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This report describes the details of a fast, memory-efficient one-pass stack decoder for efficient evalu-

ation of the search space for large vocabulary continuous speech recognition. A modern, efficient search 

engine is not based on a single idea, but is a rather complex collection of separate algorithms and prac-

tical implementation details, which only in combination make the search efficient in time and memory 

requirements. Being the core of a speech recognition system, the software design phase for a new decoder 

is often crucial for its later performance and flexibility. This paper tries to emphasize this point -after 

defining the requirements for a modern decoder, it describes the details of an implementation that is 

based on a stack decoder framework. It is shown how it is possible to handle arbitrary order N-grams, 

how to generate N-best lists or lattices next to the first-best hypothesis at little computational overhead, 

how to handle efficiently cross-word acoustic models .of any context order, how to efficiently constrain 

the search with word-graphs or word-pair grammars, and how to use a fast-match with delay to speed 

up the search, all in a single left-to-right search pass. The details of a disk-based representation of an 

N-gram language model are given, which make it possible to use LMs of arbitrary (file) size in only a few 

hundred kB of memory. On-demand N-gram smearing, an efficient improvement over the regular unigram 

smearing used as an approximation to the LM scores in a tree lexicon, is introduced. It is also shown how 

lattice rescoring, the generation of forced alignments and detailed phone-/state-alignments can efficiently 

be integrated into a single stack decoder. 

The decoder named "Nozomi" awas tested on a Japanese newspaper dictation task using a 5000 word 

vocabulary. Using computationally cheap models it is possible to achieve realtime performance with 89% 

word recognition accuracy at about 1 % search error using only 4 MB of total memory on a 300 MHz 

Pentium II. vVith computationally more expensive acoustic models, which also cover the for the Japanese 

language essential cross-word effects, more than 95% recognition accuracy bis reached. 

a"N ozorru rs the name of the fastest, most comfortable and most expensive bullet train in Japan, and also 

means "hope" in Japanese 

bwhich are currently the best reported results on this task 

◎ ATR音声翻訳通信研究所

◎ ATR Interpreting Telecommunications Research Laboratories 
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1 INTRODUCTION 

Large vocabulary continuous speech recognition (LVCSR), here defined as the recognition 

of arbitrary, continuously spoken sentences using a vocabulary of 5000 words or more, is 

currently limited to workstations and fast high-end laptops with a lot of memory. To make 

LVCSR work on PDAs, cellular phones, user-interfaces, wrist watches etc., it is necessary 

find to time-and memory-efficient algorithms. The efficiency of the search engine of a 

speech recognition system, that takes as input an utterance and generates in its simplest 

form the most probable word string, is unfortunately not based on a single algorithm, but 

on a complex collection of ideas and implementation details which only in combination 

make the search efficient. While the basic ideas can often be stated in a few words, their 

details and the implementation, which is crucial for good performance, is often not obvious 

and should be explained to the necessary detail in those cases. 

Because the search engine combines all parts (pronunciation dictionary, feature vectors, 

acoustic models, language models) of a speech recognition system, it often defines the 

formats for module communication and is to a great extent responsible for the overall 

comple泣tyof the whole system. The author's observation is, that the problem of too 

marginal improvements of state-of-the-art LVCSR systems has its origin not necessarily in 

a lack of innovative ideas, but often is due to a lack of possibilities for a scientific procedure 

to test them. The reason is in general an overwhelming complexity of the complete system, 

and research has to be aimed at reducing it. 

Therefore, the goal for implementation of any search engine must be to minimize 

time and memory requirements as well as the overall complexity of the system while 

ma泣mizingits flexibility using all av叫lableknowledge sources to search for the desired 

output. 

1.1 Organization of the paper 

In the first (general) part of the introduction (section 1.2) the term "search" for speech 

recognition is used in a loose way and necessary requirements for a modern search engine 

are defined. In the second (technical) part (section 1.3) definitions for the used terms are 

given and explained using the necessary mathematical equations. In the third part (section 

1.4) known decoder types are classified and briefly explained. Section 2 explains the details 

of a memory-efficient one-pass stack decoder. Section 3 shows experiments and results for 

a 5000 word Japanese newspaper dictation task using this decoder. Specific problems 

regarding decoding for the Japanese language are discussed. The paper concludes with 

section 4. 

1.2 General Introduction 

The essential content of any search algorithm for the best hypothesis in a LVCSR system 

can be summarized in simple words as: 

1. Consider all possible hypotheses (different word sequences, pronunciations, align-

men ts) using the dictionary 

2. Assign a score to each hypothesis using the language model and the acoustic model 

3. Put out the hypothesis with the highest score. 
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If this method would be applied in this form in practice, it would be impossible to find 

the best hypothesis because of the very large number of possible combinations of words, 

pronunciations and alignments for any reasonable sried -dictionary in combination with-

the commonly used trigram language model. 

As discussed above, the primary goal of any search algorithm must be to minimize the 

time and memory requirements for finding the best hypothesis while maintaining a mini-

mal search error. Any practical search implementation (Alleva, 1997), (Gopalakrishnan, 

1995), (Ney & Aubert, 1996), (Odell, 1995), (Paul, 1992), (Ravishankar, 1996), (Renals & 
Hochberg, 1996), (Schwartz, Nguyen & Makhoul, 1996), (Soong & Huang, 1991), (Robin-
son & Christie, 1998) based on 1st order Hidden Markov Models (HMMs) uses various 
methods to achieve that. Some of them are: the Viterbi search to linearize the search 

with respect to time, the beam search to heuristically reduce the number of hypothesis at 

any time point, the use of a tree lexicon for the pronunciation dictionary to share com-

putations for beginnings of words, the language model lookahead (Steinbiss, Tran & Ney, 
1994), to approximate LM scores within words, the fast-match (Bahl, de Souza, Gopalakr-

ishnan, N ahamoo & Picheny, 1992) (Gopalakrishnan & Bahl, 1996) to generate quickly 
acoustically likely word hypotheses. 

A second goal for a search engine that is used in a research environment, or in cases 

where the output of the search engine is used as input to post-processing modules like 

translation engines, is its flexibility. It is often not enough to allow as input only a 

sequence of feature vectors to produce a word sequence with the highest score. In many 

cases more detailed outputs like lattices, N-best lists or detailed word, phone, or state-

alignments are required. As language model search constraints one might want to use 

arbitrary order N-gram language models, word-pair grammars, word-graphs to simulate 

finite state automatons, or transcriptions to produce forced alignments. These and other 

requirements for a modern search engine, from an expert user's point of view, can be listed 

as: 

• possible inputs: 

-utterance feature vectors (for on-demand likelihood calculation) or precalcu-

lated likelihoods (as often produced by neural network based systems) 

-lattice in standard lattice format (SLF) 

• possible outputs: 

-first-best hypothesis (text or SLF) 

-N-best (text or SLF)) 

-lattice in SLF 

-phone-/ state-alignments 

• tree lexicon (possibly > 65536 words) with multiple pronunciations and optio叫
pronunciation scores 

• possible LM  search constraints: 

-arbitrary order N-gram language models 

-word-pair grammar (with scores) 

-word-graph in SLF 
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-word transcription (for forced alignment) 

• support for word-within/ cross-word context-dependent acoustic models of 
any context order without needing to change the monophone dictionary 

• optional disk-based LM  to save memory 

• efficient L M  lookahead (unigram-smearing or on-demand N-gram smearing) to 
incorporate LM scores in tree lex.icon as early as possible 

• optional use of fast-match models to speed up search 

A third goal is the realization of the search in a single left-to-right pass, using all 

available search constraints as early as possible. This reduces overall complex.ity of the 
search process, is conceptually attractive and is essential for on-line systems. Being able 

to run the search in one pass of course doesn't imply that it has to be run in one pass. 

In many cases, especially in a research environment, it often turns out that multi-pass 
strategies are more time-efficient for finding optimal solutions. 

