N-1)),
m=l

(10)

(11)

which is often appro泣matedby an N-gram; the probability of a word given its N -l

predecessors.

In practical systems the search is never based on the raw probability estimates, but 6n

their logarithms to stay in the given floating point range of current computers. This also

converts the multiplications in (8), (9) and (10) to simpler additions. It is then usual to
speak of a score rather than of a probability.

In practice it is found, that an exact implementation of (7) is often not optimal to

achieve the best word recognition results. In general acoustic and language models are

estimated on completely different corpora and many assumptions have to be made to make

a practical implementation of a speech recognition system possible. To cope with these

assumptions it is usually useful to weight the LM score against the acoustic score, which

is often realized by a multiplication of the language model score (log P(W)) by a language

model scale factor入. Also, there is often a word deletion penalty W DP, which is added

to the LM score at every word end. A high vV DP encourages word insertions, therefore

penalizes word deletions. For 111 words in the hypothesis the use of these two heuristic
parameters can be summarized as:

LM score=/¥ -log P(W) +」~1- WDP (12)

1 throughout this paper there is no distinction made between probability mass and density, usually
denoted as P and p, respectively, because it is not necessary for discussion of the search

1.3 Technical Introduction 5

1.3.1 Definitions

Here definitions of terms are collected, which are frequently used in the context of search

for speech recognition, and also in this paper.

word: the ASCII sequence defining a word in the conventional sense, for example "car"

word-ID: a unique identification number or ASCII sequence for any logical word in the

dictionary (note that homonyms like "arm" (part of body) and "arm" (weapon)

would have a different word-ID)

word-ID list: a list of all word-IDs that are used during the search

(physical) state: smallest units of the acoustic model, which are each characterized by

a method (function) to calculate its observation likelihood P(xtlq(i)) at any time; in

typical systems there are between 500 and 30000 different physical states

(logical) state: smallest unit of an HMM model, is characterized by its observation num-

ber (from the physical state) and its directed connections to other logical states

(transitions)

HMM model: a collection of logical states, typically three to model a phone plus a non-

emitting init and e沿tstate; in a tied-state system different HMM models can share

several physical states

phone: smallest modeling unit for a word, represented by a single HMM model; there are

context-independent phones (monophones) or context-dependent phones (tri phones,

quintphones etc.) -context-dependent phones that depend on information beyond

word boundaries are called cross-word models

pronunciation: a sequence of phones which specify the pronunciation of a word; can

have a pronunciation weight associated

recognition unit: a word-ID plus its pronunciation; equal word-IDs with different pro-

nunciations (and vice versa) are different recognition units

dictionary: a list of recognition units (word-IDs plus pronunciation), optional outputs

and optional pronunciation weights; three example lines:

ar皿 1[arm] 0. 234 aa r rnh

ann_2 [arm] 0. 456 aa r rnh

armageddon 0.55 aa r rnh ae g ae dd n

a word-ID can occur several times to account for alternative pronunciations of a

word

tree lexicon: internal representation of the pronunciation dictionary; a tree-based col-

lection of all pronunciations in the dictionary as le工icednodes each representing a

phone (I―IMM model), such that equivalent beginnings of pronunciations are shared

lexical node: smallest unit of the tree lexicon, representing an HMM model; a node is

an end-node if a pronunciation ends at it -note that end-nodes are not necessarily

leaf-nodes of the tree ("arm" and "armagecldon" share the first three phones and

6

1 INTRODUCTION

"arm" ends within the pronunciation of "armageddon"); equal pronunciations will

have the same lexical end-node

acoustic model: collection of HMM models, which allow the computation of P(XIQ) and
P(Q) for any valid state sequence; is typically based either on continuous density

Gaussian mixtures, discrete distributions or on neural networks

language model: the module which allows the computation of

M

P(W) = IT P(wm lw1,W2,•-·,wM-1)
m=l

N-gram: language model which makes the approximation

M

P(W)= IT P(wm/Wm-1,Wm-2,・・・,wm-(N-l)),
m=l

with N being typically three (trigram) or two (bigram); usually allows the compu-

tation of P(W) for any W using a backoff procedure

word-pair grammar: language model which makes the approximation

M

P(W) = IT P(w叫Wm-I)
m=l

for a limited set of word-pairs; P(w叫Wm-I)for word-pairs not in the set are zero

hypothesis: a word sequence including its pronunciation and word start/stop times,

which is hypothesized by the decoder

language model state: two hypotheses are in the same LM state, if their tail cannot be

distinguished by the currently used language model (example: the LM histories "I
love you" and "I don't love you" where the last two words are in the same LM state
using a trigram LM)

first-best hypothesis: the hypothesis with the highest total score

lattice: a graph made out of arcs and nodes, containing all hypotheses considered during

the search including all different alignments and pronunciation variants

standard lattice format (SLF): a lattice format that can be passed around easily be-

tween modules (usually an ASCII string); a useful format is suggested in (Young,

Jansen, Odell, Ollason & Woodland, 1997)

node: part of a lattice, that joins partial hypotheses which end at the same time and are

in the same LM state

饂 partof a lattice joining two nodes; an arc represents a recognition unit associated

with at least its acoustic score

N-best list: the N best hypotheses, which differ by at least one word-ID (different align-

men ts or pronunciations of the same word-ID sequence belong to the same hypothesis

for this purpose)

1.4 Decoder types 7

state/phone alignment: every frame of an utterance labeled with a state number and

a phone number

三 onepass means to search once from left to right through the utterance (or from

right to left) incorporating more of the available knowledge than in the last pass

full search: exhaustive search over all possibilities given the dictionary and the LM con-

strain ts⇒ in general not feasible

beam search: at any time point t only partial hypotheses of a score within a beam around

some best score at that point are kept (Lt >= LBEST,t -beam); heuristic use of

beams makes any search non-admissible

admissibility: a search is called admissible if the algorithm guarantees to且ndthe best

hypothesis

LM lookahead: heuristic appro泣mationof the LM scores within words, usually used

with a tree lexicon

fast-match: method to quickly find acoustically likely matches for words

stack: collection of partial word hypotheses

search error: error that is caused by the search algorithm (usually by too heavy pruning)

and not by a badly estimated acoustic model or language model

1.4 Decoder types

Every decoder implementation is different and a clear distinction between different decoder

types can often not be made. For this paper, it has been tried to distinguish them by

their basic search strategy, namely the time-synchronous transition network decode1・s and

the usually time-asynchronous stack decoders.

..
1.4.1 Trans1t10n network decoders

The majority of the decoders currently in use are transition network decoders (Alleva,

1997), (Mmveit, Butzberger, Digalabs, & Weintraub, 1993), (Gauvain, Larnel, Adda, &

Adda-Decker, 1994), (Ney & Aubert, 1996), (Odell, 1995), (Ravishankar, 1996), (Schwartz
et al, 1996), (Shimizu, Yamamoto, Masataki, Matsunaga & Sagisaka, 1996), (Soong &

Huang, 1991) which are based on a transition network of words (as HMM state sequences)

that incorporates the used language model in its word transitions. In its simple static

form all word-ends are connected to all word-beginnings via transitions that contain word

bigram probabilities, such that the whole network can be viewed as a large first-order

HMM containing thousands of logical states. This makes it possible to use the efficient

and admissible Viterbi algorithm as well explained in (Rabiner & Juang, 1993, pp. 339-

340) and (Young et al, 1997, pp. 11-13) to search for the optimal state sequence time-
synchronously. Discarding states with a relatively low score at each time t has proven to

efficiently reduce the amount of needed computation time to find the first-best hypothesis

at no or little search errors. Pruning of states is often based on a heuristic beam around

the best state or/ and on a predefined number of states with a high score that remain

active.

8

1 INTRODUCTION

It is easy and efficient to use word unigrams and bigrams in such a network, because

their scores can be incorporated into the transition network before the actual search starts,

but it doesn't extend automatically to long-span language models (3-grams, 4-grams),

which are necessary to reduce modeling assumptions and to achieve good performance in

LVCSR. Long-span LMs are either incorporated through dynamic building of the network

during the search or through multi-pass rescoring strategies (Schwartz et al, 1996), which

are often also necessary to construct lattices or true N-best lists. These implementations

require then a dynamic LM score lookup which is not needed when only unigrams and

bigrams are used.

