
Internal Use Only

002

TR-IT-0268

A Speech Recognition Database Library

Thomas Wahl

1998年 7月31日

This Technical Report describes a C++ database object that supports experimental work in

speech recognition. Difficulties that can make those experiments inconvenient include:

• the number of utterances is often very high,

• the waveform and feature data files can be very large, and

• utterances from different sources may have different formats.

The database is designed to be an interface that allows experimenting with many utterances in a

standardized fashion without having to care about vast amounts of data that are present in form

of the samples and (after preprocessing) the features.

Section 1 gives an introduction to the purpose of the database, including how to make it ready

for use.

Section 2 explains its functionality in detail.

Section 3 contains a description of how to use scripting languages along with the database

library.

Section 4 provides examples for using the library both within C++ and within scripting lan-

guages.

Section 5 gives some information on extensibility and maintainance, including a data structure

description.

Section 6 finally is intended as a quick reference manual for important things that may get lost

in a big paper, but may be needed quickly when working with the database library.

◎ ATR音声翻訳通信研究所

◎ ATR Interpreting Telecommunications Research Laboratories

目次

目次

ー Introduction

1.1 What is it for?

1.2 Installing and using the library

1.3 Basic structure of a database

1.4 Error handling .

2

Functions

2.1 Creat10n, assignment, and clearrng

2.2 Filling the database .. .

2.3 Standard database operations

2.3.1 Attribute entry manipulat10n

2.3.2 Adding utterances from one database to another

2.3.3 Removing utterances

Show routines -.......... .

2.4.1 Showing database contents

2.4.2 Showing memory needs

Save & load ．．
Waveform and feature handling
2.6.1 Waveform handling ．．
2.6.2 Feature handling .. .

2.6.3 Cleaning up data files

2.4

2.5

2.6

1

1

3

3

4

3

4

5

6

参考文献

Scripting Languages

Examples

4.1 Basic example

4.2 Advanced example :

Ma1nta1nance

5.1 Data structures

5.2 Programming issues .. .

5.2.1 Statics, globals, defaults

5.2.2 Writing style in the source files

5.2.3 System-dependencies

5.2.4 Compiler issues

Quick Reference

4

4

6

8

8 ，
10

10

10

11

12

12

13

15

16

16

17

17

18

19

19

20

20

21

22

22

23

24

ー

1 Introduction

1.1 What is it for?

Speech recogmt1on usually starts with huge amounts of data that represent utterances, which are mtended as
trammg or test material for a recognizer. An utterance contains some information on the circumstances when

it was uttered (text data), like name of the speaker, his/her age, the technical facilities used to record it, and
perhaps one or several transcriptions, i.e. some form of text representation of the spoken utterance.
A second component of an utterance are the actual speech data, called the waveform, which can usually be
understood as a (h~gh-dimensional) vector of an elementary data type. Each vector component stands for the
data of some time m the course of the spoken utterance. Waveform data are often also referred to as samples,
so in this manual.
The objective of the preprocessing stage of speech recognition is to perform various kinds of transformations
and computations on the samples to make them a suitable input for a recognizer module. This process is
known as feature extraction, the result of which, accordingly, is a feature containing recognition-relevant data

(depending on the current task) of the original samples. The features are the third basic component of an
utterance.
Due to the special circumstances, experiments in speech recognition usually require the capability to cope
with large amounts of data, as not only the number of utterances in a test or training set may be very high,
but also the samples and features associated with an utterance may consume considerable memory. The library
presented here helps to overcome these problems. It is equipped with data structures and a memory management
that is designed to handle large amounts of data efficiently both in terms of time and space. Thus, its main
purpose can be described as "organizing utterance manipulation procedures", especially (but not only) for the
preprocessing phase of speech recognition.
A usual way to use the database looks as follows:

Create a database object by filling it with utterances. The utterances -at this time -only consist of
text data. These data usually come along with the training or test set that is used, but they may also be

made up by the user. First, a description file must be constructed that contains these data in a format
that is readable by the database. This format is extremely general; for details, refer to section 2.2.

Secondly, create an empty database and then submit the name of the created description file to the
database, so it will read in the data and make (internal) utterances out of it.

(Optional) Select the utterances you actually want to work with. You might not want to use all of
the utterances contained in the database, but only those that have properties like Sex==female, or you
might want to combine certain utterances from several databases created previously. The library offers

basic database operations to carry out those utterance selection steps, as exemplified in the abstract on
the fost page.

If you have done this, there is a function to produce a list of the ID's of all remaining utterances. This is
useful, as many functions in the library require the specification of an utterance ID so as to perform some

operation only on that utterance. In other words, this list acts as an interface between the user and the
database: it enables you to refer to specific utterances.

You may now want to save the data so far contained in the database on disk, such that some time later
they can be loaded, and work may continue.

Run experiments. You can now "play" with the utterances. The text data read in during creation of the
database usually contain a filename that tells the database where to get the samples from ("waveform

file", often a CD rom file, perhaps compressed). On user demand, these samples are read in from the file
(and automatically uncompressed, if necessary). A copy is saved in main memory, another copy returned

to the user. Hence, when you have run some manipulations on the samples and decide to throw it away
and try again, the database will provide you with another copy.

At some time, the database object will be closed (end of program), and all main memory data are lost.

Normally, next time you would have to read the sample data again from the original (CD rom) file, which

2

1 INTRODUCTION

―niaf b-e-slow; and-you-may not -even-have-the -oTiginal-file-handy at-that -time.-Therefore, it is possible

to save the samples (uncompressed) into a file. Once the they are requested again, the database will
automatically read them from this location.

You may now perform preprocessing or other operations with the samples of an utterance. For that
purpose, a function package written by Mike Schuster (called rnat2D) can be used easily with the database,
but you may use your own functions. The result of the preprocessing are feature vectors, which -like the
samples -can be saved in a file, such that they are available when the database is loaded at a later time.

Summarizing the operation of loading samples, there are three options for the library:

l. if the samples are currently in main memory, return a copy of contents of the appropriate address.

2. otherwise, if the samples are in the data file created by a save operation, read them from that file
into main memory and go to step l.

3. otherwise read the samples from the waveform file, possibly uncompress them, store them in main
memory and go to step l.

The same holds true for the features except that only steps 1 and 2 are available options.

Of course, main memory will usually be too small to read in samples and construct features of *all* utterances.
Therefore, the database has a sample buffer and a feature buffer (the size of which the user can specify in bytes).
If samples or features of an utterance are requested, it is first checked whether the buffer size will suffice to add
the data demanded to the buffer. If so, they are simply loaded. Otherwise, the respective buffer is emptied,
and starting from the utterance in question, consecutive samples or features are loaded into the buffer until it
fo full again. Thus, when the user browses through all utterances of the database in the order in which they
are stored (and contained in the utterance ID list mentioned above) and requests the samples or features, they
are not *all* being loaded into main memory at the same time (which would sooner or later overextend it).
On the other hand, they are not loaded, worked with and thrown away one by one either, which would be too
slow. System resources permitting, you may set the buffer size to a very high value, such that the reloading
procedure won't happen very often.

Note that "loading/saving" a database just means loading/saving the text data and perhaps some filenames.
Sample or feature data are not loaded or saved simultaneously, but have to be loaded or saved explicitly be
the user (using special commands provided by the database). The reason is that storing all text data *and* all
samples and features in one huge file (which potentially might comprise terabytes) often will not be. possible.
The text data on the one hand and the binary data on the other are always kept in separate files. Apart from
the size-related reason, that should make handling these files outside the database easier.

