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Chapter 1 

Introduction 

In this report, we present a stochastic language modeling tool which aims at 
retrieving variable-length phrases (multigrams), assuming bigram dependencies 

between them. The phrase retrieval can be intermixed with a phrase cluster-
ing procedure, so that the language data are iteratively structured at both a 
paradigmatic and a syntagmatic level in a fully integrated way. Perplexity re-
sults on ATR travel arrangement data with a bi-multigram model (assuming 
bigram correlations between the phrases) come very close to the trigram scores 

with a reduced number of entries in the language model. Speech recognition 
scores are ranked accordingly. Also the ability of the class version of the model 
to merge semantically related phrases into a common class is illustrated. 

The report is organized in the following way. First we review the field of sta-

tistical language modeling (chapter 2) ; especially we propose a classification to 
characterize and distinguish between some of the most recent works on variable-

length modeling. We then introduce the bimultigram model and we propose a 
training procedure to estimate a probability distribution of the phrases and 
to define a partition of the phr邸 esaccording to an ML criterion (chapter 3). 
We also show how to interpolate class based and non cl邸 sbased bimultigram 

models. Finally, we report on perplexity experiments and on speech recogni-
tion experiments with the bimultigram model and with conventional n-gram 

models, and we show some examples of the classes obtained in our experiments 
(chapter 4). Further details on the estimation of the probability distribution 

of the phr邸 esare given in Appendix A. Also a notice of use of the toolkits 

"bimgramtk" and "interpoltk", which allow, respectively, to train bimultigram 
models, and to interpolate them is given in Appendix B. 
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Chapter 2 

An overview of statistical 

language models 

2.1 The conventional n-gra1n 1nodel 

The most popular statistical language model is the n-gram model, where the 

assumption is made that each word depends on the (n -1) previous words. For 
instance, the 3-gram likelihood of the string "a b c d" is computed as: 

£3-gram(abcd) = p(a I#) p(b I a) p(c I ab) p(d I be) 

The Maximum Likelihood (ML) estimates of the n-gram probabilities are com-
puted as the relative counts of the co-occurrences of the words in a training 
database. Because the size of the training database is necessarily limited, many 

combinations of words cannot be observed, making it very difficult to collect 
reliable statistics. 

One way to improve the robustness of the probability estimates, apart from 
smoothing them, is to reduce the dimensionality of the n-gram probability space 

by assigning the words to equivalence classes. In the class based n-gram model, 
the vocabulary is partitionned into a prespecified number of classes, and the 

likelihood of a sentence is computed by multiplying the transition probabilities 
between the classes to which the words belong, instead of the transition prob-

abilities between the words. The discrimination between the words is usually 

made through the class conditionnal probability of the words. The cl邸 s3-gram 
likelihood of the string "a b c d" is computed as: 

Lc1ass 3-gram(abcd) = p(Cq(a) I#) p(a I Cq(a)) p(Cq(b) I Cq(a)) p(b I Cq(b)) 

p(Cq(c) I Cq(a)Cq(b)) p(c I Cq(c)) 

p(Cq(d) I Cq(b)Cq(c)) p(d I Cq(d)) 

Now, because the words belonging to the same classes are discriminated based 
on a unigram probability only, the class based models are usually not as accurate 

5
 



6CHAPTER 2. AN OVERVIEW OF STATISTICAL LANGUAGE MODELS 

as the word based models. To preserve the advantage of the accuracy of the 
word based model, while still taking benefit of the robustness of the class based 

model, the word and class estimates can be interpolated. A very common way 

is to use linear interpolation and to estimate the interpolation weights so as 

to maximize the likelihood of some held-out data [9]. More details about the 
interpolation of models are given in section 3.5. 

2.2 Models with variable-length dependencies 

2.2.1 Proposal of a Classification 

There is currently an increasing interest in statistical language models, which, 

by contrast with the conventional n-gram models, aim at exploiting word-
dependencies spanning over a variable number of words. Though all these 

models commonly relax the assumption of fixed-length dependency of the con-
ventional n-gram model, they cover a wide variety of modeling assumptions and 
of parameter estimation frameworks. To help characterizing these models, we 
propose to classify them: 

• depending on whether they are gram based or phrase based, 

• depending on whether they are stochastic or deterministic, 

• depending on the criterion they aim at optimizing, and on the optimization 
procedure (especially whether it is a heuristic or not). 

2.2.2 Phrase based versus gram based models 

In a gram based approach, models take into account variable-length depen-

dencies by conditionning the probability of each word with a context of vari-
able length. By contrast, in a phrase-based approach, sentences are structured 

into variable-length phrases and probabilities are assigned to phrases instead of 
words. The probability of each phrase may be conditionned by the preceding 

phrases, just the same way the probability of a word is conditionned by the 
preceding words in a gram based framework. In this report, we use brackets 

to discriminate between p([abc]), which refers to the probability of phrase [abc] 

occurring, and p(abc), the joint probability used in the gram based framework to 
refer to the probability of a, b, and c co-occuring. The main difference between 

the gram based and the phrase based approaches thus essentially lies in the 
fact that they assume different probability spaces. In the gram based approach, 

an event of the space of probability is the occurence of a word, whereas in the 

phrase based approach, an event of the space of probability is the occurence of 
a phrase. In the latter case, the notion of word no longer exists: instead, there 
are phrases which might be 1-word long. One consequence resulting from the 

choice of either a gram based framework, or of a phrase based framework is the 
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following: 
In a gram based framework, the inequality 

p(ab) 2: p(abc) 

always holds, due to the fact that the constraint Lx p(abX) = p(ab) must 
be satisfied in the probability space. In a phrase based framework, a similar 
inequality holds, but for phrases only, not for words. It is always the case that: 

p([ab]) 2'. p([ab][c]) 

since the constraint~(X) p([ab][X]) = p([ab]) must be satisfied over the space 
of probability of the phrases. On the other hand, it may be the case that: 

p([ab]) :::; p([abc]) 

2.2.3 Stochastic versus deterministic models 

Regardless of whether they assume grams or phrases, models can be either 
deterministic or stochastic. In the stochastic approach, the ambiguity on the 
variable-length dependencies underlying a sentence is not solved: all possible 

hypothesis about how the dependencies underly the sentence are assigned a dis-
tinct likelihood value by the model. On the other hand, with a deterministic 

model, only one hypothesis is given a non zero likelihood value. 
In a phrase based framework, non determinism is usually introduced via an 

ambiguity on the parse of the sentence into phrases. In practice, it means that 
even if (abc] is registered as a phrase, the possibility of parsing the string abc 

as (a] (b] (c], (ab] (c], or as (a] (be] still remains, each of the parses being ranked 
according to a likelihood value. By contrast, in a deterministic approach, all 
co-occurences of a, band c would be interpreted as an occurence of phrase (abc]. 

In a gram based framework, non determinism may be introduced via an ambigu-
ity on the length of the context conditionning the current word. These variable 

n-gram models are conveniently represented as stochastic automata, where the 
transition arcs between the states include, in addition to the usual n-gram tran-

sit ions (backoff included), some so-called "escape" or "non-emitting" transitions 
which allow to reduce the size of the context without using backoff. 

2.2.4 Opt・. 1m1zat10n criterion and optim1zat10n procedure 

Since statistical language models are used to help predicting each new word to 
come in a sentence, the parameters of a model are to be estimated so as to 

maximize its predictive capability. The predictive capability is evaluated by the 

perplexity measure, which is a function of the likelihood of the data on which 

it is computed. Therefore, the maximum likelihood (ML) criterion is a "nat-
ural" criterion to estimate the parameters of a language model. For instance, 
in the case of conventional n-grams, the ML estimates of the n-gram distribu-

tion are the relative frequencies of the n-gram counts. However, it is a well 
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knonw fact [25] that the ML criterion is prone to overlearning: optimizing the 
likelihood of some necessarily limited training data does not guarantee that the 
likelihood of any unseen but relevant data is also optimized. 
To deal with this problem in the field of statistical language modeling, various 
criteria have been proposed to replace the ML criterion: the leaving-one-out 
likelihood, the mutual information, the Minimum Description Length, and the 
entropy. 
The use of the ML criterion in a stochastic framework allows EM principled 
optimization procedures, for which convergence towards a (possibly local) opti-
mum is theoretically guaranteed. The other criteria tend to reduce the risk of 
overlearning, but their optimization usually relies on heuristic procedures, like 
for instance greedy algorithms (e.g. word grouping via a greedy algorithm) for 
which convergence and optimality are not theoretically guaranteed. 