Since transition network decoders are run time-synchronously, meaning the state-space

evaluation over for t + 1 is done after it was done for t, it is possible to run real on-line

recognition without any additional delay imposed by the decoding algorithm.

1.4.2 Stack decoders

Stack decoders can be defined as decoders that during decoding use some kind of a stack

of partial sentence hypotheses each consisting of a cert叫nnumber of words. In general
the partial hypotheses on a stack are expanded by complete words time-synchronously

using the dictionary to create new parti叫 hypotheseswhich are inserted into other stacks.

When all stacks except the last (result stack) are empty, the result stack will cont叫nthe

:fi rst-best hypothesis, the N-best hypotheses or the respective lattices depending on the

search mode.

Although in the context of decoders the storage cont叫nerfor partial hypotheses is

historically c叫ledstack, which should be a Last-In-First-Out buffer (LIFO) given its name,

it is in practice rather often a simple list or a tree of hypotheses ordered by some kind

of total score. The total score the hypotheses on the stack(s) are ordered by can be a)

the partial hypothesis'log-likelihood, b) an estimate of the log-likelihood of the complete

utterance (A* criterion) (Soong & Huang, 1991), or c) some other score that expresses the

belief in the parti叫 hypothesis'correctness(Gop叫akrishnan,1995), (Ren叫s& Hochberg,
1996).

There are at least two different types of implementations for stack decoders: a) with

only one stack that contains all partial hypotheses which might have different end-times

(Paul, 1991), (Paul, 1992) or b) with one stack for each time point, where each stack

contains only hypotheses ending at that time (Renals & Hochberg, 1996). If there are

many stacks, the stack expansion can either be time-synchronous (expand stack t before

expanding stack t + l, which has been termed start-synchronous in (Renals & Hochberg,
1996) or time-asynchronous (any stack can be expanded next, completely or partially,

depending on some algorithm to pick a stack that will probably lead to the first-best

hypothesis (Gopalakrishnan, 1995)). Even when the stack expansion is time-synchronous,

stack decoders are often said to search time-asynchronously, because the global state

progression through the utterance is in general not time-synchronous like for transition

network decoders.

All stack decoders operate at least on two levels of search: a) the outer level, which

loops over the stacks (word-level search), and b) the inner level, which loops over time

and states (or states and time (Robinson & Christie, 1998)) to search for complete words,

starting from the end-time of the hypothesis to expand, which is called state-level search or

word-within search. Every time a potential word-end is found during the time-synchronous

word-within search, its language model score is looked up using the found word plus its

，
 history using the hypotheses which are to be expanded. Because the dynan1ic LM score

lookup can take any word history into account, stack decoders can easily make use of

any kind of N-th order Markov language model and also of non-Markov language models

like link grammars etc. Especially N-gram models of any order are simple to implement

(section 2.4), which is one of the major advantages of stack decoders over the transition

network decoders.

The decoupling of the language model from the Viterbi search in the state space has

several other advantages. Because the hypotheses generation is completely independent of

the word-within search, the word-within search can be realized memory-efficiently without

the need for token passing or backtrace pointer storage (section 2.1.2). Word lattices can

be created easily in the first pass at little computational overhead (section 2.2.1). Using a

similar procedure N-best lists can be created, optionally with all different alignments and

pronunciation variants in a lattice within each N-best hypothesis, again in the first pass

(section 2.2.2). LM lookahead procedures depending on the scores of the word history to

expand are easily integrated as a separate module (section 2.5).

In stack decoders there are several ways to implement cross-word context-dependent
acoustic models, which are necessary for good recognition results. A procedure shown

to be computationally efficient for cross-word models of any context order is discussed

in section 2.6. This procedure leads naturally to a possible use of fast-match models to

generate acoustically likely word candidates quickly. In this paper a novel version of using

a fast-match in a stack decoder is discussed (section 2.7), which avoids some disadvantages

of earlier implementations.

Historically stack decoders have often been used for lattice rescoring to integrate higher

order LMs and to optimize search parameters, often in combination with A* procedures

(Soong & Huang, 1991). This type and other types of often needed lattice rescoring

procedures are discussed in section 2.9, which all can be implemented as additions to the

regular decoder.

The usage of word-graphs constraining the search using stack decoders is closely related

to the usage of word-pair grammars and the generation of forced word-alignments (section

2.8). Detailed phone-and state-alignments, which are not available when, like mentioned

above, no state-based backtrace pointers are stored, will have to be created on demand.

This turned out to be particularly easy for the implementation described in this paper

(section 2.10).

One disadvantage of stack decoders is the fact that they usually evaluate the state space

time-asynchronously within a certain range, which makes real online decoding impossible

-there will be a time lag being equal to the range of the state evaluation. A」thoughin

practice this time lag is short (less than a second) compared to other time limiting factors

during a real search and can also be avoided during silences, it might pose a problem in

systems that must have a human-like response time.

A second principal disadvantage is that it is not possible to merge logical state theories

within words, because the word-level search is separate from the word-within search, which

is discussed in more detail in section 2.1.2.

2 A MEMORY-EFFICIENT ONE-PASS STACK DECODER

This section describes the details of a memory-efficient one-pass stack decoder, that is

based on a multi-stack implementation with one stack per time frame, ヽvhichis equivalent

10 2 A MEMORY-EFFICIENT ONE-PASS STACK DECODER

to a one-stack implementation with the stack entries ordered primarily by time and then

by score.

2.1 Basic algorithm

As discussed above, a stack decoder works on two levels of search, the word-level search

looping over stacks and the state-level search looping over time and logical states.

2.1.1 Word-level search

Looping over stacks for the word-level search can be done time-synchronously (start-

synchronously) or time-asynchronously depending on the stack expansion mode. Indepen-

dent of this mode, which is a function of the stacklist (collection of all stacks), the basic

word-level search, as shown at the end of this section, works as follows: First an initial

temporary stack stack containing only an initial empty root hypothesis is generated. Then

all partial hypotheses on the temporary stack stack are extended by one word using the

state-level search that knows about the stacklist, such that the new partial hypotheses can

be inserted into the correct stacks. When the current temporary stack is finished, a new

temporary stack is popped from the stacklist. This can be any of the currently held stacks

in stacklist, which will be the earliest one in time in case of a synchronous stack expansion,

and any one of the available ones in case of a asynchronous stack expansion depending on

the selection criterion. The temporary stack doesn't necessarily have to contain all partial

hypotheses of the stack in stacklist it was generated from. Again, depending on the selec-

tion criterion, these could be only a subset of that stack. When there are no more stacks

to be popped, the method finishes with returning the result (first-best, N-best, lattice,

etc.). An example implementation using pseudo C++ code would be:

Word-level search:

｛
 stack = stacklist. GET _INITIAL (hyp. ROOT()) ;

゜
d

{

 statelevel_search.EXTEND(stack) ;

stack.FORGET();

｝

while ((stack = stacklist. POP())) ;

return(stacklist .RESULT()) ;

｝

2.1.2 State-level (word-within) search

The search on the state level extends all hypotheses of the passed temporary stack by

one word using the pronunciation dictionary and inserts all generated new hypotheses

in the corresponding stacks provided they are in the beam. The search is based on the

pronunciation dictionary diet which is organized in a tree structure such that equivalent

2.1 Basic algorithm 11

beginnings of pronunciations are shared to save redundant computations. This tree lexicon

consists of lexical nodes, with each node pointing to its associated HMM and all possible

recognition units ending at it. The le泣conhas a single root-node that doesn't have an

HMM associated and defines the beginnings of all words. A node is called active if any

of its logical HMM states is within the current beam. If a node is active, it carries its

current time t and the log-likelihoods of all its states in a dynamically allocated chunk of

memory. This memory is released to be used by other nodes if a node is deactivated.

During the state-level search, as shown at the end of this section, it is necessary to

keep a list of all active nodes for the current and the next time slice (alist, alisLnext),

which are accessed by PUSH and POP operations. These lists contain only pointers to

the corresponding lexical nodes and have to be ordered by the levels of the tree lexicon,

such that the nodes closest to the root-node are popped first. This is necessary to insure

that during actual propagation all states within a node are in the same time slice.