When experimenting with utterances, it is often desired to just try out potential preprocessing steps and wait
the results before continuing with other operations. Doing that exclusively with a compiler language would
require the user to write a (rather small) program for every such step, compile it, and run it to try out. A
much more convenient way is offered by scripting languages, which make it possible to execute functions from a
C or C++ library in a command-line manner, i.e. as an interpreter language would do it. For this purpose, the
library must be attached to the scripting language, such that single commands can be passed on to the library.

In the case of C++, this can be realized using the SWIG package, which comes up as an interface between C++
and a scripting language. For the present library, experiments using PYTHON as scripting language were run.
Instructions and examples to do that are contained in the s .. ig subdirectory and are explained in section 3.

The library was written in C++, as the structure of the problem specification suggested a hierarchical
definition of the data types involved (see 1.3). It was tested using the g++ compiler versions 2.7.2.2 and 2.8.1 on
different platforms (including a DEC architecture, personal computers running Linux and HP machines with
the HP-UX operating system).

For large-scale tests, the Wall Street Journal waveform file collection on CD rom served as testing material.

1.2 Installing and using the library 3

1.2 Installing and using the library

After obtaining the file database. tgz, it is unpacked using

tar xzf database. tgz

(tar here stands for the appropriate GNU tar command on your system.)
To install, just follow the instructions in the created README file. It also contains a description of the

package's file structure.
This file also tells how to compile the library. Beside the actual database functions, the library also contains

the code of a string utilities tool and the matrix manipulation library mat2D mentioned earlier.
Linking the database to other code is accomplished by passing

-ldatabase

to the linker when making an executable.
If you want to make a shared library, you have to check how to do it on your system. Some support the
option -shared for g++, others use the ld command directly, employing option -b. In the first case, the Makefile

can create the shared libraries for you; consult the README file.

1.3 Basic structure of a database

The basic type hierarchy (all types are classes or structs, see section 5.1) within a database object is as
follows:

database

——-­
→ -

a廿ributeinformation container of utterances,
every utterance being:

attribute entries features

waveform

Figure 1: Structure of a database object

The basic data structure is a database. This is the class that the user can make objects of and that provides
all the methods to manipulate such an object. All other classes are used only internally as sub-structures of the
database class.

Most importantly, a database is a container of utterances (right side of the figure). Each utterance in turn
has, as mentioned above, three (logical) components:

• the text data, containing basic information on the circumstances of the utterance. These are stored in
attribute entries of the shape (Speaker, John). Here, Speaker is an attribute, John is the corresponding
entry.

• the waveform (mainly containing the samples of the utterance)

• the feature.

The attribute information (left side of the figure) contains all attributes and entries that occur in the database
and is not of much importance to the user.

4

2 FUNCTIONS

Furth.er, a dataoase instance-contains a-name,-which-is the-default-filen-ame-fGF l0ad-and-sav@ operations,
and a waveform_path, which is used as a common path for waveform files, see section 2.6.1 for details. These
members are in this documentation referred to as parameters.

1.4 Error handling

The files include/ error. hh and source/ error. cc furnish information on error handling. Throughout the
library functions, excessive checking of user input and displaying appropriate warnings or error messages was
implemented to facilitate the analysis of errors. This includes parse errors when reading the contents of files,
but also filename mistakes, missing read or write permission, etc.
There are three types of library messages to the user. They can be understood as "error messages of
mcreasmg severeness .

messages will be issued, if there is just a notification to the user about something that might hold up the
database for some time or that doesn't effect the user's work but seemed worth telling.

warnings will occur, if some user input does not seem reasonable, but will not lead into processing problems.
Therefore, warnings usually don't interrupt the program.

Sometimes, however, it is hard to. decide whether an interrupt or some form of continuation is the proper
way to respond. This is the case, for example, when a continuation would imply to erase lots of the
database contents. In such instances, a warning along with a request what to do is issued, such that the
user has to decide on-line. This may cause undesired behavior if the output of some database function
is redirected into a file. Therefore, warnings with requests are used sparingly throughout the package. -
"Interrupt" in this case means return to the calling program.

errors occur whenever some user input cannot be interpreted in a way that allows a continuation of the program.
In this case, the C++ typical error handling is launched, i.e. an exception of type database_error is thrown.
The user now has three options:

l. return from the database function safely to the calling program (may be main or a scripting lan-
guage),

2. throw the exception again. In this case, the calling program will have to catch the error; otherwise,
the behavior is undefined; or

3. exit the program. This normally also kills the calling program, so this is only the last resort.

There is no exit, abort or a similar call that promptly kills the process created by the program unless the user
wishes so in case of an error message. -All kinds of messages are always sent to cerr.
Changing the error handling is easily done just by altering the two files mentioned above.

2 Functions

The following part of the manual describes all available functions in detail (refer to table 1 on page 5 for a
complete listing). All the methods mentioned are members of the database class and therefore declared in the
file include/ database. hh. The prefix database: : is omitted in the documentation. -Functions that belong
to other classes/structs used within the database source code are not supposed to be called by the user and are
not explained.

2.1 Creation, assignment, and clearing

A database object can be constructed as follows:

2.1 Creation, assignment, and clearing 5

Section I Page I Declaration
2.1 4

2.2 6

2.3.1

2.3.2

2.3.3

.2.4.1

2.4.2

2.5

2.6.1

2.6.2

8

，

database&

database&

string

void

void

void

void

vector<string>

vector<string>

string

float

void

void

void

void

10 I void
void

void

void

void

1~
void

void

void

11 I 1ong
long

int

int

12 I VOュd
void

13 I _1Dchar*
void

void

_1Dshort*

void

I
void

15 _2Dfloat*

void

database()

operator= (con st database& source)

assign_from(const database& source)

set_filename(const string& new_filename="")

clear_data()

clear()

add_from_string (string& description)

add_from_f ile (const string&士ilename)

get_utterance..list ()

get_utterance..list_if(const string& condition)

get_string_entry (const string& utterance_ID,

const string& attributeJlame)

getュumber_entry(conststring& utterance_ID,
const string& attributeJlame)

set_attribute_entry(const string& utterance_ID,

const string& pair)

set_attribute_entry_of_all(const string& pair)

add_from_database(const database& source)

add_from_database_if (const database& source,

const string& condition)

remove_utterance (const string& utterance_ID)

remove_if(const string& condition)

remove_ifェot(conststring& condition)
remove_if_present (const string& attribute工 ame)

remove_if_absent (const string& attributeユame)

show _parameters ()

show_attributes ()

show_utterances(int in_a工 ow=O)

show (int in_aェow=O)
show皿 ain皿 emory_usage ()

main皿 emory_usage()

get工umber_of_attributes ()

getュumber_of_utterances ()
save(const string& filename="")

load(const string& filename='"')

get_char_sample (const string& utterance_ID)

save_char _sample (const string& utterance_ID,

_1Dchar* new_sample=O)

unsave_char_sample(const string& utterance_ID)

get_short_sample (const string& utterance_ID)

save_short_sample (const string& utterance_ID,

_1Dshort* ne曰_sample=O)

unsave_short_sample(const string& utterance_ID)

get_f eature (con st string& utterance_ID)

save_feature(const string& utterance_ID,

_2Dfloat* new_士eature=O)

void unsave_f eature (const string& utterance_ID)

vector<string> garbage_collection()

Table 1: Complete list of functions

6

2 FUNCTIONS

database()

constructs an empty database (i.e. a database with no utterances), sets its filename to ./nonarne.dtb
and its waveform path to the empty string.

database& operator= (const database& source)

database& assign_from(const database& source)

are identical in their behavior and make the target database a copy of source (all previous data
in the target are destroyed). "copy" means that also the parameters (filename, waveform path)

of source and target will have the same values afterwards. -The reason for introducing the second
function is that in some environments, overloaded operators like operator= cause trouble and cannot
be used~

Beside these copy assignment functions, a copy constructor is also defined which creates a new

database as a copy of another.

string setJilename(const string& new_filename="")

If neロ_filenameis "" or not specified, the function returns the filename currently associated with
the database object.