1.3 Techmcal Introduct10n 

Speech recognition relies on the framework of statistical pattern recognition (Bishop, 
1995), (Duda & Hart, 1973), (Huang, Ariki & Jack, 1990), which has been shown to 
work well in practice. The goal for the search engine is to且ndthe word sequence 

W=叫，w2,... , WM  with the highest probability among all possible word sequences W, 

which is conditioned on a feature vector sequence X = xぃx2,... ,Xt-1,xr. Every word 
of the dictionary (see 1.3.1 for definition of terms), is usually mapped to a sequence of 
Hidden Markov Models (HMMs) (Huang et al, 1990), which themselves consist of states q, 

such that every word is equivalent to a Markov state sequence Q = qい卯，• • • l qt-1, qr・

Using Bayes'rule P(BIA.) = P(A.IB)P(B)/ P(A.) and the product rule of probability 
P(A, B) = P(A)P(BIA) the conditional sequence probability P(WIX) can be broken 
down to three terms and simplified as: 

W = argmaxP(WIX) (1) 
w 

= argmax P(XIW)・P(W) (2) 
w 

= argm邸 ~P(XIW,Q)·P(W,Q) (3) 
w Q 

~argmax L P(XJQ)・P(W, Q) (4) 
w Q 

~argmax MAX P(XIQ)・P(W, Q) (5) 
w Q 

= argmaxMAXP(XJQ)・P(W)・P(QJW) (6) 
w Q 

= argrn邸 MAXP(XIQ)・P(W)・P(Q) (7) 
W QEQW 

Several assumptions have been made in this derivation: a) The likelihood of the feature 

vector sequence given the state and the word sequence is equal to the likelihood of the 

feature vector sequence given only the state sequence, P(X!W, Q) = P(XIQ). This implies 
that all acoustic information is captured by the state sequence and is independent of the 
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actually uttered words. b) The sum over all possible state sequences for a particular word 

sequence is approximated by the single best state sequence, which is termed the Viterbi 

approximation~This assumption in-general doesn't effect the result out greatly simplifies 
the actual search and makes it possible to speak of state alignments and actual word 

boundaries (which would be fuzzy, if this assumption wouldn't be used). 

The remaining three expressions stand for: 

a) The observation likelihood 1 

T T 

P(XIQ) = IT P(xtlx1ぷ 2,... ,Xt-1,q『)~ITP(x晶）， (8)
t==l t=l 

which is generally modeled by a continuous density Gaussian mixture model or by a 

neural network. The evaluation of P(xt加） during the search usually takes a great 

percentage (typically 40-80 %) (Beyerlein & Ullrich, 1995) of the actual search time, 

so effort has to be made to reduce the number of likelihood calculations as much as 
possible. 

b) The transition probability of the state sequence within words 

T T 

P(Q)=IlP(q叶q1,q2, ・ ・ ・, qt-1)~II P(qtlqt-1), (9) 
t=l t=l 

which is usually approximated by a first order Markov model. 

c) The unconditional probability of the word sequence (language model probability) 

P(W) 廿P(Wmlw1, W2, ... , WM-1) 
m=l 
M 

~IT P(wmlwm-1,Wm-2, ... ,wm-(N-1)), 
m=l 

(10) 

(11) 

which is often appro泣matedby an N-gram; the probability of a word given its N -l 

predecessors. 

In practical systems the search is never based on the raw probability estimates, but 6n 

their logarithms to stay in the given floating point range of current computers. This also 

converts the multiplications in (8), (9) and (10) to simpler additions. It is then usual to 
speak of a score rather than of a probability. 

In practice it is found, that an exact implementation of (7) is often not optimal to 

achieve the best word recognition results. In general acoustic and language models are 

estimated on completely different corpora and many assumptions have to be made to make 

a practical implementation of a speech recognition system possible. To cope with these 

assumptions it is usually useful to weight the LM score against the acoustic score, which 

is often realized by a multiplication of the language model score (log P(W)) by a language 

model scale factor入. Also, there is often a word deletion penalty W DP, which is added 

to the LM score at every word end. A high vV DP encourages word insertions, therefore 

penalizes word deletions. For 111 words in the hypothesis the use of these two heuristic 
parameters can be summarized as: 

LM  score=/¥ -log P(W) +」~1- WDP (12) 

1 throughout this paper there is no distinction made between probability mass and density, usually 
denoted as P and p, respectively, because it is not necessary for discussion of the search 
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1.3.1 Definitions 

Here definitions of terms are collected, which are frequently used in the context of search 

for speech recognition, and also in this paper. 

word: the ASCII sequence defining a word in the conventional sense, for example "car" 

word-ID: a unique identification number or ASCII sequence for any logical word in the 

dictionary (note that homonyms like "arm" (part of body) and "arm" (weapon) 

would have a different word-ID) 

word-ID list: a list of all word-IDs that are used during the search 

(physical) state: smallest units of the acoustic model, which are each characterized by 

a method (function) to calculate its observation likelihood P(xtlq(i)) at any time; in 

typical systems there are between 500 and 30000 different physical states 

(logical) state: smallest unit of an HMM model, is characterized by its observation num-

ber (from the physical state) and its directed connections to other logical states 

(transitions) 

HMM  model: a collection of logical states, typically three to model a phone plus a non-

emitting init and e沿tstate; in a tied-state system different HMM models can share 

several physical states 

phone: smallest modeling unit for a word, represented by a single HMM model; there are 

context-independent phones (monophones) or context-dependent phones (tri phones, 

quintphones etc.) -context-dependent phones that depend on information beyond 

word boundaries are called cross-word models 

pronunciation: a sequence of phones which specify the pronunciation of a word; can 

have a pronunciation weight associated 

recognition unit: a word-ID plus its pronunciation; equal word-IDs with different pro-

nunciations (and vice versa) are different recognition units 

dictionary: a list of recognition units (word-IDs plus pronunciation), optional outputs 

and optional pronunciation weights; three example lines: 

ar皿 1[arm] 0. 234 aa r rnh 

ann_2 [arm] 0. 456 aa r rnh 

armageddon 0.55 aa r rnh ae g ae dd n 

a word-ID can occur several times to account for alternative pronunciations of a 

word 

tree lexicon: internal representation of the pronunciation dictionary; a tree-based col-

lection of all pronunciations in the dictionary as le工icednodes each representing a 

phone (I―IMM model), such that equivalent beginnings of pronunciations are shared 

lexical node: smallest unit of the tree lexicon, representing an HMM model; a node is 

an end-node if a pronunciation ends at it -note that end-nodes are not necessarily 

leaf-nodes of the tree ("arm" and "armagecldon" share the first three phones and 
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"arm" ends within the pronunciation of "armageddon"); equal pronunciations will 

have the same lexical end-node 

acoustic model: collection of HMM models, which allow the computation of P(XIQ) and 
P(Q) for any valid state sequence; is typically based either on continuous density 

Gaussian mixtures, discrete distributions or on neural networks 

language model: the module which allows the computation of 

M 

P(W) = IT P(wm lw1,W2,•-·,wM-1 ) 
m=l 

N-gram: language model which makes the approximation 

M 

P(W)= IT P(wm/Wm-1,Wm-2,・・・,wm-(N-l)), 
m=l 

with N being typically three (trigram) or two (bigram); usually allows the compu-

tation of P(W) for any W using a backoff procedure 

word-pair grammar: language model which makes the approximation 

M 

P(W) = IT P(w叫Wm-I)
m=l 

for a limited set of word-pairs; P(w叫Wm-I)for word-pairs not in the set are zero 

hypothesis: a word sequence including its pronunciation and word start/stop times, 

which is hypothesized by the decoder 

language model state: two hypotheses are in the same LM state, if their tail cannot be 

distinguished by the currently used language model (example: the LM histories "I 
love you" and "I don't love you" where the last two words are in the same LM state 
using a trigram LM) 

first-best hypothesis: the hypothesis with the highest total score 

lattice: a graph made out of arcs and nodes, containing all hypotheses considered during 

the search including all different alignments and pronunciation variants 

standard lattice format (SLF): a lattice format that can be passed around easily be-

tween modules (usually an ASCII string); a useful format is suggested in (Young, 

Jansen, Odell, Ollason & Woodland, 1997) 

node: part of a lattice, that joins partial hypotheses which end at the same time and are 

in the same LM state 

饂 partof a lattice joining two nodes; an arc represents a recognition unit associated 

with at least its acoustic score 

N-best list: the N best hypotheses, which differ by at least one word-ID (different align-

men ts or pronunciations of the same word-ID sequence belong to the same hypothesis 

for this purpose) 
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state/phone alignment: every frame of an utterance labeled with a state number and 

a phone number 

三 onepass means to search once from left to right through the utterance (or from 

right to left) incorporating more of the available knowledge than in the last pass 

full search: exhaustive search over all possibilities given the dictionary and the LM con-

strain ts⇒ in general not feasible 

beam search: at any time point t only partial hypotheses of a score within a beam around 

some best score at that point are kept (Lt >= LBEST,t -beam); heuristic use of 

beams makes any search non-admissible 

admissibility: a search is called admissible if the algorithm guarantees to且ndthe best 

hypothesis 

LM  lookahead: heuristic appro泣mationof the LM scores within words, usually used 

with a tree lexicon 

fast-match: method to quickly find acoustically likely matches for words 

stack: collection of partial word hypotheses 

search error: error that is caused by the search algorithm (usually by too heavy pruning) 

and not by a badly estimated acoustic model or language model 

1.4 Decoder types 

Every decoder implementation is different and a clear distinction between different decoder 

types can often not be made. For this paper, it has been tried to distinguish them by 

their basic search strategy, namely the time-synchronous transition network decode1・s and 

the usually time-asynchronous stack decoders. 