The state-level search then works as follows: After both active node lists are cleared,

the non-emitting root-node of the tree le泣conis activated with the score of the best

hypothesis of the stack to expand. It is then pushed on the current active node list (alist).
The start time for the word-within search is the end-time of the stack to expand plus one.

The active nodes are propagated time-synchronously through the tree le泣conuntil

the end of the utterance T (or some maximum word le~gth) is reached or all nodes fell
out of the beam and have been deactivated. The active nodes are popped from the

list and forward-propagated one time step assuming they have been int -1 (FORWARD()).

Forward propagation involves one Viterbi step within the currently worked on node. Since

the node cannot be left during that step, it is sufficient to calculate only the new scores

for every node-internal state without using any back-pointers. Although not containing

much source code, method (FORWARD ()) will take the largest part of the actual search time

because the time consuming observation likelihood calculation functions for the physical

states are called from it. Care should be taken in the loop ordering within FORWARD (), such

that the expensive likelihood calculation functions are only called when actually needed.

Also, already calculated likelihoods should be cache・d because in time-asynchronous stack

decoders they will be used several times even when there are no shared physical states.

After the forward propagation the upper bound of the score at the current time is

updated using UPDATE_UPPERBDUND (), if the pruning procedure is based on the beam

around the best score at any time. It is not necessary when the hypotheses on the stacks

are not popped depending on their partial log-likelihood as used in (Gopalakrishnan, 1995)

or (Renals & Hochberg, 1996).

If any state of the current node is in the beam, it is a possible candidate for causing

a stack expansion, otherwise it is deactivated. If a node in beam has its non-emitting

exit-state activated and the node corresponds to a word end, the hypotheses on the tern-

porary stack are expanded by one word (stack.EXTEND()), which involves looping over

all hypotheses and all recognition units ending at this node, looking up the LM score for

P(rec_unitlhリp_h,istory),generating the extension if the new partial hypothesis is within

the current beam, and pushing it on the corresponding stack. Then, only if the e: 対t-state

is active, all successor nodes in the tree lexicon are activated (ACTIVATE_SUCCESSDRS ()),

which involves copying the e泣t-statescore of the current node into the init-state of the

successor node, and pushing the node on the active node list for the next time slice (al-

isLnext). Also, any nodes that are in the beam regardless their exit-states have to be

pushed on this list.

Note that because of the LM lookahead procedure explained in section 2.5, which leads

12 2 A MEMORY-EFFICIENT ONE-PASS STACK DECODER

to an overestimate of scores within words, it is possible to use a lower (tighter) beam at

word-ends compared to the beam within words.

Finally, when all nodes of the current time slice are finished, the two active node lists
are swapped and the time is incremented to be ready for the next time slice.

A possible state-level search implementation, that was found to be efficient, is:

State-level search:

｛
 alist. CLEAR();

alist_next. CLEAR();

dict.ROOTNODE.ACTIVATE(stack.TOPHYP.SCORE()) ;

alist. PUSH (diet. ROOTNODE ()) ;

t = stack. TOPHYP. TIME() + 1;

while(t < T && alist .NOT_EMPTY())

｛

ロhile((node = alist. POP())

｛

FORWARD(node, t);

UPDATE_UPPERBOUND(node, t);

if(node.IN_BEAM(t))

｛

if(node.EXIT_STATE.ACTIVE())

｛

if(node.IS_WORD_END())

stack.EXTEND(node, t-1);

ACTIVATE_SUCCESSDRS(alist, node, t);

node.EXIT_STATE.DEACTIVATE();

if (node .NO_STATE_ACTIVE())

node .DEACTIVATE();

｝

if(node.ANY_STATE_ACTIVE())

alist_next.PUSH(node);

｝

else

｛

node. DEACTIVATE();

｝

alist.SWAP_WITH(alist_next);

,
1冨

t++;

2.2 Stack module 13

｝ ｝ ｝

As pointed out in section 1.4.2, it is not possible to merge logical states within words

from a state-level search that started at a different time like it is possible for transition

network decoders. One obvious technical reason for this is that the status of intermediate

states during any time of the state-level search is not stored, because it would require

additional effort, time and memory. Another reason is the explicitly wanted decoupling

of the state-level search from the LM, which prohibits any logical state merging, because

the same logical state given only the dictionary will be a different one depending on its

history, if as LM anything else than a first order Markov model (bigram or unigram) is

used.

2.2 Stack module

The collection of stacks for each time t are accessed by PUSH() and POP() operations

taking partial hypotheses as arguments. Because they are used frequently and usually

contain a few to several hundred entries in a typical application, the stacks (or more

precisely lists as discussed above) have to be set up efficiently. The container types used

in other decoders are often special tree-structured lists, which are ordered by score and

limited in the number of entries (Renals & Hochberg, 1995b). Here a different method is

described which was found to be most efficient and simple to implement.

Pushing a hypothesis on a stack involves a check whether a hypothesis in the same LM

state is already on that stack. If yes, the scores of the two hypotheses are compared and
the better one is inserted into the stack, the other one discarded. In case of an N-gram

LM the LM state check means to compare the last M AX(N -1, 1) history word-IDs. One

word has to be compared as a minimum to not violate the at least first order Markov

assumption for the complete speech model. Although checking for LM state equivalence

for N-gram LMs can theoretically be done in 0(1) using a hash table with the N -1

words history as the key, it was found that it is in practice not more efficient than a simple

non-ordered unlimited list that is searched through linearly up to an average stack size of

a few hundred hypotheses. Pushing a hypothesis on a stack can also improve the upper

bound for the score at this time, which has to be checked for. Popping a hypothesis from

a stack is an 0(1) process, since it doesn't matter in what order the hypotheses in beam

are extended for the implementation described here.

The stacks containing mainly pointers to hypotheses can be set up efficiently in a

ring-buffer if a maximum word length is de且ned,which is necessary for on-line operation.

2.2.1 Lattice generation

Lattices, as defined in section 1.3.1, are a convenient form of storage for the hypotheses

that are considered during the search, and their generation is often necessary for systems

that need to post-process the recognition output such as for translation engines, informa-

tion retrieval systems, or multi-pass search strategies. Stack decoders can easily generate

lattices with little computational overhead in the first pass by slightly modifying the LM

state check procedure. Instead of discarding the hypothesis with the worse score in case of

LM state equivalence it can be linked into the lattice. A pointer on the best arc back has

14 2 A MElv10RY-EFFICIENT ONE-PASS STACK DECODER

to be updated to not loose the best hypothesis for the current LM state and future refer-

ence. Compared to the generation of the first-best hypothesis there is only little overall

increase in memory for the storage of the additional arcs in the lattices {sectfon 3).

2.2.2 N-best list generation

The hypotheses in an N-best list differ by at least one word-ID. This can directly be checked

for by extending the LM state check procedure to the complete history instead just the

M AX(N -l, 1) history word-IDs like necessary for obtaining the first-best hypothesis.

It can be done either exactly by checking each word, or approximately by using a hash

function for the history. A lattice within the N-best list, refeued to as N-best lattice,

which includes all possible alignments and pronunciation variants for the same word-ID

sequence in the possible paths taken backwards from a lattice node, can be produced by

merging hypotheses instead of replacing them like discussed above for the first-best lattices.

Compared to the lattice generation this procedure uses only little additional memory for

the extra nodes of the hypotheses, which are needed because of the increased LM state

space, and only little additional time as shown in section 3. Since for the generation of

N-best lists only the LM state check procedure was modified, they can be generated in

the first pass like lattices.

2.3 Hypotheses module

A hypothesis in memory is made out of objects called hyp-nodes and arcs, starting at

t = 0 from a single root node, and ending in either one end-node (first-best or lattice)

or in many end-nodes (N-best list, N-best lattice). An example is shown in Fig. 1. Each

node contains its time and best total score of the hypothesis up to this point. The arcs

connected to ancestor nodes (parent nodes) are set up as a single linked list starting from

the current node, which also contains a pointer to the arc belonging to the best hypothesis

going back from this node. Every node contains also a counter on how many kid-nodes it

is connected to (how many arcs contain a pointer to the current node), which is necessary

for efficient memory management of these objects.

pointer on parent-h~p
pointer on next arc m list
pointer on rec-unit
acoustic score, LM score

~ pointer on first arc
pointer on best arc
total best score
time
number of kid-nodes

TIME

Fig. 1: Example for the memory-efficient storage format for hypotheses made out of hyp-

nodes (black dots) and arcs (arrows). Shown is a lattice, all arcs but the best are dotted.