2.3 Models with classes of phrases 

Recently, class-phrase based models have gained some attention, but usually 
it assumes a previous classification of the words, be it based on grammatical 
part-of-speech or on data-driven classes. Typically, each word is first assigned a 
word-class label "< Ck >", then variable-length phrases (Ck, C朽…Cゎ]of word-
class labels are retrieved, each of which leads to define a phrase-class label which 
can be denoted as "< [Ck, C杞...c叫>".But in this approach only phrases of 
the same length can be assigned the same phrase-class label. For instance, the 
phrases "thank you for" and "thank you very much for" cannot be assigned the 
same class label. We will show, in chapter 3, that the class based bi-multigram 
model allows to address this limitation by directly clustering phrases instead 
of words. Other works allowing to overcome this limitation are the work just 
published in (21], and also the works combining a (possibly Stochastic) Context 
Free Grammar (SCFG) with the n-gram approach. In these works, the phrases 
usually result from a parse with a (S)CFG, so that they are "context free" 
phrases, and then n-gram probabilities between the phrase are estimated, thus 
introducing a posteriori a context dependency. Also, phrases can be assigned 
a class label based on the non-terminal corresponding to their derivation node. 
It results in a class phrase based model, where variable length phrases may be 
assigned the same class label. The introduction of a (S)CFG has the advantage 
of allowing to model the linguistic structure of the data, but on the other hand 
the derivation of the phrases is not optimized in view of optimizing a criterion 
related to the perplexity of the model, which is usually the goal in statistical 
language modeling. The main difficulty in optimizing the SCFG with respect to 
the n-gram framework is due to the computationnal complexity ; work in that 
direction has been reported in (13]. 
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2.4 Classification of related bibliographical ref-

erences 

In this section, vヽegive pointers on works on statistical language models ex-
ploiting variable-length dependencies which have been recently published. The 
references are characterized based on the classification presented in section 2.2.1. 

Gram-based, deterministic, leaving-one-out likelihood criterion: (20] 

(27] 

Gram-based, deterministic, Minimum Description Length criterion: 
[27) 

Gram-based, stochastic, ML  criterion: [22] [8] 

Gram-based, stochastic, ML  criterion, EM  optimization: [24] 

Phrase-based, deterministic, entropy criterion: [16] [17] 

Phrase-based, deterministic, mutual information criterion: [28] [21] 

Phrase-based, deterministic, leaving-one-out likelihood criterion: [23] 

Phrase-based, stochastic, ML  criterion, EM  optimization: [4] [26] [5] 

Class Phrase-based: [23] [20] 

Class Phrase-based, with classes of variable-length phrases [21] [5] 

Class Phrase-based, combining the use of a (S)CFG: [13) [19) [18) 
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Chapter 3 

The bi-multigram model 

3.1 Introduction 

Using the classification proposed in chapter 2, the multigram model can be 
characterized as a stochastic phrase-based model, the parameters of which are 
estimated according to a likelihood criterion using an EM procedure. The multi-

gram approach was introduced in (l], and in (4] it was used to derive variable-
length phrases under the assumption of independence of the phrases. Various 

ways of theoretically releasing this assumption were given in (6]. More recently, 
experiments with 2-word multigrams embedded in a deterministic variable n-

gram scheme were reported in [26]. 
In section 3.2, we further formulate a model with bigram (more generally n-
gram) dependencies between the phrases, by including a paradigmatic aspect 
which enables the clustering of variable-length phrases. It results in a stochastic 
class-phrase model, which, as shown in section 3.5, can be interpolated with the 

stochastic phrase model, in a similar way to deterministic approaches. 

3.2 Forn1ulation 

In the multigram framework, the assumption is made that sentences result from 
the concatenation of variable-length phr邸 es,called multigrams. The likelihood 

of a sentence is computed by summing the likelihood values of all possible seg-
mentations of the sentence into phr邸 es. The likelihood computation for any 

particular segmentation into phrases depends on the model assumed to describe 

the dependencies between the phrases. We call bi-multigram model the model 
where bigram dependencies are assumed between the phrases. In that case, the 
likelihood of a segmentation is computed by multiplying the transition proba-

bilities between the phrases in this segmentation. For instance, by limiting to 3 
words the maximal length of a phrase, the bi-multigram likelihood of the string 
"a b c d" is・ 

11 



12 CHAPTER 3. THE BI-MULTIGRAM MODEL 

p([a] I#) p([b] I [al) p([c] I [bl) p([d] I [cl) 

p([a] I#) p([b] I [al) p([cd] I [bl) 

p([a] I#) p([bc] I [al) p([d] I [be]) 

こjp([o] I #) p([bcd] I [ o]) 

p([ab] I#) p([c] I [ab]) p([d] I [cl) 

p([ab] I#) p([cd] I [ab]) 

p([abc] I#) p([d] I [abc]) 

More generally, let W denote a string of words, and { S} the set of possible 
segmentations on W. The likelihood of Wis: 

£(W) = I: £(W, S) (3.1) 
SE{S} 

and, assuming万:...gramdependencies between the phrases (in the above example 
冗=2), the likelihood of a segmentation S of W is: 

,C (W, S) = IT p(s(T) I s(T —万十 1)· ・ ・S(T-1)) (3.2) 
T 

with S(7) denoting the phrase of rank (r) in the segmentation S. The model 
is thus fully defined by the set of万:-gram probabilities on the set { s;}; of all 

the phrases which can be formed by combining 1, 2, ... up to n words of the 
vocabulary. 

It is straightforward to define a class version of the model, where the set 

of phrases is partitionned into equivalence classes. Assuming that each phrase 
depends on the preceding phrases via its class only, the likelihood of a seg-

mentation is computed by multiplying the transition probabilities between the 

classes and the class conditionnal probability of each phrase. Assuming again 
bigram dependencies between the classes, and denoting by q a class membership 

function, which specifies for each sequence Si the class Cq(む） it belongs to, the 
likelihood of our exampled sentence "a b c d" is: 
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▽
]
 

p(Cq([al) I#) P([a) I Cq([a])) p(Cq([bl) I Cq((a])) P([b] I Cq((bl)) 
p(Cq((cl) I Cq((bl)) p([c] I Cq((cl)) p(Cq((d]) I Cq([c])) p((d) I Cq((d])) 

p(Cq([al) I#) P([a] I Cq((al)) p(Cq([bl) I Cq((a])) P([b] I Cq((bl)) 
p(Cq([cdl) J Cq([b])) P([cd] J Cq((cd])) 

p(Cq([a]) I#) P([a) I Cq([al)) p(Cq([bc]) J Cq([bcl)) p([a] I Cq((bcl)) 
P(Cq([dl) I Cq([bcl)) p([ d] I Cq([d])) 

p(Cq([al) I#) p([a] I Cq([al)) p(Cq([bcd]) I Cq((a])) p([bcd]I Cq([bcd])) 

p(Cq([abl) J #) P([ab] J Cq([abl)) p(Cq([c]) J Cq((ab])) p([c] I Cq((c])) 
p(Cq([d]) I Cq((cl)) p((d] J Cq((d])) 

p(Cq([ab]) J #) P([ab] I Cq([ab])) p(Cq([cd]) I Cq([abl)) p([cd] J Cq((cd])) 

p(Cq([abc]) J #) p((abc] I Cq([abc])) p(Cq([d]) I Cq([abc])) p([d] J Cq((d])) 

Using the same notation as in equation (3.2), the likelihood of a segmentation 

computed with the class version of the model is: 

,C (W,S) =且 p(Cq(s(,))I Cq(s(,-"n+i))• • • Cq(s(,-i))) p(s(r) I Cq(sぃ）） (3.3) 

Be it in equation (3.2) or (3.3), the likelihood of a corpus is a function of 

the bigram distribution of the phrases and of the class membership function q: 

,C (W) = L£(W, S) = F({ p(sj I s;) };,j , q) (3.4) 
SE{S} 

Indeed, equation (3.2) corresponds to the case where the class membership 

function assigns each phrase to its own singleton class. Besides, the bigram 

distribution of the classes and the class conditionnal distribution used in (3.3) 
can be deduced from { p(sj Is;) }i,j and q. Thus, on the whole, equation (3.4) 
covers both the non class and the class versions of the bi-multigram model. In 

the following section 3.3, we will see that it is convenient to look at the data 

likelihood using equation (3.4), in order to define a training procedure for the 

model. 

3.3 Training procedure 

3.3.1 Overview of the training procedure 

In this section, we define a procedure to train a bi-multigram model (bigram 

dependencies between the phrases) in a way which maximizes its predictive ca-

pability. Since the predictive capability is a function of the data likelihood, 
we adopt the ML criterion as a training criterion. We postpone to section 3.4 

the question of how to accomodate the training procedure, in order to limit the 
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effect of overtraining, which is likely to result from the choice of the ML criterion. 