.. 
1.4.1 Trans1t10n network decoders 

The majority of the decoders currently in use are transition network decoders (Alleva, 

1997), (Mmveit, Butzberger, Digalabs, & Weintraub, 1993), (Gauvain, Larnel, Adda, & 

Adda-Decker, 1994), (Ney & Aubert, 1996), (Odell, 1995), (Ravishankar, 1996), (Schwartz 
et al, 1996), (Shimizu, Yamamoto, Masataki, Matsunaga & Sagisaka, 1996), (Soong & 

Huang, 1991) which are based on a transition network of words (as HMM state sequences) 

that incorporates the used language model in its word transitions. In its simple static 

form all word-ends are connected to all word-beginnings via transitions that contain word 

bigram probabilities, such that the whole network can be viewed as a large first-order 

HMM containing thousands of logical states. This makes it possible to use the efficient 

and admissible Viterbi algorithm as well explained in (Rabiner & Juang, 1993, pp. 339-

340) and (Young et al, 1997, pp. 11-13) to search for the optimal state sequence time-
synchronously. Discarding states with a relatively low score at each time t has proven to 

efficiently reduce the amount of needed computation time to find the first-best hypothesis 

at no or little search errors. Pruning of states is often based on a heuristic beam around 

the best state or/ and on a predefined number of states with a high score that remain 

active. 
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It is easy and efficient to use word unigrams and bigrams in such a network, because 

their scores can be incorporated into the transition network before the actual search starts, 

but it doesn't extend automatically to long-span language models (3-grams, 4-grams), 

which are necessary to reduce modeling assumptions and to achieve good performance in 

LVCSR. Long-span LMs are either incorporated through dynamic building of the network 

during the search or through multi-pass rescoring strategies (Schwartz et al, 1996), which 

are often also necessary to construct lattices or true N-best lists. These implementations 

require then a dynamic LM score lookup which is not needed when only unigrams and 

bigrams are used. 

Since transition network decoders are run time-synchronously, meaning the state-space 

evaluation over for t + 1 is done after it was done for t, it is possible to run real on-line 

recognition without any additional delay imposed by the decoding algorithm. 

1.4.2 Stack decoders 

Stack decoders can be defined as decoders that during decoding use some kind of a stack 

of partial sentence hypotheses each consisting of a cert叫nnumber of words. In general 
the partial hypotheses on a stack are expanded by complete words time-synchronously 

using the dictionary to create new parti叫 hypotheseswhich are inserted into other stacks. 

When all stacks except the last (result stack) are empty, the result stack will cont叫nthe 

:fi rst-best hypothesis, the N-best hypotheses or the respective lattices depending on the 

search mode. 

Although in the context of decoders the storage cont叫nerfor partial hypotheses is 

historically c叫ledstack, which should be a Last-In-First-Out buffer (LIFO) given its name, 

it is in practice rather often a simple list or a tree of hypotheses ordered by some kind 

of total score. The total score the hypotheses on the stack(s) are ordered by can be a) 

the partial hypothesis'log-likelihood, b) an estimate of the log-likelihood of the complete 

utterance (A* criterion) (Soong & Huang, 1991), or c) some other score that expresses the 

belief in the parti叫 hypothesis'correctness(Gop叫akrishnan,1995), (Ren叫s& Hochberg, 
1996). 

There are at least two different types of implementations for stack decoders: a) with 

only one stack that contains all partial hypotheses which might have different end-times 

(Paul, 1991), (Paul, 1992) or b) with one stack for each time point, where each stack 

contains only hypotheses ending at that time (Renals & Hochberg, 1996). If there are 

many stacks, the stack expansion can either be time-synchronous (expand stack t before 

expanding stack t + l, which has been termed start-synchronous in (Renals & Hochberg, 
1996) or time-asynchronous (any stack can be expanded next, completely or partially, 

depending on some algorithm to pick a stack that will probably lead to the first-best 

hypothesis (Gopalakrishnan, 1995)). Even when the stack expansion is time-synchronous, 

stack decoders are often said to search time-asynchronously, because the global state 

progression through the utterance is in general not time-synchronous like for transition 

network decoders. 

All stack decoders operate at least on two levels of search: a) the outer level, which 

loops over the stacks (word-level search), and b) the inner level, which loops over time 

and states (or states and time (Robinson & Christie, 1998)) to search for complete words, 

starting from the end-time of the hypothesis to expand, which is called state-level search or 

word-within search. Every time a potential word-end is found during the time-synchronous 

word-within search, its language model score is looked up using the found word plus its 



，
 history using the hypotheses which are to be expanded. Because the dynan1ic LM score 

lookup can take any word history into account, stack decoders can easily make use of 

any kind of N-th order Markov language model and also of non-Markov language models 

like link grammars etc. Especially N-gram models of any order are simple to implement 

(section 2.4), which is one of the major advantages of stack decoders over the transition 

network decoders. 

The decoupling of the language model from the Viterbi search in the state space has 

several other advantages. Because the hypotheses generation is completely independent of 

the word-within search, the word-within search can be realized memory-efficiently without 

the need for token passing or backtrace pointer storage (section 2.1.2). Word lattices can 

be created easily in the first pass at little computational overhead (section 2.2.1). Using a 

similar procedure N-best lists can be created, optionally with all different alignments and 

pronunciation variants in a lattice within each N-best hypothesis, again in the first pass 

(section 2.2.2). LM lookahead procedures depending on the scores of the word history to 

expand are easily integrated as a separate module (section 2.5). 

In stack decoders there are several ways to implement cross-word context-dependent 
acoustic models, which are necessary for good recognition results. A procedure shown 

to be computationally efficient for cross-word models of any context order is discussed 

in section 2.6. This procedure leads naturally to a possible use of fast-match models to 

generate acoustically likely word candidates quickly. In this paper a novel version of using 

a fast-match in a stack decoder is discussed (section 2.7), which avoids some disadvantages 

of earlier implementations. 

Historically stack decoders have often been used for lattice rescoring to integrate higher 

order LMs and to optimize search parameters, often in combination with A* procedures 

(Soong & Huang, 1991). This type and other types of often needed lattice rescoring 

procedures are discussed in section 2.9, which all can be implemented as additions to the 

regular decoder. 

The usage of word-graphs constraining the search using stack decoders is closely related 

to the usage of word-pair grammars and the generation of forced word-alignments (section 

2.8). Detailed phone-and state-alignments, which are not available when, like mentioned 

above, no state-based backtrace pointers are stored, will have to be created on demand. 

This turned out to be particularly easy for the implementation described in this paper 

(section 2.10). 

One disadvantage of stack decoders is the fact that they usually evaluate the state space 

time-asynchronously within a certain range, which makes real online decoding impossible 

-there will be a time lag being equal to the range of the state evaluation. A」thoughin 

practice this time lag is short (less than a second) compared to other time limiting factors 

during a real search and can also be avoided during silences, it might pose a problem in 

systems that must have a human-like response time. 

A second principal disadvantage is that it is not possible to merge logical state theories 

within words, because the word-level search is separate from the word-within search, which 

is discussed in more detail in section 2.1.2. 

2 A MEMORY-EFFICIENT ONE-PASS STACK DECODER 

This section describes the details of a memory-efficient one-pass stack decoder, that is 

based on a multi-stack implementation with one stack per time frame, ヽvhichis equivalent 
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to a one-stack implementation with the stack entries ordered primarily by time and then 

by score. 

2.1 Basic algorithm 

As discussed above, a stack decoder works on two levels of search, the word-level search 

looping over stacks and the state-level search looping over time and logical states. 