ー

囀

An arc defining a recognition unit with scores will contain at least a pointer on the

recognition unit in the dictionary, the acoustic score for it, a pointer on its parent hyp-

node, and a pointer to the next arc of the linked lists of arcs (see Fig. 1).

2.4 N-gram module 15

Memory management of hyp-nodes and arcs is best set up using linked lists, such that

getting or forgetting them can be done using simple pointer copying. The usage of OS

memory management routines can be minimized by allocating blocks of objects if none

are left in a buffer made out of linked lists of the needed objects. Forgetting a pruned

hyp-node involves叫soforgetting all linked arcs. Forgetting an arc means also forgetting

叫1hyp-nodes they point to, if these hyp-nodes have no kid-nodes. If implemented in

this recursive manner, the total memory for the hypotheses used during the search will be

approximately proportio叫 tothe active number of hyp-nodes and arcs, which is gener叫ly

between 102 (first-best mode) and 105 (lattice mode) for the average LVCSR application.

In the implementation described here one hyp-node occupies on average~30 bytes, one
arc~20 bytes.

2.4 N-gram module

The N-gram module is responsible for generating P(wNlw1,w2, ... ,WN-r), the proba-

bility of a word given its N -l words history, which is in general stored in a lookup

table and might require backing off to lower order N-grams using the appro泣mation

P(WNlw1, W2, ... , WN-1)~Pbackof 1(w1, W2, ... , WN-1)・P(W刈w2,W3, ... , WN-1)-The N-
gram of an average LVCSR system usually occupies the most memory and is accessed on

average a few hundred to a few thousand times per frame, so it has to be stored in a

format that is memory-efficient and allows fast access.

A useful format was found to be the following, which is shown in Fig. 2: For a back-off

N-gram LM store all n-grams with n = l, 2, ... , N in a table for each n. Each entry in

a table has a word-ID, its LM probability and back-off probability, and a pointer to the

beginning of the list of extension word entries in the table holding the (n + 1)-grams. For
the table with the N-grams the pointers are not necessary, since no higher order (N + 1)-
grams are following. Each part of an entry table holding a particular set of extension

words is ordered by its word-IDs to allow fast access using a binary search. The number

of a set of extension words on any level n doesn't have to be stored because it can be

calculated by subtracting the pointer (on level n -l) on the current set from the next

pointer (also on level n -l) on the next set. If the next set on level n doesn't happen to

have any extension words, indicated by a NULL pointer on level n-1, the next non-NULL

pointer on level n -l has to be searched for, which is usually not more than a few entries

away. The last entry on any level n has to be treated as a special case -the number of

extension words has to be calculated as the pointer difference between the entry and the

entry at the beginning of the next level, if levels are stored consecutively in memory.

The memory requirements for this N-gram representation are 8 bytes per en try for all

{n < N}-grams, and 4 bytes for all N-grams, assuming 4-byte pointers, 2-byte word-IDs

and 1-byte representations for the LM probability and the back-off probability, uniformly

distributed across their log-scores, which was found to be a sufficient accuracy to not

cause any errors. Access time for this storage format is of 0(1) for the unigrams and

of O ((n -l)・l og2 (1り） for the { n > l }-grams using a binary search, with]{ being the

average number of words following any n-gram entry. The average access time can be

slightly improved by caching LM states and their scores in a hash table for all { n > l }-

grams that have been accessed before. This improves average access time to 0(1) for

already used { n > 1 }-grams, but requires an additional check whether a certain LM state

is already in the hash table or not.

16

unigrams

2 A MEMORY-EFFICIENT ONE-PASS STACK DECODER

N-grams

,,·•

word ID
••• 1 LM-score, backoff-score

pointer to {n+l }-gram

Fig. 2: Storage format for a fast accessible and memory-efficient N-gram, which is used

in the same form for its disk-based representation. The shadowed region is an example

for N-grams that would be loaded into memory for the disk-based LM to search for the

correct entry.

2.4.1 A disk-based N-gram

It has been found that for average LVCSR applications most of the entries in an N-gram
are never actually used and a disk-based representation of the N-gram can limit memory

requirements to a few hundred kB for N-grams of any size (Ravishankar, 1996). The

search for the N-gram scores on disk during the search is of course very time-consuming

and has to be minimized using an efficient caching scheme. An efficient implementation

was found to be the following: Unigrams are stored in memory and all {n > 1}-grams are
stored on disk in the exact same format that was used for the representation in memory

from section 2.4, such that looking up an n-gram can be done using the same algorithm.

A set of extension words following an n-gram is loaded into temporary memory to run the

binary search for the correct word-ID in memory and not on disk. Care must be taken

in making this temporary buffer large enough to definitely include all information that

is necessary to calculate the number of extension words for any entry within the set of

extension words. The LM states that have been used once are cached in a memory-based

hash table to minimize disk access. An alternative to caching only the used LM state is

to cache all LM states that belong to any set of extension words loaded during the search

for the required LM state.

2.5 LM lookahead

Most current LVCSR systems use some kind of LM lookahead to approximate the LM

scores of the possible current LM states within words and use the exact LM scores only at

word-ends. When a tree lexicon is used, the exact LM state often cannot be known until

reaching a word-end node. The use of LM lookahead probabilities Plookahead, which belong

to every node in a tree lexicon, can speed up the search considerably, because nodes with a

weak LM score can be pruned early. Suppose the LM lookahead probabilities are already

set, they are used during the search through the tree le; 心conas:

• vVhen a node is entered, add Plookahead(node) to current total score.

• ・when a node is left, subtract Plookahead(nocle) from current total score.

2.5 LM lookahead 17

2.5.1 U nigram smearing

Unigram smearing (Steinbiss, Tran & Ney, 1994), (Alleva, Huang, Hwang, 1996), (Ort-

manns, Ney & Aubert, 1997) is a commonly used procedure and heuristically sets Plookahead

for each node in the lexicon is as follows:

1. Calculate for each word-end node in the lexicon the maximum of all unigram scores of

the words that end at this word-end node (a set of words denoted as Wword-endnode)-
Note that several words could end at one word-end node because of homonyms and

multiple pronunciations.

Plookahead(word-end node)= MAX{P(w)} with WE Wword-endnode

2. For all non-word-end nodes set Plookahead recursively to the maximum of all child-

nodes.

Plookahead(non-word-end node) = Jvl AX {Plookahead(child-nodes)}

Note that unigrarn smearing is independent of the currently extended word hypothesis

and is therefore a static procedure -it has to be calculated only once which can be done

in advance. An example is shown in Fig. 3.

0.4
trigram language model

0.4/ "" 0.1 1-。orams: Wl 0.1

W2 0.2

W3 0.3
0.3/ . l 0.4

I 2-0 arams:
W4 0.4

W3
W戊 3 0.5
W3W4 0.6

0.4 / 3-grams: Wz叫 WI 0.7
W4

Fig. 3: Example for unigram smearing using a tree-lexicon and a trigram LM, which is

independent of the hypotheses to extend.

2.5.2 On-demand N-gram smearing

On-demand N-gram smearing is a LM lookahead procedure that incOTporates the LM

state constraints of the currently extended hypotheses including their scores (Neukirchen

& Willet, 1997). This results in better estimates of the real LM probabilities, compared

to the regular unigram smearing procedure, which leads in turn to more accurate pruning

and therefore can lead to a faster search. The algorithm works as follows:

l. Initialize all Plookahead with the unigrarn smearing procedure shown above before the

search starts.

2. Calculate, for each set of word hypotheses H; to expand, the maximum N-gram

probability P(w[Hりofall existent N-gram entries (Hi, w) in the language model ex-

eluding the unigrams, because they were already set during the unigram initialization

18 2 A MEMORY-EFFICIENT ONE-PASS STACK DECODER

(step 1). Identify the corresponding word-end nodes belonging to w (which could

be several because of homonyms and multiple pronunciations) and set Plookahead to
them邸 imu:in-oftlie ca1cul互ted-prooabil埒 aiia-tne11-n返ra:面―Pl;o知~-h~~d prob誌 iiity

already set.