Based on the formulation given by equation 3.4, the problem of learning 
a bi-multigram model can be stated as the problem of estimating a bigram 
distribution of phrases and of defining a class membership function partitionning 
the set of phrases, in a way which maximizes the training data likelihood: 

{p*(sj Is;) }i,j, q* = argmax F({p(sj Is;) }i,j, q) (3.5) 

For lack of a trivial solution, we propose to solve equation (3.5) using an 
iterative procedure where the likelihood function is alternately optimized, first 
with respect to the bigram distribution of the phrases, and second, with respect 
to the class membership function. The training procedure is thus a 2-step pro--

cess, where iteration (k + 1) consist of: ・ 

Step (1): estimation of the bigram distribution of the phrases 

F({ ik+1)(sj Is;)}, lk)) 2 F({ p(k>(sj Is;)}, lk)) 

Step (2): optimization the class membership function 

F({ p(k+l)(sj I Si)}, q(k+l)) 2'. F({ p(k+l)(sj Is;)}, q(k)) 

Therefore, at the end of iteration (k + 1), the model is characterized by an 
updated bigram distribution of the phrases and by an updated class membership 
function, for which the likelihood is garanteed to be higher than the likelihood 

of iteration (k). 
In the following sections, we give more details about each of the 2 steps above. 

3.3.2 Estimation of the bigram distribution of the phrases 

The estimation of the bigram distribution of the phrases (step (1)) of each 
training iteration) can be addressed as an ML estimation problem from miss-
ing data [7]. The basic idea behind this approach is that the statistics which 
are missing to compute the ML estimates of parameters can be approximated 
by their expected values. Hence, these problems are usually solved by the so-
called EM  procedure: the E stands for the expectation step, during which the 
expected values of the missing statistics are computed, and the M stands for 
the maximization step, during which ML estimates are computed using the ex-
pected values of the missing statistics. 
In the problem at hand, the ML estimate of p(sj Is;) is the ratio of the number 
of occurences of "s; sj" and of the number of occurences of "s;''. But because, 
the segmentation underlying the data is not known, the counts of the phrases 
are missing data. The (k + l)th iteration of the EM procedure in that case can 
be stated as follows: 
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During the E step, the expected counts of the phrases are computed as: 

E[ n(s心）； { ik¥sj I Sj)} and q(k)] = I: n(siSj IS) ,e(k)(s I W) 

{S} 

where n(X IS) is the number of occurences of "X" in the segmentation S, and 
where the conditionnal likelihood of a segmentation ,e(k)(S I W) is computed 

from either equation (3.2) or (3.3) with the model of the previous iteration (i.e. 
with { p(k)(sj I si)} and q(k)). 

During the M step, the ML estimates of the parameters are computed as-

suming that the counts of the sequences equal their expected values: 

p(k+l)(sj Is;) = L{s} n(s筏jIS)匹）(SI W) 

L{s} n(s; IS) ,C(k)(S I W) 
(3.6) 

A less intuitive but more rigorous way of deriving equation (3.6), based on the 
use of an auxiliary function Q, is presented in the appendix A. In practice, the 
algorithm to estimate the bigram distribution of the phrases is not implemented 
by following the EM steps, but with a forward-backward algorithm, (or with 

its Viterbi approximation), so that the complexity of the algorithm is 0(炉T),
with n the maximum size of a sequence and T the number of words in the 

corpus. The principle of the forward-backward algorithm is to re-arrange the 
terms in the numerator and in the denominator of equation 3.6, so that the 

summations are made over the time index of the words in the corpus, instead 
of being made over the set of segmentations. The forward-backward equation 
equivalent to equation 3.6 is given in equation (A.6) of the appendix A. An 

alternative training procedure, consists in approximating the sum over the set 
of segmentation with the term corresponding to the most likely segmentation 
only. In that case, the reestimation equation reduces to: 

p(k+l)(sj Is;) = n(s;Sj I s•(k)) 

n(s; Is•(い）
(3.7) 

with s•(k) = arg max{s} ,e(k)(S I W) being retrieved with a Viterbi algorithm. 

We will refer to this alternative training procedure as the "Viterbi" training, as 
opposed to the "forward-backward" training. 

3.3.3 Opt・. 1m1zat10n of the classification of the phrases 

The optimization of the class membership function (step (2) of each training 
iteration) aims at partitionning the set of phrases in a way maximizing the 

data likelihood, given a known bigrarn distribution of the phrases and given a 

prespecified number of classes. This issue does not differ from the issue of the 

data driven clustering of words, which has been thoroughly studied already in 
the field of statistical language modeling. Therefore, any of the clustering tech-

niques based on a data likelihood criterion which have been proposed for the 
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automatic classification of words applies to our problem. The only difference 
is that candidates to clustering are phrases instead of words, but this does not 
require to modify at all the clustering algorithms. 

In [5], we present a version of the bimultigram model where the classification 
of the phrases is performed with the greedy algorithm proposed by Brown & al. 
in (2]. The algorithm is initialized by assigning each phrase to its own singleton 
class, and by computing the loss in average mutual information when merging 
2 classes for every pair of classes. Each iteration of the clustering algorithm 
then consists in merging the 2 classes for which the loss in mutual information 
is minimal, and in updating the loss values. Iterations are stopped when the 
required number of cl邸 sesis obtained. 
A major drawback of this clustering technique, in the context of the training 
of a bi-multigram model, is that the cl邸 sificationstarts from scratch again at 
step (2) of each iteration, i.e. each time a bigram distribution of the phrases has 
been reestimated. First, it makes the training of the model unnecessarily long, 
since the bigram distribution of the phrases may not have changed so much that 
the classification need to be completely reset. Second, at step (2) of the cluster-
ing algorithm, it was implicitely acknowledged that each new cl邸 smembership 
function q(k+l) was obtained by modifying the previous class membership func-
tion q(k) in a way increasing the likelihood function F({ p{k+1l(s・Is;)}, q(k)). 
This is not the case with Brown's clustering algorithm where q(k+l) is not de-
rived from q(k), but from a partition into singletons. And because this algorithm 
is a heuristic the global optimality of which is not guaranteed, the likelihood 
function computed with the resulting cl邸 smembership function q(k+l) is not 
theoretically bound to be greater than the one computed1 with q(k). 

For the sake of rapidity and to make the likelihood function theoretically 
bound to increase, we have decided to favor a clustering algorithm where it 
is possible to modify an existing classification, instead of having to start from 
scratch every time. This is the case ofthe clustering algorithm proposed in [14] 
and further exposed in [15], and which is the one implemented in the latest bi-
multigram package. The principle of the clustering in [14] is, starting from any 
given classification, to remove each word from its current class and to assign it 
to the class for which the data likelihood is maximal. The algorithm applied at 
step (2) of the bi-multigram learning works邸 follows:

1Though it is in practice叫 ikelyto become lower. 
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-Start with an initial class membership function q(k), 

-Compute the initial train set likelihood, 
-Do until the stopping criterion is met: 
-do for each phrase si having a non zero probability: 

-remove Si from its cl邸 s,
-do for all existing cl邸 sesC: 
-compute the likelihood as if Si was moved to C 

-assign s; to the class with the best likelihood 

-update all the counts 

-end up with a re-opt1mrzed class membership function q (k+l) 

It is thus guaranteed that: 

F({ p(k+l)(Sj I Si)}, q(k+l)) 2 F({ p(k+l)(Sj I Si)}, q(k)) 

The first time the exchange clustering algorithm is applied (k = -1), the 
initial class membership function assigns the Ne most frequent phr邸 esto their 

own singleton class, Ne denoting the number ofrequired classes. The remaining 
phrases are all assigned to an additionnal temporary class from which phrases 
can be removed only (not assigned). Thus, after all phrases have been exam-

ined once, the temporary class has been emptied and there remains exactly八「c
classes. The clustering iterations are then applied till either the number of class 
exchanges becomes zero, or after a prespecified number of iterations. Fork 2 0, 
the initial class membership function is the one from the previous iteration. 

3.4 Algorithm 

In Table 4.3, we show the overall algorithm implemented in the bimultigram 
package. In addition to the estimation and classification steps explained ear-

lier in this chapter, it includes some precautions required to limit the effect of 
overtraining. These precautions consist in: 

• pruning the inventory of phrases by discarding the least frequent ones: the 
combinations of words occuring less than thrl times are not registered at 
the initialization, and the bigrams made of a phrase occuring less than thr2 
times during the iterations are removed from the bi-multigram inventory 

(except if the 2 phrases are of length 1), 

• maintaining all the bigrams made of 2 phrases which are both of length 1 
word: if the reestimated number of co-occurrences of two phrases which 
are both 1-word-long comes to fall to zero, it is reset to "l". 