Otherwise, the database filename is set to new_filename and returned. This may or may not contain

an extension; see sections 2.5 and 2.6 for the precise meaning of this filename.

void clear_data()

clears everything in the database but its name, i.e. it clears all utterances and, hence, the attribute
information. In particular, this function removes all samples and features from main memory. The
waveform path is reset to "".

void clear()

resets the name of the database to . /noname. dtb and calls clear_data() afterwards. The database
is now in the same state as it would be right after definition using the parameterless constructor.

2.2 Filling the database

The following two methods provide the means to fill an empty database (but they can also be used to add
attribute entries to a non-empty database):

void add_from_string(string& description)

void add_from_file(const string& filename)

They read in utterance text data, make utterances (without samples or features at this time) out of

them and write them into the database. The description string (first function) and the description

file (second) have exactly the same format requirements. The only important difference between the
functions is that the description string is destroyed in the first function (due to parsing reasons),

whereas the contents of the description file is not affected in the second. -The format is as follows:

1. The input must be line-oriented, with every line standing for one utterance. Within one ut-
terance, a newline character is not allowed, unless the attribute or entry name it appears in is
surrounded by 1111.

1To be precise, this problem occurs when the library functions were connected to PYTHON using SWIG as an interface between
C++ and PYTHON.

2.2 Filling the database 7

2. Every utterance line consists of attribute entry pairs, which are separated by a comma.

3. Every attribute entry pair has the form

<attribute name>= <entry>

with arbitrary spacing between the three fragments. Using == here instead of= will lead to a

parse error.

There are two types of attribute: those containing string values and those containing numerical
values. They are distinguished by the attribute name using the following convention: if the initial
character is small or a digit, the attribute is number-valued, and string-valued otherwise. So, for

example,

age and 2nd-employment-year

are number attribute names, whereas

Speaker, DATE and _place_of..recording

are interpreted as string attributes. The distinction between the two attribute types determines the
way of evaluating its entries: in an expression like destination = Paris, destination would be
assumed a number attribute and Paris would be reduced to zero as its numerical value~

Some attributes, called special attributes, are reserved for internal use in the database. They are
related to properties that every utterance has and therefore are always present. A complete list of
these names is given in the reference section 6 at the end of this manual. Except the fact that their

meaning cannot be changed by the user, there are no restrictions in the usage of these attributes,
i.e. their values can (and sometimes must) be set, be read, etc. When the user wants to refer to
the values of special attributes, it is essential to use their particular names so that the parser can
recognize them.

One of these special attributes, named Relati ve_path, is of particular importance. It contains the
relative path (in the easiest case, just a filename) of the (original) waveform file, from which the
utterance's samples are read (for details, refer to section 2.6.1). This value is believed to be unique
among the utterances, and is therefore taken as the ID of an utterance. In other words, the entry
of this attribute is the one for the user to refer to a specific utterance in the database, for example,
when calling utterance-specific functions. Without this ID, an utterance can only be accessed via
loops that go over *all* utterances, but never individually. Therefore, specification of this ID in the
description string or file is considered to be essential, which is why a warning is issued if it was not
supplied.

Apart from these conventions, any names are allowed for attributes and entries and may even contain
special characters including=, ¥n, spaces, etc., but then have to be enclosed in'"'. If the " character
itself is supposed to occur an attribute or an entry (for example, in a transcription), it has to be

canceled using ¥:

Transcription= "Yesterday, ¥"That is what the world is waiting for¥",
a British trader said"

Summarizing, the string (or the file, respectively) takes the following shape:

<attr11> = <entry11> , <attr12> = <entry12> , <attr13> = <entry13> [, ... J
<attr21> = <entry21> , <attr22> = <entry22> [, ... J
<attr31> = <entry31> , <attr32> = <entry32> , <attr33> = <entry33> [, ... J

2The reason for this strict kind of attribute type assignment is that in expressions like WWW-address = 141. 35. 2. 80, the entry
must be prevented from being evaluated as a number. Recognizing the type of an attribute only from the entry value woltld require
writing a non-trivial parser.

8

2 FUNCTIONS

Whenever an attribute occurs a second time within one line (i.e. within one utterance), the value of
the entry is simply overridden. For example, of the following two description lines,

Day= Friday, day= 13

Day= Friday, Day= 13

the first one is perfectly OK, where邸 thesecond not only loses the Friday entry, but the 13 is
stored as a string and cannot be used in numerical comparisons, like Day < 13 for dates before the

13th or such.

The order of the attribute entry pairs within one line is equally unimportant邸 theorder of the ut-
terances (they will be sorted anyway). Further, the file may contain empty lines between utterances.

When applied to a non-empty datab邸 e,only utterances that are not yet in the database are added,

so no duplicates are produced (duplicates are, of course, recognized by having the same ID).

vector<string> get_utterance..list ()

Returns the ID's (see above) of all utterances in a vector of (C++) strings. When you want to call an
utterance-specific function with all utterances consecutively, you just browse over that vector and
call the function with the current utterance ID.

vector<string> get_utterance..list_if (const string& condition)

Returns the ID's of all utterances that satisfy the condition. The condition string must be specified
in a fixed format, which is explained in section 2.3.2 on page 9, along with the add土rom_database_if

function.

2.3 Standard database operations

2.3.1 Attribute entry manipulation

The following functions all refer to a specific utterance via its ID and read or write attribute entries in it:

string get_string_entry (const string& utterance_ID, const string& attribute工ame)

float getユumber_entry(conststring& utterance_ID, const string& attributeュame)

These functions return specific values of entries belonging to the utterance pointed to via ID and to
the attribute referred to via its name. This name must refer to a string attribute, in case of the first

function, or a number attribute, in case of the second. Otherwise, an error occurs. This will also
happen if the utterance ID or the attribute don't exist in the datab邸 eor if the attribute doesn't

occur in the utterance.

void set_attri bute_entry (const string& utterance_ID, const string& pair)

This function sets attribute entries according to the information provided in the pair. The format

of it very much follows the conventions in description files or strings, as described in section 2.2.

That is, it must look like

<attribute name>= <entry>

Please refer to all remarks made about the exact writing style on page 7.

The function first searches the utterance specified by the ID in the datab邸 e.If found, it searches
through the attribute entries of it. If the attribute specified in pair already exists in the utterance,
its value is changed according to the new entry. If not, the attribute entry pair is added to it.

2.3 Standard database operations

，
 void set_attribute_entry―°土all(conststring& pair)

Does the same as the previous function, but here, in all utterances the same attribute entry pair is
set/added. This is useful only for utterance-independent data, for instance

set_attribute_entry―°土all("Microphone_type= Sennheiser")

An error is reported if the user tries to set an attribute in any utterance that already exists, but with different
type: you cannot change string into number attributes or vice versa using this function.

