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Because speaker-independent large-vocabulary systems need huge amounts of training data the 

parameters of the acoustical units have a high variance and thus give poor models for individual 

utterances, being sensitive to changes of environment (speaker or channel). One attempt to solve 

this problem is to transforme the feature and/or model space in order to reduce the mismatch 

between the acoustical data and the acoustical models of the system. 

We present some experimental results achieved with supervised and unsupervised adaptation of a 

hybrid BRNN (Bidirectional Recurrent Neural Network) phoneme recognition system on TIMIT 

data using 

1. a Linear Input Network (LIN) 

2. retraining the BRNN with weight-sharing 

We show also how unsupervised adaptation can be improved using only a simple acoustical con-

fidence measure based on the posterior probability of the recognized class for every frame. 
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1 Adaptation 

1. 1 Motivation 

1.3 Existing Work 1 

State of the art speech recognizers, i.e. large-vocabulary speaker-independent systems, have to deal 

with huge amounts of data, which implies to deal with large variations between speakers and environment. 

This leads to a higher variance of the parameters of the acoustical units and to poor models for individual 

utterances. As a consequence, for example speaker-independent systems have higher error rates than speaker-

dependent systems, even if the training data is sufficient ([17]). Also, almost all recognizers are still sensitive 

to changes of the environment characteristics for the training and testing data. 

One attempt to solve this problem is to transform the feature and/or model space in order to reduce the 

mismatch between the acoustical data and the acoustical models of the system. 

1.2 Termmology 

One possible method for reducing the sensitivity of the system to large variations of speech characteristics 

is adaptation. Adaptation is here de恥 edas the process of adjusting the parameters of the system (either 

in the feature space or in the model space) to improve the model for a new acoustic environment (speaker 

for example). ・ 

Examples are the transformations of the means and variances of the Gaussian mixtures of HM Ms, affine 

transformations of the feature space for a new speaker, choosing between different trained systems, and 

retraining of neural networks. 

In the adaptation literature the term normalization is often used for a special case of adaptation of 

the input feature space. Normalization is the process of transforming the input speech, so that it appears 

to the system to have the same characteristics for every acoustic environment. Speaker or environment are 

mapped to some trained prototype speaker or environment, so that inter-speaker variances are minimized. 

For normalization both training and testing are performed with transformed speech. A widely used example 

for normalization is VTLN (Vocal Tract Length Normalization). 

For performing the adaptation one starts from an initial trained system, and learns the transformation 

with an amount of new data, called adaptation data. 

The adaptation process can be be 

• supervised, which means that the word transcription (but usually not the alignment) of the adaptation 

data is known and used during the adaptation process, or 

• unsupervised, where transcription is not known, but the recognition output of the initial system is 

used as the transcription. Certainly, unsupervised adaptation is the most desirable, but also most 

diffi叫 t.A poor initial recognition leads to a false transformation, so that there is a need of measures, 

how confident one can be in the recognition result of the initial system. 

The adaptation mode can also be categorized as 

• off-line, where the adaptation and test data are distinct and adaptation is performed completely before 

testing, and 

• on-line, where adaptation is performed on the test data during testing, 

or, also depending on the usage of the adaptation data, in 

• static or batch mode, where all adaptation data is presented at once to the initial system for 

adaptation, or in 

• dynamic or incremental mode, where the adaptation data is presented successively in small blocks 

and the system is refined after each block. 



2 1 Adaptation 

1.3 Existing Work 

(1.3.1) Overview of Different Approaches 

During the last years a lot of experiments have been done on adaptation, most of them for HMM-based 

speech recognition systems. Roughly speaking, one can categorize the following different approaches: 

• Speaker categorization (clustering) 

Speakers or data are clustered and for every cluster a model is trained. The adaptation process consists 

of selecting the cluster that is most representative and use the corresponding model ([11, 13]). The 

method is simple but the drawbacks are that variations within clusters may be large and new data 

may not be well represented by any of the clusters. Gender dependent modelling is a special case of 

speaker clustering. 

• Mapping of the feature space 

Input feature or model parameters are transformed to minimize differences between adaptation data 

and training data (for example minimize differences between speakers). This can be accomplished 

globally or phone specific. Experiments in [17, 20] show that linear or piecewise linear transformations 

perform good for HMM systems, which indicates that they capture well enough the differences being 

at the same time simple enough to generalize well. 

• Reestimation of the parameter models 

Here the model parameters are transformed to improve the model accuracy for the adaptation data. 