3.5 Interpolation of non-class and class based bi-

multigram n1odels 

With a class model, the probabilities of 2 phrases belonging to the same class are 
distinguished only according to their unigram probability. As it is unlikely that 
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-Initialize: 

-register all phrases of 1 up to n words occuring more than thrl times 

in the training data (1-word phrases are registered whatever their count is), 

with their counts: nC0)(s翌j)and n(0)(s;) =~j n(0)(s悶j)l 

-compute p(sj I s;)C0) based on the relative counts, 

-find a partition q(0) with the phrase exchange algorithm, 

and compute the distributions p(0)(Cq(si) I Cq(s;)) and p(0)(sj I Cq(si)) , 

-compute backoff coefficients for the bigram distribution of the classes, 

-set k:=0 

-While the likelihood h邸 notconverged, or while k < kmax, repeat: 

-reestimate n(k+l)(s心） and n(k+l)(s;) = Zj n(k+l)(s心），
based on the forward-backward equation (3.6) or on the Viterbi equation (3.7), 

-Prune: 

while there is a phrases; such that n(k+l)(s;) < th,2: 
-remove all the bigrams with s;, except if it is made of 2 phrases both 
of length 1 word, 

-if the count of a bigram made of 2 phrases of length 1 word has become 
zero, reset the count to "1", 

-for all phrases s update n (k+l) (s) as L・叫+1l(ssj), 

-compute p(k+l)(sj I名） based on n(k+1l(s心） and n(k+1l(s;), 

ー什nda new partition q(k+l) with the phrase exchange algorithm, 

and compute the distributions p(k+l)(Cq(si) I Cq(s,)) and p(k+l)(sj ICい），

-compute backoff coefficients for the bigram distribution of the classes, 

-set k:=k+l 

Table 3.1: Algorithm for the training of a bi-multigram model. 
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this loss of precision be compensated by the improved robustness of the estimates 
of the class distribution, class based models can be expected to deteriorate the 
likelihood of not only train but also test data, with respect to non-class based 

models. However, the performance of non-class models can be enhanced by 
interpolating their estimates with the class estimates. We first recall the way 

linear interpolation is performed with conventional word n-gram models, and 
then we extend it to the c邸 eof our stoch邸 ticphrase-based approach. Usually, 
linear interpolation weights are computed so as to maximize the likelihood of 

cross evaluation data [9]. Denoting by入and(1 —入） the interpolation weights, 
and by p十.the interpolated estimate, it comes for a word bigram model: 

P+(wj I wi) =入 p(wjI w;) + (1一入） p(Cq(w;) I Cq(w,)) p(wj I Cq(wi)) (3.8) 

with入havingbeen iteratively estimated on a cross evaluation corpus Wcross as: 

入(k+l)= 1 

Tcross 
~c(w叫）

炉） p(wj I w;) 

i,j pい(wjI叫
(3.9) 

where Tcross is the number of words in vVcross, and c(WiWj) the number of co-

occurences of the words Wi and Wj in Wcross. 
In the case of a stochastic phrase based model -where the segmentation into 
phrases is not known a priori -the above computation of the interpolation 

weights still applies, however, it has to be embedded in dynamic programming 
to solve the ambiguity on the segmentation: 

1 入(k)p(sj Is;) 
沢+1)=~ 心 sjI s•(k)) (3.10) 

c(S*(k)) i ,j 炉(sjIふ）

where s•(k) the most likely segmentation of Wcross given the current estimates 
心(sjI si) can be retrieved with a Viterbi algorithm, and where c(S*(k)) is the 

number of sequences in the segmentation s•(k). A more accurate, but computa-

tionally more involved solution would be to compute入(k+l)as the expectation 

of芯乙，j c(臼 IS) 
応 p(s・Is,) 

) J (k over the set of segmentat10ns { S} on 
P+ (s; Is,) 

Wcross, using for this purpose a forward-backward algorithm. However in the 
bi-multigraminterpolation package, only the algorithm based on equation (3.10) 
has been implemented. 
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Chapter 4 

Experiments and results 

Most of the results presented below are re-printed from [5], and were obtained 
using a previous version of the bimultigram software. 
Only some of the experiments with the class based bimultigram model, and the 

speech recognition experiments, were obtained with the current bimultigram 
software package. 

4.1 Perplexity experiments 

4.1.1 Evalut10n cntena 

A motivation to learn bigram dependencies between variable length phrases is 
to improve the predictive capability of conventional word bigram models, while 

keeping the number of parameters in the model lower than in the word trigram 
case. The predictive capability is usually evaluated with the perplexity measure: 

pp =  e―'J'logL(W) 

where Tis the number of words in W. The lower PP is, the more accurate the 
prediction of the model is. In the case of a stochastic model, there are actu-

ally 2 perplexity values PP and PP* computed respectively from Zs ,C(W, S) 

and L(W, S*), where S* is the most likely segmentation of W. The difference 
PP* -P Pis always positive or zero, and measures the average degree of ambigu-

ity on a parse S of T,V, or equivalently the loss in terms of prediction accuracy, 
when the sentence likelihood is approximated with the likelihood of the best 

parse, as is done in a speech recognizer. 

In section 4.1.3, we first evaluate the loss (PP* -PP) using the forward-
backward estimation procedure, and then we study the influence of the esti-

mation procedure itself, i.e. equation (3.6) or (3.7), in terms of perplexity and 

model size (number of distinct 2-uplets of phrases in the model). Finally, we 
compare these results with the ones obtained with conventional n-gram models 

(the model size is thus the number of distinct n-uplets of words observed), using 

21 
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for this purpose the CMU-Cambridge toolkit [3]. 

In section 4.1.4, we compare class versions and interpolated versions of the 
bigram, trigram and bi-multigram models, in terms of perplexity values and of 

model size. For bigrams (resp. trigrams) of classes, the size of the model is the 
number of distinct 2-uplets (resp. 3-uplets) of word-classes observed, plus the 
size of the vocabulary. For the class version of the bi-multigrarns, the size of 

the model is the number of distinct 2-uplets of phrase-classes, plus the number 
of distinct phrases maintained. We compare the results obtained with the hier-

archichal clustering algorithm (2] with those obtained with the class exchange 

clustering algorithm (14]. 

In section 4.1.5, we show examples of classes obtained with a model allowing 
phrases of up to 5-words, to illustrate the potential benefit of clustering relatively 

long and variable-length phrases for issues related to language understanding. 

4.1.2 Database 

Perplexity experiments are run on ATR travel arrangement data (see Tab. 4.1). 
This database consists of semi-spontaneous dialogues between a hotel clerk and 
a customer asking for travel/accomodation informations. All hesitation words 

and false starts were mapped to a single marker "*uh*". 

Nb sentences 

Nb tokens 

Vocabulary 二 2詈
29 000 (1 % OOV) 

+ 280 oov 

Table 4.1: ATR Travel Arrangement Data 

4.1.3 Models without classes 

Ti・ain1ng parameters 

Experiments are reported for phrases having at most n = l, 2, 3 or 4 words (for 
n =l, bi-multigrams correspond to conventional bigrams). The bi-multigram 

probabilities are initialized using the relative frequencies of all the 2-uplets of 
phrases observed in the training corpus, and they are reestirnated with 6 itera-

tions. The dictionaries of phrases are pruned by discarding all phr邸 esoccuring 

less than 20 times at initialization, and less than 10 times after each iteration1, 
except for the 1-word phrases which are kept with a number of occurrences set 

1 Using different pruning thresholds values did not dramatically affect the results on our 
data, provided that the threshold at i1i.itialization is in the range 20-40, and that the threshold 
of the iterations is less than 10. 
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to 1. Besides, bi-multigram and n-gram probabilities are smoothed with the 
backoff smoothing technique [10] using Witten-Bell discounting [29]乞

Results 

Ambiguity on a parse (Table 4.2) The difference (PP* -PP) usually 
remains within about 1 point of perplexity, meaning that the average ambiguity 

on a parse is low, so that relying on the single best parse should not decrease 
the accuracy of the prediction very much. 

>;. I ;: I I :d I :: ; I :d 
Table 4.2: Ambiguity on a parse. 