2.3.2 Adding utterances from one database to another

The following two functions allow to merge databases by adding utterances from a source database to the

object. Note that these functions only make sense if the waveforrn_path variable in both databases is identical.
Otherwise, there will be utterances in the target object whose waveform files cannot be found on disk (see

section 2.6.1 on page 13 for details on how this path is derived). -Therefore, if the waveform paths are set
in both databases and differ, a warning is issued, and a warning_with工equestwhether to continue or not is

made (see section 1.4 on page 4).

void add土rorn_database(constdatabase& source)

adds all utterances from source to the target, if not in yet. This function represents the classical
merge routine for databases. The attribute information of the target database must be updated,
which might take some time. Therefore, the number of processed source utterances is displayed

during the merge.

void add_from_database_if (const database& source, const string& condition)

adds the utterances from source to the target, if not yet in and if the condition specified in the
second argument is satisfied. This condition string must take the following form:

<attribute name> <compare operator> <entry>

As usual when submitting attributes or entries, pay attention to attribute types and special charac-

ters that might be contained in the string. See section 2.2 for details. Between the three components,

spaces are ignored.

As compare symbol, the following binary operators are recognized:

！＝ ＜

く：： ＞

＞＝

but only the first two are allowed in expressions involving string attributes. A single = causes a parse

error when used in cond1t10ns.

The notion of fulfillment of a condition becomes a bit vague when attributes occur in some utterances,
but not in all. How these cases are handled in this database implementation, is shown as follows:

Let U be an utterance and C = <attr> <comp> <entry> a condition string.
U satisfies C ⇔ U contams <attr> and C evaluates to TRUE
U does not satisfy C ⇔ U does not contain <attr> or C evaluates to FALSE

This way it is ensured that "fulfillment" is the logical negation of "non-fulfillment". For example,

in the statement

d1. add_from_database_if (d2, "ageく24")

all utterances of d2 that contain the attribute age with value less than 24 are added to d1. Utterances
in d2 that don't have an age attribute are ignored.

10 2 FUNCTIONS

2.3.3 Removing utterances

The following functions remove certain utterances from a datab邸 e,either by specifying it explicitly via ID, or

logically via a condition.

void remove_utterance(const string& utterance_ID)

removes the specified utterance from the datab~e, or issues an error if not found.

void remove_if (const string& condition)

void remove_if ..not (const string& condition)

removes all utterances in the database that satisfy (don't satisfy, in case of the second function) the
specified condition. The condition string must follow the conventions given in section 2.3.2 above.
It is important to understand how these functions affect utterances that don't contain the attribute

mentioned in the condition. It follows logically from the definition of "fulfillment" given in the
previous section. Look at these examples:

di. remove_if (d2, "ageく24") and di. remove_if...not (d2, "age>=24")

These two calls don't perform the same action, although it might seem so: Be U an utterance that
doesn't contain the age attribute. By definition, U does not fulfill the condition "age<24", as a

condition is not satisfied if the attribute is not there. So it is not removed in the first call. For the
same re邸 on,U does not satisfy the condition "age>=24". Hence, U will be removed by the second

call.

void removeユLpresent(conststring& attribute..name)

void removeユLabsent(conststring& attribute..name)

removes all utterances that contain (don't contain, in the case of the second function) the attribute,

regardless of its entry. If all utterances contain the attribute mentioned, then the first function call
would mean to clear the entire database. As a precaution, a百arning_with工 equestis issued. The
second method, in this case, doesn't have anything to do, but a message is displayed as to inform
the user.

2.4 Show routines

There is a variety of functions to display information on the contents or the memory usage of the current

database object. Target of the output is always cout.

2.4.1 Showing database contents

void show _parameters()

sh9ws name and waveform path, as well as the number of distinct attributes and entries, and the
number of utterances that the object currently has.

void show_attributes ()

for every attribute that currently occurs in the database, shows its name, its ID, its type (string or

number) and the occurrence frequency, which specifies in how many utterances the attribute appears.

void show _utterances (int in_aエow=O)

for every utterance that currently occurs in the database, shows:

2.4 Show routines

1. the list of its attribute entries. This comprises, for every attribute entry, the attribute name,
its assigned ID, and its entry value. If the entry is of type string, then it has an ID as well,
which is then displayed behind the entry.

2. its waveform parameters. This includes all the attributes characterizing the waveform (see
section 2.6.1 for details), in particular, the relative waveform path, which is the utterance's ID.
Further, information on the location of the utterance's waveform samples is provided, namely
whether they are in main memory or not, and whether they had been saved to a specific data
file. (If both answers are ND, it means that the waveform is only available via its original file
[e.g., on CD rom].)

3. information on its feature vectors, namely whether they are in main memory or not, and
whether they had been saved to a specific data file. (If both answers are ND, it means that no
features are currently available for this utterances.)

A database object normally has a huge number of utterances, often several thousand. In this case,
listing all of them in a row is not desired. Therefore, you may specify a value in the in_aェow
argument that makes the printout of utterances wait after this number of utterances have been
printed. You may then hit the <RETURN> key to continue the printing or hit <q> plus <RETURN>
to interrupt the output and leave the show function. -Default value of this argument is 0, which
means, showing all utterances without pausing.

void show(int in_a_ro口=O)

shows the parameters, attributes and utterances of the database object (in this order) by calling the
functions mentioned above consecutively. The in_a..ro.r parameter is passed to the sho.r_utterances
function.

2.4.2 Showing memory needs

The following two functions give information on the main memory requirement of the database instance.

long sho曰...main...memory_usage ()

displays the mairi memory that is currently used by the database parameters, by the container of
all attributes and the container of all string entries (attribute information), and finally and most
importantly, by all utterances. The latter includes memory consumed by samples or features of an
utterance, if any. The current number of attributes, string entries and utterances is also shown. At
the end, the total main memory usage of the database object at this time is shown and returned by
the function.

long main皿 emery_usage ()

also returns, but doesn't display the current total main memory usage of the database object.

11

Note that the binary data, i.e. the samples and features, are not saved in the same file as the text data of the
database. Therefore, the value returned by the functions above can only be taken as an approximation of the
save file size (i.e. on disk), if the database currently contains no samples and no features.

int get.number _oLattributes ()

int get.number _oLutterances ()

return the number of attributes that occur in the database (not regarding in how many utterances
it does), and the number of all utterances.

12 2 FUNCTIONS

2.5 Save & load

As mentioned before, these functions load and save only the text data of a database, i.e. everything but samples
and features. For those, special instructions must be employed. The idea is that the binary data in a database
can make the save file really huge, which is why you may want to split them among several files.

void save(const string& filename="")

saves the text data of a database object.

void load(const string& filename="")

loads the text data of a database object. If applied to a non-empty database object, the object is
cleared before without warning.

As saving and loading a large databases may take some time, the percentage of currently processed utterances
is displayed while accessing the target or source file.

For both functions, the filename where to save/load the database to/from, is obtained in the following
manner:

• If filename is 1111, the value of the database name parameter is used as filename.

• Otherwise, the functions first set the name parameter of the datab邸 eto the filename passed as argument,
and take this argument as filename for loading or saving, respectively.

In other words, the two instruction sequences

(1) d.load(name_string) and
(2) d.set_filename(name_string) ; d.load()

have the same effect.