2.1.1 Word-level search 

Looping over stacks for the word-level search can be done time-synchronously (start-

synchronously) or time-asynchronously depending on the stack expansion mode. Indepen-

dent of this mode, which is a function of the stacklist (collection of all stacks), the basic 

word-level search, as shown at the end of this section, works as follows: First an initial 

temporary stack stack containing only an initial empty root hypothesis is generated. Then 

all partial hypotheses on the temporary stack stack are extended by one word using the 

state-level search that knows about the stacklist, such that the new partial hypotheses can 

be inserted into the correct stacks. When the current temporary stack is finished, a new 

temporary stack is popped from the stacklist. This can be any of the currently held stacks 

in stacklist, which will be the earliest one in time in case of a synchronous stack expansion, 

and any one of the available ones in case of a asynchronous stack expansion depending on 

the selection criterion. The temporary stack doesn't necessarily have to contain all partial 

hypotheses of the stack in stacklist it was generated from. Again, depending on the selec-

tion criterion, these could be only a subset of that stack. When there are no more stacks 

to be popped, the method finishes with returning the result (first-best, N-best, lattice, 

etc.). An example implementation using pseudo C++ code would be: 

Word-level search: 

｛
 stack = stacklist. GET _INITIAL (hyp. ROOT()) ; 

゜
d

{

 statelevel_search.EXTEND(stack) ; 

stack.FORGET(); 

｝ 

while ((stack = stacklist. POP())) ; 

return(stacklist .RESULT()) ; 

｝
 

2.1.2 State-level (word-within) search 

The search on the state level extends all hypotheses of the passed temporary stack by 

one word using the pronunciation dictionary and inserts all generated new hypotheses 

in the corresponding stacks provided they are in the beam. The search is based on the 

pronunciation dictionary diet which is organized in a tree structure such that equivalent 
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beginnings of pronunciations are shared to save redundant computations. This tree lexicon 

consists of lexical nodes, with each node pointing to its associated HMM and all possible 

recognition units ending at it. The le泣conhas a single root-node that doesn't have an 

HMM associated and defines the beginnings of all words. A node is called active if any 

of its logical HMM states is within the current beam. If a node is active, it carries its 

current time t and the log-likelihoods of all its states in a dynamically allocated chunk of 

memory. This memory is released to be used by other nodes if a node is deactivated. 

During the state-level search, as shown at the end of this section, it is necessary to 

keep a list of all active nodes for the current and the next time slice (alist, alisLnext), 

which are accessed by PUSH and POP operations. These lists contain only pointers to 

the corresponding lexical nodes and have to be ordered by the levels of the tree lexicon, 

such that the nodes closest to the root-node are popped first. This is necessary to insure 

that during actual propagation all states within a node are in the same time slice. 

The state-level search then works as follows: After both active node lists are cleared, 

the non-emitting root-node of the tree le泣conis activated with the score of the best 

hypothesis of the stack to expand. It is then pushed on the current active node list (alist). 
The start time for the word-within search is the end-time of the stack to expand plus one. 

The active nodes are propagated time-synchronously through the tree le泣conuntil 

the end of the utterance T (or some maximum word le~gth) is reached or all nodes fell 
out of the beam and have been deactivated. The active nodes are popped from the 

list and forward-propagated one time step assuming they have been int -1 (FORWARD()). 

Forward propagation involves one Viterbi step within the currently worked on node. Since 

the node cannot be left during that step, it is sufficient to calculate only the new scores 

for every node-internal state without using any back-pointers. Although not containing 

much source code, method (FORWARD ()) will take the largest part of the actual search time 

because the time consuming observation likelihood calculation functions for the physical 

states are called from it. Care should be taken in the loop ordering within FORWARD (), such 

that the expensive likelihood calculation functions are only called when actually needed. 

Also, already calculated likelihoods should be cache・d because in time-asynchronous stack 

decoders they will be used several times even when there are no shared physical states. 

After the forward propagation the upper bound of the score at the current time is 

updated using UPDATE_UPPERBDUND (), if the pruning procedure is based on the beam 

around the best score at any time. It is not necessary when the hypotheses on the stacks 

are not popped depending on their partial log-likelihood as used in (Gopalakrishnan, 1995) 

or (Renals & Hochberg, 1996). 

If any state of the current node is in the beam, it is a possible candidate for causing 

a stack expansion, otherwise it is deactivated. If a node in beam has its non-emitting 

exit-state activated and the node corresponds to a word end, the hypotheses on the tern-

porary stack are expanded by one word (stack.EXTEND()), which involves looping over 

all hypotheses and all recognition units ending at this node, looking up the LM score for 

P(rec_unitlhリp_h,istory),generating the extension if the new partial hypothesis is within 

the current beam, and pushing it on the corresponding stack. Then, only if the e: 対t-state

is active, all successor nodes in the tree lexicon are activated (ACTIVATE_SUCCESSDRS ()), 

which involves copying the e泣t-statescore of the current node into the init-state of the 

successor node, and pushing the node on the active node list for the next time slice (al-

isLnext). Also, any nodes that are in the beam regardless their exit-states have to be 

pushed on this list. 

Note that because of the LM lookahead procedure explained in section 2.5, which leads 
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to an overestimate of scores within words, it is possible to use a lower (tighter) beam at 

word-ends compared to the beam within words. 

Finally, when all nodes of the current time slice are finished, the two active node lists 
are swapped and the time is incremented to be ready for the next time slice. 

A possible state-level search implementation, that was found to be efficient, is: 

State-level search: 

｛
 alist. CLEAR(); 

alist_next. CLEAR(); 

dict.ROOTNODE.ACTIVATE(stack.TOPHYP.SCORE()) ; 

alist. PUSH (diet. ROOTNODE ()) ; 

t = stack. TOPHYP. TIME() + 1; 

while(t < T && alist .NOT_EMPTY()) 

｛ 

ロhile((node = alist. POP()) 

｛ 

FORWARD(node, t); 

UPDATE_UPPERBOUND(node, t); 

if(node.IN_BEAM(t)) 

｛ 

if(node.EXIT_STATE.ACTIVE()) 

｛ 

if(node.IS_WORD_END()) 

stack.EXTEND(node, t-1); 

ACTIVATE_SUCCESSDRS(alist, node, t); 

node.EXIT_STATE.DEACTIVATE(); 

if (node .NO_STATE_ACTIVE()) 

node .DEACTIVATE(); 

｝ 

if(node.ANY_STATE_ACTIVE()) 

alist_next.PUSH(node); 

｝ 

else 

｛ 

node. DEACTIVATE(); 

｝ 

alist.SWAP_WITH(alist_next); 

,
1冨

t++; 
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｝ ｝ ｝ 

As pointed out in section 1.4.2, it is not possible to merge logical states within words 

from a state-level search that started at a different time like it is possible for transition 

network decoders. One obvious technical reason for this is that the status of intermediate 

states during any time of the state-level search is not stored, because it would require 

additional effort, time and memory. Another reason is the explicitly wanted decoupling 

of the state-level search from the LM, which prohibits any logical state merging, because 

the same logical state given only the dictionary will be a different one depending on its 

history, if as LM anything else than a first order Markov model (bigram or unigram) is 

used. 

2.2 Stack module 

The collection of stacks for each time t are accessed by PUSH() and POP() operations 

taking partial hypotheses as arguments. Because they are used frequently and usually 

contain a few to several hundred entries in a typical application, the stacks (or more 

precisely lists as discussed above) have to be set up efficiently. The container types used 

in other decoders are often special tree-structured lists, which are ordered by score and 

limited in the number of entries (Renals & Hochberg, 1995b). Here a different method is 

described which was found to be most efficient and simple to implement. 

Pushing a hypothesis on a stack involves a check whether a hypothesis in the same LM 

state is already on that stack. If yes, the scores of the two hypotheses are compared and 
the better one is inserted into the stack, the other one discarded. In case of an N-gram 

LM the LM state check means to compare the last M AX(N -1, 1) history word-IDs. One 

word has to be compared as a minimum to not violate the at least first order Markov 

assumption for the complete speech model. Although checking for LM state equivalence 

for N-gram LMs can theoretically be done in 0(1) using a hash table with the N -1 

words history as the key, it was found that it is in practice not more efficient than a simple 

non-ordered unlimited list that is searched through linearly up to an average stack size of 

a few hundred hypotheses. Pushing a hypothesis on a stack can also improve the upper 

bound for the score at this time, which has to be checked for. Popping a hypothesis from 

a stack is an 0(1) process, since it doesn't matter in what order the hypotheses in beam 

are extended for the implementation described here. 

The stacks containing mainly pointers to hypotheses can be set up efficiently in a 

ring-buffer if a maximum word length is de且ned,which is necessary for on-line operation. 

2.2.1 Lattice generation 

Lattices, as defined in section 1.3.1, are a convenient form of storage for the hypotheses 

that are considered during the search, and their generation is often necessary for systems 

that need to post-process the recognition output such as for translation engines, informa-

tion retrieval systems, or multi-pass search strategies. Stack decoders can easily generate 

lattices with little computational overhead in the first pass by slightly modifying the LM 

state check procedure. Instead of discarding the hypothesis with the worse score in case of 

LM state equivalence it can be linked into the lattice. A pointer on the best arc back has 



14 2 A MElv10RY-EFFICIENT ONE-PASS STACK DECODER 

to be updated to not loose the best hypothesis for the current LM state and future refer-

ence. Compared to the generation of the first-best hypothesis there is only little overall 

increase in memory for the storage of the additional arcs in the lattices {sectfon 3). 