Influence of the estiII1ation procedure (Table 4.3) As far a.s perplexity 
values are concerned, the estimation scheme seems to have very little influence, 

with only a slight advantage in using the forward-backward training. On the 
other hand, the size of the model at the end of the training is about 30% less with 

the forward-backward training: approximately 40 000 versus 60 000, for a same 
test perplexity value. The bi-multigram results tend to indicate that the pruning 

heuristic used to discard phrases does not allow us to fully avoid overtraining, 
since perplexities with n =3, 4 (i.e. dependencies possibly spanning over 6 or 8 
words) are higher than with n =2 (dependencies limited to 4 words). 

Test perplexity values PP* 

n 1 2 3 4 

F.-B. 56.0 45.1 45.4 46.3 

Viterbi 56.0 45.7 45.9 46.2 

Model size 

n 1 2 3 4 

F.-B. 32505 42347 43672 43186 

Viterbi 32505 65141 67258 67295 

Table 4.3: Influence of the estimation procedure: forward-backward (F.-B.) or 
Viterbi. 

Comparison with n-grams (Table 4.4) The lowest bi-multigram perplex-

ity (43.9) is still higher than the trigram score, but it is much closer to the 

2The Witten-Bell discounting was chosen, because it yielded the best perplexity scores 
with conventional n-grams on our test data. 
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trigram value (40.4) than to the bigram one (56.0) 3. The number of entries in 
the bi-multigram model is much less than in the trigram model (45000 versus 

75000), which illustrates the ability of the model to select most relevant phrases. 

Test perplexity values PP 
n (and n) 1 2 3 4 

n-gram 314.2 56.0 40.4 39.8 

bimultigrams 56.0 43.9 44.2 45.0 

Model size 

n (and n) 1 2 3 4 

n-gram 3526 32505 75511 112148 

bimultigrams 32505 42347 43672 43186 

Table 4.4: Comparison with n-grams: Test perplexity values and model size. 

4.1.4 Models with classes 

Training parameters 

The non-class models are the same as in section 4.1.3. The class-phrase models 
are trained with 5 iterations of the algorithm described in section 3.4: each iter-

ation consists in iteratively estimating a phrase distribution with equation (3.6), 
and in clustering the phrases into 300 phrase-classes. The bigrams and trigrams 
of classes are estimated based on 300 word-classes derived with the same clus-
tering algorithm as the one used to cluster the phrases. Like for the phrase 

estimates of the previous section, the class estimates are smoothed with the 
backoff technique using a Witten Bell discounting. Linear interpolation weights 

between the class and non-class models are estimated based on equation (3.9) 
in the case of the bigram or trigram models, and on equation (3.10) in the case 
of the bi-multigram model. 

The training and test data used to train and evaluate the models are the same 
as the ones described in Table 4.1: the models are trained on the train set, 

the interpolation weights on the held-out data and the perplexity values are 
computed on the test set. 

Results obtained with the hierarchichal clustering algorithm [2] (Ta-
ble 4.5) 

We first show results b邸 edon the hierarchichal clustering algorithm proposed 
by Brown & al. [2], which was the clustering algorithm implemented first in 

the original bimultigram software. The perplexity scores obtained with the 
non-class, class and interpolated versions of a bi-multigram model (limiting 

3Besides, the trj臣amscore depends on the discounted scheme: with a lineai・discounting, 
the trigram perplexity on om test data was 48.1. 
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to 2 words the size of a phrase), and of the bigram and trigram models are 
in Table 4.5. Linear interpolation with the class based models allows us to 
improve each model's performance by about 2 points of perplexity: the Viterbi 

perplexity score of the interpolated bi-multigrams (43.5) remains intermediate 

between the bigram (54.7) and trigram (38.6) scores. However in the trigram 
case, the enhancement of the performance is obtained at the expense of a great 

increase of the number of entries in the interpolated model (139256 entries). In 
the bi-multigram case, the augmentation of the model size is much less (63972 
entries). As a result, the interpolated bi-multigram model still has fewer entries 

than the word based trigram model (75511 entries), while its Viterbi perplexity 

score comes even closer to the word trigram score (43.5 versus 40.4). Further 
experiments studying the influence of the threshold values and of the number of 
classes still need to be performed to optimize the performances for all models. 

Test perple立tyvalues PP* 

non-class class interpolated 

bigrams 56.04 66.3 54.7 

bimultigrams 45.1 57.4 43.5 

trigrams 40.4 49.3 38.6 

Model size 

non-class cl邸 S interpolated 

bigrams 32505 20471 52976 

bimultigrams 42347 21625 63972 

t n゚fframs 75511 63745 139256 

Table 4.5: Comparison of cl邸 s-phrasebi-multigrams and of class-word bigrams 

and trigrams: Test perplexity values and model size. 

Results obtained with the phrase exchange algorithm [14] (Table 4.6) 

In Table 4.6, we show the perplexity values obtained with phrases having up 

to either 1, 2, 3, 4 or 5 words, when using the phrase exchange clustering algo— 
rithm [14] implemented in the latest version of the bimultigram package. During 

the classification, only the phrases occuring more than 3 times are clustered ; 

the other phrases are not clustered, but instead they are assigned to a common 
class. 

The use of the phrase exchange clustering algorithm, in addition to being faster, 

allows to improve the perplexity valuesvヽithrespect to the hierarchichal algo— 

rithm: 53.4 instead of 57.4 for phrases of up to 2 words. It is interesting to 

note that the use of classes allows to overcome the overtraining effect observed 

with the non class models: indeed, the best perplexity values are obtained with 
phrases having up to 3 or 4 words, whereas in the case of models without classes, 

the best perplexity values were with phrases of maximum length 2 words. 
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Test perplexity values PP平

二二］悶:悶ltig,amI d I ::i I ::l I ::! I :>[
Table 4.6: Test perplexity values using class based bimultigram models (300 
classes) trained with the phrase exchange algorithm. 

4.1.5 Examples of classes of phrases 

In Table 4. 7, we show a few classes resulting from the training (with the latest 

version of the package) of a model allowing phrases of up to 5 words. It is often 
the case that phrases differing mainly because of a speaker hesitation (all hes-

itations were maaped to the marker "*uh*") are merged together. Clustering 
variable-length phrases may provide a natural way of dealing with some of the 

language disfluencies which characterize spontaneous utterances, like the inser-
tion of hesitation words for instance. 
Table 4.7 also illustrates another motivation for phrase retrieval and clustering, 
apart from word prediction, which is to address issues related to topic identi-

fication, dialogue modeling and language understanding (11]. Indeed, though 
the clustered phrases in our experiments were derived fully blindly, i.e. with 

no semantic/pragmatic information, intra-class phrases often display a strong 
semantic correlation. To make this approach effectively usable for speech under-
standing, constraints derived from semantic or pragmatic knowledge (like speech 

act tag of the utterance for instance) could be placed on the phrase clustering 
process. 

4.2 Speech recognition experiments 

4.2.1 Protocol 

All recognition experiments were performed with the JANUS toolkit, using the 

acoustic models trained by Detlev Koll during his stay at ATR in 1997. In the 
case of the bimultigram model, phrases are limited to 2 words. All the phrases 
in the language model are added as multiword entries to the recognition lexicon, 

with all the possible combinations of the word pronounciation variants. The 2-
gram and 3-gram models are trained with the CMU-Cambridge toolkit using 

the Witten Bell backoff scheme, which is the one also used in the bimultigram 
toolkit4. The train data used to estimate the language models, and the test 

data used to run the speech recognition experiments are shown in Table 4.8. 

4we checked that the performances obtained with the bimgramtk toolkit, by limiting the 
size of a phrase to 1 word, were exactly the saITie as the ones obtained with the 2-gram model 
of the CMU-Cambridge toollit: so that we can reliably assert that there is no performance 
bias due to the use of a clifferent toolkit. 
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{ thank+you+very+much, thank+you+for+calling , thanks+a+lot } 
{ hello , hi , good+afternoon , good+morning , hello+this+is+the 