2.6 Waveform and feature handling

Waveforms (consisting of samples) and features represent the raw and preprocessed speech data of an utterance,
respectively. Their handling has been detached from the one of the other data, for two reasons:

(a) They form the major part of the utterance, in the sense that on these data, the feature extraction routines
are supposed to be run. Therefore, they must be passed to preprocessing libraries that offer the functions
for the extraction process.

(b) They are binary and form the largest part of the memory consumed by the utterance. Therefore, they
often cannot be kept with the text data in one file for simple resource reasons.

The proposed way to do the preprocessing is using the mat2D package compose by Mike Schuster. For this
reason, the samples and the features of an utterance are stored in data types taken from this library. The
definitions of those data types are contained in the database library, so that they are always available.

The internal way of getting the binary data of an utterance had been described earlier in section 1.1 on
page 2. In brief, the data are always loaded from the "cheapest" (in terms of access time) medium they are
currently on. The user does not have to care about this. Therefore, there is just one get function for each of
those data types.

Secondly, there is a respective function to save the data. Saving here means to store them on a file on your
private disk. As for the sample date, this way you can get rid of the original waveform data (for example, on
CD rom), which might not be convenient to access, and which might be slower than disk (in the case of CD
rom).

2.6 Waveform and feature handling 13

2.6.1 Waveform handling

On page 7, special attributes were mentioned which have a fixed meaning in every utterance. In the current
version, almost all of them happen to be related to the waveform of an utterance, namely (remember that

capitalized names refer to string attributes):

Relative_path The original sample files are accessible via a filename, which must be stored with the respective
utterance. These filenames, however, often share a more or less long part at the beginning, for example,
/cdrom/wsjO/si_tr_s~To save memory, this common path should be stored only once, and this happens
in the waveform_path variable, as mentioned before. The rest of the path, which characterizes each single
waveform, should be the contents of the Relative_path attribute. For its uniqueness, this path (filename)

is used as utterance ID and therefore should be stated at the time of the creation of the utterance, as was
explained in section 2.2.

Format Original format of the waveform when stored on CD rom or such. Currently, the following formats are

recognized:

NIST RAW_CHAR RAW_sH□RT

So if, for example, your waveform test set comes in raw 8 bit(= sizeof(char)) data, you should specify

this by having the statement

Format= RA見CHAR

in the description file when creating the utterance.

sampling_frequency Frequency of the recorded samples in Hz.

number―oLsamples Total number of samples in the waveform file.

bytes_per_sample Size of one individual sample. Currently, only sizeof(char) and sizeof(short) are ac-

cepted. Accordingly, there are char samples and short samples for utterances.

Order―oLbytes Only relevant in case of short samples. In C and C++, a short has at least two bytes. The
order of storing those bytes (for one particular sample) can be reversed on different architectures and is
referred to as low byte first or. high byte first, resp. This string variable indicates this by the values O or 1,

resp.

Char_sample_file Name of a file to which the char samples of the parent utterance are to be stored. This

variable defaults to -, which means: Take the database name variable without filename extension and
append . i.vザ toit to get the filename. Note that as long as this variable has its default value, all char

samples of those utterances will be stored into the same file.

When databases are merged, the source database's name variable is lost, which is way all their default
data filenames have to be changed from -to the explicit name of the source database. This requires more

storage. If the user decides to rename those files to the name of the new (target) database plus extension
・i.vf,he can explicitly assign the value -to those filenames, indicating that they now have the default

name, saving (a lot of) text data storage互

Short_sample_file Same for short samples.

The specification of some of these attributes is important for the get_ ... _sample functions explained below.

In the database, char and short samples are stored in vectors of type _1Dchar* and _1Dshort*, resp. The

type definitions are taken from the mat2D matrix library.

吋hlsis the common path for all san1ples of the Wall Street Jomnal test and training data on CD rom.
4Thls is the value of the —11aveform: : extension static variable.
5 All thls weakly assumes that -is never used as a real filenrune.

14 2 FUNCTIONS

_1Dchar* get_char _sample (const string& utterance_ID)

_1Dshort* get_short_sample (const string& utterance_ID)

As mentioned earlier, these functions try to load their respective samples for the utteranc~specified
from the fastest medium that they are on:

l. If the sample is in main memory, make a copy of it and return the address of the copy.

2. Otherwise, check if the samples had been saved to a data file before. If so, load them into main
memory and go to step l.

3. Otherwise, check the waveform file the name of which is given by database: : waveforrn_path +
relati ve_path. If this file contains samples of the correct type: i.e. as specified in the function
name, load them into main memory and go to step l. Otherwise, return a warning indicating
that getting the samples failed.

It is crucial to note that the database never returns a pointer to an object that it administers itself,
but only a copy of it. This has two reasons:

1> Allocating and freeing memory resources of internal data structures can thus not be affected

adversely by the user (the database always knows what to free and when)

1> (Mainly for experiments) When the results of some processing step with the samples was not
as desired, then it is easy to re-try by requesting the data again from the database.

On the other hand, this way of implementing it also makes it essential that the user takes care himself
of the pointers returned by the database, in other words, he/she is responsible for freeing those. You

must remember the addresses returned by the database and free them after use, otherwise, memory
will eventually overflow.

In the third step of the above enumeration, the database may need some help by the user to load
the samples from the original waveform file:

l. The Format variable must be set before data can be loaded from an original waveform file,

because it influences the way of loading:

2. (a) If the format is NIST, nothing else (except for the two path variables above, of course) needs
to be specified. The NIST format is highly standardized, and the database can read all the
information from a header that precedes each sample file. This header also contains infor-
mation on whether the samples are stored in compressed form. If so, the database will try to
uncompress them using the command given by the _waveform:: shorten_decodeぷ ornrnand
static variable and a temporary file given by _waveform: :trnp_filename, and load them

afterwards. -NIST samples can be char samples or short samples (which is automatically

detected).

(b) If the format is RA見CHAR,the attribute number_oLsamples must be set.

(c) If the format is RAW-5HDRT, the attributes number_of_samples and order_oLbytes must

be set.

As has been mentioned previously in section 1.1 on page 2, whenever samples have to be loaded (no

matter whether from the original waveform file or from the database data file), is taken care that the
sample buffer does not overflow. If necessary, the buffer is freed, and concurrent samples (including
the one that has been requested) are loaded until the buffer is full.

2.6 Waveform and feature handling

void save_char _sample (const string& utterance_ID, _1Dchar* new_sample=O)

void save_short_sample (const string& utterance_ID, _1Dchar* new_sample=O)

If new_sample is specified and not 0, the contents of this pointer is copied into the database's
respective main memory position for the sample. If the user here delivers an address that does not
point to a sample of the respective type, the program might crash with a memory fault immediately

or later when this contents is to be read.

In any case, the contents of the database's respective pointer for char or short samples is written
to the data file. This file's name is the contents of the Char_sample_file or Short_sample_file

attribute, as illustrated above. If there are currently no samples in main memory, a message is

displayed.

15

This way of loading and saving samples assures that the samples in main memory and in the data file are always
the same, unless the data file samples have not yet been loaded into main memory at the beginning.

void unsave_char _sample (const string& utterance_ID)

void unsave_short_sample (const string& utterance_ID)

For their respective samples,

• Mark the samples as unsaved, i.e. the database assumes that it cannot read the data from a
user data file next time. Hence, if the data were saved before, those savings are now obsolete
and will be removed upon the next garbage collection (cf. section 2.6.3).

• Remove the data from main memory.