Plookahead(word-end node) = MA.X {P(wlHi)} V Hi

and V w E {(Hi,w) existent in N-gram}

To use not only the LM states but also the relative scores of the current hypothesis to
the best hypothesis in the current set to extend use M A.X { P(wl Hi)}-score(Htop) +
score(Hi) instead of M A.X { P(叫H暑

3. For all non-word-end nodes set Plookahead to the maximum of all child-nodes.

Plookahead(non-word-end node) = M A.X {Plookahead(child-nodes)}

Note that this procedure has to be invoked each time a new set of word hypotheses

is extended, which cannot be done in advance like for unigram smearing. In spite of the

additional computation the more accurate LM probabilities lead to more accurate pruning
which can lead to a speed-up of the whole search. An example for this procedure is shown

in Fig. 4, which should be compared to Fig. 3 illustrating the unigram smearing procedure.

0.7
trigram language model hypotheses to extend

0.7 l-こ0っrams: 0.1 1)四 W1W2W3WI

0.2 10.7 W2 0.2 2)児 W4
W2 叫 W3 0.3 3)陀 WJ叫 W3

0.3/ '10.6 W4 0.4
W3

2-grams: W戊 3 0.5 0.6
W3W4 0.6

0.3/ "'0.6 I 3-grams: Wz附 WI 0.7
W2 W4
W3

Fig. 4: Example of on-demand N-gram smearing using a tree-lexicon and a trigram LM
using the constraints from the hypotheses to extend.

Results from experiments showing the impact of on-demand N-gram smearing com-

pared to unigram smearing are shown in section 3.

2.6 Cross-word models

Cross-word models are context-dependent acoustic models that go over word boundaries.

Their use in any decoder is complicated and time consuming. Various implementations

have been described (Bahl, de Souza, Gopalakrishnan, N ahamoo & Picheny, 1993), (Alleva,

1997), which are in the case of transition network decoders often limited to cross-word

triphones. vVhether cross-word modeling is really necessary or not depends heavily on the

speaking style and on the definition of a word in the language to be recognized, and is

more likely to make a difference when there is no pause at word boundaries. In this paper
it is shown that cross-word modeling is essential for recognition of read newspaper articles

in Japanese (section 3).

2.6 Cross-word models 19

A procedure to deal with cross-word models of any order (triphones, quintphones, etc.)

incorporating cross-word effects in a delayed manner was found to be very e缶cientin time

and memory requirements, and is especially well suited for a stack decoder:

• Run the state-level search for any set of hypotheses to expand with only word-internal
context-dependent models.

• When popping the hypotheses from a stack to expand, realign the last M words using
cross-word models at the word boundaries before entering the state-level search to

恥 dthe extension words.

• Because cross-word effects are incorporated with a one-word delay, it is also necessary

to realign the last M words for all hypotheses on the final result stack.

This procedure as illustrated in Fig. 5 incorporates all cross-word effects within the last

M words, and is optimal for cross-word triphones with M = 2 for most cases and possibly
J'vf = 3, if the word before the last word is a one-phone word. To capture all cross-word

effects with quintphones theoretically J'vf = 5 is necessary, if all words in the dictionary

would be one-phone words.

TIME

01 10

STACK TO EXP AND

Fig. 5: Visualization of the method to incorporate cross-word models of any context order.

Circles denote hyp-nodes, filled circles are the word boundaries that are corrected by the

procedure using cross-word models before the stack (box) is expanded. In this example

only two words are realigned, but there could be more like discussed in the text. The same

method is used for the fast-match to rescore acoustically likely word candidates (section

2.7).

The realignment for each hypothesis to extend is in detail done as follows: Take the last

M words and fii1d the correct (cross-word) HMMs for each phone at the word boundaries

which don't already cover the m釦dmumavailable context given the acoustic model set.

Use a local Viterbi search to find M new acoustic scores and possibly M -1 new word

boundaries. Generate M new arcs and JW -1 new hyp-nodes and replace the old hypothesis

end-hyp-node by the new one.

The correct cross-word HMM model is defined as the model which covers the most

context around the current center-phone. This definition is also used for finding the correct

context-dependent HMM within words during construction of the tree le幻concontaining

context-dependent models given only a monophone pronunciation dictionary.

Compared to the procedure described in (Bahl et al, 1993), which locally rescores every
word that is found during the state-level search, the method described here rescores only

words that have been found to be considerably likely being part of stacks to expand. The

20 2 A MEMORY-EFFICIENT ONE-PASS STACK DECODER

average number of hypotheses to expand per frame is in general between five and one-

hundred and cross-word rescoring is only applied to _those _f~w. _This requires only very
little temporary memory and is fast, because of the low number of hypotheses and because

of the fact that most of the states to be evaluated during rescoring for their observation

likelihood are already in cache.

A potential drawback of this method is that because cross-word effects are incorporated

delayed, scores might vary more during the lookahead, which might require larger beams

than if this delay wouldn't be used.

2.7 Fast-match with delay

The method to handle arbitrary cross-word effects from section 2.6 is easily extended

to allow an efficient acoustic fast-match with a one-word delay, which in a similar form

without delay is described in (Bahl et al, 1992), (Gopalaki-.ishnan & Bahl, 1996). The

basic idea of a fast-match in a stack decoder is to use simple acoustic models to find

possible extension words, and rescore them locally with better, but computationally more

expensive models. This avoids the use of expensive models for the initial state-level search

and can speed up the complete search substantially.

The fast-match procedure described here (see Fig. 5) keeps the use of the expensive

models at a minimum and is almost identical with the method to incorporate cross-word

models. Instead of using word-within context-dependent (CD) models for the state-level

search, simple monophones with a low number of Gaussians per mixture or small neural-

network based models are used in a context-independent tree-lexicon, and the found words

are inserted in the corresponding stacks. Rescoring of the last M words including all cross-

word effects is done later using the accurate, but expensive CD models, but only when a

stack is expanded, such that many of the previously found words will be out of the beam.

The difference to the cross-word procedure from section 2.6 is, that all phones of the last

M words have to be mapped to their correct CD HMM model, and not only the ones at

the word boundaries. As described above, this can be interpreted as local rescoring with

a one-word delay, which limits the number of necessary rescoring turns per frame to less

than ten to one-hundred for most applications, and requires very little additional memory.

2.8 Using word-graphs as language model constraints

For some applications it is necessary to constrain the search by a finite state grammar,

a word-graph or a word-pair grammar, possibly with transition scores. This can be done

efficiently in a stack decoder by activating only the pronunciation paths in the tree lex.icon

that correspond to possible word extensions of the hypotheses to expand. This has to

be done on demand before entering the state-level search every time a stack is expanded.

The state-level search will only consider the limited number of activated paths which will

speed up the search substantially (section 3).

The generation of forced word alignments can be interpreted as a search constrained by

an extremely simple word-graph consisting of the transcription of word-IDS, which might

have several pronunciation variants.
ー

箪

2.9 Latt・ ice resconng

There are two types of often needed lattice rescoring procedures:

2.10 Generating phone-/state-alignments 21

I) Use a given word-graph plus the word alignments and the acoustic scores, and change

only the LM (often a higher order N-gram) or/and change LM parameters (LM scale
and word deletion penalty).

II) Use only a given word-graph ignoring alignments and acoustic scores to constrain
the search -use new acoustic models and a new LM. This has been described in

section 2.8.

Type I is often done using A* procedures in a separate search module, because the exis-

tence of the complete word-graph with scores allows an efficient estimate of score of the

remainder, which is necessary for any A* procedure (Nilsson, 1971), (Soong & Huang,
1991). In this case there is usually one stack, which is ordered by the A* score. For the

stack decoder implementation with many stacks like it is described here, a simple replace-

ment of the state-level search makes it possible to integrate lattice rescoring of type I

within the stack decoder framework. Instead of the original state-level search through the

tree lexicon the possible extension words and their scores for every hypothesis to extend

are already calculated in the lattice, so they just have to be located and inserted into

the corresponding stacks. Because all other modules stay the same, implementation is
simple and all outputs that have been possible before for sequences of feature vectors as

inputs (first-best, N-best, first-best lattice, N-best lattice), are then possible for lattices

as inputs. Because the time-consuming state-level search doesn't have to be done, this

type of lattice rescoring is fast also for large lattices of a few thousand arcs, usually taking

between 1/100 and 1/10 realtime. Memory requirements are the same as for the regular
search minus the memory that is needed for the state-level search.