good+evening } 
{ and+*uh* , but+*uh* , *uh*+but , *uh*+and , around+noon } 
{ yes+*uh* , yeah , *uh*+yes+*uh* , *uh*+actually , *uh*+yeah } 
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{ yes+that's+right , you're+welcome, yes+that's+correct , hello+front+desk , 
yes+please, all+right+sir, you're+very+welcome, yes+that's+fine, yes+i+do 
, *uh*+yes+please , i+see+sir , congratulations } 
{ okay+*uh* , i+see+*uh* , *uh*+then , *uh*+i+see+*uh* , i+see+well } 
{ i+understand , let's+see , let+me+see , i+understand+*uh* , *uh*+so , 
that+sounds+good , *uh*+let's+see , understood , dear } 
{ all+right+then , i+see+then , okay+so , all+right+so , okay+then , i+see+so 
, *uh*+in+that+case , well十then}
{ how+much , what+time , how+long , and十what+time, *uh*+how+much , 
lastly } 
{ waiting, calling , expecting, looking+forward+to, in+a+hurry , awaiting , 
causmg} 
{ like , prefer , like+to+have , love , hate } 
{ could+you+tell+me, do+you+know, can+you十tell+me,i'd+like+to+know 
, i+don't+know , finally , hostels } 
{ tell+me , give+me , give , tell , explain , mention , write , spell , calculate , 
allow , consider } 
{ i'd+like+to , can+i , would+you+like+to , i+would+like+to , can+we , 
should+i , we'd+like+to , shall+i , did+you , and+you+can , *uh*+can+i , 
you+have+to } 
{o'clock, p.m. , a.m. , o+two, o+six, years+old, o'clock+tomorrow+morning 
, o'clock+in+the+morning , kilometer } 
{ a+reservation, your+reservation, a+room, a+twin+room, a+single+room, 
a+double+room , the+reservation , an+interpreter, that+one , a+baby+sitter 
, two+tickets , another+room , photographers , accommodations , ohps , prepa-
ratrons } 
{ make+a+reservation , stay , pay , check+in , get+there , make+it , work , 
make+the+reservation , sleep , play , return+the+car , go+there , help+me } 
{ thirty+minutes , an+hour , fifteen+minutes , five+minutes , ten+minutes , 
ten+thousand+yen , one+hour , two+hours , fifty+dollars , about+an+hour , 
a+week , one+day , chinatown , membership , lodging } 
{ costs , up+to , it+costs , it+takes , it+will+be , under , we+charge } 
{ we+have , there+is , there's , there+are , do+you+have , is十there, 
there+is+a , we+do+have , do+you+have+any , there+will+be , we+have+a 
, it's+a , is+there+a , there's+a , is+there+any , are+there+any , there'll+be 
, *uh*+we+have , there+is+no , there're , you+can+enjoy } 
{ immediately , right+away , later , as十soon+as+possible, for十that
free+of+charge , anytime , to+my+room , with+that , easily , shortly } 
{ ms. 十suzuki, mr. 十phillips, ms.+tanaka , mr. 十suzuki, ms.+phillips } 
{ i'm+sorry , oh , excuse+me } 

Table 4.7: Example of classes of phrases, with a model allowing up to 5-word 
phrases (clusters are delimited with curly brackets) 
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Train test 

Nb sentences 21,586 173 

Nb tokens 277,560 2,101 

Table 4.8: Data used to train the LMs, and test data used for the speech 
recognition experiments 

4.2.2 Recognition results 

The word accuracy obtained with the bimultigrams (cf. Table 4.2.2) is inter-
mediate between the performance of the 2-grams and of the 3-grams, as could 
be expected from the ranking of the perplexity values (note that the perplex-
ity values in Table 4.2.2 are computed on the test set on which recognition is 
performed; this test set is smaller than the one used in section 4.1, so that the 
values are quite different). 

PP* %WA 

2-gram 35.2 78.9 

bimultigram 21.8 81.8 

3-gram 20.0 83.7 

Table 4.9: Bimultigrams versus conventional 2-grams and 3-grams 

We believe that one major weakness of our speech recognition experiments 
with phrase based language models lies in the way the phrases are added to the 
recognition lexicon. Currently, each phrase is associated with all the pronoun-
ciations which can be obtained by combining the pronounciation variants of the 
words in the phrase. This has for effect to considerably and unnecessarily in-
crease the size of the recognition lexicon. On the other hand, the phrases could 
be used to help reducing the confusability between the lexicon entries. Indeed, 
the benefit of using phrases could be enhanced by taking advantage of the fact 
that the integration of a word in a phrase constrains its pronounciation. When 
adding phrases to the lexicon, pronounciation rules could be applied to limit 
the number of possible variant pronounciations for each word in the phr邸 e,de-
pending on the phrase where it occurs. In addition to reducing the confusability 
between the words, this would fasten the recognition process by reducing the 

number of hypothesis it has to keep track of 

In Table 4.10, we show recognition results obtained with either the CMU-
Cambridge toolkit [3] or the CLAUSI toolkit used within the JANUS system. 
While the CMU-Cambridge toolkit uses a conventional backoff [10] based on 
the Witten Bell discounting [29], the CLAUSI toolkit computes the backoff 
distribution following the method proposed by Kneser & al. in [12], and it is 
based on an absolute discounting. From Table 4.10, it can be seen that better 
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pp %WA 

CMU 2-grarn 35.2 78.9 

CLAUSI 2-gram 34.0 80.3 

CMU 3-gram 20.0 83.7 

CLAUSI 3-gram 
Kneser&Ney backoff 1s.9 I 84.6 
CLAUSI 3-gram 
without 19.3 I 83.3 

Table 4.10: Perplexity values and word accuracies on the test set 

scores can be obtained with the CLAUSI toolkit than with the CMU-Cambridge 

toolkit. However, if the Kneser's backoff of the CLAUSI toolkit is disabled 
(whith still an absolute discounting), then the score of the CLAUSI toolkit falls 
below the score of the CMU-Cambridge toolkit. This stresses the influence of the 

backoff strategy on the speech recognition performances, the Kneser's backoff 
outperforming conventional backoff, and, in the case of conventional backoff, 
the Witten Bell discounting 5 outperforming athe other discounting schemes, 

on our data. 

5 Actually, the Kneser's backoff and the Witten Bell出scountinghave tli.is in con1n1on that 
they tend to discount more the probabilities of the words observed in many出fferentcontexts 
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Chapter 5 

Conclusion and 

perspectives 

In this report, we have presented a stochastic class phrase based model for sta-

tistical language modeling. vVe have proposed a training algorithm based on an 

ML criterion, which allows to integrate the estimation of the probability dis-

tribution of the phrases with the classification of the phrases, in a way which 

guarantees the convergence of the likelihood. One originality of this work with 

respect to other current works on class phrase based models is the possibility 

to assign common labels to phrases having a different length. Experiments on 

a task oriented corpus have shown that structuring sentences into phrases re-

sults in large reductions in the bigram perplexity value, while still keeping the 

number of entries in the language model much lower than in a trigram model, 

especially when these models are interpolated with class based models. 

Possible directions to improve this work are the following: 

• work on better strategies than the add hoc pruning presented in this re-
port, in order to reduce the over-learning problem observed for long se-

quences; this might require to accomodate the training process to other 

optimization criteria (leaving-one-out criterion for example). 

• integrate the model within a 3-gram framework, instead of a 2-gram 

framework, in order to improve the performances of conventional 3-grams: 

in [21], work on a phrase based model is reported, where it is shown that 

the phrase based model with bigram dependencies allows, like in our work, 

to greatly improve the conventional 2-grams, while still being less perfor-

mant than the conventional 3-grams. However they show that the integra-

tion of the phrase based model in a 3-gram framework allows to slightly 

outperform the conventional 3-grams. 

• solve the problem of the hi~h combinatorial complexity of the model. This 
would also allow us to use 1t for very large vocabularies, and also is prob-

31 



32 CHAPTER 5. CONCLUSION AND PERSPECTIVES 

ably a pre-requirement before it can be efficiently used in a 3-gram frame-
work. Solutions to reduce the combinatorial complexity might be to a 

priori prune the set of phrases, possibly by using some linguistic knowl-
edge like the part-of-speech for some words, or to perform a partial word 

clustering, …etc. Implementation aspects are also involved in this issue. 

• integrate a partial word clustering, especially for the words which are 

proper names. For instance, the class" { kyoto+station; grand+central+station 

; osaka+airport ; …}" could b e re-written as " { city工 ame+stat10n; 

grand+central+station ; cityュiame+airport; …}", which would improve 
the generalization capability of the model. 

• optimize the number of distinct classes 

• explore the potentialities of the classes of phrases in the area of lan-
guage understanding ; this might require to place semantic/pragmatic 
constraints on the clustering process. 

T
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Appendix A 

Estimation of the 

probability distribution of 

the phrases 

A.1 Derivation of the reestin1ation equation 

To derive the reestimation eq叫 ionof the probability distribution of the phrases 

in this section, we assume可-gramcorrelations between the phrases, and we note 
n the maximal length of a phrase. Let W denote a string of words, and {S} the 

set of possible segmentations on W. The likelihood of Wis: 

L(W) = I: £(W, S) (A.l) 

5E{5} 

and the likelihood of a segmentation S of W is: 

£(W,S) =且 p(s(r)I S(r-万十 1)• ・ ・S(r-1)) (A.2) 

with s(-r) denoting the phrase of rank (r) in the segmentation S. The model 

is thus fully defined by the set of万-gramprobabilities on the set { Si }i of all 
the phrases which can be formed by combining 1, 2, ... up to n words of the 

vocabulary. 