It can be performed using Bayesian MAP (Maximum a Posteriori) iterative estimation, which uses a 

priori information about the distribution of the parameters ([10]). It has the advantage of converging 

asymptotically to a speaker dependent model as more adaptation data is available. 

A major problem for this approach is of course the estimation of the prior densities for the model, 

usually taken from a speaker-independent model. Just taking the speaker-independent models as initial 

parameters and not assuming any prior knowledge about the distribution of the parameters leads to 

the simpler (but poorer) ML (Maximum Likelihood) -estimation. 

Another problem with this technique is that it updates only parameters of models for which adaptation 

data exists. For limited adaptation data some models might not be observed in the example data and 

thus not been adapted. It has been shown that there is a relationship between different parameters 

of a speaker-independent system, so to overcome the problem of limited adaptation data it is possible 

to model this relationship and predict models for unobserved data using the updated models of the 

observed data. Linear regression relationships between parameters (learned from an SD-trained system) 

([4]) and smoothing techniques ([14]) proved to be successful in a MAP-estimation framework, especially 

for very small amounts of adaptation data. 

A successful transformation-based approach to reestimate the parameter models is MLLR (Maximum 

Likelihood Linear Regression)([l8]). The parameter models (u訊rallyonly means of Gaussian distribu-

tions, sometimes variances too) are reestimatecl using regression-based transforms. The transformation 

parameters are determined such that the new model maximizes the adaptation data (EM-algorithm). 

To overcome the problem of limited data, transformations for clifferen t classes can share the same 

parameters. 
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(1.3.2) Reported Results for Adaptation of HMM  Speech Recognition Systems 

Some reported experimental results for adaptation of HMM-systems are shown in table 1 (supervised 

adaptation) and 2 (unsupervised adaptation). 

The following conclusions can be drawn: 

• The adaptation result is strongly dependent on the amount of training data. For supervised adaptation 

a boost is usually achieved with more than 4 minutes of speech. Especially ML-techniques require a 
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lot of data, for few data the performance can even degrade. For small amounts of adaptation data the 

effect of sparse data can be overcome by sharing of parameters, prediction or smoothing techniques. 

• The adaptation result is highly dependent on the task and on the initial system. 

• For unsupervised adaptation a high performance of the initial system is even more important. It has 

been reported that for an improvement a system better than 20 % WER is necessary ([23, 28]). 

(1.3.3) Reported Results for Adaptation of Hybrid NN-HMM Speech Recognition Systems 

For hybrid systems some results are presented in table 3 (supervised adaptation) and 4 (unsupervised 

adaptation). 

We can observe that 

• The adaptation result is highly dependent on the task, on the initial system, and on the amount of 

training data. 

• LIN (Linear Input Network) gives good results for hybrid systems. It is similar to ML-techniques. 

Mixtures of LINs are slightly better and can be compared to MLLR -techniques. 

• Retraining of the nets gave also promising results. 

• Unsupervised training is also not consistent and depends on the performance of the initial system. 
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Confidence Measures 

2
 
Confidence Measures 

A confidence measure is a statistic which quantifies the degree of belief in the correctness of the result. 
A confidence measure of 1 indicates that we are sure the result is correct, 0 that we are sure it is incorrect. 

There have been made a lot of investigations on confidence measures during the last two years. At 

the word level it has been reported that measures based on word lattices containing the n best hypotheses 

of the system proved to be most successful ([16, 21]), combined with other measures based on posterior 

probabilities, language model scores, number of occurences of words, speaking rate (durations), SNR, etc. 

([15, 25, 8]). 

A n acoustic confidence measure 1s here defined as being based exclusively on the・acoustical model, 

without taking into account higher-level sources of information like language model, semantic, etc. Acoustical 

confidence measures based just on local posterior probability estimations of the system were proposed and 

successfully tested for utterance rejection both for HMM-systems([22]) and for hybrid HMM-NN systems 

([21]). 
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3.3 Adaptation through Weight-Sharing 5 

3 Implementation and Testing 

3.1 System and Dataset 

For all experiments the BRNN (Bidirectional Recurrent Neural Network) phoneme recognition system of 

Mike Schuster was used ([24]). 

The BRNN estimates the posterior probabilities of the frame-class given the preprocessed acoustical 

input feature P(frame-classiframe). From these the scaled likelihoods of the frames are computed through 

the Bayes rule, and decoding is performed with the Viterbi algorithm. 