Again, this way there will be no inconsistency between the data in main memory and the data saved

by the user to a file.

The purpose of these functions is to get rid of waveform file data, if they are not needed any more
for some reason, or, even worse, if the previously saved file data are somehow destroyed or lost. In

this case, the database will be in an inconsistent state until you have "informed it of the loss" by
claiming the samples unsaved using the above functions.

2.6.2 Feature handling

The features of an utterance are much easier to handle, as there are only two possible sources for them (main
memory or a database data file), and there is only one type of features: _2Dfloat*, which is again taken from

the mat2D matrix library. This type describes a two-dimensional vector (matrix) of float entries. Further, there
is exactly one special attribute associated with features:

Feature_file Name of a data file to store the features to (and read them from). The same comments apply

as given above for the Char_sample_file, except that the default extension here is . ftr戸

.2Dfloat* get_feature(const string& utterance_ID)

tries to load features for the given utterance from a data file into main memory, if not already

there, and returns a copy of the data in a new pointer which must be freed by the user. If features
are neither in memory nor on a file, a message is issued and O returned. -All comments from the
corresponding waveform section above apply accordingly.

6This is the value of the .:feature:: extension static variable.

16 3 SCRIPTING LANGUAGES

- - - -- -- -

void sav豆:foature(coristst云fog&―utter紐 ce.:ID;.:2Dfloat-* new_f-eature=O)

"saves" the feature to a data file. The meaning of "save" is analogous to the previous section about
saving samples.

void unsave_feature(const string& utterance_ID)

"unsaves" the feature from data file and removes them from main memory. See the corresponding
sample function for details.

2.6.3 Cleaning up data files

vector<string> garbage_collection()

As experimentation proceeds, there may be many times when the user saved the samples or features
for one specific utterance. S~~h a save operation always writes its data to the end of the data file and
makes a note about the pos1t1on in the file. Previous instances of these samples or features are not
overwritten or removed. This is because such an update would require to rearrange the entire data
file in order to close gaps, etc, which probably would hold the save routine up at an unacceptable
degree.

The negative effect of this is that the file size may grow steadily even if the user only saves data of
one single utterances, and those files contain a lot of garbage. Therefore, the above routine can be
used to clean those files. It browses through all data files and reduces them to the currently samples
or features. A list of all the files containing the valid binary data is returned. All other files that
may have been created by the database earlier are entirely "garbage" and may be removed by the
user. -Note that the datab邸 edoes not know about those files and will do nothing about them.
The user has to remove them himself.

The garbage collection function is public and can be called by the user at any time, but it is not
called automatically due to its potentially time-consuming behavior. It is his/her responsibility to
make sure not to waste too much memory by allowing the garbage in files to become too large.

3 Scripting Languages

As mentioned before, one goal while writing this database library was to make it useful especially for experi-
mentations. For practical work, it is not very convenient to write a C or C++ program "around" function calls,
translate it, hopefully have no errors in it, and run it. If the experimental result is not as desired, you will have
to change your main program, re-translate, and so forth.
Of real benefit would be a system that combines the run-time efficiency of compiler languages with the
trial-and-error way of experimentations in case of interpreters. This is possible with C or C++ libraries using
scripting languages. The idea is as follows:
Assume we have a C or C++ library. Probably, there is one or are several (header) files that represent the
interface to the user, i.e. all functions from the library that can be called. Put them into one interface file.

1. For every function in the interface file, write a little C function around it, such that, when compiled, it
becomes an executable, reading its arguments from a command line (similar to a main function in C).
This process is called wrapping the C functions.

2. Compile the wrapped functions, and finally

3. link them together to make a new library, which is readable by your target scripting language.

The first step can be done by hand, but as it is highly automatic, a package called SWIG exists, which writes
wrapper functions for each C or C++ function. The second and third step can usually be accomplished by a C
or C++ compiler.

17

For the present database library, the above steps were tried out using SWIG as the wrapper generator and
PYTHON as the target scripting language. In this case, you should now tell it where to find the PYTHON library
created in step 3. Then you may either call PYTHON and create objects on-line, work on them and do real

experiments, or you run a script file that contains the PYTHON instructions line by line.
The swig subdirectory in the library package contains the interface file s口ig_database.hh mentioned above,

more precise instructions how to process it, a makefile to actually do it, and many examples to see how it works.
The database. i file is another input file for SWIG (beside the interface file), which tells SWIG the name of that
interface file, and gives it various instructions about argument passing.

As it took quite a while to make the database work from PYTHON, some comments on problems that occurred
seem advisable. The SWIG wrapper generator was originally written for C, and later enhanced to allow for C++
features. This process, however, seems neither completed nor absolutely flawless yet. All problems that could
not be solved seem to be attributable to SWIG rather than PYTHON. Those include:

• SWIG currently does not yet support all C++ features, in particular, operator overloading. This is the
reason for many inconveniences, like different functions for conditional and unconditional operations, as in
the case of the add_frorn_database and add_frorn_database_if routines. Also, the assignment operator=
can not be used between database objects,、vhichgives rise for the odd assign_frorn operation.

• In contrast to the SWIG manual, private declarations in the interface file are not ignored, as they should
be. Various errors occur when SWIG parses the private section of this file. As a consequence, it is not
possible to use the original database.hh header file also as interface file (which would be much more
convenient), but rather a separate file has to be written that contains only the public declarations of the
database class.

• Constant default values for string arguments (as "", in particular) in functions are not correctly handled,
which is why global variables had to be introduced for such default values.

• In accordance with other SWIG-and-PYTHON users, the passing of C++ exceptions from a library (via
SwIG) to PYTHON does not work properly (they are ignored in PYTHON). The inelegant consequence is
that currently, each single database library function has to catch errors itself instead of passing them on

to the calling program (which causes no trouble in the case of a C++ main function).

4 Examples

The following section contains example scripts that are essentially identical to those in the example and swig

subdirectories that come with the library package. So it is easy to try them out rather to read them in this
manual. -The two subsections each contain a C++ and a PYTHON example, which are identical in their effect,
so you can compare the different way of stating instructions in either language.

4.1 Basic example

The following example (cf. example1. cc) shows a very elementary progression of how to use the library:

(1) #include "database.hh"
(2)

(3) main() {

(4) database d;

(5) d. add_from_f ile ("description/descriptions. txt");
(6) d. show (1) ;

(7)

(8) d. save("database/example1 .dtb"); }

// Make empty database

// Fill from descr. file

II Show database
I I Do something
II Save database to file

Note that only the database. hh header file needs to be included (line 1). All other structures exist only logically
for the user.

18 4 EXAMPLES

- -y OU st-aft―-b-_y―er-e-ating-a五 emptydatao: 邸e-(line--z!J了 -At-th~-b—eginnin忠the only-possible source to-fill -the

database from is a description file (line 5). The argument 1 in line 6 means, output one utterance in a row,

after each of which a confirmation by the user is requested.

The featureless line 7 may include extracting some utterances of the ones now in the database, but mainly

this is the place to work on the samples and features and possibly save them to a file. This always affects only

the binary data for one specific utterance. Therefore, in line 8, you probably want to save the text data of the
utterances. This saves exactly what had been read from the description file (unless some text data have been

changed meanwhile), but in the database-internal format, of course.