Maximum likelihood (ML) estimates of these probabilities can be obtained 

by formulating the estimation problem as a ML estimation from incomplete data 

[7), where the unknown data is the underlying segmentation S. Let Q(k, k + l) 
be the following auxiliary function computed with the likelihoods of iterations 

k and k + l : 

Q(k, k + l) = L四）(SI W) log,C(k+1l(w, S) (A.3) 

SE{S} 
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It has been shown in [7] that if Q(k, k + l) 2 Q(k, k), then匹 +1l(W)2 
匹）(W). Therefore the reestimation equation of p(sin: I s;, ... s; た 1),at itera— 

tion (k+ 1), can be derived by maximizing Q(k, k+ 1) over the set of parameters 
of iteration (k + l), under the set of constraints L s,n p(s;n ¥Si, ... Sin: —,) = 1, 

hence: 

(k+l)(I 
LsE{S} c(sら・..Sin: ー,Sin, S) X匹）(SI W) 

p Sin Si1 ... Si戸,)= ""' 
SE{S} c(si, ... sin:_,, S) x ..、

(A.4) 
where c(s;, ... s;n, S) is the number of occurences of the combination of phrases 
si, ... Sin in the segmentation S. Since each iteration improves the model in the 

sense of increasing the likelihood ;:,(k)(W), it eventually converges to a critical 
point (possibly a local maximum). 

Reestimation equation (A.4) can be implemented by means of a forward-
backward algorithm ; the forward-backward algorithm of the bimultigram model 
万=2 is explained in section A.2. In a decision-oriented scheme, the reestimation 
equation reduces to: 

p(k+ll(s;" I Si1 ... s土 J= 
c(s;1 ... Sin: —1 Si,;-, ~~(、k))
c(s;1 ... s;-;;:_1, 

(A.5) 

where s•(k), the segmentation maximizing匹）(S I W), is retrieved with a 

Viterbi algorithm. 

A.2 Forward-backward algoritlun 

In the case of a bimultigram model (万=2) equation (A.4) can be implemented 
at a complexity of 0(足T),with n the maximal length of a sequence and T the 
number of words in the corpus, using a forward-backward algorithm. Basically, 
it consists in re-arranging the order of the summations of the numerator and 
denominator of equation (A.4): the likelihood values of all the segmentations 
where sequence Sj occurs after sequence Si, with sequences; ending at the word 
at rank (t), are summed up first; and then the summation is completed by 
summing over t. The cumulated likelihood of all the segmentations where Sj 
follows Si, and Si ends at (t), can be directly computed as a product of a forward 
and of a backward variable. The forward variable represents the likelihood of 
the first t words, where the last Ii words are constrained to form a sequence: 

o,(t, Ii) =£(~ 雷i,)(wg21,+1)D 

The backward variable represents the conditional likelihood of the last (T -t) 

words, knowing that they are preceded by the sequence [w(tーら+1)…W(t)]:

叩方） =£(W(~~ 十¥lI[~ 閏し+1)D
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Model without classes: Assuming that the likelihood of a parse is com-
puted according to equation (3.2), then the reestirnation equation (A.4) can be 
rewritten邸：

pCk+ll(sj is;) = 
L『:1a(t, l;) p(k)(sj js;) j](t + lj, lj) b;(t -l; + 1)も(t+ 1) 

Lt a(t, l;) j](t, l;)ふ(t-l;+l)
(A.6) 

where/; and lj refer respectively to the lengths of the sequences s; and Sj, and 
where the Kronecker function Ok (t) equals 1 if the word sequence starting at 
rank t is Sk, and equals O if not. 

The variables a and /3 can be calculated according to the following recur-
sion equations (assuming a start and an end symbol at rank t = 0 and t = T + l): 

for 1 ::; t :=; T + l, and 1 :=; /i ::; n: 

” 
a(t, し） =~a(t -l;, l) p([\i~ り21i十1)lI [wt~/土］）

l=l 

a(O,l) = 1, a(0,,2) = .,. = a(O,n) = 0. 

for O :S t :S T, and 1 :Sり:Sn:

n 

{3(t占） = I: p([Vv~ 雷畠 I[We隠臼l)]){3(t + l,l) 
l=l 

(J(T+ 1, 1) = 1, (J(T + 1,2) = ... = (J(T+ l,n) = 0. 

Model with classes: In the case where the likelihood of a parse is computed 
with the class assumption, i.e. according to equation (3.3), the reestimation 
equation becomes: 

p(k+1l(sj lsi) = 

こ『~1 a(t, !;) p(k)(Cq(s;) ICq(s;)) p(kl(sj I Cq(sj)) f3(t + lj, lj) oi(t -li + 1)も(t+ 1) 

乙 a(t,Ii) f3(t, し） oi(t -し+1) 
(A.7) 

Besides, in the recursion equation of a, the term p([W(t) ] I [W(t-l,) ])・ (t-1; 十1) t-1;-1+1 IS 

replaced by the corresponding class bigram probability multiplied by the class 

conditional probability of the sequence [W/2i;+i/ A similar change affects 

the recursion equat1011 of f3 with p([W (t+I) (t+1)l I [W: 凰し+I)])being replaced by 
the corresponding class bigram probability multiplied by the class conditional 

probability of the sequence [W(t+I)] (t+l) . 
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Appendix B 

The bimultigram package 

B.1 How to get it 

cp /home/atrh39/sdeligne/bimgramtk.tar $HOME/. 
cp /home/atrh39/sdeligne/interpoltk.tar $HOME/. 

tar xvf interpoltk.tar 
cd interpoltk 
make 

tar xvf bimgramtk.tar 
cd bimgramtk 
make 

It creates executables with a suffix corresponding to the operating system of 
the machine on which it is run. 

B.2 Demonstration in bimgra1ntk 

The demonstration files in the bimgramtk package are: 

• the data file "digit.tr" 
it was created by drawing digits among the ten digits ("zero", "one", … 

"nine"), and by concatenating their spellings. The drawing was made in 
such a way that the spelling of an odd digit can follow the spelling of 
an even digit only, and that the spelling of an even digit can follow the 
spelling of an odd digit only. The boundaries between the digits were 
removed, and a blank was inserted inbetween each letter. The beginning 
and the end of each sentence are marked with the symbols < s > and 
< /s >-
A sample of the resulting file is: 
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<s>unsixun</s> 
<s>troisquatrecinqsixseptzerocinqzerotrois 

qua tr es e pt de u x < /s > 
<s>troissixseptzerounquatrecinqsixneufdeu 

xsepthuit</s> 
<s>neufdeuxtroishuittroissixseptdeuxcinqz 

erounsixneuf</s> 
<s>zerocinqsixneufzerotroisquatrecinqhuitt 

rois</s> 

• the data file "digit.te" 
it was made following the same procedure as for digit.tr. The distribution 
of the digits (even and odd) is thus the same, so that in average the dis-
tribution of the letters is the same. 

• the list of file(s) "digit.list" 
it just contains the filename "digit. tr", and it is meant to be used as an 
argument with the per! program "get_vocabulary.perl" to create the vo-
cabulary file of "digit.tr", i.e. the list of the strings of characters separated 
by blanks in "digit.tr". 

• "digit.tr_config", "digit.tr_class_config", and "digit.te_config" are configu-
ration files to train a bimultigram and a class based bimultigram model 
on the data "digit.tr", and to test an existing bimultigram model on the 
data "digit.te". 

The demo allows you to: 

• create a vocabulary file from the list "digit.list" with the command: 
"get_vocabulary.perl -list digit.list -voe digit.voc" 

• train a class bimultigram model, based on the vocabulary previously de-
fined: 

"Langmodel -config digit.tr_class_config" 

The specifications of the model in the configuration file "digit.tr_class_config" 
are: 2 classes, phrases of maximum length 6. 
Comments about the training process and its outcome are displayed: in 
this demo, the resulting model has identified the 10 spellings of the digits 
as sequences、Besides,because the set of the odd digits and the set of the 
even digits obey 2 distinct distributions, the model has assigned them to 2 
distinct classes. Note that all sequences of length 1 (i.e. in that example, 
all sequences made of 1 letter) are kept in the inventory of sequences. 
It creates a file with extension ".Im" which is the language model file in 
arpa format, and a file with extension ".te.parse" which contains the best 
parse found on "data.te" with the model. 
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• train a bimultigram model without classes, based on the vocabulary pre-
viously defined: 

"Langmodel -config digit.tr_config" 

The specifications of the model in the configuration file "digit.tr_class_config" 
are: no classes, phrases of maximum length 6. 