The BRNN used for experiments had 30 inputs (14 MFCC-coeffi.cients, power and delta), 61 outputs 

(phonemes), and a total of 58211 weights. 

The system was trained 64 iterations on the TIMIT (English continuous read speech) training set, using 

the cross-entropy objective function and the tanh activation function. For adapting and testing the TIMIT 

test set was used, containing 1344 utterances from 168 speakers (112 male, 56 female; 8 sentences per speaker) 

speaking 8 regional American dialects. The average length of the test set utterances is 2.8s. 

The baseline performance of the speaker-independent system is 63% phoneme error rate. 

3.2 Adaptation with a Linear Input Network 

A linear input network was implemented for adaptation. The linear network has 930 weights (30 inputs 

make 30 * 30 + 30 weights) and is initialized as the identity transformation. Training is performed through 
backpropagation (RPROP) for the whole network (LIN + speaker-independent BRNN), but the weights of 
the BRNN are kept恥 ed,while just the weights of the LIN are updated (ML-training). 

NN 
NN 

ADAPTIVE FIXED 
P(clx) 

(a) 

図 1:Architecture of LIN-BRNN system (LIN =ADAPTIVE, BRNN =FIXED) 

The adaptation algorithm works as follows: 

1. initialize'LIN'as identity transformation 

2. forward through'LIN'and'BRNN', calculate scaled likelihoods 

3. Viterbi search to assign a target class for every frame 

4. backpropagate error through'LIN'and'BRNN'and adjust weights in'LIN' 

For supervised adaptation step 3 is changed to a forced alignment of the already given phoneme sequence. 

Experiments were performed both for supervised and unsupervised sentence, speaker and region adapta-

tion, for all 168 speakers of the database. 

3.3 Adaptation through Weight-Sharing 

For adaptation with weight-sharing the weights of the speaker-independent system are clustered, for 

example with the kmeans algorithm using the Euclidean distance measure (other variants are possible as 
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options, but no experiments were performed). Than the BRNN is retrained with the adaptation data, so 

that all the weights in a cluster are updated equally, with averaging of t_he derivatives of the e_rror for all the 

weights in the cluster. 

Experiments were also performed both for supervised and unsupervised speaker as well邸 regionadap-

tation, for all 168 speakers of the database. 

3.4 Additional Confidence Measure for Unsupervised Adaptation 

Unsupervised adaptation relies on a correct output of the system. For a wrong recognition output the 

adaptation can lead to a degradation of the performance instead to an improvement. Therefore it would be 

useful to adapt just to correctly aligned frames, ignoring the false ali_gned fra_mes. 

For that purpose we introduced an additional confidence measure at frame-level based on the local 

posterior probability estimation of the system and tested the results for unsupervised adaptation. The 

confidence measure used for every frame is the posterior probability of the recognized class for this frame as 

it is approximated by the BRNN. 

conj idence = p(recognized class!input frame) 

For every frame the backpropagated error at the output units is multiplied by the confidence. 

Thus, if the confidence is high (close to 1) it means that the system is quite sure that the result is correct, 

the whole error at the output unit is backpropagated and the net learns to recognize this frame even better. 

If the confidence is small (close to 0), the frame is not used for adaptation. 

The linear correlation coefficient of confidence with known correct/false assignment for frames is 0.48 

for a test set of 10 speakers (80 sentences) using the SI BRNN-system. 

＼
 

3.5 Experimental Results 

Supervised adaptation has been performed in off-line batch mode (separate adaptation and test data 

presented at once to the system) and unsupervised adaptation in on-line batch mode (adaptation and test 

data the same, presented at once to the system) for sentences, speakers and regions. The best results for 

different experiments are listed in tables 5 and 6. 

There have been done different experiments for determining the values for RPROP-parameters for both 

adaptation with LIN and through retraining with weightsharing (dependent on the number of shared 

weights). Only the best results are listed here. Also there have been done experiments for determining 

the number of adaptation iterations and dependency on amount of adaptation data. 

The learning curves for 15 iterations of supervised adaptation for all 168 speakers are listed in Fig. 2, 3, 

and 4. 

Fig. 2 shows that the system doesn't improve on the adaptation data after 1-3 iterations for 4 sentences 

adaptation data and after 1-2 iterations for 6 sentences adaptation data, which implies that the transforma-

tion is too simple (or that the number of parameters must be increased -which is not possible for a LIN). 

The effect is even worse for region adaptation (between 40 and 120 sentences/region), where performance 

drops (Fig. 3). 