2.2.2 N-best list generation 

The hypotheses in an N-best list differ by at least one word-ID. This can directly be checked 

for by extending the LM state check procedure to the complete history instead just the 

M AX(N -l, 1) history word-IDs like necessary for obtaining the first-best hypothesis. 

It can be done either exactly by checking each word, or approximately by using a hash 

function for the history. A lattice within the N-best list, refeued to as N-best lattice, 

which includes all possible alignments and pronunciation variants for the same word-ID 

sequence in the possible paths taken backwards from a lattice node, can be produced by 

merging hypotheses instead of replacing them like discussed above for the first-best lattices. 

Compared to the lattice generation this procedure uses only little additional memory for 

the extra nodes of the hypotheses, which are needed because of the increased LM state 

space, and only little additional time as shown in section 3. Since for the generation of 

N-best lists only the LM state check procedure was modified, they can be generated in 

the first pass like lattices. 

2.3 Hypotheses module 

A hypothesis in memory is made out of objects called hyp-nodes and arcs, starting at 

t = 0 from a single root node, and ending in either one end-node (first-best or lattice) 

or in many end-nodes (N-best list, N-best lattice). An example is shown in Fig. 1. Each 

node contains its time and best total score of the hypothesis up to this point. The arcs 

connected to ancestor nodes (parent nodes) are set up as a single linked list starting from 

the current node, which also contains a pointer to the arc belonging to the best hypothesis 

going back from this node. Every node contains also a counter on how many kid-nodes it 

is connected to (how many arcs contain a pointer to the current node), which is necessary 

for efficient memory management of these objects. 

pointer on parent-h~p 
pointer on next arc m list 
pointer on rec-unit 
acoustic score, LM score 

~ pointer on first arc 
pointer on best arc 
total best score 
time 
number of kid-nodes 

TIME 

Fig. 1: Example for the memory-efficient storage format for hypotheses made out of hyp-

nodes (black dots) and arcs (arrows). Shown is a lattice, all arcs but the best are dotted. 

ー

囀

An arc defining a recognition unit with scores will contain at least a pointer on the 

recognition unit in the dictionary, the acoustic score for it, a pointer on its parent hyp-

node, and a pointer to the next arc of the linked lists of arcs (see Fig. 1). 
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Memory management of hyp-nodes and arcs is best set up using linked lists, such that 

getting or forgetting them can be done using simple pointer copying. The usage of OS 

memory management routines can be minimized by allocating blocks of objects if none 

are left in a buffer made out of linked lists of the needed objects. Forgetting a pruned 

hyp-node involves叫soforgetting all linked arcs. Forgetting an arc means also forgetting 

叫1hyp-nodes they point to, if these hyp-nodes have no kid-nodes. If implemented in 

this recursive manner, the total memory for the hypotheses used during the search will be 

approximately proportio叫 tothe active number of hyp-nodes and arcs, which is gener叫ly

between 102 (first-best mode) and 105 (lattice mode) for the average LVCSR application. 

In the implementation described here one hyp-node occupies on average~30 bytes, one 
arc~20 bytes. 

2.4 N-gram module 

The N-gram module is responsible for generating P(wNlw1,w2, ... ,WN-r), the proba-

bility of a word given its N -l words history, which is in general stored in a lookup 

table and might require backing off to lower order N-grams using the appro泣mation

P(WNlw1, W2, ... , WN-1)~Pbackof 1(w1, W2, ... , WN-1)・P(W刈w2,W3, ... , WN-1)-The N-
gram of an average LVCSR system usually occupies the most memory and is accessed on 

average a few hundred to a few thousand times per frame, so it has to be stored in a 

format that is memory-efficient and allows fast access. 

A useful format was found to be the following, which is shown in Fig. 2: For a back-off 

N-gram LM store all n-grams with n = l, 2, ... , N in a table for each n. Each entry in 

a table has a word-ID, its LM probability and back-off probability, and a pointer to the 

beginning of the list of extension word entries in the table holding the (n + 1)-grams. For 
the table with the N-grams the pointers are not necessary, since no higher order (N + 1)-
grams are following. Each part of an entry table holding a particular set of extension 

words is ordered by its word-IDs to allow fast access using a binary search. The number 

of a set of extension words on any level n doesn't have to be stored because it can be 

calculated by subtracting the pointer (on level n -l) on the current set from the next 

pointer (also on level n -l) on the next set. If the next set on level n doesn't happen to 

have any extension words, indicated by a NULL pointer on level n-1, the next non-NULL 

pointer on level n -l has to be searched for, which is usually not more than a few entries 

away. The last entry on any level n has to be treated as a special case -the number of 

extension words has to be calculated as the pointer difference between the entry and the 

entry at the beginning of the next level, if levels are stored consecutively in memory. 

The memory requirements for this N-gram representation are 8 bytes per en try for all 

{n < N}-grams, and 4 bytes for all N-grams, assuming 4-byte pointers, 2-byte word-IDs 

and 1-byte representations for the LM probability and the back-off probability, uniformly 

distributed across their log-scores, which was found to be a sufficient accuracy to not 

cause any errors. Access time for this storage format is of 0(1) for the unigrams and 

of O ((n -l)・l og2 (1り） for the { n > l }-grams using a binary search, with ]{ being the 

average number of words following any n-gram entry. The average access time can be 

slightly improved by caching LM states and their scores in a hash table for all { n > l }-

grams that have been accessed before. This improves average access time to 0(1) for 

already used { n > 1 }-grams, but requires an additional check whether a certain LM state 

is already in the hash table or not. 
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N-grams 

,,·• 

word ID 
••• 1 LM-score, backoff-score 

pointer to {n+l }-gram 

Fig. 2: Storage format for a fast accessible and memory-efficient N-gram, which is used 

in the same form for its disk-based representation. The shadowed region is an example 

for N-grams that would be loaded into memory for the disk-based LM to search for the 

correct entry. 

2.4.1 A disk-based N-gram 

It has been found that for average LVCSR applications most of the entries in an N-gram 
are never actually used and a disk-based representation of the N-gram can limit memory 

requirements to a few hundred kB for N-grams of any size (Ravishankar, 1996). The 

search for the N-gram scores on disk during the search is of course very time-consuming 

and has to be minimized using an efficient caching scheme. An efficient implementation 

was found to be the following: Unigrams are stored in memory and all {n > 1}-grams are 
stored on disk in the exact same format that was used for the representation in memory 

from section 2.4, such that looking up an n-gram can be done using the same algorithm. 

A set of extension words following an n-gram is loaded into temporary memory to run the 

binary search for the correct word-ID in memory and not on disk. Care must be taken 

in making this temporary buffer large enough to definitely include all information that 

is necessary to calculate the number of extension words for any entry within the set of 

extension words. The LM states that have been used once are cached in a memory-based 

hash table to minimize disk access. An alternative to caching only the used LM state is 

to cache all LM states that belong to any set of extension words loaded during the search 

for the required LM state. 

2.5 LM  lookahead 

Most current LVCSR systems use some kind of LM lookahead to approximate the LM 

scores of the possible current LM states within words and use the exact LM scores only at 

word-ends. When a tree lexicon is used, the exact LM state often cannot be known until 

reaching a word-end node. The use of LM lookahead probabilities Plookahead, which belong 

to every node in a tree lexicon, can speed up the search considerably, because nodes with a 

weak LM score can be pruned early. Suppose the LM lookahead probabilities are already 

set, they are used during the search through the tree le; 心conas: 

• vVhen a node is entered, add Plookahead(node) to current total score. 

• ・when a node is left, subtract Plookahead(nocle) from current total score. 
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2.5.1 U nigram smearing 

Unigram smearing (Steinbiss, Tran & Ney, 1994), (Alleva, Huang, Hwang, 1996), (Ort-

manns, Ney & Aubert, 1997) is a commonly used procedure and heuristically sets Plookahead 

for each node in the lexicon is as follows: 

1. Calculate for each word-end node in the lexicon the maximum of all unigram scores of 

the words that end at this word-end node (a set of words denoted as Wword-endnode)-
Note that several words could end at one word-end node because of homonyms and 

multiple pronunciations. 

Plookahead(word-end node)= MAX{P(w)} with WE Wword-endnode 

2. For all non-word-end nodes set Plookahead recursively to the maximum of all child-

nodes. 