2.10 Generating phone-/state-alignments

Because state-level backpointers are not stored, phone-or state-alignments have to be
created on demand. After a first-best word hypothesis is created, every word is state-

aligned using the same routines which are necessary for the cross-word rescoring from

section 2.6. For a forced state-alignment the word transcription has to be provided as

additional input as a word-graph (section 2.8).

3 EXPERIMENTS

All experiments were conducted using the described one-pass stack decoder for the recog-

nition of read sentences from a Japanese newspaper using a .5000 word pronunciation

dictionary with on average 1.5 pronunciations per word. Larger pronunciation dictionar-

ies for Japanese are currently not publically available. The acoustic models are gender-

dependent decision tree state-clustered Gaussian mixture models trained on 20k sentences

per gender from the ASJ and JNAS database of approx.imately 60 h of speech. Acoustic

preprocessing is standard 12-dimensional MFCCs plus log energy, with applied cepstrum

mean subtraction per sentence and first derivatives every 10 ms. A trigram and fourgram

language model were trained on around 45 million words from the RWC corpus containing
four years of newspaper articles from the Mainichi Shinbun, a regular daily newspaper in

Japan. The standard test data are the first ten sentences from the speakers 006, 014, 017,

021, 026, 089, 102, 11.5, 122 from the JNAS database. All acoustic models, the initial

language models and the initial pronunciation dictionary have kindly been provided by

the IPA group (Kawahara et al, 1998), which also defined the test set.

22 3 EXPERIMENTS

3.1 Recognition of Japanese

Speech recognition of Japanese adds a few problems not occurring in Western languages.

Japanese has no spaces between words, so the definition of a word for the dictionary is in

general not obvious, but the databases used here are already subdivided into words, and

word error rate is calculated using these word definitions. Unfortunately the subdivision in

words is often ambiguous, which leads to recognition errors (example in English:'awhile'

recognized as'a''while'and vice versa), that shouldn't be counted as errors in Japanese

since there are no spaces. Because words are defined by grammatical analysis, there are

often no pauses between them, which makes it essential to use cross-word models for

Japanese, if this currently common word definition is used (section 3.5). These errors are

here referred to as type I errors.

A second problem is that there are three different alphabets plus the western letters

in use, which makes it possible to write the same word with the exact same meanings

and pronunciations using different symbols, a phenomena that occurs in English only for

numbers. It is correct and common to mix alphabets in sentences and use different spellings

of the same word (example: there are at least six common ways to spell the Japanese word

for'I', meaning myself, some of them with the exact same pronunciation). This makes the

evaluation of Japanese using a word error rate, which is based on word-IDs, more difficult

than in Western languages, because different word-IDs shouldn't be counted as errors if

their meanings and pronunciations are exactly the same. These errors are here referred

to as type II errors. For the experiments of this paper some of the results were cleaned of

type I and type II errors to show their relevance.

A third problem specific to decoding is, that because of the many short words and the

many homonyms the number of found word-ends, which make stack operations and N-gram

accesses necessary, is higher than for example in English. The many short words resulting

in on average more word boundaries increase also the need for cross-word modeling.

3.2 Recognition results for high accuracy

Table I shows the results, for which the parameter settings in Table II were optimized

to reach a low word error rate. The acoustic models are monophones with 129 states

and triphones with 2000 and 3000 states with 16 mixture components each. The experi-

ments of this task were run in two modes, a Katakana mode, where all word-IDs and all

transcriptions are written only in the Katakana alphabet, and in a Kanfi mode, where

all word-IDs and transcriptions are written in a mixture of the three alphabets like they

occur in a regular newspaper. Best recognition results in Kanji recognition mode are 5.2%

word error rate (WER) for the male speakers using 3000-state models and 4.8% WER for

the female speakers using 2000-state models, if the results are cleaned from errors that

shouldn't be counted as errors in Japanese like discussed above. The raw outputs from

the recognizer are about 15% relative (1% absolute) worse, showing that these errors,

which are specific to Japanese, shouldn't be neglected. The Katakana results, which hide

misrecognition of homonyms occurring in Japanese more frequently than for example in

English, overestimate the score of interest by about 1% absolute on average.

The parameter settings in Table II show that the word-end-beam can be chosen lower

than the word-within-beam like discussed in section 2.1.2. The average number of com-

peting HMM model nodes at any time determines to a large extent the overall speed of

the search and is a suitable measure to compare different implementations of stack de-

coders. Note that because active nodes cannot be merged, this number generally will be

＼

畢

3.2 Recognition results for high accuracy 23

Table I: Recognition results for high accuracy

states x mixtures cross-word MALE FEMALE

models Kat/Kan Kat/Kan

129 x 16 (cleaned) no 88.7 /87.5 91.8/90.8

2000 x 16 (cleaned) yes 95.2/93.3 96.9/95.2

3000 x 16 (cleaned) yes 96.4/94.8 95.9/94.5

129 x 16 (not cleaned) no 87.9/86.7 91.0/90.0
2000 x 16 (not cleaned) yes 94.4/92.6 96.1/94.4

3000 x 16 (not cleaned) yes 95.6/94.0 95.0/93.6

The upper part shows results which were cleaned of errors that shouldn't be counted in

Japanese, the lower results weren't cleaned. All results are given for the Katakana (Kat)
and the Kanji (Kan) recognition mode as discussed in the text.

lower in transition network decoders. The stack statistics show that on average about 75%

of the time the language model state of the hypothesis to be inserted is already on the
stack, and only 5-10% of the hypotheses remain in the beam to get actually expanded.

This implies that at least the number of N-gram accesses could be reduced drastically

by a completely time-synchronous scheme, where word-and state-level s.earch both run
time-synchronously, which hasn't been tried here.

The average number of N-gram accesses including all back-offs compared to the number

of cache accesses within the N-gram module show that many N-grams are used more than
once and a cache will be very useful in cases where the N-gram access is slow like for a

disk-based LM.

Table II: Parameter settings and average search statistics for results from Table I

129 X 16 2000 X 16 3000 X 16

word-end-beam 30 50 50
word-within-beam 40 80 80

LM-scale 6 11 12
word-deletion-penalty

゜ ゜ ゜realtime factor (RTF) 8.4 24 25

active model nodes/frame 2213 10045 8324

pushed hyps/frame 1215 1196 1113

jnserted/replaced hyps/frame 243/972 246/950 211/902
extended hyps /frame (average stacksize) 41 25 20

on-demand N-gram smearing no yes yes

N-gram accesses/frame 27519 21029 18749

cache accesses /frame 27268 20834 18600

These results are based on 25-dimensional feature vectors, all log-likelihoods base 10, the

realtime factor is for 300 Mhz Pentium II and includes observation likelihood calculation.

All results in this table are averaged over genders.

24 3 EXPERIMENTS

3.3 Recognition results for high speed and low memory

Table III and Table IV show results and parameter settings for experiments that were
run to maximize decoding speed at a low (about 1 %) search error and minimize memory

requirements, with (a) a regular memory-based trigram LM and (b) a disk-based LM.

Almost realtime performance including all observation likelihood calculations is possible

with around 90% recognition rate using between 10 and 20 MB of memory. The disk-based

LM slows down the search by about a factor of three.

The trigram LM has 5k unigrams, 330k bigrams and 720k trigrams, occupying in total
about 6 MB of memory using the techniques of 2.4. An N-gram entry occupies on average

6 bytes, if the complete LM is held in memory, and about 100 kB total for the disk-based

LM with bigrams and trigrams on disk which are loaded on demand and cached in a hash

table of limited size.