With a BRNN (nonlinear transformation) the performance improves continually on the adaptation data, 

but due to the small number of sentences (4 adaptation data/speaker) the net doesn't generalize. A net 

with 930 weight-clusters (same number as the LIN-parameters) is compared to a net with 2500 weights in 

Fig. 4. The net with 2500 weights adapts more accurate to the adaptation data due to more parameters, 

but has worse results on the testing data, since it overlearns the adaptation data. 

For unsupervised adaptation (Fig. 5, 6, 7, 8) in average the performance degrades, which confirms other 

reports on similar experiments. This is due to the fact that the speaker-independent system has only 63% 

phoneme recognition rate, with more than one third of the alignment being false, such that the system 

doesn't have any mechanism to avoid adaptation to the wrongly aligned frames. 

Introducing a simple acoustical confidence measure based on posterior probabilities the results for un-

supervised adaptation after one iteration improved with 0.3 % relative for sentence and speaker adaptation 

ー
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図 6:Unsupervised adaptation with LIN for speakers 
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図 7:Unsupervised adaptation with LIN for regions 
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unsupervised speaker adaptation, averaged over 168 speakers, weight-sharing with 930 weights 
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図 8:Unsupervised speaker adaptation with retraining through weight-sharing 

and with 1.8 % relative for region adaptation in comparison with the case without confidence measure (see 

table 6). The relative improvements as a function of recognition rate are plotted for the LIN case without 

versus with confidence for region adaptation in Fig. 9, we can see that 7 out of 8 regions get better results, 

just one region decreased. 
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4 Conclus10n 

In this work we have implemented and tested three methods of adaptation for a hybrid BRNN-HMM 

phoneme recognition system on the TIMIT task. 

The linear transformation of the input feature with a LIN (Linear Input Net work) is a simple adaptation 

method which gave promising results in previous reported work. It seems that for our task and system it is 

too simple and has too few parameters (the number of parameters is恥 ed),so that a nonlinear transformation 

or a mixture of LINs might give better results. 

Retraining of the BRNN with weight-sharing is a method with which one can control the number of 

parameters to be adapted. The learned transformation is more complex, but supervised adaptation gave 

only small improvements on testing data due to the limited amount of adaptation data. 

For unsupervised adaptation the initial system is too weak (63% phoneme accuracy) for giving consis-

tent improvements. But introducing only a simple acoustical confidence measure for every frame based 

on posterior probabilities of the recognized class we could consistently improve the result for unsupervised 

adaptation. This makes us think that a more sophisticated confidence measure could give an even better 

improvement. 
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c..,~1, 

System Database Method Adaptation data Test data SI Adapted Rel. imp 
， 

HTK ([5]) ARPA RMl (cont.) MAP 1 sent.(3sec)/sp. (12 sp.) 100 sent./sp. 5.92 5.86 1.0 

5 sent.(15sec)/sp. (12 sp.) " 5.92 5.62 5.0 

600 sent.(1800sec)/sp. (12 sp.) ’‘ 5.92 2.38 59.7 

ML 1 sent.(3sec)/sp. (12 sp.) “ 5.92 39.76 -571.G 

5 sent.(15sec)/sp. (12 sp.) “ 5.92 63.05 -965.0 

600 sent.(1800sec)/sp. (12 sp.) ヽヽ 5.92 2.36 60.1 

RMP 1 sent.(3sec)/sp. (12 sp.) ‘’ 5.92 5.44 8.1 

lOsent. (30sec)/sp. (12 sp.) " 5.92 5.19 12.3 

600 sent.(1800sec)/sp. (12 sp.) " 5.92 2.34 60.2 

HTK ([5]) native 1994 WSJ Spoke S3 MAP 40 sent./sp. (284sp.) 20 sent./sp. 5.58 5.20 6.8 

RMP 40 sent./ sp. 20 sent./sp. 5.58 5.03 9.9 

nonnative 1994 WSJ Spoke S3 MAP 40 sent./sp. 20 sent./sp. 19.59 16.56 15.5 

RMP 40 sent./ sp. 20 sent./sp. 19.59 16.37 16.4 

native 1994 WSJ S3 ML+ Bayes 40 sent./sp. (10 sp.) 

20 sent./sp. (5sp.) 