• compute the perplexity of "data.te" with a model previously trained: 
"Langmodel -config digit.te_config" 

B.3 D en1onstration 1n 1nterpoltk 

The demonstration files in the interpoltk package are: 

• the data files "digit.cross" and "digit.te" 

• a class phrase based model "digit.tr.bw.bimgram6_6QOOふOO.class2_500.lm"

and a non-class phrase based model "digit.tr.bw.bimgramか6000_500.lm"

• the configuration files "digit.tr_config", and "digit.te_config" to compute 

ML interpolation weights between the demo models on the data "digit.cross", 
and to test the resulting interpolated model on the data "digit.te". 

The demo allows you to: 

• compute ML interpolation weights between 2 existing models (one of which 
is a class based model and the other one is without classes) on "digit.cross": 

"cd .. /interpoltk ; Interpolate -config digit.tr_config" 
It creates a file with extension ".weight" in which the values of the esti-

mated interpolation weights is specified. 

• compute the perplexity of "digit.te" by interpolating the models with the 
weigths previously estimated: 

"cd .. /interpoltk ; Interpolate -config digit.te_config' 

B .4 How to create a vocabulary 

Before training a model, you need to de恥 ethe vocabulary. There is a perl tool 

"geLvocabulary.perl" to create a vocabulary file from a list of training data files 

(one filename per line). 

usage: 

geLvocabulary.perl -list < lisLof _data_Jiles > -voe < outpuLvocfile > -
thr < th几 value> 

only the entries with a nb of occurences greater than < thr _value > will be 
in the vocabulary (default value is 0) 
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B.5 How to train a model 

To train a model, you need to write a training configuration file, and to use the 
perl command "Langmodel" with the name of the training configuration file as 
an argument to the option "-config". 

The perl command "Langmodel" just reads the options in the configuration 
file, and calls the executable of the C program "Langmodel.c" with these options. 

Mandatory options in a training configuration file are: -trfile, -vocfile, -mu. 
All others are optional (start the line in the configuation file with"#" to disable 
it). An example of a training configuration file is: digit.tr_class_config ; we give 
explanations about its entries below: 
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help option: 
-help # to get a help message 

options specifying the data files: 

-trfile=digit. tr # training data 
-tefile=digit.te # test data 
-vocfile=digit. voe # vocabulary file 

options specifying the format of the data files: 

-sep=+ # symbol to join the units forming a phrase 
(" +" should be used with ATR files, default is "_") 

45 

-start=5 # symbol marking the beginning of a sentence in the data 
(" 5" should be used with ATR files, default is "< s >") 

-end=6 # symbol marking the end of a sentence in the data 
(" 6" should be used with ATR files, default is "< / s >") 

options specifying the training/ evaluation algorithm: 

-itereval # compute perplexity on -tefile at each iteration 
of the training 

-trtype=bw # reestimate the phrase bigram distribution using 
the forward-backward ("bw") algorithm, or the 
viterbi ("vit") algorithm 

-tetype=bw # compute the perplexity on -tefile using the 
forward-backward ("bw") algorithm, or the 
viterbi ("vit") algorithm 

options specifying the training parameters: 

-mu=6 # maximum length of a sequence 
-thrl=6000 # all the sequences occuring less than -thrl 

at the initialization are discarded (default value is "O") 
-thr2=500 # all the sequences occuring less than -thr2 

during the iterations are discarded (default value is "O") 
-niter=5 # number of iterations for the estimation of the 

bigram distribution of the phrases 

options specifying the clustering parameters: 

-cluster=2 # number of clusters into which the phr邸 esare 
partitionned 

-clu_niter=5 # number of iterations for the exchange 
clustering algorithm 

-clu_thr=500 # clustering threshold: sequences occurring 
less are put in an "UNK" cl邸 s,together with 
the out-of-vocabulary words 

-final # cluster only after the I邸 titeration of the 
estimation of the bigram distribution of the phrases 
(faster but far less perforrnant in terms of perplexity) 

-display # display the members of each cl邸 sat the end of 
the training 
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B.6 How to compute a perplexity with an exist-

ing n1odel 

To test an existing model, you need to write a test configuration file, and to use 
the per! command "Langmodel" with the name of the test configuration file as 
an argument to the option "-config". 

The perl command "Langmodel" just reads the options in the configuration 
file, and calls the executable of the C program "Langmodel.c" with these op-
tions. 
Mandatory options in a test configuration file are: -tefile, -lm, -mu. All oth-
ers are optional (start the line in the configuation file with"#" to disable it). 
An example of a test configuration file is: digit .te_config ; we give explanations 
about its entries below: 

help option: 

-help # to get a help message 

options specifying the test data file: 

-tefile=digit.te # test data 

options specifying the format of the data files: 

-sep=+ 

-start=5 

-end=6 

# symbol to join the units forming a phrase 
(" +" should be used with ATR files, default is "_") 
# symbol marking the beginning of a sentence in the data 
(" 5" should be used with ATR files, default is "< s >") 
# symbol marking the end of a sentence in the data 
(" 6" should be used with ATR files, default is "< / s >") 

options specifying the evaluation algorithm: 

-tetype=bw # compute the perplexity on -tefile using the 
forward-backward ("bw") algorithm, or the 
viterbi ("vit") algorithm 

options specifying the existing model: 
-lmfile=digit .tr. bw. bimgram6_6QQ0_500 .class2_500 .Im 

# name of the existing language model file 
-mu=6 # maximum length of a sequence in the model -lmfile 
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B.7 

HOW TO ESTIMATE INTERPOLATION WEIGHTS 

How to estiinate interpolation weights 
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The tools to estimate interpolation weights are in the directory "interpoltk". 
To estimate interpolation weigths between bimultigram models with and with-
out classes, you need to write a training configuration file, and to use the perl 
command "Interpolate" with the name of the training configuration file as an 
argument to the option "-config". 

The perl command, "Interpolate" just reads the options in the configuration 
file, and calls the executable of the C program "Interpolate.c" with these options. 

¥
I
 

{
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Mandatory options in a training configuration file are: -crossfile, -!ml, -lm2, 

-mu 
All others are optional (start the line in the configuation file with "#" to dis-
able it). An example of a training configuration file is: digit.tr_config ; we give 
explanations about its entries below: 

help option: 

-help # to get a help message 

options specifying the data files: 

-crossfile=digit.cross #training data 
-tefile=digit.te #test data 

options specifying the models: 

-lml=digit. tr .bw .bimgram6_6000ふOO.class2_5QO.lm
# input Im model 

-lm2=digit. tr. bw. bimgram6_6000_500 .Im 
# input Im model 

し）
opt10ns spec1fyrng the training parameters: 

-mu=6 # maximum length of a sequence 
-niter=5 # number of iterations for the estimation of the 

bigram distribution of the phrases 

-sep=+ 

-start=5 

-end=6 

# symbol to join the units forming a phrase 
(" +" should be used with ATR files, default is'し")
# symbol marking the beginning of a sentence in the data 
(''5" should be used with ATR files, default is"< s >") 
# symbol marking the end of a sentence in the data 
(" 6" should be used with ATR files, default is "< / s >") 
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B .8 How to compute a perplexity with existing 

models and existing interpolation weights 

You need to write a test configuration file, and to use the perl command "In-
terpolate" with the name of the test configuration file as an argument to the 
option "-config". 

The per! command "Interpolate" just reads the options in the configuration 
file, and calls the executable of the C program "Interpolate.c" with these options. 

Mandatory options in a training configuration file are: -tefile, -lml, -lm2, 
-mu, -weightfile 
All others are optional (start the line in the configuation file with"#" to disable 
it). An example of a test configuration file is: digit.te_config ; we give explana-
tions about its entries below: 

help option: 
-help # to get a help message 

options specifying the data files: 

-tefile=digit.te #test data 

options specifying the models: 
-lml=digit.tr .bw.bimgram6_6000ふOO.class2_500.lm

# input lm model 
-lm2=digit. tr. bw. bimgram6_6000_5QO.lm 

# input lm model 
-weightfile=digit. cross. weight 

# input file with the interpolation weights 

options specifying the training paraX:.Ueters: 
-mu=6 # maximum length of a sequence 

options specifying the format of the data files: 
-sep=+ # symbol to join the units forming a phrase 

("+" should_be used with ATRfiles, default is"-") 
-start=5 # symbol marking the beginning of a sentence in the data 

(" 5" should be used with ATR files, default is "< s >") 
-encl=6 # symbol marking the end of a septence in the data 

(" 6" should be used with ATR files., default is "< / s >") 

-----」̀
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