Table III: Results for high speed and low memory

states x mixt. disk- cross-word MALE FEMALE MEMORY RTF
LM models Kat/Kan Kat/Kan

129 X 16 no no 87.0/86.0 90.2/89.2 10 MB 1.3
129 X 16 yes no 87.0/86.0 90.2/89.2 4 MB 3.9
2000 X 16 no yes 93.3/91.5 95.0/93.8 20 MB ，
2000 X 16 yes yes 93.3/91.5 95.0/93.8 14 MB 14

Results with parameter settings optimized for high speed and low memory, not cleaned of

type I/II errors. Memory and realtime factor are for a 300 MHz Pentium II.

Table IV: Parameter settings and average search statistics for results from Table III

129 X 16 2000 X 16

word-end-beam 20 40
word-within-beam 30 70

LM-scale 6 11
word-deletion-penalty

゜ ゜active model nodes/frame 685 2993

pushed hyps/frame 149 408

inserted/ replaced) hyps / frame 44/10.5 97 /311
extended hyps /frame (average stacksize) 7.9 12.:3

on-demand N-gram smearing no yes

N-gram accesses/frame 2927 8196
cache accesses/ frame 2882 8114

3.4 Time and memory requirements for modules 25

3.4 Time and memory requirements for modules

The relative time and memory requirements of the different modules are summarized in

Table V. Most of the time is spent on the likelihood calculation and the state-level search,

which includes all operations for the active node list. The time for the tree lexicon includes

activating and deactivating HMM nodes. The cross-word rescoring procedure includes the

on-demand lookup for the correct cross-word HMM model and the local Viterbi search as

its most time-consuming parts. The LM state comparison is included in the time listed for

the stack operations, which is surprisingly low given the simple linear list implementation

shown in section 2.2.

Memory requirements are listed for a 5000 word vocabulary with on average 1.5 pro-

nunciations each, giving about 200 bytes/entry. The acoustic model takes most of the

memory because of its uncompressed 4-byte mean/variance parameters and the cache for

the likelihood calculation. The hypotheses generation itself takes almost no memory but

what is needed to represent the currently active hyp-nodes and arcs, which are in the case

of first-best recognition not more than a few hundred. Similar, the stack module contains

mainly pointers to hyp-nodes, which also don't use more than a few kB.

Table V: Relative time and memory requirements for modules

MODULE RELATIVE TIME MEMORY

stack 2% ~o
hyp 1% ~o

state-level search 33% 0.5 MB

word-level search 3% ~o
tree le.xi con 5% 1.4 MB

N-gram 12% 5.1 MB

acoustic model 31% 13.0 MB

cross-word rescoring 11%

SUM 100% 20 MB

Relative time and memory requirements split up for modules using the 2000 x 16 acoustic

model from Table III.

3.5 Usage of cross-word models

Given the word definition for Japanese, which was used for this paper, the use of cross-

word models is essential for the recognition of read newspaper sentences, as Table VI

shows. The additional search time for the local rescoring using cross-word models doesn't

effect the overall search time at all for this experiment, possibly because of more accurate

partial hypotheses at any time during the search.

3.6 Usage of fast-match models

Table VII shows the effect of using fast-match models to find acoustically likely word

hypotheses quickly like described in section 2.7. In the case tested here their use required

fine tuning of several search parameters to make a difference in recognition time.

26 3 EXPERIMENTS

Table VI: Effect of cross-word effects

CROSS-WORD MODELS I RTF REC-RATE

yes

no

24

24
93.5

87.0

Recognition of Japanese newspaper articles with and without cross-word 2000x16 mod-

els using the same beam settings, but optimized LM-scales and word-deletion penalties.

Results are averaged over genders in Kanji recognition mode with search parameters of

Table II, not cleaned.

Table VII: Effect of fast-match models

FAST-MATCH MODELS I RTF REC-RATE

yes
no

7

9

92.5

92.6

Use of fast-match models to find acoustically likely word hypotheses quickly, averaged
over genders in Kanji recognition mode with search parameters of Table IV, not cleaned.

Fast-match models were 3-state monophones with four mixture components each.

3. 7 Effect of on-demand N-gram smearing

On-demand N-gram smearing (section 2.5.2) can efficiently reduce the number of active

model nodes, as Table VIII shows. In the cases tested here the reduction of active nodes

does not necessarily reduce the search time because of the overhead of the procedure
that has to be invoked before each stack is expanded. If the likelihood calculation of the

acoustic models would take longer, this method would have a greater effect on the total
recognition time.

Table VIII: Effect of on-demand N-gram smearing

states x mixt. LM active N-gram RTF REC.
lookahead models accesses RATE

129 X 16 unigram 685 2927 1.3 87.6

129 X 16 N-gram 593 2252 1.9 87.5
2000 X 16 unigram 2993 8196 10 92.6

2000 X 16 N-gram 2817 5486 ， 92.6
Shows the effect of on-demand N-gram smearing versus unigram smearing. Results are
averaged over genders in Kanji recognition mode with search parameters of Table IV, not

cleaned.

3.8 Lattice/N-best list generation and lattice rescoring 27

3.8 Lattice/N-best list generation and lattice rescoring

The results shown in Table IX compare the time and memory requirements for generating

the first-best hypothesis with the time for generating lattices or N-best lists in the first
pass. It can be seen that the more complicated LM state check for the N-best lists creates

only little overhead, and is almost independent of the length of the N-best lists.

Lattice rescoring as discussed in section 2.9 was tested for the generated lattices for

both lattice resoring modes. Type I lattice rescoring refers to using only the word-graph as

an LM constraint, but all alignments, acoustic scores including cross-word effects and LM

scores are recalculated. For type II lattice rescoring only the LM scores are recalculated,
which usually includes a new LM scale factor and a new word deletion penalty.

Table IX: Relative time and memory for different search modes

SEARCH MODE RTF MEMORY

first-best (absolut) ， 20 MB

first-best 100% 100%
lattice 107% 106%

N-best list, N = 10 113% 100.4%
N-best list, N = 50 116% 100.4%

N-best list, N = 100 117% 100.5%

lattice rescoring type I 0.1% 77%
lattice rescoring type II 5.6% 93%

Relative time and memory (as measured by the UNIX top command) for several search
modes with beams leading to lattices of about 2500 arcs and 500 hyp-nodes, and an

average N-best list length of 90 hypotheses, for parameter settings as in Table IV. All
N-best hypotheses differ by at least one word like defined in section 2.2.2.

4 CONCLUSIONS

This paper presented a detailed description of a memory-efficient one-pass stack decoder

~pplied to recognition of sentences from a Japanese newspaper. The architecture of the

time-asynchronous stack decoder made it easily possible to integrate lattice and N-best list

construction as well as arbitrary order N-gram LMs and arbitrary order cross-word context-

dependent acoustic models in a single decoder. Also, various forms of lattice rescoring and
the generation of forced alignments fits well into the framework of the time-asynchronous

search technique. Memory requirements at around 1 % search error are between 4 and 20

MB using the techniques from the paper.

In summary, it can be concluded, that a time-asynchronous stack decoder is a con-

ceptually attractive framework for integrating many often needed procedures for speech

recognition tasks. Although very efficient in memory and faster than the decoder men-

tioned in (Kawahara et al, 1998) for the same task, it should be noted that the speed

of a time-asynchronous stack decoder like implemented here is probably not optimal for
the specific task of generating a first-best hypothesis or a lattice from a feature vector

sequence, because the globally time-asynchronous search over the state space results in

28 REFERENCES

the generation of many partial hypotheses that are later not expanded. This could be

avoided by using a time-synchronous stack decoder with multiple trees, which hasn't been
tried here.

5 ACKNOWLEDGMENTS

The author would like to thank the Japanese IPA group (Kawahara et al, 1998) for their

supply of acoustic models, initial language models and the initial pronunciation dictio-

nary, and especially Prof. Shikano from the Nara Institute of Technology, Japan, for
pointing out the need for cross-word models for Japanese. Without the many fruitful dis-

cussions concerning stack decoders with Christoph Neukirchen and Daniel Willett from the
Gerhard-Mercator University, Duisburg, Germany, the implementation of the on-demand

N-gram smearing procedure wouldn't have been possible.

嶋

ー

ー

・

References

[1] Alleva F., Huang X. & Hwang M. (1996). Improvements on the pronunciation pre-

恥 treesearch organization. Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, Atlanta, GA, Vol. I, pp. 133→ 136.