40 sent./sp. (11 sp.) 20 sent./sp. 23.1 10.5 54.7 I 
ATR ([23]) ATR SSD (spont.) Quasi-Bayes (MAP) 15s/sp. (3sp.) 19.7 18.8 4.56 

260s/sp. (3sp.) 19.7 13,4 31.9 

MAP+ VFS 15s/sp. (3sp.) 19.7 17.6 10.65 

260s/sp. (3sp.) 19.7 13,9 29.44 
-- -

[ JANUS ([28]) 

[ HTK ([3]) 

I SSST 
I TIMIT 

I MLLR 
I MAP 

I (9sp.) 
j 2 sent./ sp. (24 sp.) ？・

~
~
~
 

い 15.3

~49.60 

□

□

-

Table 1: Overview of results (% WER) for supervised adaptation of HMM-systems (sent.= sentence, sp.= speaker) 



System Database Method Adaptation data II SI II Adapted I Rel. impr. 

HTK ([5]) 
I 
ARPA RMl (cont.) MAP 

I 
10 sent.(30s)/sp. (12 sp.) 5.92 5.9 0.5 

600 sent.(1800s)/sp. 5.92 4.69 20.8 

JANUS ([28]) I SSST (spont.) I MLLR I (9sp.) 21.8 21.3 2.2 

WSJ SO SAT lsent. / sp. (20 speakers) II 7.93 11 6.28 20.7 

SRI's DECIPHER ([9]) WSJ S3 incremental ML 20 sent./sp. II 27.4 11 19.6 28.4 

Table 2: Overview of results (% WER) for unsupervised adaptation of HMM-systems 
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System Database Method Adaptation data Test data SI Adapted Rel. impr. 

SRI's DECIPHER ([1]) male native WSJ S3 (read) LIN 30+10 sent./sp.(4 sp.) 40 sent./sp. 21.77 17.26 15.3 

retraining of MLP " “ 21.77 18.44 15.2 

LIN + retrain MLP “ “ 21.77 16.91 18.7 

male nonnative WSJ S3 (read) LIN 30+10 sent./sp.(5 sp.) 40 sent./sp. 24.5 19.2 21.63 

retraining of MLP ヽヽ ヽヽ 24.5 15.7 35.91 

LIN + retrain MLP ‘’ “ 24.5 15.6 36.32 

SRI's DECIPHER ([2]) male nonnative WSJ S3 (read) mixtures of LIN's 30+10 sent./sp.(5 sp.) 40 sent./sp. 33.6 22.5 33.2 

MLP-IIMM ([19]) DARPA IlMl (read) LIN 80 se11L./sp.(12 sp.) 20 8CllL./8p. 8.5 <>'-<> r- 35.2!) 

retrain MLP 
，、

’‘ 8.5 6.2 27.05 

l7 

RNN-HMM ([19]) DARPA RMl (read) LIN 80 sent./sp.(12 sp.) 20 sent./sp. 8.4 6.4 23.8 

" 600 sent./sp.(12 sp.) 100 sent./sp. 8.4 3.9 53.5 

retrain RNN “ ‘’ 8.4 6.9 17.85 

Table 3: Overview of results (% WER) for supervised adaptation of NN-HMM-systems 



System Database Method Adaptation data SI Adapted Rel. impr. 

ABBOT (RNN-HMM) ([26]) 1995 ARPA Hub 3 LIN 15 sent.sp. (20sp.) 18.5 15.9 12.1 
MUM 
(clean speech, mul-
tiple microphones) 

mixtures of LINs(MLLR?) 15 sent.sp. (20sp.) 18.5 15.7 13.2 

Table 4: Overview of results (% WER) for unsupervised adaptation of NN-HMM-systems 
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口

口

Method Task Adaptation data I Test data II SI I Adapted I Rel. impr. 

LIN speaker adaptation I 4 sent.(12s)/speaker (168 sp.) 4 sent.(12s)/speaker 63.28 63.86 0.9 

6 sent.(18s)/speaker (168 sp.) 2 sent.(6s) /speaker (168 sp.) 63.60 64.23 1.1 

region adaptation I 44-104sent.(132-312s)/region (8 regions) 44-104sent.(132-312s) /region _(8 regions) 63.56 63.18 -0.5 
' 

4 sent.(12s)/speaker (168 sp.) 63.2s I 63. 79 
I I 

WS-500 weights speaker adaptation 4 sent.(12s)/speaker . 

WS-930 weights " " “ 63.2s 1 63.66 

WS-2500 weights “ ’‘ ヽヽ 63.2s I 63.62 

Table 5: Overview of results (% WER) for supervised adaptation of BRNN-HMM-systems 
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