Plookahead(non-word-end node) = Jvl AX {Plookahead(child-nodes)} 

Note that unigrarn smearing is independent of the currently extended word hypothesis 

and is therefore a static procedure -it has to be calculated only once which can be done 

in advance. An example is shown in Fig. 3. 

0.4 
trigram language model 

0.4/ "" 0.1 1-。orams: Wl 0.1 

W2 0.2 

W3 0.3 
0.3/ . l 0.4 

I 2-0 arams: 
W4 0.4 

W3 
W戊 3 0.5 
W3W4 0.6 

0.4 / 3-grams: Wz叫 WI 0.7 
W4 

Fig. 3: Example for unigram smearing using a tree-lexicon and a trigram LM, which is 

independent of the hypotheses to extend. 

2.5.2 On-demand N-gram smearing 

On-demand N-gram smearing is a LM lookahead procedure that incOTporates the LM 

state constraints of the currently extended hypotheses including their scores (Neukirchen 

& Willet, 1997). This results in better estimates of the real LM probabilities, compared 

to the regular unigram smearing procedure, which leads in turn to more accurate pruning 

and therefore can lead to a faster search. The algorithm works as follows: 

l. Initialize all Plookahead with the unigrarn smearing procedure shown above before the 

search starts. 

2. Calculate, for each set of word hypotheses H; to expand, the maximum N-gram 

probability P(w[Hりofall existent N-gram entries (Hi, w) in the language model ex-

eluding the unigrams, because they were already set during the unigram initialization 
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(step 1). Identify the corresponding word-end nodes belonging to w (which could 

be several because of homonyms and multiple pronunciations) and set Plookahead to 
them邸 imu:in-oftlie ca1cul互ted-prooabil埒 aiia-tne11-n返ra:面―Pl;o知~-h~~d prob誌 iiity

already set. 

Plookahead(word-end node) = MA.X {P(wlHi)} V Hi 

and V w E {(Hi,w) existent in N-gram} 

To use not only the LM states but also the relative scores of the current hypothesis to 
the best hypothesis in the current set to extend use M A.X { P(wl Hi)}-score(Htop) + 
score(Hi) instead of M A.X { P(叫H暑

3. For all non-word-end nodes set Plookahead to the maximum of all child-nodes. 

Plookahead(non-word-end node) = M A.X {Plookahead(child-nodes)} 

Note that this procedure has to be invoked each time a new set of word hypotheses 

is extended, which cannot be done in advance like for unigram smearing. In spite of the 

additional computation the more accurate LM probabilities lead to more accurate pruning 
which can lead to a speed-up of the whole search. An example for this procedure is shown 

in Fig. 4, which should be compared to Fig. 3 illustrating the unigram smearing procedure. 

0.7 
trigram language model hypotheses to extend 

0.7 l-こ0っrams: 0.1 1)四 W1W2W3WI 

0.2 10.7 W2 0.2 2)児 W4
W2 叫 W3 0.3 3)陀 WJ叫 W3

0.3/ '10.6 W4 0.4 
W3 

2-grams: W戊 3 0.5 0.6 
W3W4 0.6 

0.3/ "'0.6 I 3-grams: Wz附 WI 0.7 
W2 W4 
W3 

Fig. 4: Example of on-demand N-gram smearing using a tree-lexicon and a trigram LM 
using the constraints from the hypotheses to extend. 

Results from experiments showing the impact of on-demand N-gram smearing com-

pared to unigram smearing are shown in section 3. 

2.6 Cross-word models 

Cross-word models are context-dependent acoustic models that go over word boundaries. 

Their use in any decoder is complicated and time consuming. Various implementations 

have been described (Bahl, de Souza, Gopalakrishnan, N ahamoo & Picheny, 1993), (Alleva, 

1997), which are in the case of transition network decoders often limited to cross-word 

triphones. vVhether cross-word modeling is really necessary or not depends heavily on the 

speaking style and on the definition of a word in the language to be recognized, and is 

more likely to make a difference when there is no pause at word boundaries. In this paper 
it is shown that cross-word modeling is essential for recognition of read newspaper articles 

in Japanese (section 3). 
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A procedure to deal with cross-word models of any order (triphones, quintphones, etc.) 

incorporating cross-word effects in a delayed manner was found to be very e缶cientin time 

and memory requirements, and is especially well suited for a stack decoder: 

• Run the state-level search for any set of hypotheses to expand with only word-internal 
context-dependent models. 

• When popping the hypotheses from a stack to expand, realign the last M words using 
cross-word models at the word boundaries before entering the state-level search to 

恥 dthe extension words. 

• Because cross-word effects are incorporated with a one-word delay, it is also necessary 

to realign the last M words for all hypotheses on the final result stack. 

This procedure as illustrated in Fig. 5 incorporates all cross-word effects within the last 

M words, and is optimal for cross-word triphones with M = 2 for most cases and possibly 
J'vf = 3, if the word before the last word is a one-phone word. To capture all cross-word 

effects with quintphones theoretically J'vf = 5 is necessary, if all words in the dictionary 

would be one-phone words. 

TIME 

01 10 

STACK TO EXP AND 

Fig. 5: Visualization of the method to incorporate cross-word models of any context order. 

Circles denote hyp-nodes, filled circles are the word boundaries that are corrected by the 

procedure using cross-word models before the stack (box) is expanded. In this example 

only two words are realigned, but there could be more like discussed in the text. The same 

method is used for the fast-match to rescore acoustically likely word candidates (section 

2.7). 

The realignment for each hypothesis to extend is in detail done as follows: Take the last 

M words and fii1d the correct (cross-word) HMMs for each phone at the word boundaries 

which don't already cover the m釦dmumavailable context given the acoustic model set. 

Use a local Viterbi search to find M new acoustic scores and possibly M -1 new word 

boundaries. Generate M new arcs and JW -1 new hyp-nodes and replace the old hypothesis 

end-hyp-node by the new one. 

The correct cross-word HMM model is defined as the model which covers the most 

context around the current center-phone. This definition is also used for finding the correct 

context-dependent HMM within words during construction of the tree le幻concontaining 

context-dependent models given only a monophone pronunciation dictionary. 

Compared to the procedure described in (Bahl et al, 1993), which locally rescores every 
word that is found during the state-level search, the method described here rescores only 

words that have been found to be considerably likely being part of stacks to expand. The 
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average number of hypotheses to expand per frame is in general between five and one-

hundred and cross-word rescoring is only applied to _those _f~w. _This requires only very 
little temporary memory and is fast, because of the low number of hypotheses and because 

of the fact that most of the states to be evaluated during rescoring for their observation 

likelihood are already in cache. 

A potential drawback of this method is that because cross-word effects are incorporated 

delayed, scores might vary more during the lookahead, which might require larger beams 

than if this delay wouldn't be used. 

2.7 Fast-match with delay 

The method to handle arbitrary cross-word effects from section 2.6 is easily extended 

to allow an efficient acoustic fast-match with a one-word delay, which in a similar form 

without delay is described in (Bahl et al, 1992), (Gopalaki-.ishnan & Bahl, 1996). The 

basic idea of a fast-match in a stack decoder is to use simple acoustic models to find 

possible extension words, and rescore them locally with better, but computationally more 

expensive models. This avoids the use of expensive models for the initial state-level search 

and can speed up the complete search substantially. 

The fast-match procedure described here (see Fig. 5) keeps the use of the expensive 

models at a minimum and is almost identical with the method to incorporate cross-word 

models. Instead of using word-within context-dependent (CD) models for the state-level 

search, simple monophones with a low number of Gaussians per mixture or small neural-

network based models are used in a context-independent tree-lexicon, and the found words 

are inserted in the corresponding stacks. Rescoring of the last M words including all cross-

word effects is done later using the accurate, but expensive CD models, but only when a 

stack is expanded, such that many of the previously found words will be out of the beam. 

The difference to the cross-word procedure from section 2.6 is, that all phones of the last 

M words have to be mapped to their correct CD HMM model, and not only the ones at 

the word boundaries. As described above, this can be interpreted as local rescoring with 

a one-word delay, which limits the number of necessary rescoring turns per frame to less 

than ten to one-hundred for most applications, and requires very little additional memory. 

2.8 Using word-graphs as language model constraints 

For some applications it is necessary to constrain the search by a finite state grammar, 

a word-graph or a word-pair grammar, possibly with transition scores. This can be done 

efficiently in a stack decoder by activating only the pronunciation paths in the tree lex.icon 

that correspond to possible word extensions of the hypotheses to expand. This has to 

be done on demand before entering the state-level search every time a stack is expanded. 

The state-level search will only consider the limited number of activated paths which will 

speed up the search substantially (section 3). 