[2] Alleva F. (1997). Search Organization in the Whisper Continuous Speech Recognition

System. Proceedings of the IEEE Workshop on Automatic Speech Recognition and

Understanding. Santa Barbara, CA, pp. 295-302.

[3] Aubert X., Dugast C., Ney H. & Steinbiss V. (1994). Large vocabulary continuous

speech recognition of Wall Street Journal Data. Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, Adelaide, Australia, Vol II,

pp. 129-132.

[4] Bahl L.R., de Souza P.V., Gopalakrishnan P.S., Nahamoo D., Picheny M. (1992). A

fast match for continuous speech recognition using allophonic models. Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing, San

Francisco, CA, Vol I, pp. I-17 -I-20.

[5] Bahl L.R., de Souza P.V., Gopalakrishnan P.S., Nahamoo D. & Picheny M. (1993).
Word lookahead scheme for cross-word right context models in a stack decoder. Pro-

ceedings of the European Conference on Speech Communication and Technology,

Berlin, Germany, Vol. II, pp. 851-854.

[6] Beyerlein P. & Ullrich M. (1995). Hamming distance appro泣mationfor a fast log-

likelihood compuation for mixture densities. Proceedings of the European Conference
on Speech Communication and Technology, Madrid, Sp叫n,Vol. II, pp. 1083-1086.

[7] Bishop C.M. (1995). Neural Networks for Pattern Recognition. Clarendon Press, Ox-
ford.

[8] Duda R.O & Hart P.E. (1974). Pattern Classification and Scene Analysis. New York:

John Wiley & Sons.

_1着

~!

(>

(ー）

REFERENCES 29

[9] Gauvain J.L., Lamel L.F., Adda G. & Adda-Decker M. (1994). The LIMSI Cantin-
uous Speech Ditation System: Evaluation on the ARPA Wall Street Journal Task.
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, Adelaide, Australia, Vol I, pp. 557-560.

[10] Gopalakrishnan P.S. (1995). A tree search strategy for large vocabulary continuous
speech recognition. Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, Detroit, MI, Vol I, pp. 572-575.

[11] Gopalakrishnan P.S., & Bahl L.R. (1996). Fast matching techniques. Automatic

Speech and Speaker Recognition, Advanced Topics (Chin-Hui Lee, Frank K. Soong
& Kuldip K. Paliwal eds.) pp. 413-428. Kluwer Academic Publishers, Boston.

[12] Hetherington LL., Phillips M.S., Glass J.R., Zue V.W. (1993). A* Word Network
Search for Continuous Speech Recognition. Proceedings of the European Conference
on Speech Communication and Technology, Berlin, Germany, Vol. III, pp. 1533-1537.

[13] Huang X.D., Ariki Y., Jack M.A. (1990). Hidden Markov Models for Speech Recog-

nition. Edinburgh University Press, Edinburgh.

[14] Kawahara T., Kobayashi T., Takeda K., Minematsu N., Itou K., Yamamoto M., Ut-

suro T. & Shikano K. (1998). Sharable Software Repository for {Japanese} Large
Vocabulary Continuous Speech Recognition. Proceedings of the International Confer-
ence on Spoken Language Processing, Sidney, Australia. to appear.

[15] Murveit H., Butzberger J., Digalakis V., & Weintraub M. (1993). Large vocabulary
dictation using SRI's Decipher TM Speech Recognition System: Progressive Search
Techniques. Proceedings of the IEEE International Conference on Acoustics, Speech

and Signal Processing, Minneapolis, MN, Vol II, pp. 319-322.

[16] Neukirchen C., Willet D. (1997). Gerhard-Mercator University Duisburg, Germany,

personal communication.

[17] Ney H. (1993), Search Strategies For Large-Vocabulary-Continuous-Speech Recog-
nition. NATO Advanced Studies fostitute, Bubion, Spain, June-July 1993. Speech
Recognition and Coding -New Advances and Trends (A.J Rubio Ayuso & J.M.

Lopez Soler, eds.), pp. 210-225. Springer, Berlin.

[18] Ney H. & Aubert. X. (1996). Dynamic Programming Search: From Digit Strings to
Large Vocabulary Speech Recognition. Automatic Speech and Speaker Recognition,
Advanced Topics (Chin-Hui Lee, Frank K. Soong & Kuldip K. Paliwal eds.) pp. 385-
412. Kluwer Academic Publishers, Boston.

[19] Ney H. & Ortmanns S. (1997). Progress in Dynamic Programming Search for LVCSR.
Proceedings of the IEEE Workshop on Automatic Speech Recognition and Under-

standing. Santa Barbara, CA, pp. 287-294.

[20] Nilsson N.J., (1971). Problem Solving Methods of Artificial Intelligence. McGraw Hill,
New York.

[21] Odell J.J. (1995). The Use of Context in Large Vocabulary Speech Recognition. Doc-

tor Thesis, Cambridge University, Cambridge, England.

30 REFERENCES

[22] Ortmanns S., Ney H., Aubert X. (1997). A word graph algorithm for large vocabulary
continuous speech recognition. Computer, Speech and Language, Vol. 11, pp. 43-72.

[23] Paul D. (1991). Algorithms for an Optim叫 A*Search and Linearizing the Search in

the Stack Decoder. Proceedings of the IEEE International Conference on Acoustics,
Speech and Sign叫 Processing,Toronto, Canada, Vol I, pp. 693-696.

[24] Paul D. (1992). An Efficient A* Stack Decoder Algorithm for Continuous Speech

Recognition with a Stochastic Language Model. Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, San Francisco, CA,
Vol I, pp. I-25 -I-28.

[25] Rabiner L. & Juang B.H. (1993). Fundament叫sof Speech Recognition. Prentice-Hall,
New Jersey.

[26] Ravishankar M.K. (1996). Efficient Algorithms for Speech Recognition. Doctor Thesis,
Technical Report CMU-CS-96-143, Pittsburgh.

[27] Renals S. & Hochberg M. (1995a). Decoder technology for connectionist large vocab-
ulary speech recognition. Technic叫 ReportCUED/F-INGENG/TR186, Cambridge
University Engineering Department, Cambridge, England.

[28] Renals S. & Hochberg M. (1995b) Efficient search using posterior phone probability

estimates. Proceedings of the IEEE Internation叫 Conferenceon Acoustics, Speech
and Signal Processing, Detroit, MI, Vol. I, pp. 596-599.

[29] Renals S. & Hochberg M. (1996) Efficient evaluation of the search space using the
NOWAY decoder. Proceedings of the IEEE International Conference on Acoustics,
Speech and Sig叫 Processing,Atlanta, GA, Vol. I, pp. 149-153.

[30] Robinson T. & Christie J. (1998). Time-first search for large vocabulary speech recog-

nition. Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Seattle, WA, Vol. II, pp. 829-833.

[31] Schwartz R., Nguyen L. & Makhoul J. (1996). Multiple-pass search strategies. Au-
tomatic Speech and Speaker Recognition, Advanced Topics (Chin-Hui Lee, Frank K.
Soong & Kuldip K. Paliwal eds.) pp. 429-456. Kluwer Academic Publishers, Boston.

[32] Soong F.K. & Huang E.F. (1991). A tree-trellis based fast search for finding the N-best
sentence hypotheses in continuous speech recognition. Proceedings of the IEEE Inter-
national Conference on Acoustics, Spee-cl1 and Signal Processing, Toronto, Canada,

Vol I, pp. 705-708.

[33] Shimizu T., Yamamoto H., Masataki H., Matsunaga S. &';,agisaka Y. (1996). Re-

duction of Number of Word Hypotheses for Large Vocabulary Continuous Speech
Recognition (in Japanese). IEICE Transactions, Vol. J79-D-II, No.12, pp. 2117-2124.

[34] Steinbiss V., Tran B. & Ney H. (1994). Improvements in Beam Search. Proceedings
of the Internation叫 Conferenceon Spoken Language Processing, Yokohama, Japan.

pp. S36-5.1 -S36-5.4.

[35] Young S., Jansen J., Odell J., Ollason D. & Woodland P. (1997). The HTK Book

(Version 2.1). Distributed with the HTK toolkit.

	001
	002
	003