A PYTHON script file (cf. exarnplei .py) performing the same actions looks like this:

(1) # ! /usr /local/bin/python1. 5
(2)

(3) from database import*
(4)

(5) d=database()

(6) d. add_from_f ile (" .. /example/description/descriptions. txt")

(7) d.show(1)

(8)

(9) d. save(" .. / example/database/save_example. dtb")

Make empty database

Fill from descr. file

Sho百 database

Do something

Save database to file

Here, line 1 tells the calling environment (shell) that the file should be executed by PYTHON. Line 3 makes

PYTHON read in all the database functions that had been compiled into the specific database PYTHON library

before. The rest is basically the same as the C++ code above. Note, however, that the correct way to create an

object (line 5) differs a bit from the way in C++ (line 4 in the previous listing).

4.2 Advanced example

The following script (cf. example2. cc) briefly demonstrates the usage of basic database operations and the way

errors are handled:

(01) #include <iostream.h>

(02) #include "database.hh"
(03)

(04) main() {

(05)

(06) try {

(07) database d1;

(08) d1. load("database/load_example. dtb");

(09) d1. add_from_file("description/descriptions. txt");
(10) d1. set_attribute_entry_of_all("Record_date = 04/13/98");

(11) d1.sho立 main_memory_usage();

(12)

(13) database d2;

(14) d2.add_from_database_if(d1,"age <= 34");
(15) d2.remove_if("Format == NIST");

(16) d2.remove_if_absent("Origin"); }

(17)

(18) catch (const database_error& error) {

(19) cout くく "Message was : " << error. message << endl;

(20) cout くく "Thro口ingfunction: " << error.function << endl;

(21) cout くく "Return value: " << error. code << endl;

(22) return error.code; }}

// Make empty database

// Load a database

// Add (raw) utterances

//Adda new attribute

// Show memory usage

I I Make new database
// Extract utterances
// Remove utterances

// Remove utterances

II Error handling

19

In this example, a datab邸 edi is created, utterances are loaded into it and added from a description file. Then

a new attribute with an utterance-independent value is added to all utterances. Finally, the main memory
consumed by the utterances so far is displayed (lines 7 through 11).

A second database, d2, is created and filled with all utterances from di that contain the age attribute and

for which the value of this attribute is at most 34. (Note that utterances from di without the age attribute
will not appear in d2.) Now, all utterances featuring the NIST format are removed邸 well邸 thoselacking the

Origin attribute (lines 13 through 16).
This ends the actual code. The file access in line 8, for example, might fail due to various reasons. The

error handling for such c邸 esis introduced in line 6 with the try statement. Whenever an error occurs in the
following lines, an exception of type database_error will be thrown and caught by the catch statement in
line 18. An instance of the database_error struct contains a message, the function where the error occurred,
and an error code. Those values are displayed in lines 19 through 21, and the error code is returned to the shell.
Execution is not continued behind the position'where the error occurred.

The PYTHON equivalent (cf. exarnple2. py) is:

(01) #!/usr/local/bin/python1.5

(02) from database import*

(03) di=database()

(04) di. load(" .. / example/database/load_example. dtb")
(05) d1.add_from_file(" .. /example/description/descriptions.txt")
(06) d1.set_attribute_entry_of_all("Record_date = 04/13/98")
(07) d1.show_main_memory_usage()

(08) d2=database()
(09) d2.add_from_database_if(d1,"age <= 34")
(10) d2. remove_if ("Format == NIST")

(11) d2.remove_if_absent("Origin")

Make empty database
Load a database
Add (raw) utterances

Add a new attribute
Show memory usage

Make new database

Extract utterances
Remove utterances
Remove utterances

As mentioned above in section 3, the passing of exceptions from a C++ library on to PYTHON did not work, so

error handling within this script doesn't make sense -the database catches all errors itself. Apart from that,
the result is the same as in the C++ code above.

5 Maintainance

This section describes issues that become relevant when the database library is being enhanced by a programmer.
Hopefully, the comments given here help to read and understand the code in the source files.

5.1 Data structures

All newly developed data structures are C++ classes or structs, whose name in general starts with an under-
score to mark them as types rather than variables. The exceptions to this rule are the main class database,

the exception structure database_error (see section 1.4), and some very small structs of the name pattern
crnp_・.., which are needed as compare objects for binary search routines.

Their precise declarations can be found in the header files in the include subdirectory. The basic data

structure hierarchy is as shown in figure 1 on page 3. At the top of that hierarchy, we have the type database.

This is the class that the user can make objects of and that provides all the methods to manipulate such an
object. All other classes are used only internally as sub-structures of the database class.

A database instance contains a name, which is the default filename for load and save operations, and a

.raveforrn_path, which is used as a common path for waveform files, see section 2.6.1 for details. Further, there
are two major components:

20 5 MAINTAINANCE

Attribute information: The struct _attr_in:formation holds all attributes (struct _attribu'te) and ent-ries-

(struct _entry) of the database, that occur in some utterance. Their purpose is to attach an integer ID to an
attribute or entry name, such that in an actual utterance, only the ID of an attribute or entry has to be stored,

rather than a string representing its name了Thisreduces memory requirements considerably. If the user wishes
to extract all utterances with the property Speaker==John, then the ID's for attribute Speaker and entry John

are retrieved from the attribute information. After that, browsing through all utterances only involves integer
comparison rather than string comparison, making the loop faster. -The "special" attributes, mentioned on

page 7, don't get an ID assigned, as their names are fixed and they occur in every utterance. For a listing, see
the reference section 6, or have a look at the type definition _speciaLtype in the attribute. hh header file.

Utterances: These are stored in a container of elements of type _utterance. An instance of this struct
consists of three components:

1. Attribute entries: They are maintained in a container of elements of type _attribute_entry. The latter
has three components, which are the ID of the attribute, the type of the corresponding entry (string or

number), and a union containing either the entry ID, if string, or its float value, if number.

2. Waveform: The structure _口aveform,as was described in section 2.6.1.

3. Features: The structure _feature, as was essentially described in section 2.6.2.

Remember that the data types for the samples of a waveform and the feature vectors come from the mat2D
package.

Every attribute and every entry are associated with a counter of all the utterances that contain that attribute
or that entry. Such, when browsing through the container of all utterances to search for a specific attribute

entry, the search can be truncated after the number of utterances containing that attribute/entry has been
reached.

Utterances, attributes, entries, and attribute entries are stored in "containers", which are currently C++

vectors. Those always occupy a coherent portion of main memory, so binary search can be applied. For this
reason, the four containers are kept sorted. The criterion is the ID of the respective data type; in case of the

attribute entries, it is the ID of the attribute (as every attribute occurs at most once in every utterance). ―T?is
way, the memory savings using ID's for strings are considerable, whereas the time consumption by convertrng
the ID's in strings and vice versa is low.

5.2 P rogrammmg issues

5.2.1 Statics, globals, defaults

The following (sub-)structures contain the following user-relevant static variables (defaults in parentheses):

string database: : tmp_dir ("/usr /tmp") to temporarily save files while doing garbage collection (see sec-
tion 2.6.3)

char _utterance: : delimiter ('c') to mark utterance boundaries in a save file

string _waveform: : shorten_decode_command to be executed when an original waveform file is still compressed

string _waveform: : tmp_f ilename (tmpnam(0)) to temporarily save the uncompressed waveform file to

string _waveform: :extension ("wvf") to append to the database name to make a sample data file name, if

not specified by the user (cf. Char_sample_file variable in section 2.6.1)

long _waveform: :buffer_size ((long)5E06) size of the buffer in bytes to be filled with sample data (sec-

tion 2.6.1)

7Thls does, of course, not apply to entries having number values themselves, such as the age of the speaker. ID's are only
attached to string entries.