The generation of forced word alignments can be interpreted as a search constrained by 

an extremely simple word-graph consisting of the transcription of word-IDS, which might 

have several pronunciation variants. 
ー

箪

2.9 Latt・ ice resconng 

There are two types of often needed lattice rescoring procedures: 
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I) Use a given word-graph plus the word alignments and the acoustic scores, and change 

only the LM (often a higher order N-gram) or/and change LM parameters (LM scale 
and word deletion penalty). 

II) Use only a given word-graph ignoring alignments and acoustic scores to constrain 
the search -use new acoustic models and a new LM. This has been described in 

section 2.8. 

Type I is often done using A* procedures in a separate search module, because the exis-

tence of the complete word-graph with scores allows an efficient estimate of score of the 

remainder, which is necessary for any A* procedure (Nilsson, 1971), (Soong & Huang, 
1991). In this case there is usually one stack, which is ordered by the A* score. For the 

stack decoder implementation with many stacks like it is described here, a simple replace-

ment of the state-level search makes it possible to integrate lattice rescoring of type I 

within the stack decoder framework. Instead of the original state-level search through the 

tree lexicon the possible extension words and their scores for every hypothesis to extend 

are already calculated in the lattice, so they just have to be located and inserted into 

the corresponding stacks. Because all other modules stay the same, implementation is 
simple and all outputs that have been possible before for sequences of feature vectors as 

inputs (first-best, N-best, first-best lattice, N-best lattice), are then possible for lattices 

as inputs. Because the time-consuming state-level search doesn't have to be done, this 

type of lattice rescoring is fast also for large lattices of a few thousand arcs, usually taking 

between 1/100 and 1/10 realtime. Memory requirements are the same as for the regular 
search minus the memory that is needed for the state-level search. 

2.10 Generating phone-/state-alignments 

Because state-level backpointers are not stored, phone-or state-alignments have to be 
created on demand. After a first-best word hypothesis is created, every word is state-

aligned using the same routines which are necessary for the cross-word rescoring from 

section 2.6. For a forced state-alignment the word transcription has to be provided as 

additional input as a word-graph (section 2.8). 

3 EXPERIMENTS 

All experiments were conducted using the described one-pass stack decoder for the recog-

nition of read sentences from a Japanese newspaper using a .5000 word pronunciation 

dictionary with on average 1.5 pronunciations per word. Larger pronunciation dictionar-

ies for Japanese are currently not publically available. The acoustic models are gender-

dependent decision tree state-clustered Gaussian mixture models trained on 20k sentences 

per gender from the ASJ and JNAS database of approx.imately 60 h of speech. Acoustic 

preprocessing is standard 12-dimensional MFCCs plus log energy, with applied cepstrum 

mean subtraction per sentence and first derivatives every 10 ms. A trigram and fourgram 

language model were trained on around 45 million words from the RWC corpus containing 
four years of newspaper articles from the Mainichi Shinbun, a regular daily newspaper in 

Japan. The standard test data are the first ten sentences from the speakers 006, 014, 017, 

021, 026, 089, 102, 11.5, 122 from the JNAS database. All acoustic models, the initial 

language models and the initial pronunciation dictionary have kindly been provided by 

the IPA group (Kawahara et al, 1998), which also defined the test set. 
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3.1 Recognition of Japanese 

Speech recognition of Japanese adds a few problems not occurring in Western languages. 

Japanese has no spaces between words, so the definition of a word for the dictionary is in 

general not obvious, but the databases used here are already subdivided into words, and 

word error rate is calculated using these word definitions. Unfortunately the subdivision in 

words is often ambiguous, which leads to recognition errors (example in English:'awhile' 

recognized as'a''while'and vice versa), that shouldn't be counted as errors in Japanese 

since there are no spaces. Because words are defined by grammatical analysis, there are 

often no pauses between them, which makes it essential to use cross-word models for 

Japanese, if this currently common word definition is used (section 3.5). These errors are 

here referred to as type I errors. 

A second problem is that there are three different alphabets plus the western letters 

in use, which makes it possible to write the same word with the exact same meanings 

and pronunciations using different symbols, a phenomena that occurs in English only for 

numbers. It is correct and common to mix alphabets in sentences and use different spellings 

of the same word (example: there are at least six common ways to spell the Japanese word 

for'I', meaning myself, some of them with the exact same pronunciation). This makes the 

evaluation of Japanese using a word error rate, which is based on word-IDs, more difficult 

than in Western languages, because different word-IDs shouldn't be counted as errors if 

their meanings and pronunciations are exactly the same. These errors are here referred 

to as type II errors. For the experiments of this paper some of the results were cleaned of 

type I and type II errors to show their relevance. 

A third problem specific to decoding is, that because of the many short words and the 

many homonyms the number of found word-ends, which make stack operations and N-gram 

accesses necessary, is higher than for example in English. The many short words resulting 

in on average more word boundaries increase also the need for cross-word modeling. 

3.2 Recognition results for high accuracy 

Table I shows the results, for which the parameter settings in Table II were optimized 

to reach a low word error rate. The acoustic models are monophones with 129 states 

and triphones with 2000 and 3000 states with 16 mixture components each. The experi-

ments of this task were run in two modes, a Katakana mode, where all word-IDs and all 

transcriptions are written only in the Katakana alphabet, and in a Kanfi mode, where 

all word-IDs and transcriptions are written in a mixture of the three alphabets like they 

occur in a regular newspaper. Best recognition results in Kanji recognition mode are 5.2% 

word error rate (WER) for the male speakers using 3000-state models and 4.8% WER for 

the female speakers using 2000-state models, if the results are cleaned from errors that 

shouldn't be counted as errors in Japanese like discussed above. The raw outputs from 

the recognizer are about 15% relative (1% absolute) worse, showing that these errors, 

which are specific to Japanese, shouldn't be neglected. The Katakana results, which hide 

misrecognition of homonyms occurring in Japanese more frequently than for example in 

English, overestimate the score of interest by about 1% absolute on average. 

The parameter settings in Table II show that the word-end-beam can be chosen lower 

than the word-within-beam like discussed in section 2.1.2. The average number of com-

peting HMM model nodes at any time determines to a large extent the overall speed of 

the search and is a suitable measure to compare different implementations of stack de-

coders. Note that because active nodes cannot be merged, this number generally will be 

＼
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Table I: Recognition results for high accuracy 

states x mixtures cross-word MALE FEMALE 

models Kat/Kan Kat/Kan 

129 x 16 (cleaned) no 88.7 /87.5 91.8/90.8 

2000 x 16 (cleaned) yes 95.2/93.3 96.9/95.2 

3000 x 16 (cleaned) yes 96.4/94.8 95.9/94.5 

129 x 16 (not cleaned) no 87.9/86.7 91.0/90.0 
2000 x 16 (not cleaned) yes 94.4/92.6 96.1/94.4 

3000 x 16 (not cleaned) yes 95.6/94.0 95.0/93.6 

The upper part shows results which were cleaned of errors that shouldn't be counted in 

Japanese, the lower results weren't cleaned. All results are given for the Katakana (Kat) 
and the Kanji (Kan) recognition mode as discussed in the text. 

lower in transition network decoders. The stack statistics show that on average about 75% 

of the time the language model state of the hypothesis to be inserted is already on the 
stack, and only 5-10% of the hypotheses remain in the beam to get actually expanded. 

This implies that at least the number of N-gram accesses could be reduced drastically 

by a completely time-synchronous scheme, where word-and state-level s.earch both run 
time-synchronously, which hasn't been tried here. 

The average number of N-gram accesses including all back-offs compared to the number 

of cache accesses within the N-gram module show that many N-grams are used more than 
once and a cache will be very useful in cases where the N-gram access is slow like for a 

disk-based LM. 

Table II: Parameter settings and average search statistics for results from Table I 

129 X 16 2000 X 16 3000 X 16 

word-end-beam 30 50 50 
word-within-beam 40 80 80 

LM-scale 6 11 12 
word-deletion-penalty 

゜ ゜ ゜realtime factor (RTF) 8.4 24 25 

active model nodes/frame 2213 10045 8324 

pushed hyps/frame 1215 1196 1113 

jnserted/replaced hyps/frame 243/972 246/950 211/902 
extended hyps /frame (average stacksize) 41 25 20 

on-demand N-gram smearing no yes yes 

N-gram accesses/frame 27519 21029 18749 

cache accesses /frame 27268 20834 18600 

These results are based on 25-dimensional feature vectors, all log-likelihoods base 10, the 

realtime factor is for 300 Mhz Pentium II and includes observation likelihood calculation. 