5.2 Programming issues 21

string _feature:: extension ("ftr") to append to the database name to make a feature data file name, if

not specified by the user (cf. Feature_f ile variable in section 2.6.2)

long _feature: :buffer_size ((long)5E06) size of the buffer in bytes to be filled with feature data (sec-

tion 2.6.2)

The C function call tmpnarn(O) supplies a temporary filename on the current system. -All these static variables
are constants. They can only be set by the user before compiling the library. Statics that are not user-relevant

are not listed.

Defaults of non-static member attributes are:

string database: :name = "nonarne"

string database: : extension = "dtb"

All other class members default to 11-11 (strings) or -1 (integral types). Note that strings should not have 1111 as

default, as this value cannot be saved to a file and re-read. It is important to know these defaults when values
of not-yet-assigned attributes in the database are requested, for example using the get_ ... _entry functions.

Finally, there are two constant global variables of minor importance: _NQ_VALUE_ is used in sho'I< routines

only, and is printed for the value of attributes that have no meaningful value assigned yet (printing the default
11-11 or -1 might be inexpressive). It defaults to 11 (none) 11. The other global variable is -.EMPTY-5TRING_ and

has the value 1111. The reason for introducing this seemingly unnecessary variable was given in section 3 on
page 17.

5.2.2 Writing style in the source files

While writing the code for the database package, excessive use of the C assert macro was made to check
whether program invariants hold true. Almost all of these statements can be removed from the code to make it

slightly more efficient, but they are highly recommended in programming sessions when enhancing the code by
new features. If the code contains a bug, being informed about it by a violation of such a statement often tells
you immediately what the cause is, very much unlike a segmentation fault, which is the alternative.

There are two special types of assert statements, which must not be removed:

• assert(false) is used in switch statements to claim that the corresponding case does not happen, i.e.
the execution will not reach this point. Those occurrences don't waste any execution time as long as the

program works correctly.

• Some of the boolean expressions in the argument of assert have a side-effect, i.e. they perform some
action and, at the same time, check a related program invariance. The action itself is the main purpose
of these statements. If they are removed, the result will normally be disastrous. A typical example is

assert(fgetc(in)=='¥n')

which moves the file pointer associated with in forward one character and also checks whether the symbol

skipped was a newline, as expected.

To prevent these lines from accidentally being removed, they are marked by a

// essential side effect!

comment.

Comments are mainly provided in the header files, where they specify the purpose of every function. In the

actual source files, comments are given only for non-obvious or non-portable parts of the code.

22 5 MAINTAINANCE

5.2.3 System-dependencies

Although mostly avoided successfully, some parts in the program rely on the architectural environment, and

the user's help is needed to adapt some variables to local circumstances:

l. If original waveform files contain compressed data, they need to be uncompressed before they can be
read into main memory, and the user has to supply the proper name of the uncompress command in
the _waveform:: shorten_decode_command variable mentioned above. The execution of this command

happens via a system call. Please refer to the waveform. cc source file to check if the arguments to this
command are passed correctly (flags may be required, etc.).

2. The garbage_collection routine needs to move files. The C function rename can be used and is system-

independent, but it has the drawback that is does not move files between different file systems. This is,
however, expected to happen quite often in the context of speech recognition, as large data files may reside
on other machines than the executable programs. Therefore, a system call is used here to rename files.
Currently, the UNIX mv command is employed, which must be adapted to other environments, especially

to WINDOWS operating systems.

3. The database: :tmp_dir variable is expected to provide a directory for temporarily placing files. It
defaults to "/usr/tmp", which may not even exist on your system or might be too small for moving 1~ 如
files to it. The reason for doing the temporary file access on this directory is that on UNIX systems, 1t 1s

guaranteed to be on a disk of the current running machine, on which the program was started. Hence,
file access is fast. This is not necessarily the case if the current directory (". ") is used.

All these occurrences of system-dependent parts of the code are marked by a

I I System-dependency! !

comment.

5.2.4 Compiler issues

The database library was so far mainly used on LINUX platforms using the g++ compilers 2.7.2.2 and 2.8.1.

At least on the local machines, the older version was not totally reliable, some functions (as in the C++ vector
class) were simply missing, others causes program crashes. This could be avoided by avoiding those functions

themselves.

The newer release, 2.8.1., seems to have gotten rid of these flaws, but the following syntactical changes are

required to compile the library under the new version:

• The name of the flag to allow C++ exception handling was changed from

handle-exceptions into exceptions.

This must be set accordingly in the makefiles of the src and swig directories.

• The name of the function to remove elements from a string in C++ was changed from •9

remove into erase.

In order to avoid having to change the code at many places, a macro had to be introduced that must
be set to the "current" name of the remove function. This macro is defined using the -D option in the

compiler call, so it is found in the src/Makefile.

／

23

6 Quick Reference

口

In the following, some important details are enumerated, which have been discussed already in the text, and are
here summarized only. Numbers in parentheses at the end of a line refer to page numbers for more information.

Parameters: denotation for the name and waveform_path attributes of a database object. (4)

Attribute names: if number-valued, initial must be small or digit ('a'..'z','O'..'9.'), others are string
attributes、(7)

Special attributes: occur in every utterances and don't get an ID assigned. Currently:

• Format

• sampling..:frequency

• number―oLsamples

• bytes_per_sample

• Drder_of_bytes

• Relative_path

• Char_sample..:file

• Short_sample_file

• Feature_file

＼ノし

The agreement on the initial letter of an attribute name to identify its type holds for special attributes
also. (7)

Utterance ID: taken to be the relative path; used for sorting and indexing. (7)

Format of description file: line oriented, every line being one utterance, every utterance being a list of
"attribute = value" pairs, separated by comma. Spacing between tokens and newlines between utter-
ances arbitrary. If special characters appear within attribute or entry names, enclosing double quotes are
required. " itself must be canceled by ¥. (7)

Saving time: if names of attributes and entries are kept short, run time will be reduced for functions that
require parsing, for example, those taking condition strings. Memory needs are barely reduced, as ID's
are stored instead of strings.

Satisfaction of conditio-ns: A condition "attribute <OP> value" is satisfied by an utterance if the at-
tribute exists and the condition is satisfied. -Conversely, it is not satisfied if the attribute does not exist
or, it exists but the conditi~n is violated. (9)

Static variables: Perhaps need to be adapted depending on local architecture. Check section 5.2.1 on page 20
for a complete listing.

財 参考文献

参考文献

[1] Bjarne Stroustrup: THE C++ PROGRAMMING LANGUAGE. Addison-Wesley, Massachusetts, 1997.

[2] Dirk Louis: C UND C++: PROGRAMMIERUNG UND REFERENZ. Markt und Technik, Buch-und Software-

Verlag, Haar bei Miinchen, 1996.

[3) HP C/HP-UX REFERENCE MANUAL. Hewlett-Packard Company, 1992.

[4] Dave Beazley: SWIG. SIMPLIFIED WRAPPER AND INTERFACE GENERATOR. Online-manual at

http://www. cs. utah. edu;-beazley /SWIG/ swig. html.

[5) Mark Lutz: PROGRAMMING PYTHON. O'Reilly e1 Associates, Inc., October 1996.

[6] Helmut Kopka: 駅TEX.EINE EINF白HRUNG.Addison-Wesley, Bonn, M加chen,Paris, 1992.

	001
	002
	003