All results in this table are averaged over genders. 
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3.3 Recognition results for high speed and low memory 

Table III and Table IV show results and parameter settings for experiments that were 
run to maximize decoding speed at a low (about 1 %) search error and minimize memory 

requirements, with (a) a regular memory-based trigram LM and (b) a disk-based LM. 

Almost realtime performance including all observation likelihood calculations is possible 

with around 90% recognition rate using between 10 and 20 MB of memory. The disk-based 

LM slows down the search by about a factor of three. 

The trigram LM has 5k unigrams, 330k bigrams and 720k trigrams, occupying in total 
about 6 MB of memory using the techniques of 2.4. An N-gram entry occupies on average 

6 bytes, if the complete LM is held in memory, and about 100 kB total for the disk-based 

LM with bigrams and trigrams on disk which are loaded on demand and cached in a hash 

table of limited size. 

Table III: Results for high speed and low memory 

states x mixt. disk- cross-word MALE FEMALE MEMORY RTF 
LM models Kat/Kan Kat/Kan 

129 X 16 no no 87.0/86.0 90.2/89.2 10 MB 1.3 
129 X 16 yes no 87.0/86.0 90.2/89.2 4 MB 3.9 
2000 X 16 no yes 93.3/91.5 95.0/93.8 20 MB ， 
2000 X 16 yes yes 93.3/91.5 95.0/93.8 14 MB 14 

Results with parameter settings optimized for high speed and low memory, not cleaned of 

type I/II errors. Memory and realtime factor are for a 300 MHz Pentium II. 

Table IV: Parameter settings and average search statistics for results from Table III 

129 X 16 2000 X 16 

word-end-beam 20 40 
word-within-beam 30 70 

LM-scale 6 11 
word-deletion-penalty 

゜ ゜active model nodes/frame 685 2993 

pushed hyps/frame 149 408 

inserted/ replaced) hyps / frame 44/10.5 97 /311 
extended hyps /frame (average stacksize) 7.9 12.:3 

on-demand N-gram smearing no yes 

N-gram accesses/frame 2927 8196 
cache accesses/ frame 2882 8114 
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3.4 Time and memory requirements for modules 

The relative time and memory requirements of the different modules are summarized in 

Table V. Most of the time is spent on the likelihood calculation and the state-level search, 

which includes all operations for the active node list. The time for the tree lexicon includes 

activating and deactivating HMM nodes. The cross-word rescoring procedure includes the 

on-demand lookup for the correct cross-word HMM model and the local Viterbi search as 

its most time-consuming parts. The LM state comparison is included in the time listed for 

the stack operations, which is surprisingly low given the simple linear list implementation 

shown in section 2.2. 

Memory requirements are listed for a 5000 word vocabulary with on average 1.5 pro-

nunciations each, giving about 200 bytes/entry. The acoustic model takes most of the 

memory because of its uncompressed 4-byte mean/variance parameters and the cache for 

the likelihood calculation. The hypotheses generation itself takes almost no memory but 

what is needed to represent the currently active hyp-nodes and arcs, which are in the case 

of first-best recognition not more than a few hundred. Similar, the stack module contains 

mainly pointers to hyp-nodes, which also don't use more than a few kB. 

Table V: Relative time and memory requirements for modules 

MODULE RELATIVE TIME MEMORY 

stack 2% ~o 
hyp 1% ~o 

state-level search 33% 0.5 MB 

word-level search 3% ~o 
tree le.xi con 5% 1.4 MB 

N-gram 12% 5.1 MB 

acoustic model 31% 13.0 MB 

cross-word rescoring 11% 

SUM 100% 20 MB 

Relative time and memory requirements split up for modules using the 2000 x 16 acoustic 

model from Table III. 

3.5 Usage of cross-word models 

Given the word definition for Japanese, which was used for this paper, the use of cross-

word models is essential for the recognition of read newspaper sentences, as Table VI 

shows. The additional search time for the local rescoring using cross-word models doesn't 

effect the overall search time at all for this experiment, possibly because of more accurate 

partial hypotheses at any time during the search. 

3.6 Usage of fast-match models 

Table VII shows the effect of using fast-match models to find acoustically likely word 

hypotheses quickly like described in section 2.7. In the case tested here their use required 

fine tuning of several search parameters to make a difference in recognition time. 
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Table VI: Effect of cross-word effects 

CROSS-WORD MODELS I RTF REC-RATE 

yes 

no 

24 

24 
93.5 

87.0 

Recognition of Japanese newspaper articles with and without cross-word 2000x16 mod-

els using the same beam settings, but optimized LM-scales and word-deletion penalties. 

Results are averaged over genders in Kanji recognition mode with search parameters of 

Table II, not cleaned. 

Table VII: Effect of fast-match models 

FAST-MATCH MODELS I RTF REC-RATE 

yes 
no 

7

9

 

92.5 

92.6 

Use of fast-match models to find acoustically likely word hypotheses quickly, averaged 
over genders in Kanji recognition mode with search parameters of Table IV, not cleaned. 

Fast-match models were 3-state monophones with four mixture components each. 

3. 7 Effect of on-demand N-gram smearing 

On-demand N-gram smearing (section 2.5.2) can efficiently reduce the number of active 

model nodes, as Table VIII shows. In the cases tested here the reduction of active nodes 

does not necessarily reduce the search time because of the overhead of the procedure 
that has to be invoked before each stack is expanded. If the likelihood calculation of the 

acoustic models would take longer, this method would have a greater effect on the total 
recognition time. 

Table VIII: Effect of on-demand N-gram smearing 

states x mixt. LM active N-gram RTF REC. 
lookahead models accesses RATE 

129 X 16 unigram 685 2927 1.3 87.6 

129 X 16 N-gram 593 2252 1.9 87.5 
2000 X 16 unigram 2993 8196 10 92.6 

2000 X 16 N-gram 2817 5486 ， 92.6 
Shows the effect of on-demand N-gram smearing versus unigram smearing. Results are 
averaged over genders in Kanji recognition mode with search parameters of Table IV, not 

cleaned. 
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3.8 Lattice/N-best list generation and lattice rescoring 

The results shown in Table IX compare the time and memory requirements for generating 

the first-best hypothesis with the time for generating lattices or N-best lists in the first 
pass. It can be seen that the more complicated LM state check for the N-best lists creates 

only little overhead, and is almost independent of the length of the N-best lists. 

Lattice rescoring as discussed in section 2.9 was tested for the generated lattices for 

both lattice resoring modes. Type I lattice rescoring refers to using only the word-graph as 

an LM constraint, but all alignments, acoustic scores including cross-word effects and LM 

scores are recalculated. For type II lattice rescoring only the LM scores are recalculated, 
which usually includes a new LM scale factor and a new word deletion penalty. 

Table IX: Relative time and memory for different search modes 

SEARCH MODE RTF MEMORY 

first-best (absolut) ， 20 MB 

first-best 100% 100% 
lattice 107% 106% 

N-best list, N = 10 113% 100.4% 
N-best list, N = 50 116% 100.4% 

N-best list, N = 100 117% 100.5% 

lattice rescoring type I 0.1% 77% 
lattice rescoring type II 5.6% 93% 

Relative time and memory (as measured by the UNIX top command) for several search 
modes with beams leading to lattices of about 2500 arcs and 500 hyp-nodes, and an 

average N-best list length of 90 hypotheses, for parameter settings as in Table IV. All 
N-best hypotheses differ by at least one word like defined in section 2.2.2. 

4 CONCLUSIONS 

This paper presented a detailed description of a memory-efficient one-pass stack decoder 

~pplied to recognition of sentences from a Japanese newspaper. The architecture of the 

time-asynchronous stack decoder made it easily possible to integrate lattice and N-best list 

construction as well as arbitrary order N-gram LMs and arbitrary order cross-word context-

dependent acoustic models in a single decoder. Also, various forms of lattice rescoring and 
the generation of forced alignments fits well into the framework of the time-asynchronous 

search technique. Memory requirements at around 1 % search error are between 4 and 20 

MB using the techniques from the paper. 

In summary, it can be concluded, that a time-asynchronous stack decoder is a con-

ceptually attractive framework for integrating many often needed procedures for speech 

recognition tasks. Although very efficient in memory and faster than the decoder men-

tioned in (Kawahara et al, 1998) for the same task, it should be noted that the speed 

of a time-asynchronous stack decoder like implemented here is probably not optimal for 
the specific task of generating a first-best hypothesis or a lattice from a feature vector 

sequence, because the globally time-asynchronous search over the state space results in 
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the generation of many partial hypotheses that are later not expanded. This could be 

avoided by using a time-synchronous stack decoder with multiple trees, which hasn't been 
tried here. 
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